
Journal of Software Engineering and Applications, 2015, 8, 184-191
Published Online April 2015 in SciRes. http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2015.84019

How to cite this paper: Zhao, D., Miao, L. and Zhang, D.F. (2015) Reusable Function Discovery by Call-Graph Analysis. Jour-
nal of Software Engineering and Applications, 8, 184-191. http://dx.doi.org/10.4236/jsea.2015.84019

Reusable Function Discovery by
Call-Graph Analysis
Dan Zhao, Li Miao, Dafang Zhang
College of Information Science and Engineering, Changsha, China
Email: dzhao34@hnu.edu.cn, miaoli@hnu.edu.cn, dfzhang@hnu.edu.cn

Received 16 January 2015; accepted 14 April 2015; published 15 April 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
Nowadays, one of the IT challenges faced by many enterprises is the maintenance of their legacy
system and migration of those systems to modern and flexible platform. In this paper, we study
the network properties of software call graphs, and utilize the network theories to understand the
business logic of legacy system. The call graphs turn out approximately scale-free and small world
network properties. This finding provides new insight to understand the business logic of legacy
system: the methods in a program can be naturedly partitioned into the business methods group
and supportive methods group. Moreover, the result is also very helpful in reusing valuable func-
tionality and identifying what services should be to expose in the migration from legacy to modern
SOA context.

Keywords
Call Graph, Network Properties, Legacy System, Service-Oriented Architecture

1. Introduction
In today’s Internet-driven economy, one of the IT challenges faced by many enterprises is the maintenance of
their legacy system and migration of those systems to modern and flexible platform [1]. Legacy systems gener-
ally consist of invaluable assets with embedded critical business logic representing many years of coding, de-
velopments, enhancements and modification. However, they are always undocumented, tightly coupled, and rel-
ative closed and inflexible. Thus, legacy systems present a dilemma: on the one hand, enterprises cannot simply
remove/replace those systems as they are mission critical and their failure can have a significant impact on
business. On the other hand, maintaining them incurs unjustifiable expense. A viable solution to this dilemma is
to migrate those systems into new technological environments in which the legacy features can be reused. Ser-
vice-Oriented Architecture (SOA) [2] has gained significant attention from academic and industry as a promis-

http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2015.84019
http://dx.doi.org/10.4236/jsea.2015.84019
http://www.scirp.org
mailto:dzhao34@hnu.edu.cn
mailto:miaoli@hnu.edu.cn
mailto:dfzhang@hnu.edu.cn
http://creativecommons.org/licenses/by/4.0/

D. Zhao et al.

185

ing architectural style enabling legacy system to expose and reuse their functionalities. The objective of SOA is
extracting and modularizing the valuable functionality in legacy system into shared, reusable service. The ser-
vice here is some encapsulated component with well-defined interface and interoperability protocol, which
composes SOA-style application flexibly and quickly. But both in commercial and academic context, currently
most legacy system are extremely large and complex. They easily contain hundreds of thousands or even mil-
lions of lines of code, and different parts may be developed by different developers with various styles and do-
cumentation never catches up with the code change. Therefore, it is almost impossible to comprehend the whole
system for developer when they migrate legacy to SOA, let alone find valuable functionalities and wrapper them
into services [3]. Therefore, it would be quite helpful for developers to have some “intelligent and knowledgea-
ble searching” technique to understand the business logic of legacy system and highlight the valuable functio-
nality which has potential to be wrapped into service.

A call-graph is one kind of internal graph structure of software program, and reflects the essential function
and behavior of programs. It is a directed graph G = (N,E), which maybe has loops, where N is the set of nodes
which represent methods, and E is the set of edges which represents invocation relations between methods. For
every node n N∈ , in-degree is the number of the in-coming edges of this node, which indicates the times that
this method is invoked by other methods; Out-degree is the number of the out-going edges of this node, which
indicates the times that this method invokes other methods. We made three empirical analyses to investigate the
network properties of software call-graph, and utilize the network theories to understand the business logic of
legacy system. The reason we make use of the network theories is that the invocation relationship underlying
call-graph is very similar to the link relationship in network:
• They both have same static structure.

