
Journal of Software Engineering and Applications, 2014, 7, 513-529
Published Online May 2014 in SciRes. http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2014.76048

How to cite this paper: Zeidman, R. (2014) A Code Correlation Comparison of the DOS and CP/M Operating Systems. Jour-
nal of Software Engineering and Applications, 7, 513-529. http://dx.doi.org/10.4236/jsea.2014.76048

A Code Correlation Comparison of the DOS
and CP/M Operating Systems
Robert Zeidman
Zeidman Consulting, Cupertino, USA
Email: Bob@ZeidmanConsulting.com

Received 3 April 2014; revised 1 May 2014; accepted 8 May 2014

Copyright © 2014 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
For years, rumors have circulated that the code for the original DOS operating system created by
Microsoft for the IBM personal computer is actually copied from the CP/M operating system de-
veloped by Digital Research Incorporated. In this paper, scientifically tested and accepted forensic
analysis mathematical techniques, step-by-step processes, and advanced software code compari-
son tools are used to compare early versions of the two code bases. The conclusion is reached that
no copying of code takes place1.

Keywords
DOS, CP/M, Copyright Infringement, Software Forensics, Software Correlation

1. Introduction
For purposes of better understanding, the introduction includes the historical background and the legal issues.

1.1. Historical Background
Gary Kildall is the man who, according to some, could have been and should have been the reigning king of
software. Kildall created the CP/M (Control Program for Microcomputers) operating system that was used on
many of the hobbyist personal computers before Apple and IBM introduced their machines. Kildall created

1Full disclosure: The process used is the process developed at my consulting company Zeidman Consulting. The tools used are the tools
produced by my software company Software Analysis and Forensic Engineering. I have worked as an expert witness in intellectual property
cases both for and against Microsoft, and until recently I was engaged as an expert for Microsoft in the case of Motorola Mobility, Inc. v.
Microsoft Corporation, case 2:2011cv01408 in the Washington Western District Court. The initial results of this paper were summarized
and published online in the July 2012 IEEE Spectrum magazine article “Did Bill Gates Steal the Heart of DOS?”
(http://spectrum.ieee.org/computing/software/did-bill-gates-steal-the-heart-of-dos). This paper expands on those results by giving the under-
lying details and examining additional versions of MS-DOS.

http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2014.76048
http://dx.doi.org/10.4236/jsea.2014.76048
http://www.scirp.org/
mailto:Bob@ZeidmanConsulting.com
http://creativecommons.org/licenses/by/4.0/
http://spectrum.ieee.org/computing/software/did-bill-gates-steal-the-heart-of-dos

R. Zeidman

514

CP/M while working for Intel and in 1974 started Digital Research Inc. (DRI) to sell it.
IBM saw the potential for the microcomputer and in 1980 started a “skunk works” project in Boca Raton,

Florida to create the IBM PC, released in 1981. This group was given the unique task of creating a machine not
for global corporations and government agencies but for small businesses and individuals. They decided that ra-
ther than develop software in-house, as was typical at IBM, they would partner with one of the small companies
already producing software for microcomputers. Their first stop, in 1980, was a small company in Bellevue,
Washington called Microsoft that sold a successful version of the BASIC programming language for micro-
computers. There, the young CEO Bill Gates told IBM that they should contact Gary Kildall at Digital Research
Inc. (DRI) in Pacific Grove, California for the CP/M (Control Program for Microcomputers) operating system
that was used on many hobbyist personal computers. Kildall had created CP/M while working for Intel and in
1974 started DRI to sell it. Kildall is the man who, according to some, could have been and should have been the
reigning king of software [1]-[5].

But here is where the story varies, depending on who is telling it. In one version, the IBM executives flew
down to meet Kildall who, as a member of the personal computer counterculture, did not trust “Big Brother” and
so he took off in his plane for a joyride [1]. When the IBM execs showed up, they were met by Kildall’s wife
and business partner Dorothy who refused to sign IBM’s standard non-disclosure agreement (NDA). After sev-
eral hours of haggling over the NDA, the IBM executives got frustrated and left [1] [3]-[5].

In another version of the story, Kildall and DRI employee Tom Rolander went off in the plane to deliver soft-
ware to a customer and left the license negotiations with Dorothy who normally handled those matters [3]. Do-
rothy felt the NDA was too restrictive and talked to their attorney Gerry Davis who advised her to wait for Kil-
dall to return [1] [3]. Kildall returned later that day but accounts again differ as to whether he signed the NDA or
even participated in discussions with IBM [1].

