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Abstract 
Safety Critical Systems (SCS) are those systems that may cause harm to the 
user(s) and/or the environment if operating outside of their prescribed speci-
fications. Such systems are used in a wide variety of domains, such as aero-
space, automotive, railway transportation and healthcare. In this paper, we 
propose an approach to integrate safety analysis of SCSs within the Model 
Driven Engineering (MDE) system development process. The approach is 
based on model transformation and uses standard well-known techniques and 
open source tools for the modeling and analysis of SCSs. More specifically, the 
system modeled with the OMG’s standard systems modeling language, 
SysML, is automatically transformed in Fault Tree (FT) models, that can be 
analyzed with existing FT tools. The proposed model transformation takes 
place in two steps: a) generate FTs at the component level, in order to tackle 
complexity and enable reuse; and b) generate system level FTs by composing 
the components and their FTs. The approach is illustrated by applying it to a 
simplified industry-inspired case study. 
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1. Introduction 

Computer systems are widely used today in a multitude of domains. Individuals, 
communities, governments, industry, and organizations rely on computer tech-
nology to produce or innovate many aspects in a variety of areas, such as com-
munication, education, healthcare, transportation, food, services, entertainment. 
The increase in the utilization of computer systems has significantly raised their 
complexity levels. Furthermore, there is an increase in the demand to build sys-
tems that meet various Non-Functional Properties (NFP), such as performance, 
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dependability, security, safety. Regulatory authorities and concerned bodies have 
put regulations and standards in different domains to control the development 
of such systems. This has triggered many research efforts in the academia and 
industry targeting the analysis of NFPs. 

Dependability is the general NFP of interest in this paper. Dependability is de-
fined as the ability to deliver services that can justifiably be trusted [1]. Depen-
dability comprises five main attributes: Availability, Reliability, Maintainability, 
Integrity, and Safety. The last one, Safety, is the specific NFP of interest in this 
paper. 

Safety is defined as the absence of catastrophic consequences on the user(s) 
and the environment [1]. Safety-Critical Systems (SCS) are the type of systems 
that can cause harm to the user(s) and/or the environment when operating out-
side of the prescribed specifications. These systems are used in various domains, 
such as: aerospace, automotive, railway and healthcare. Safety Analysis (SA) is 
performed on SCS to ensure that they are safe enough to be operational. 

The survey in [2] performs a systematic literature review on SCS, concentrat-
ing on the evidence artifacts of systems for safety certification, including studies 
between 1990 and 2012. It shows that the number of publications targeting SCS 
and their safety evidence is increasing in all domains based on their respec-
tive standards. An interesting conclusion is that very few works are using 
model-based methodologies to obtain compliance evidence with safety standard. 

Many SA techniques have been around for a considerably long time and have 
proven their effectiveness in performing SA; hence they are recommended and, 
in some cases, mandated by industry standards and certification authorities. 
However, applying such techniques imposes various challenges. Two well estab-
lished SA techniques are Fault Tree Analysis (FTA) and Fault Model and Effect 
Analysis (FMEA). Traditionally, both techniques are performed manually in 
preliminary stages of the development cycle, but their application is error prone 
and time consuming, especially for systems with high complexity. 

This paper contributes to an aspect of safety analysis that was found to be less 
supported by tools: the automatic derivation by model transformation of safety 
analysis models (namely fault trees) from SysML design models of the system 
under construction annotated with relevant safety information. The goal is to 
avoid error-prone manual work and to maintain the traceability between the 
software models used for development and the analysis models used to verify 
their NFPs. 

1.1. Objective 

This paper’s objective is to develop a MDE-based approach with safety concerns 
in mind, utilizing standard and well-known techniques and open source tools. 
The aim is to integrate safety verification in the model-driven development of 
SCSs, allowing its artifacts to be maintained throughout the system life-cycle. 

The paper proposes an approach for modeling SCS, with emphasis on 
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representing the safety behavior by using the OMG standard SysML language. 
One of the advantages of SysML is the ability to model component-based sys-
tems, which are used to tackle the system’s complexity and to enhance the ex-
pressiveness and abstraction of the model. Related safety information will be 
added to the SysML model using another standard from OMG, the UML Profile 
for Modeling and Analysis of Real-Time Embedded Systems (MARTE) [3] along 
with its extension, the Dependability Analysis and Modeling (DAM) profile [4]. 