In software programs, the caller method invokes the callee method and the callee method is invoked by caller
method; while in network, the source web page links to the target web page and the target web page is linked to
the source web page. Both of them are directive connection relationships within different systems.
• They both perform their functions through dynamic connection

In software programs, different modules execute step-by-step invocation then they can provide computing
capability; while in network, different web pages can be dynamically linked together then they can provide in-
formation service. Both of them reflect the essential function by the runtime characteristics. This characteristics
has already used in the Google web crawling, which is done by analyzing this link relationship underlying web-
pages.

The most interesting observation in the empirical analyses is that there are a few key nodes in software call
graphs with the in-degree above average or the out-degree above average. Re-checking our testing cases, we
found that the nodes with the out-degree above average correspond to those methods which provide high-level
business functions; and the nodes with the in-degree above average correspond to those methods which provide
low-level supportive functions. For example, the method init() has the out-degree above average, which per-
forms the business function “initialization” to initialize the whole system; the methods initDB(), initCache() and
buildConc() invoked by init() have high in-degree, which can provide some supportive functions, such as initia-
lizing database, clearing cache and building socket connection. These key methods provide new insight to un-
derstand the business logic in legacy systems: the methods in a program can be naturedly partitioned into the
business methods group and supportive methods group. Moreover, the result is also very helpful in reusing val-
uable functionality and identifying what services should be to expose in the migration from legacy to SOA con-
text.

The rest of this paper is structured as follows: Section II explains our approach; Section IV makes three em-
pirical analyses to investigate network properties of software call graphs. Section V presents and the findings as
lessons learned. Section VI the paper concludes with some potential work.

2. Approach
We generate and analyze call-graph by static program analysis [4], which is a significant technique to determine
the properties of program behavior without execution, has already been adopted in the software comprehension,
debugging and testing field in the past twenty years. There have already many algorithms to construct a call
graph from the software program, such as Class Hierarchy Analysis (CHA), Rapid Type Analysis (RTA) and
Control Flow Analysis (CFA) [5]. We select CHA algorithm [6], which means scanning the class inheritance

D. Zhao et al.

186

graph and constructing call-graph based on class hierarchy information. This is a relative simple algorithm and
there is no reduplicate edge in the call-graph generated, which means even if a caller method invokes the callee
method multiple times, there is only one edge existed between the caller method to the callee method. So for
every node in our call-graph, in-degree indicates the number of the methods which invoke this method, and out-
degree indicates the number of the methods which are invoked by this method. The reason we select this algo-
rithm is that what we focus on the happiness of invocation relationship, not the time of the invocation relation-
ship.

We use Java programming language as the target language and analyze ten widely used Java programs, whose
code are publicly available and can be downloaded from the open-source website. They are listed as following
Table 1.

We implement our analysis tool “Spotglitter” as a plugin for Eclipse. The tool is based on T.J. Watson Libra-
ries for Analysis (WALA) [17], which is a bytecode analysis framework for Java. The tool first accept Java pro-
grams input, no matter source code or bytecode, and then generate call-graph for the program based on class
hierarchy information. After that, It analysis the call-graph and visualize the result. We make three empirical
analyses to detect characteristic of the degree distribution, node distribution, clustering degree and the separation
degree of software programs call-graph. The detail is introduced in the Section 3.

3. Empirical Analysis
3.1. Empirical Analysis 1
For call-graph is a directed graph, where an invocation relationship corresponds to a directed link pointing from
the caller method to the callee method, in this empirical analysis, we explored the in-degree distribution and out-
degree distribution respectively in order to give an exact analysis for the invocation relationship underlying soft-
ware programs. The results are illustrated in Figure 1(a) and Figure 1(b). Here the X axis represents the per-
centage of the total methods and the Y axis represents the percentage of the max in-degree (in Figure 1(a)) or
max out-degree (in Figure 1(b)).

From the results, we observed that both the in-degree distribution and out-degree distribution can be approx-
imately characterized by the following algebraic scaling behavior:

() rP k k −
 (1)

where k is the variable that measures the number of links at different nodes and γ is the scaling exponent. We
calculate the mathematical expectation and variance for the ten programs, the scaling exponent γ in in-degree
distribution (in Figure 1(a)) is 1.6 and the scaling exponent γ in out-degree distribution (in Figure 1(b)) is 2.1 ±
0.1.