It is a fact that no deal was signed. Kildall later said that he met IBM negotiator Jack Sams on a flight to
Florida that evening, negotiated a deal on the flight, and shook hands on it. Sams denied ever meeting Kildall [1]
[3]. In fact, the IBM negotiators flew to Seattle that day, not Florida, and met again with Bill Gates. Gates knew
of a similar microcomputer operating system, QDOS (later renamed 86-DOS) from nearby Seattle Computer
Products (SCP) that sold microcomputer boards. Because DRI was late getting out its operating system for the
new Intel 8086 processor, SCP had hired programmer Tim Paterson to write its own operating system called
QDOS for “Quick and Dirty Operating System.” Gates quickly acquired the rights to it for $75,000 [6]-[8] and
hired Paterson to modify it into MS-DOS for licensing to IBM. SCP owner Rod Brock got what he wanted in the
deal—the ability to bundle SCP’s hardware with Microsoft’s operating system and programming languages—
resulting in more than $1 million in profits on record revenue of about $4 million in sales the next year [3].

The IBM PC became a huge success and DOS displaced CP/M as the leading microcomputer operating sys-
tem; Kildall eventually negotiated a deal with IBM to offer CP/M on the PC. However, Kildall negotiated a very
high license fee—much higher than MS-DOS—meaning IBM had to charge $240 per copy of CP/M rather than
the $40 per copy it charged for MS-DOS [1]. Few people bought CP/M, and MS-DOS sales continued to grow.

Gary Kildall maintained that QDOS, and subsequently MS-DOS, had been directly copied from CP/M and
thus infringed on his copyright [1] [9]. DRI attorney Gerry Davis claimed that forensic experts had proven that
MS-DOS had been copied from CP/M but that in 1981 there was no way to go to court over copyright infringe-
ment and get a judgment [1]. This was not true, as explained in the next section.

1.2. Legal Background
A copyright is a form of intellectual property protection for the expression of an idea. The World Intellectual
Property Organization (WIPO) defines a copyright as “a legal term describing rights given to creators for their
literary and artistic works (including computer software)” [10]. According to the US Copyright Office, “copy-
right is a form of protection provided by the laws of the United States (title 17, US Code) to the authors of
‘original works of authorship···’ [and] is available to both published and unpublished works···” The copyright
owner has the exclusive right to reproduce the work, prepare derivative works, distribute copies, perform the
work publicly, display the work publicly, or to authorize others to do so [11].

From its beginnings, copyright has protected creative text, and software source code is inarguably creative
text. This was tested when the first computer program was submitted for copyright registration, the SCOPAC-
PROG.63 program from North American Aviation, on November 30, 1961 in the form of a magnetic tape. While

R. Zeidman

515

the Copyright Office was trying to determine how such a deposit could be registered, two short computer pro-
grams were submitted on April 20, 1964 by Columbia Law student John Francis Banzhaf III [12]. The copy-
rights for both student computer programs were registered in May 1964, and North American Aviation’s com-
puter program was registered in June 1964. The Computer Software Copyright Act of 1980 formalized the sub-
mission requirements for software, and the number of software source code copyright registrations exploded
shortly thereafter [12] [13]. Note that a copyright exists, and the owner is entitled to all copyright protections,
whether it is registered with the US Copyright office or not.

2. Code Comparisons
Was Bill Gates’ fortune was built on infringement and deception2? The CodeSuite®software forensic tools were
used to perform a code comparison. These are the only tools that have been accepted in US courts and that has
been used in over 60 software copyright cases. CodeSuite uses scientifically accepted algorithms for detecting
software copying [14]-[18], has been compared to other “software plagiarism detection3” algorithms [19]-[26]. A
standard, accepted forensic analysis process was also used to filter the results [17] [27]. The CodeMatch® func-
tion of CodeSuite compares source code of different programs to find instances of copying. It narrows down
areas in different source code files that are correlated. There are six reasons that code can be correlated:
• Third-Party Source Code. It is possible that widely available open source code or third-party libraries are

used in both programs.
• Code Generation Tools. Automatic code generation tools generate software source code using similar lines

of code.
• Commonly Used Identifier Names. Certain identifier names are commonly taught in schools or commonly

used by programmers in certain industries.
• Common Algorithms. There may be an easy or well-understood way of writing a particular algorithm that

most programmers use.
• Common Author. Two programs written by the same programmer will have style similarities.
• Copying. Code was copied from one program to another causing the programs to have similarity.