One of the objectives of this work is to support the construction, reuse, and 
composition of FTs at the component level. Therefore, we propose a two-step 
transformation of SysML models with safety annotations into safety analysis 
models. The first step incorporates the component-based development approach 
to synthesize component level fault tree safety models, which allow for reuse and 
simplification. In a consecutive step, system-level FT safety models are obtained 
by composing the component-level FTs built in the previous step. The generated 
FTs are used for system safety verification. A visualization of the FTs is also pro-
vided. 

Another aim of the paper is to support the proposed method with tools easy to 
learn and use. For this reason, we are using existing modeling languages and 
notations to represent the system and the safety models, as well as open-source 
tools (e.g., Papyrus, Eclipse Epsilon, Eclipse EMFTA).  

SysML has been chosen as the modeling language in this approach consider-
ing the following facts as described in [5]. First, it supports the specification, de-
sign, analysis, and verification of systems as a general-purpose modeling lan-
guage. Second, it provides graphical models representing requirements, struc-
ture, behavior, and properties of systems and their components. Third, it is a 
standardized and robust language. Finally, it is an extension of a subset of the 
standard UML language, which adds the benefit of extending SysML with the 
standardized profiles defined for extending UML, such as MARTE [3]. 

1.2. Overview of the Approach 

This section provides an overview of the proposed approach for performing SA 
on SysML based models. The main activities are as follows (see Figure 1). 
• System requirements (including safety requirements), must be elicited and 

specified, whether the approach is applied to a new project or an existing one. 
A formal approach covering this activity is still under development. Hence, it 
will not be further detailed in this paper. 

• Architecture modeling utilizing SysML’s modeling power based on compo-
nent-based modeling. The system is decomposed into a set of cooperating 
components, composite and simple. Composite components contain in-
stances of other composite and/or simple components, while simple compo-
nents are the most fine-grained level of decomposition and do not include 
other components. 

• Internal structure modeling: specifies the composition and the interaction  
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Figure 1. Overview of the proposed approach. 
 

between component instances. A set of interfaces and possible item flows are 
realized modeling the component internal structure. 

• Behavior modeling: the representation of the system regular behavior and its 
reaction to certain events. 

• Annotate elements with failure information: adding safety behavior annota-
tion to the previously specified component behavior. 

• Transformation: component level failures, the generation of analysis FT 
models at the component level. 

• Transformation: system level failures, the generation of analysis FT model 
representing system level safety behavior. This is achieved by the composi-
tion of component-level FT models, according to the interconnection of their 
corresponding component instances. 

• Perform SA: perform analysis of the generated analysis models with existing 
FT tools.  

• Safety requirements satisfied or not; if yes, accept the safety solution, other-
wise apply design modifications to the proposed system to improve system 
safety. Examples of modifications use redundancy of existing components or 
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introduce new components into the architecture. This aspect is under forma-
lization and will not be further detailed in this paper. 

Model transformation is performed using an Eclipse-based model manage-
ment platform called Epsilon (Extensible Platform of Integrated Languages for 
Model Management) [6]. The Epsilon platform supports different task specific 
languages. A shared expression language called Epsilon Object Language (EOL) 
is used in all task specific languages within Epsilon. EOL is a model-based lan-
guage combining JavaScript style with Object Constraint Language (OCL) strength 
in object querying. Another task specific languages, Epsilon Transformation 
Language (ETL) facilitates model-to-model transformation. It accepts multiple 
source models and can generate multiple target models. ETL is a rule-based 
language categorized as hybrid for supporting both declarative and imperative 
rules. Our proposed two-step transformation is implemented in ETL. 

2. Related Works 

This section provides a literature review of related works. The survey in [7] re-
views the work in modeling and analysis of software system dependability within 
the context of MDE using UML. Different approaches were surveyed targeting 
one or more of the dependability attributes. One of the conclusions is that the 
surveyed works provide support mainly in the early phases of the software life 
cycle (i.e., from requirement to design), while there is a lack of support for later 
phases. 