Table 1. Summary of analyzed programs.

Programs Comments Number of methods in
the program

JBPM [7] A powerful workflow and BPM engine to createand analyze business processes. 1418

SableCC [8] An object-oriented framework to generate compilers and interpreters in Java. 2191

JUNG [9] A software library that provides the common and extensible language of modeling,
analysis, and visualization of data. 1973

JGraph [10] A most powerfulgraph component available for Java. 1278

Azureus [11] A Java BitTorrent client. 12,942

Apache James [12] Java SMTP and POP3 Mail server and NNTP News server 2127

Java PetStore [13] A sample application to demonstrates how to use J2EE 1.3 platform. 1894

Damls_ Matcher [14] An ontology toolkit providing semantic matchmaking for web service based on
DAML-S. 337

JTB [15] A syntax tree builder to be used with JavaCC parser generator 1126

LGMA [16] A grid network environment demo. 298

D. Zhao et al.

187

(a) (b)

Figure 1. (a) In-degree Distribution (γ = 1.6); (b) Out-degree Distribution (γ = 2.1).

3.2. Empirical Analysis 2
The aim of this experiment is to analyze the nodes distribution in call-graph based on the result in empirical
analysis 1. The result is shown in Figure 2. Here the X axis represents the percentage of the max in-degree and
the Y axis represents the percentage of the max out-degree.

We observe in Figure 2 that most of the nodes are located in the left-lower area, namely that both the in-
degree and out-degree of those nodes are below average in-degree and out-degree. But in the right-upper area
there isn’t any node existed, which indicates that there existed no nodes in the call-graph which have both above
average in-degree and out-degree. Another interesting observation is that there are nearly 20% nodes with the
out-degree above average out-degree, whose out-going edges cover over 70% of total out-going edges, and there
are nearly 13% nodes with the in-degree above average in-degree, whose in-coming edges cover over 50% of
total in-coming edges.

3.3. Empirical Analysis 3
In this empirical analysis, we try to analyze the clustering degree and the separation degree of the call-graph by
computing the clustering coefficient and the characteristic path length. The characteristic path length L is de-
fined as the average over all the links in the shortest path connecting the two nodes in the call-graph, which is
used to measure the typical separation between two nodes in the network (a global property). The characteristic
path length L can be computed with the Dijkstra algorithm [18]. The clustering coefficient C is defined as the
average fraction of pairs of neighbors of a node that are also neighbors of each other, which can measure the
cliquishness of a typical neighborhood (a local property). The clustering coefficient C can be computed by the
following equation:

()
2

1
v

v v
v v

E
C C

k k
= =

−
 (2)

Suppose that a nodev has kv neighbors; then the clustering coefficient Cv of a node n is given by theratio of
existing links Ev between its kv first neighbors to the potential number of such ties ()1 2v vk k − . By averaging
Cv over all nodes one arrives at the clustering coefficient C of the call-graph. We also compare these values to
the random networks with the same number of nodes N. Toa given N and μ, where μ is the average number of
links per node, the value of the clustering coefficient C and the characteristic path length L of random network
are very small. In particular, for N → ∞ and μ fixed, the characteristic path length in the largest connected com-
ponent approaches the logarithmic behavior of a Moore graph,

rand
ln
ln

NL
µ

≈ (3)

D. Zhao et al.

188

Figure 2. Distribution of in-degree and out-degree.

and the clustering coefficient approaches zero,

randC Nµ≈ (4)

The result is listed in Table 2. From Table 2, we see that the call-graph has large clustering, C  Crand, and
the characteristic path length, L ≈ Lrand, where Crand and Lrand are the respective statistical quantities for a random
network with the same parameters N and μ.