The website The Unofficial CP/M Web site has links to download CP/M source code files that include notices
of copyright by Gary Kildall from 1975, shortly after he founded DRI [28]. They are written in the PL/M pro-
gramming language that Kildall developed while he was employed at Intel. The source code for CP/M 2.0 from
1981 was also downloaded from the same site, but that code contains copyright notices from 1976, 1977, and
1978.These files are written in both PL/M and low-level assembly code. The executable binary files of CP/M 1.4
were also downloaded from the site and three source code files dated from March 22, 1979 through September 5,
1981.

The website Howard’s Seattle Computer Products SCP 86-DOS Resource Website contains 86-DOS (QDOS)
assembly language source code files and executable binary files with revision dates as late as April 28, 1981 that
were also downloaded [29].

A functional MS-DOS 1.11 floppy disk for a Compaq computer was obtained, one of the earliest versions of
DOS from Microsoft. The files on the disk are executable binary files.

2.1. Comparing CP/M Source to QDOS Source
The QDOS source code was compared to the CP/M source code to see if there was any evidence that QDOS was
copied from or was a derivative of CP/M. This had to be done in two steps because the CP/M source code in-
cluded files written in the PL/M programming language and files written in assembly language. Copying code
from a high level language like PL/M to low-level assembly language is unlikely because the languages are so
different, but the comparison was performed anyway for the sake of completeness.

There was some correlation of programming statements in the two programs, but these matching statements
look like fairly common, simple statements. One statement that correlated between the two programs, for exam-

2The detailed results are too extensive to be included in their entirety in this paper. Instead, the code, the code comparison results, and string
extractions can be downloaded in a zip file at http://www.ZeidmanConsulting.com/DOS_comparisons.
3I do not use the common term “software plagiarism detection” because plagiarism means copying without authorization. No software anal-
ysis algorithm can determine whether copying has been authorized, because that depends on issues that are not evident in the code itself,
such as legal contracts and jurisdictional law.

http://www.zeidmanconsulting.com/DOS_comparisons

R. Zeidman

516

ple, was

CALL CRLF

The identifier CRLF is a common abbreviation for the carriage-return/line-feed character pair at the end of
every line in a text file in these operating systems. The statement CALL means that a procedure is being called,
and in both cases these procedures simply terminate a line of text with a carriage return and a line feed. As of
this writing, the term CALL CRLF occurs 22,300 times on the Internet according to Google, and most of these
refer to a routine that writes a carriage return/linefeed. So the occurrence of this term in both programs can
simply be attributed to common algorithms and common identifier names. A full list of statements found in both
programs is given in Table 1.

Other correlation was due to identifiers with common names like MAKE or BOOT or numbers like 10, 255, or
5CH (hex) that can be found in many programs. A full list of identifiers found in both programs is given in Table
1.

A little bit of correlation was due to matching comments and strings, but these comments and strings, such as
SECTORS PER TRACK, are common operating system terms and messages that can be found in many programs.
A full list of comments and strings found in both programs is given in Table 1.

There were no significant sequences of instructions that matched between the two programs, which would
show similar, possibly copied functionality. The only matching sequences consisted of multiple JMP statements,
which are commonly called “jump tables” and are a common programming technique. There were sequences of
DB and DW statements, also common programming language techniques, that simply define data in the program,
but the data values did not match.

Most of the correlation was due to partially matching identifiers, where only part of the identifier names are
identical. This can be a clue to copying where a programmer changed the names enough to appear different but
still retain some meaning. For example the variable name FirstName might be changed to Fname. Examina-
tion of these elements shows them to be commonly used identifier names or random characters. For example,
the identifier ENDMOD in the CP/M source code partially matched the identifiers MOD5 and MOD6 in the QDOS
source code.

The process for filtering out correlation due to reasons other than copying uses the SourceDetective® function
of CodeSuite to search the Internet for other references to matching program elements. The entire filtering
process is shown in Figure 1. If an element is found in two programs and is also found many times on the In

Figure 1. Filtering process to find copying.