A recent paper [8] discusses current practices in industry working with SCS, 
analyzing the SCS challenges and the benefits of MDE to tackle such challenges 
at Siemens. The challenges discussed are: building and maintaining SA 
throughout the development life cycle, accommodating for changes of the sys-
tem while maintaining the traceability with SA artifacts; SA artifacts reuse; and 
SA automation. The use of MDE helps the SA process automation, as it has the 
ability to represent the system at different levels based on the development phase 
and its modularity, allowing for the reuse of SA artifacts and providing tracea-
bility between system model elements and SA artifacts. 

Another recent survey [9] analyses the status of the automatic application of 
FTA for system safety verification. An interesting point is that most current 
works provide their own model rather than using a standardized modeling lan-
guage, such as AADL and SysML. Also, the representation of the failure behavior 
of the system is performed using different non-standardized approaches. Fur-
thermore, the algorithms used for the generation of the FT models were also di-
verse due to the diversity of system models proposed. 

The work presented in [10] proposes an approach to be used in an early stage 
of the life cycle along with a profile for SysML to add related safety information 
to model elements. The procedure starts in the Requirements Elicitation phase 
where safety requirements are identified. A manual analysis is performed on the 
functional architecture proposing safety functions, then the component archi-
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tecture is analyzed manually adding the information from each analysis to the 
system model by stereotyping elements in the Activity diagrams (AD) and Block 
Definition diagrams (BDD) using the proposed profile. 

There are various approaches that target the automation of the generation of 
SA models. They vary in the use of modeling language, the representation of the 
safety information, synthesizing, analysis and feedback of the analysis model and 
tools used. 

The work presented in [11] performs automatic model transformation for 
systems modeled in UML into FTs to perform dependability analysis. The sys-
tem is modeled using Use Case Diagrams (UC), Sequence Diagrams (SD), and 
Composite Structure Diagrams (CSD). The UML model is then annotated with 
dependability information using the profiles MARTE and DAM. The annotated 
UML model is transformed into a FT model by a transformation written in 
ATLAS Transformation Language (ATL) [12]. 

A methodology is introduced in [13] to perform SA on SysML models by us-
ing Python, a generic programming language. The SA techniques used are 
FMEA and FTA. The system functional architecture is modeled using a set of 
ADs representing system functions and their hierarchical breakdown. A Python 
program parses the XMI model file and generates a template for the Functional 
FMEA table, which contains the list of functions with a predefined list of generic 
failure modes. The table must be completed and validated by a safety expert. In 
the next step, components are assigned to functions, generating the logical ar-
chitecture modeled in BDD. The Python program extends the Functional FMEA 
table, by adding the assigned components, then passes it back to the safety expert 
for completion and validation. The FMEA table information is integrated again 
in the XMI system model file with some proposed stereotypes. A FT with a ge-
neric top failure event is generated from IBDs based on the block connections 
from a single output to the inputs. It is proposed to use the Component FMEA 
results to build a FT for a specific failure mode without detailing the procedure. 
Similar to the FMEA table, the generated FTs need to be completed and vali-
dated by a safety expert.  

Work using Architecture Analysis & Design Language (AADL) language pre-
sented in [14] proposes the use of AADL to model SCS architecture; the failure 
behavior is specified textually using Error Model Annex V2 (EMV2). A FT is 
generated from the annotated AADL models based on the data flow in the sys-
tem architecture model. The Open Source AADL Tool Environment (OSATE) is 
used to generate AADL models and annotate them. The FTs are visualized and 
analyzed using an inhouse developed open source tool based on the Eclipse 
Modeling Framework (EMF) called EMF-based Fault Tree Analysis (EMFTA). 
EMFTA is integrated into the OSATE and provided as a standalone plugin for 
Eclipse. We are also using EMFTA in this paper to perform FTA. 

An extension of the FT was proposed in [15], which is called Component 
Fault Tree (CFT). CFT is an extension of the FT by adding the notations of 
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components, input ports and output ports. This highly couples the component 
concept from the software model with the one from the fault tree model. CFT 
was implemented by a proprietary research tool which is not available to us. This 
extension has been originally proposed by a working group in [15] and then 
various enhancements and extensions were also introduced in [16]-[22]. This 
approach exploits the XMI file content for exploring the model using generic 
modeling language. 