4. Finding and Discussion
4.1. Findings
From our preliminary empirical analysis, we can propose that these call-graph generated from software pro-
grams show the properties in both scale-free network [19] [20] and small-world network [21] [22], which has
already shown in many physical networks, such as cellular network [23], scientific literature [24], WWW [25]
and telephone network [26].
• Scale-free network characteristics

Scale-free networks, including the Internet, are characterized by an uneven distribution of connectedness. In-
stead of the nodes of these networks having a random pattern of connections, some nodes act as “very connected”
hubs, a fact that dramatically influences the way the network operates. Scale-free networks are characterized by
a power-law distribution of a node’s degree (i.e. the number of its next neighbors). From the empirical analysis 1,
we have observed that the in-degree distribution and out-degree distribution of call graphs can be approximated
by the power law, where the scaling exponent γ in in-degree distribution is 1.6 and the scaling exponent γ in
out-degree distribution is 2.1 ± 0.1. While other scale-free network, such as WWW, Social network, Cellular
network, phone call network, the scaling exponent is between 2.0 to 3.0. The power law distribution brings out
the result that the structure and dynamics of scale-free network are strongly affected by a few nodes covering a
great number of connections. This result is proved in empirical analysis 2. We have seen that nearly 20% nodes
with the out-degree above average out-degree, whose out-going edges cover over 70% of total out-going edges,
and there are nearly 13% nodes with the in-degree above average in-degree, whose in-coming edges cover over
50% of total in-coming edges. Comparing with the internet, the methods with high out-degree are very similar to
hub nodes on the internet, i.e., pages with many links to authorities pages, based on only the links between web
pages [27]. The number of hub nodes is very small but they are very highly connected, which means deleting
them is far more destructive to the whole internet.
• Small-world network characteristics

Roughly speaking, small-world network are those with high clustered subsets of nodes that there are a few
steps away from each other. More precisely, the defining properties of small-world network rest on two struc-

D. Zhao et al.

189

tural properties: clustering and separation. In term of network topology, clustering, a local property, is used to
measure the probability that two neighbors of one node are connected themselves, which is expressed by clus-
tering coefficient. And separation, a global property measured by the characteristic path length, is used to eva-
luate the separation degree between two nodes in the network. In a small-world network, the characteristic path
length compares to that in a random network with the same number of edges, whilst the clustering coefficient of
its nodes can be orders of magnitudes larger on average. Watts [7] discusses several models for generating
graphs simultaneously satisfying these two properties. From empirical analysis 3 (Table 2), we find that ob-
viously the call-graph lies in these two extremes: they have large clustering, C  Crand, and small characteris-
tic path length, L ≈ Lrand. Therefore, we conclude that the call-graph of software program can be described by
small-world network. With the localization attribute in small-world network, we can also give some explanation
to the separation of the nodes with the in-degree above average and the out-degree above average in the second
empirical analysis. Because of the large clustering coefficient and the small average shortest path, the nodes in
the call-graph will be concentrated in several local areas with large numbers of edges. These local areas are
composed of those key nodes with in-degree above average or out-degree above average and the nodes which
are directly connected to the key nodes.

4.2. Discussion
Based on scale-free network and small-world network theories, we conclude that the key methods in the soft-
ware programs contain about 20% of the total programs. This result provides extremely valuable and useful in-
formation to perform the reusing action to existing applications. In SOA context, most services should be
mapped to business functions. So we believe that those methods with the out-degree above average, about 20%
of total methods, should be extracted as services first of all. The other methods with large in-degree should also
take into consideration because they can be used as atomic services to compose complex services. Based on this
conclusion, developers can “search” in existing programs quickly and reuse proper methods based on this degree
distribution. Moreover, as we explained in Section 1, the connectivity properties reflect essential function and
behavior of programs. So from the analysis of degree distribution, maybe we can give an appropriate measure-
ment to “reusage quality”. Similar to the Pareto Principle (also known as 20 - 80 rule), we can assume that the
methods with large connections are quite possibly be connected again in future, which means these methods are
more useful than the others. Then we can get a conclusion that these methods can have higher reusage quality
than the other methods. In addition, most of the test cases are well known and regarded as good-design programs.
The out-degree distribution in a few programs cannot be identified with a scale-free regime, which is due to the
limited size of the sample and some fine difference among different programming models. So what is the best
distribution model for the invocation relationship in software programs? How can we use the degree distribution
for call-graph as a criterion to evaluate the design of the software programs? Can this power law distribution or
the key methods ratio be used as an indicator to measure the quality of the software? These are also very inter-
esting but critical problems in software engineering area.