R. Zeidman

517

Table 1. Matching program elements found in CP/M and QDOS source code.

Statements

backsp: backup: BLANK: boot: call backup

CALL BLANK CALL CRLF CALL HEX CALL HOME CALL MAKE

CALL SEEK CALL SETUP CMP B comerr: CRLF:

DB 0 db 1 db 2 DW FILL DW MOVE

DW TRACE EI FILL: GETFLG: HEX:

home: IF OTHER INIT: JMP BOOT JMP INIT

JMP PRINT JMP READ JMP WRITE jnz comerr JNZ STEP1

JZ BS MAKE: MOVE: ORG 0 ORG 100H

OUT 0 PERR: PRINT: READ: RETRY:

SCAN: search: SEC: seek: select:

SETUP: write:

Identifiers

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 30 31

32 33 35 39 40

50 51 63 64 80

128 255 256 1024 01H

02H 04H 08H 0A0H 0A8H

0BH 0C0H 0C4H 0CEH 0CH

0D0H 0DH 0E5H 0EH 0F0H

0F2H 0F3H 0F6H 0FBH 0fch

0FDH 0FEH 0FF80H 0FFH 0FH

100H 10H 14H 17H 18H

19H 200H 20H 21H 22H

32H 37H 38H 40H 4H

50H 5CH 5FH 72H 78h

7FH 800H 80H 84H 88H

8H 90H 9H BACKSP BACKUP

BADCOM base BLANK BOOT BS

COMERR CRLF DCOM DIGIT DIRECTION

DISK DM DONE EI FCB

FERR FILL FLAG GETFLG HEX

HOME INIT INP INPUT LOAD

MAKE MOVE NEXT NOHEX OUTPUT

OTHER PERR PRINT RD RDBYTE

READ READCOM RESTORE RETRY RLOOP

R. Zeidman

518

Continued

SCAN SEARCH SEC SECSIZ SECT

SECTOR SEEK SEL SELECT SERIAL

SETUP STEP STEP1 stat status

TAB TRACE TRACK UP WRITE

Comments and Strings

BACKSPACE BLOCK MASK DECREMENT SECTOR COUNT. error EXTENT MASK

GET COMMAND LINE INCREMENT SECTOR NUMBER. LENGTH MULTIPLY BY 16 PRINT IT

RETURN IF NOT. RETURN. RUBOUT SAVE SAVE COUNT

SAVE FOR LATER SAVE LENGTH SECTORS PER TRACK SET DMA ADDRESS

ternet, it is likely a commonly used term. If it is found in two programs but nowhere else on the Internet, then it
is likely due to copying.

Normally all matching elements that had any hits on the Internet would be filtered out. In this case, in order to
be a little more liberal, only filter out matching elements that were found more than 100 times on the Internet. In
this way, even things that were found in other programs or documents on the Internet would not be filtered out.

After filtering, no identifiers remained, but one programming statement and two comments did remain4.

2.1.1. Common Statement
The statement that remained after filtering was:

jnz comerr

This programming statement was found in only one place on the Internet. The instruction jnz is a standard
program assembly language statement for “jump if not zero.” The comerr is a label in both programs that speci-
fies the beginning of some routine. This looks like a combination of com, which could refer to a communica-
tions port or a command, and err, which typically means an error. One educated guess was that comerr is a rou-
tine that handles either communication errors or command errors, but it was necessary to look at the actual code
routines. The QDOS comerr routine is shown in Listing 1 while the CP/M comerr routine is shown in Listing 2.
These are significantly different routines. The QDOS routine gets invoked when there is a problem reading a file.
The CP/M routine is more complex and gets invoked when there is a problem with a command. These routines
have no relationship to each other and do not signify copying.

The place on the Internet where comerr was found turned out to be a document that included snippets of MS-
DOS source code [30].

2.1.2. Common Comments
Two comments remained after filtering. They were:

INCREMENT SECTOR NUMBER.
DECREMENT SECTOR COUNT.

By themselves, the comments are not uncommon, but two things struck me as particularly suspicious. First,
both comments ended with a period. Some programmers have a programming style where they end their com-
ments with period, so these matching comments could be a sign of a common programmer, but these two pro-
grams were supposedly not written by the same programmer.