3. Source and Target Models 

This section describes the source and target models used in our approach pre-
sented in this paper, illustrated with a case study. 

3.1. Source Model 

This subsection discusses the source model in the proposed approach, which is 
represented in SysML. The following SysML diagrams have been identified as 
being sufficient to model a system in order to enable its safety evaluation. A 
comprehensive SysML specification can be found in OMG’s SysML specification 
[23]. 
• Block Definition Diagram (BDD) is used to define system blocks, their fea-

tures, and possible relations among each other, including associations, gene-
ralizations and dependencies, modeling system hierarchy or a classification 
tree. 

• Internal Block Diagram (IBD) is used to specify the internal structure of a 
block regarding its properties and their connectors. 

• State Machine Diagram (SMD) is used to model an instance behavior as a fi-
nite state transition system. States can be simple states or composite states, 
which in turn contain nested states. 

The case study used here was inspired by a tutorial [24] presented at 
ISSRE’2016. The Electric Kettle (EK) is an excerpt concentrating on the excessive 
boiling of the water that can cause harm to the user and/or the environment. 

Applying our approach to the EK system begins with Architecture modeling, 
whose result is a SysML BDD diagram shown in Figure 2. The first block identi-
fied is the EK block, which is the system to be analyzed for Safety. EK is a sub-
system of the Electric Kettle which interacts with other systems/subsystems us-
ing two proxy ports: one to accept raw temperature data signal, EKIn, and 
another to provide a decision signal based on a set of specifications, EKOut. Al-
so, it contains an instance of a Heat Sensor, HS, and an instance of a Processing 
Unit, PU. A Heat Sensor block is the component responsible for accepting raw 
temperature value and delegating it to connected components. It can be inter-
connected with other blocks/components by accepting raw temperature data at a 
proxy port, HSIn, and passing it to another proxy port, HSOut. 

The Processing Unit block accepts a temperature and evaluates whether it has 
reached the boiling point and needs to be shut down to prevent overboiling. 
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Processing Unit communicates with other blocks/components as it accepts tem-
perature information at a proxy port, PUIn, which is processed and based on the 
specification produces a decision signal to another proxy port, PUOut.  

Next, we model the Internal Structure of EK using a SysML IBD, which shows 
the interconnections among the block instances composing EK. The outcome 
IBD of the activity is realized in Figure 3. There are three interconnections in 
EK IBD, each one using an Item Flow realized with a connector. The first goes 
from the EK EKIn port to the HS HSIn port; the second from HS HSOut port to 
the PU PUIn port; and the third from PU PUOut port to EK EKOut port. 

Next, we move to modeling behaviors. Each block/component of the EK has 
its own behavior specified by a SysML state-machine that represents the regular 
and failure behavior. Behavioral modeling of the EK system yields two SMD: one  

 

 
Figure 2. SysML EK BDD. 

 

 
Figure 3. EK internal block diagram. 
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for the Heat Sensor and another for the Processing Unit block type for their reg-
ular behavior. Both SMD are similar in construct, having a state where the 
component is accepting an input signal on a specified port, then is performing 
specific logic for each component. Lastly, it will provide an output to a specified 
port, where some other components/systems are connected to.  

Now consider the failure behavior for each component. The Heat Sensor have 
been identified to have one failure concern, when the sensor fails and leads into 
a Sensor failure state, which is added to its SMD. As for the Processing Unit, the 
component failure is considered and added, that can be caused by the failure of 
the component itself or by a failure signal received on the input port. Processing 
Unit has another safety concern, the corruption of the data that can result in an 
Erroneous data failure state. The SMDs with added failure behavior are shown in 
Figure 4 and Figure 5. 