Table 2. Clustering coefficient and average shortest path in call-graph and random network.

Program N μ C Crand L Lrand

JBPM 1418 1.70 0.107 0.002 4.03 3.66

SableCC 2191 1.64 0.139 0.003 1.85 3.77

JUNG 1973 2.71 0.082 0.001 2.71 3.74

JGraph 1278 1.55 0.075 0.002 9.13 3.63

Azureus 12942 1.58 0.025 0.001 5.78 3.86

Apache James 2127 1.70 0.138 0.001 2.99 3.75

Java Pet Store 1894 2.81 0.104 0.001 2.29 3.73

Damls-Matcher 337 2.02 0.010 0.005 4.40 3.30

JTB 1126 2.11 0.217 0.004 10.91 3.60

LGMA 298 2.36 0.036 0.009 3.29 3.27

D. Zhao et al.

190

5. Conclusions
With the quickly changing requirements and the ever growing high cost for software programs, how to reuse
legacy system asset and extend current software lifecycle has already become an urgent problem in IT field.
SOA technology emerges as a promising approach. But a basic problem for SOA is how to find the similar func-
tions and evaluate the “reusage quality” of these functions rapidly. For invocation relationship reflects the essen-
tial function and behavior of programs, in this paper we try to investigate the properties of this relationship in
order to evaluate the reusable functions in existing software programs. Here we use Java programming language
as the testing language, and make use of call-graph analysis technique, which is a new application for traditional
static program analysis techniques. From the empirical analysis, we have found that the call-graph generated
from software programs exhibited the properties both in scale-free network and small-world network: the distri-
butions of in-degree and out-degree follow the low-power; a few nodes cover most of connections; and the call-
graph shows large clustering and small characteristic path length. According to scale-free network and small-
world network, we can differentiate the business methods and supportive methods in software programs. More
precisely, those methods with high out-degree provide high-level business functions; and those with high in-de-
gree provide low-level supportive functions. Based on this conclusion, developer can select appropriate func-
tions to reuse. Especially in SOA context, those methods with high out-degree, about 20% of total methods,
should be extracted as services first of all; and those methods with high in-degree, about 13% of total methods,
should also be extracted as atomic services to compose complex services. Further, this connectivity may also be
used as a measurement to evaluate reusage quality of different methods, which also provide strong supportive
information to reuse of existing programs.

We plan to continue to study the reason why the software programs present such properties in scale-free net-
work and small-world network. Also we want to explore how to expose and package these methods with strong
connectivity as reusable services, because as programming paradigms move, we need to expose these services
into new form factors too. We would also like to understand if we can use these properties to measure the quali-
ty of the design and software programs.

References
[1] Heckel, R., Correia, R., Matos, C., EI-Ramly, M., Koutsoukos, G. and Andrade, L. (2008) Software Evolution. Chapter

Architectual Transformations: From Legacy to Three-Tier and Service, Springer, Berlin, 139-170.
[2] Papazoglou, M., Traverso, P., Dustdar, S. and Leymann, F. (2007) Service-Oriented Computing: State of the Art and

Research Challenges. Computer, 40, 38-45. http://dx.doi.org/10.1109/MC.2007.400
[3] Khadka, R., Saeidi, A., Idu, A., Hage, J. and Jansen, S. (2012) Legacy to SOA Evolution-A Systematic Literature Re-

view. In: Ionita, A.D., Litoiu, M. and Lewis, G., Eds., Migrating Legacy Applications: Challenges in Service Oriented
Architecture and Cloud Computing Environments, IGI Global, 40-71.

[4] Binkley, D. (2007) Source Code Analysis: A Roadmap. 2007 Future of Software Engineering, Minnesota, 23-25 May
2007, 104-119.