Both files IO4IOS32.ASM and IO4IOS64.ASM of the CP/M 1.4 code had the same routine called RDBLK1
where these comments were found, shown in Listing 3.

4Source Detective uses an API to search via Yahoo! The API does not report as many hits as entering the information via a web browser.
Also the Google search engine covers more web pages. Thus some elements were given low hit numbers but when manually searching, the
numbers were much greater.

R. Zeidman

519

Listing 1. Comerr routine in file DOSIO.ASM from QDOS.

Listing 2. Comerr routine in file os2ccp.asm in CP/M.

The file DOSIO.ASM of QDOS has a routine called NEXTSECTOR, shown in Listing 4.
Both of these routines handle disk access, thus the reference to disk sectors, but other than the two

comments there are similarities but appear to be very different code. Furthermore, the CP/M file header
comments refer to a company called Tarbell Electronics and imply that the code was developed by that
company:

;(TARBELL ELECTRONICS) CVE MOD OF 9-5-81

Similarly the QDOS code header comment states that the code was developed for compatibility with several

disk drive manufacturers including Tarbell Electronics:

; Assumes a CPU Support card at F0 hex for character I/O,
; with disk drivers for Tarbell, Cromemco, or North Star controllers.

Searching for Tarbell Electronics it was discovered that this company produced and sold floppy drives starting

in the 1970s [31]. On the web page for Harte Technologies was found driver code that Tarbell originally sup-
plied with its floppy drives [32]. In the code for CP/M, there are three files called ABIOS24.ASM,
2ABIOS24.ASM, and 2ABIOS64.ASM with a routine called RBLK1 shown in Listing 5.

This Tarbell code also has a copyright notice at the top:

;---
; CP/M BASIC INPUT/OUTPUT OPERATING SYSTEM (BIOS)
; TARBELL ELECTRONICS
; 2.X VERSION OF 11-4-80
; Copyright (c) 1980 Tarbell Electronics
;---

While a copyright notice is not proof of copyright, hardware developers generally write drivers and then dis-

tribute them to enable use of their hardware. The Tarbell RDBLK1 routine is very similar to the one in the CP/M
code and the implication is that CP/M and QDOS both relied on the Tarbell driver code.

comerr:
 ;error in command string starting at position
 ;'staddr' and ending with first delimiter
 call crlf ;space to next line
 lhld staddr ;h,l address first to print
comerr0: ;print characters until blank or zero
 mov a,m! cpi ' '! jz comerr1; not blank
 ora a! jz comerr1; not zero, so print it
 push h! call printchar! pop h! inx h
 jmp comerr0; for another character
comerr1: ;print question mark,and delete sub file
 mvi a,'?'! call printchar
 call crlf! call del$sub
 jmp ccp ;restart with next command

COMERR:
 MOV DX,BADCOM
 MOV AH,9 ;Print string
 INT 21H
 EI
STALL: JP STALL

R. Zeidman

520

Listing 3. CP/M routine RDBLK1.

Listing 4. QDOS routine NEXTSECTOR.

Listing 5. Tarbell routine RDBLK1.

Other than these examples, that could be explained by reasons other than copying, filtering out matching ele-

ments that were found more than 100 times on the Internet eliminated all matching elements, leaving no correla-
tion at all.

2.2. Comparing MS-DOS Binary to CP/M Source
It was not possible to locate any source code for MS-DOS, which is understandable since it is a commercial
product from an ongoing company. A floppy disk was located that contained MS-DOS 1.11 for the first Compaq
computer. CodeSuite has a tool called BitMatch® that compares binary code to source code or to other binary
code. The MS-DOS 1.11 binary code was compared to the CP/M source code files from all of the versions of
CP/M that were obtained. Comparing binary files has a possibility of false negatives. If correlation is found after
filtering, then the files were almost certainly copied., but if nothing is found, the results are inconclusive.

RBLK1: SHLD DMAADD ;SET STARTING ADDRESS.
 CALL SETSEC ;READ STARTING AT SECTOR IN C.
 PUSH B
 CALL READ ;READ A SECTOR BACK.
 POP B
 JNZ RDERR ;IF ERROR, PRINT MESSAGE.
 INR C ;INCREMENT SECTOR NUMBER.
 DCR B ;DECREMENT SECTOR COUNT.
 JNZ RBLK1 ;NOT ZERO, KEEP READING
;
 IF INTRP; IF INTERRUPTS ALLOWED,
 EI ;ALLOW THEM AGAIN HERE.
 ENDIF

NEXTSECTOR:
 EI ; Interrupts OK now.
 POP CX ; Get sector count.
 DEC CL ; Decrement sector count.
 JZ OKRETURN ; Return if done.
 INC CH ; Increment sector number.
 CMP CH,10 ; Compare with number of sectors on track.
 JAE NEEDSTEP
 JMP SECTORLOOP ; Read another sector from same track.