Next, we need to annotate safety-relevant model elements with failure infor-
mation. This is accomplished using the powerful profile mechanism of SysML 
that is inherited from UML, which allows for tailoring models for specific needs, 
such as extending elements to model domain specific concepts. A profile is 
composed of stereotypes, tagged values and constraints. A dependability focused 
extension of OMG’s standard MARTE profile, called DAM profile, contains the 
DaStep stereotype, which adds dependability information to the model element 
it extends. For instance, DaStep can hold the following information: 1) kind of 
threat to dependability (i.e., Fault, Error, Failure and Hazard), associated with  

 

 
Figure 4. Heat sensor state machine diagram. 
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Figure 5. Processing unit state machine diagram. 

 
the extended element; and 2) probability of its occurrence. 

We applied the DAM profile to the EK system model by stereotyping the 
safety relevant states and their incoming transitions using DaStep stereotype. 
Failure states identified previously are set as “failure kind” and their incoming 
transitions are set as “error kind”. The two SMDs resulting from this activity are 
depicted in Figure 4 and in Figure 5.  

3.2. Target Metamodels 

The approach uses FTA to perform SA on a SCS. FTA is a deductive top-down 
failure-based analysis technique [25]. FTA is a deductive technique, top-down in 
nature, which starts with a high-level event towards its lower level causing 
events, represented in a tree-like structure called Fault Tree (FT) model. A FT 
depicts how the set of identified events are combined logically leading to the 
specific undesired top event. It contains various symbols for the several types of 
events and logical relations called gates. An example of a FT is provided in later 
section in Figure 6. 

In our approach, we first generate component-level fault trees (CFT), which have 
the advantage of supporting the reuse of components and of their FTs. The CFT are 
composed in a second transformation phase to generate system-level FTs (SFT).  

3.2.1. System Level FT 
The SFT model is developed based on the metamodel of the EMFTA tool [26],  
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Figure 6. A sample FT. 

 
that was introduced in [14]. We use EMFTA as the analysis tool for generated 
FTs. The reasons we selected EMFTA are the following: a) it is an open source 
software; b) it is designed on top of the Eclipse Modeling Framework (EMF) – 
the same framework used by Epsilon; and c) it is developed based on industry 
standards. EMFTA is available as an Eclipse plugin. The SFT metamodel is 
shown in Figure 7 and consist of:  
• FTA Model: the top element in the model, which is the container for the 

other model elements, events and gates. 
• Event: one or more events contained within a FTAModel. One event can be 

set as the root of a fault tree when handling a single tree, each event can con-
tain one gate. It can have a type attribute and a probability of occurrence as a 
float. The types are: 

o Basic: the lowest level of identified events leading to the top event that does 
not require further analysis. 

o External (House): events that are normal to occur. 
o Undeveloped: events that haven’t been analyzed either due to the unavaila-

bility of its information or lack of effects. 
o Conditioning: specify conditions or restrictions affecting the logical gates. 
o Intermediate: events that have been further analyzed and their immediate 

causing events have been identified. 
The first four types of events are sometimes referred to as primary events. 

• A Gate is used to link the causing events as input lower level events to the 
consequent event as an output upper level event using Boolean logic, which 
are set as a type of the gate. 

o And: all the input events must occur for the output event to occur. 
o Or: an occurrence of any input event can cause the output event to occur. 
o XOR: Exclusive Or, exactly one input has to occur for the output to occur. 
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Figure 7. SFT metamodel (emfta). 

 
o Priority And: The input events have to occur in a specific order for the out-

put to occur. The order is specified as a conditional event. 
o Inhibit: The input has to occur with the satisfying of a condition for the out-

put event to occur. The condition is specified as a conditional event. 

3.2.2. Component Level FT 
Our transformation approach uses an intermediate model, the component-level 
fault tree (CFT) depicted in Figure 8. 

This metamodel reuses the definition of the target analysis model from Figure 
7. System is the main container for all the components and their CFT. Each 
block/component defined in the system is added as a component which might 
contain other components and ports along with its FT failure behavior. A port is 
contained within a component and it has a direction attribute. 

4. Transformations 

SysML model adoption proved its benefits for modeling various views for dif-
ferent domains and stakeholders, but it needs to be transformed into an analysis 
model to formally perform safety analysis. This chapter will discuss the trans-
formation of SysML models as a source model into a classical FT model as target 
model to perform SA on the system. 

The proposed transformation has been split into two consecutive steps. Our 
implementation allows to perform them either as two consecutive steps or as one 
single step. The transformations performed in this approach are depicted in 
Figure 9. 