[5] Ali, K. and Lhoták, O. (2012) Application-Only Call Graph Construction. Proceedings of the 26th European confe-
rence on Object-Oriented Programming, Beijing, 11-16 June 2012, 688-712.
http://dx.doi.org/10.1007/978-3-642-31057-7_30

[6] Dean, J., Grove, D. and Chambers, C. (1995) Optimization of Object-Oriented Programs Using Static Class Hierarchy
Analysis. Proceedings of the 9th European Conference on Object-Oriented Programming (ECOOP'95), arhus Den-
mark, 7-11 August 1995, 77-101.

[7] JBPM. http://www.jboss.com/products/jbpm
[8] SableCC. http://www.sable.mcgill.ca/software/
[9] JUNG. http://jung.sourceforge.net/index.html
[10] JGraph. http://www.jgraph.com/
[11] Azureus. http://sourceforge.net/projects/azureus/
[12] Apache James. http://james.apache.org/download.cgi
[13] Java Pet Store. http://java.sun.com/developer/releases/petstore/
[14] Damls Matcher. http://kbs.cs.tu-berlin.de/ivs/Projekte/damlsmatcher/download.html
[15] JTB. http://compilers.cs.ucla.edu/jtb/

http://dx.doi.org/10.1109/MC.2007.400
http://dx.doi.org/10.1007/978-3-642-31057-7_30
http://www.jboss.com/products/jbpm
http://www.sable.mcgill.ca/software/
http://jung.sourceforge.net/index.html
http://www.jgraph.com/
http://sourceforge.net/projects/azureus/
http://james.apache.org/download.cgi
http://java.sun.com/developer/releases/petstore/
http://kbs.cs.tu-berlin.de/ivs/Projekte/damlsmatcher/download.html
http://compilers.cs.ucla.edu/jtb/

D. Zhao et al.

191

[16] LGMA. http://121.37.58.35:8080/LGMA.jar
[17] WALA. http://wala.sourceforge.net/wiki/index.php/Main_Page
[18] Rosen, K.H. (2000) Handbook of Discrete and Combinatorial Mathematics. CRC Press, Boca Raton.
[19] Barabási, A.L. and Albert, R. (1999) Emergence of Scaling in Random Networks. Science, 286, 509-512.

http://dx.doi.org/10.1126/science.286.5439.509
[20] Baccaletti, S., Latora, V., Moreno, Y., Chavezf, M. and Hwanga, D. (2006) Complex Networks: Structure and Dynam-

ics. Physics Reports, 424, 175-308. http://dx.doi.org/10.1016/j.physrep.2005.10.009
[21] Milgram, S. (1967) The Small World Problem. Psychology Today, 1, 61-67.
[22] Watts, D.J. and Strogatz, S.H. (1998) Collective Dynamics of “Small-World” Networks. Nature, 393, 440-442.

http://dx.doi.org/10.1038/30918
[23] Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh Internation-

al World-Wide Web Conference (WWW 1998), Brisbane, 14-18 April 1998, 107-117.
[24] Karp, P.D., Riley, M., Saier, M., Paulsen, I.T., Paley, S.M. and Pellegrini-Toole, A. (2000) The EcoCyc and MetaCyc

Databases. Nucleic Acids Research, 28, 56-59. http://dx.doi.org/10.1093/nar/28.1.56
[25] Wasserman, S. and Faust, K. (1994) Social Network Analysis: Methods and Applications. Cambridge University,

Cambridge.
[26] Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., et al. (2000) Graph Structure in the Web.

Computer Networks, 33, 309-320. http://dx.doi.org/10.1016/S1389-1286(00)00083-9
[27] de Moura, A.P.S., Lai, Y.C. and Motter, A.E. (2003) Signatures of Small-World and Scale-Free Properties in Large

Computer Programs. Physical Review E, 68, Article ID: 017102.

http://121.37.58.35:8080/LGMA.jar
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1093/nar/28.1.56
http://dx.doi.org/10.1016/S1389-1286(00)00083-9

	Reusable Function Discovery by Call-Graph Analysis
	Abstract
	Keywords
	1. Introduction
	2. Approach
	3. Empirical Analysis
	3.1. Empirical Analysis 1
	3.2. Empirical Analysis 2
	3.3. Empirical Analysis 3

	4. Finding and Discussion
	4.1. Findings
	4.2. Discussion

	5. Conclusions
	References