RBLK1: SHLD DMAADD ;SET STARTING ADDRESS.
 CALL SETSEC ;READ STARTING AT SECTOR IN C.
 CALL READ
 JNZ RDERR ;IF ERROR, PRINT MESSAGE.
 DCR D ;DECREMENT SECTOR COUNT.
 JZ ALDON ;ALL DONE WHEN D=0.
 INR C ;INCREMENT SECTOR NUMBER.
 MOV A,C ;IF SECTOR NUMBER
 CPI 27 ;IS NOT 27,
 JC RBLK1 ;KEEP READING ON THIS TRACK.
 MVI C,1 ;OTHERWISE, RESET SECTOR=1,
 INR B ;INCREMENT TRACK NUMBER,
 JMP RDBLK ;AND READ NEXT TRACK.
ALDON: LDA TEMP ;RESTORE DISK NUMBER.

R. Zeidman

521

BitMatch does not compare programming statements because binary code instructions are very dependent on
the tools used to compile the code. BitMatch does compare sequences of text characters in the binary, which it
assumes are either identifiers or strings. Correlation was found due to 95 matching identifiers in both programs,
which are listed in Table 2. With a few exceptions, these identifiers all are common words from operating sys-
tems and programming or just from the English language.

Correlation was found due to 11 matching comments and strings, which are listed in Table 2. These com-
ments and strings are all common words or phrases from operating systems and programming. Filtering out
matching elements that were found more than 100 times on the Internet eliminated all matching elements, leav-
ing no correlation at all.

2.3. Comparing MS-DOS Binary to CP/M Binary
Next the MS-DOS 1.11 binary was compared to all of the binary files of the different versions of CP/M. There
were 74 matching strings, shown in Table 3. These strings are also common words or phrases from operating
systems and programming.

Table 2. Matching identifiers and strings found in MS-DOS binary code and CP/M source code.

Identifiers

0 1100 1101 ALT

base BEGIN Bit BLOCK

BOOT BREAK BUFFER compare

CONT copied copy Copying

COPYRIGHT DEL different DIR

DIRECT DISK disks DISPLAY

empty EOF ERASE ERROR

ESC FILE find first

FOUND HEX HIGH INIT

INPUT Insert INT JMP

key LENGTH LETTER LOAD

MEMORY mode MODULE NEXT

normally NUMBER NUMERIC OBJ

one OPEN OUT OVERFLOW

PAGE per read reading

RENAME RESERVED RETRY ROF

ROR save SCRATCH SCREEN

SCRN SECTOR Seek SELECT

set SIN source STACK

START status table Terminate

testing THE There time

TIMEOUT Track transfer TYPE

USER VALUE VERSION VIDEO

Which write ZERO

Strings

com DIR ERASE File not found

JMP OUT POP PUSH

REN RENAME TYPE

R. Zeidman

522

Table 3. Matching strings found in MS-DOS binary code and CP/M binary code.

Strings

$File (C) (Y/N) (Y/N)?

<2T aborting ALL BAD

CANNOT CHARACTER COM COMMAND

COMPLETE COPY COPYRIGHT DATA

DESTINATION DETECTED. DIAGNOSTIC DIR

DIRECTORY DISK drive END

ERASE ERROR ERRORS EXISTS

EXIT FILE FILE$ FILES

FOR FOUND found$Write FULL

FUNCTION HAS INPUT INVALID

MANY MEMORY MISSING NAME

NEXT NOT OUT OVERFLOW

PAUSE POP PRN PROGRAM

read ready RETURN SECTOR

SELECT SOURCE SPACE START

SYMBOL SYNTAX TABLE TEST

THE THEN TOO Track

TYPE VERSION when WITH

WRITE Yq:

Filtering out matching elements that were found more than 100 times on the Internet again results in no

matching elements and no correlation at all.