4.1. Transform Component Level Fault Tree model 

In this transformation step, the failure behavior at the component level will be  
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Figure 8. CFT metamodel. 

 

 
Figure 9. Model Transformation. 
 

transformed into a component-level FT model. A component can fail in differ-
ent ways, which are modeled as multiple failure states in the state machine, as 
shown in the case study. Each way to fail may correspond to a CFT with a dif-
ferent top failure event. 

The transformation starts with transforming each block defined in the source 
model into a component in the intermediate model. A block is examined to 
check for other elements that are to be transformed as well, such as ports and 
behavioral model. The structural model that shows how the components are 
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connected is not considered in this step. 
The port transformation considers the port type. The source model ports are 

modeled using proxy ports, typed with Block Interface elements, which in turn 
contain Flow Properties having a direction attribute. Thus, the port type is used 
to identify its direction. 

As discussed previously, the behavioral model of a block is specified using 
state machines. A block’s SM is transformed into a FT model of the block’s 
component. This is followed by examining the SM’s elements to synthesis the 
complete CFT. 

Each failure state stereotyped with DaStep, is transformed into an event with 
an OR logical gate. In [25] it is stated that an event cannot be directly connected 
to another event, there should be a logical gate related to consecutive events. 
This rule was implemented in the FT metamodel, for both the component and 
system levels models. A failure event is considered as the top events for a CFT. 
Next, we are looking for the contributing preceding events.  

A SM transition stereotyped with DaStep is considered an erroneous transi-
tion. A contributing event to a SysML failure-state (that is mapped to a CFT top 
event) is the event that triggered a transition leading to the respective failure 
state. A send signal action is considered a contributing event to the destination 
failure state, hence, translated into an event and linked to its resulting top event. 

For instance, Figure 10 provides the mapping of the behavior of the PU 
component model to a CFT model. It shows that the two failure states in the 
SysML model have been mapped into two top events for two CFT synthesized 
for the component. The triggers of the transitions that have a failure state as des-
tination have been mapped into a basic event. Another mapping is that, when 
there is more than one incoming failure transition to a failure, once they are 
mapped into events, they will be linked with the top event using an OR-gate. 

 

 
Figure 10. Mapping between SysML and component level FT. 
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A sample rule is shown in Figure 11 transforming a failure state from the 
SysML source model to an event in the CFT model, marked with stars in Figure 
10. The rule can be read as transforming an element of type SysML::State ste-
reotyped as DaStep into an element of type CFT Event. First, an equivalent of 
the containing SysML State Machine in CFT element, this will be used to cor-
rectly link the mapped elements. The name of the state will be used as the name 
of the event. Lastly, this is considered as a top event, hence, it must have causing 
events, which will be linked to the gate of this event (which defaults to OR-gate).  

4.2. Transform System Level FT 

In this step of the transformation, system level FTs are synthesized representing 
the failure behavior of the system of interest. This is accomplished by examining 
the interconnections between the components whose behavior was analyzed in 
the previous section to identify how their failure affects the system as a whole. 
This is achieved by analyzing the structure of the system that shows how the 
components are interconnected. In other words, the CFTs generated in the pre-
vious step will be composed based on the interconnection of the respective in-
stances of their blocks. 

The transformation first generates a FT model for the system of interest that 
will model the failure behavior of the system. In this transformation the internal 
structure is targeted, that is, how the blocks/components interact with each other 
and the effects of that on the failure of the system. This is accomplished by ex-
amining the block types, block instances, Item Flows and their realizing connec-
tors modeling the interactions of the instances in an IBD. 

The item flows/connectors are examined to follow the failure propagation 
from one component failure state transition to the following receiving state 
transition with consideration of the components instances. Delegation connec-
tors model the receiving of an item or a propagated failure signal which get 
translated into basic events of the system of interest FT. In case the delegation 
connector is between output direction ports, then this will hold the outcome of 
the system or propagating a failure signal which will be translated into top 
events. 

The assembly connectors model the flow of items between the internal parts 
and the possible failures propagated among them. These are used to connect the  

 

 
Figure 11. Epsilon ETL source code of state2topevent rule. 
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component-based FTs where failures are propagated, synthesizing a system level 
FT. So, a top event of a CFT can become an intermediate event in the system 
level FT if its failure has been propagated. 

Continuing with the case study, Figure 12 show the mapping from CFTs to 
SFTs. The figure shows three nested figures: Figure 12(a) represents the CFT for 
the Heat Sensor Component; Figure 12(b) the component level FT for the 
Processing Unit; and Figure 12(c) the system level FTs. 

The FT model produced by the transformation is provided in Figure 12(c). It 
shows that the system has two FTs, which indicate that the system can fail into 
two possible ways.  

4.3. Example of Analysis 

After the FT model have been synthesized depicting the failure behavior of the 
system, FTA can then provide valuable information about the system safety. 
FTA mainly provides critical qualitative value, but it can be extended to provide 
quantitative value as well. The key qualitative information provided by FTA is a 
set of basic events, called a “cut set”, whose simultaneous occurrence will cause 
the top unwanted event to occur as well. A FT can have one or more cut sets. 
The basic events are events that cannot be further decomposed due to their na-
ture or the limited information available concerning it.  

In [25] a number of benefits in system design are discussed for the outcomes 
of FTA, mainly FT and the cut sets, which provide a logical comprehension of 
the causes and intermediate events inducing a specific top event, prioritization of 
the top event contributors, a proactive top event prevention tool and evaluation of  

 

 
Figure 12. Mapping between component level FTs to system level FTs 
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design alternatives on the top event. 
The EMFTA tool is used to automatically generate the cut sets for the SFTs 

shown in Figure 12(c). Table 1 contains the identified cut sets for both of the 
SFTs. Each column contains the cut sets for a specific top event/failure, where 
the EK system has two SFTs, one with Loss of Control (LoC) as a top event and 
the other with Erroneous Data (ED) as a top event. 

For the top undesired event LoC, it contains two cut sets, each with a single 
event, which means that it is sufficient for any of these events to occur, in order 
for the LoC to occur, as well. As for the ED event, it contains a single cut set with 
a single event, that means, the occurrence of this event will cause the ED to oc-
cur. 

Based on these cut sets, some design decisions can be made to protect against 
the occurrence of the identified failures. A decision can be to add a redundant 
Heat Sensor instance preventing it from being a single point of failure or to 
make the processing unit more resilient to failure. After a decision is made, the 
modified model can then be analyzed based on the design modification with ref-
erence to the general activities illustrated earlier in Figure 1 to evaluate its effect 
on the system. 

5. Conclusions 

This paper proposes an approach for integrating well established safety analysis 
techniques within a Model Driven Engineering (MDE) system development 
process. The approach integrates standard and well-known tools and techniques 
for the modeling and analysis of safety-critical systems (SCS), which can be ap-
plied to new and already existing projects with a small learning curve. This adds 
multiple benefits, such as increasing the safety and the level of confidence in 
SCS, reducing the costs in various aspects and enhancing the communication 
between all stakeholders, which means safer systems with minimal additional 
costs. 

The proposed approach follows the Model Driven Engineering (MDE) para-
digm, by modeling the system under study with OMG’s standard Systems Mod-
eling Language (SysML). The SysML system model is extended with safety an-
notations using another standard from OMG, the Modeling and Analysis of 
Real-Time Embedded Systems (MARTE) UML profile, along with an extension 
profile focused on dependability, called Dependability Analysis and Modeling  

 
Table 1. Generated cut sets for the system level FTs. 

Top events/failures 

PU::ProcessingUnitSM::LossOfControl PU::ProcessingUnitSM::ErroneousData 

Cutset #0 

PU::ProcessingUnitSM::PartFailureE 

Cutset #1 

HS::HeatSensorSM::SensorFailureE 

Cutset #0 

PU::ProcessingUnitSM::DataErrorE 
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(DAM) profile. The automation with the minimal efforts for performing SA on 
SCS, allows for continuous use of SA throughout the development life cycle, 
maintaining acceptable safety levels for the system. Moreover, the availability of 
CFT at components levels minimizes the effort towards the SA by reusing com-
ponent fault trees in different configuration and systems. 
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