3. Comparing MS-DOS to QDOS
As a baseline, the MS-DOS binary code was compared to both the QDOS source code and binary code. Since
MS-DOS was derived from QDOS, there should be significant correlation. As expected, there is significant cor-
relation between the two programs. Before filtering 252 strings were found in common between MS-DOS 1.11
and QDOS. Some of the matches are sequences of random characters that obviously match coincidentally, but
after filtering out all things that can be found at least once on the Internet, some of the more interesting and con-
clusive similarities are:

AXBXCXDXSPBPSIDIDSESSSCSIPPC
NVUPDI
$No room in disk directory
QWASRDLIE
WVULLRQSP
$O.K.? $Line too long

The first sequence of alphabetic characters is particularly telling. Searching manually for this sequence on the

Internet produces only 3 instances of that string, all of which seem to be snippets of QDOS code5. These iden-
tifiers that can be found in QDOS and MS-DOS and nowhere else on the Internet constitute conclusive confir-
mation that MS-DOS was derived from QDOS. This string actually combines the two-letter names of the regis-
ters inside the Intel 8086 processor [33], (except for the last name, PC, which is not an internal register):

5Search engine APIs that allow a program to automatically perform a search, like those used by Source Detective, often have slightly differ-
ent results than a manual search via a web browser. Also, different search engines give slightly different results.

R. Zeidman

523

AX: Accumulator
BX: Base
CX: Count
DX: Data
SP: Stack Pointer
BP: Base Pointer
SI: Source Index
DI: Destination Index
DS: Data Segment
ES: Extra Segment
SS: Stack Segment
CS: Code Segment
IP: Instruction Pointer

4. Kildall’s Hidden Message
According to science fiction writer and technology reporter Jerry Pournelle, there was a secret command in DOS
that printed a copyright notice for DRI and Kildall’s full name to the screen [34]. According to Pournelle, Kildall
had told him about this command and typed it into DOS whereupon it produced the notice and allegedly proved
that DOS source code was copied from CP/M source code. This story has several problems with it. First, no one
knows the secret command. Second, Pournelle claims he wrote the command down, but will not show it to any-
one. Third, such a message would be easily seen by opening the binary files in a simple text editor unless the
message was encrypted. In the book They Made America, Kildall is quoted from his memoir as saying that he
encrypted messages in CP/M to find copying [35], but remember that CP/M and DOS had to fit on a floppy disk
that held only 160 Kbytes. Kildall’s achievement was that he could squeeze an entire operating system into such
a small footprint; it is difficult to imagine he could also squeeze an undetectable encryption routine.

If the message were unencrypted in the source code, the programmers who had the source code that they al-
legedly stole from DRI would see this extraneous routine and immediately remove it. A utility program was used
to extract strings of text from binary files. Searching these strings, not only does Kildall’s name not show up in
QDOS or MS-DOS, it does not show up in CP/M either. The term “Digital Research” shows up in copyright no-
tices in the CP/M binary files, but not in MS-DOS or QDOS binary files.

One could argue that Kildall used a simple masking algorithm rather than a full blown encryption algorithm to
hide the message, but the masked data would most likely show up in both the CP/M and QDOS as seeming ran-
dom text. Nothing like this was found. Also, CP/M defines intrinsic commands and extrinsic commands. Intrin-
sic commands are the basic commands that are buried in the code while the extrinsic commands are names of
executable files. For example, the extrinsic CP/M command DISKTEST is in the file DISKTEST.COM. For a
command to be hidden, it must be buried inside the files and therefore must be an intrinsic command. There are
six documented intrinsic commands: ERA, DIR, REN, SAVE, and TYPE. All of these commands are parsed and
executed in the CP/M source code file os2ccp.asm at lines 390 through 397:

intvec:
 ;intrinsic function names (all are four characters)
 db 'DIR '
 db 'ERA '
 db 'TYPE'
 db 'SAVE'
 db 'REN '
 db 'USER'

Whatever Jerry Pournelle saw, it was not MS-DOS or CP/M, and there is no secret command and hidden

message.

5. Conclusions
The only conclusion is that QDOS and MS-DOS were not copied from CP/M.

Gary Kildall’s fate was sad. He died in 1994 at the age of 52. Kildall had suffered from alcoholism in his later
years [1] [36]. The circumstances of his death are as muddied and debated as the missed meeting with IBM.

R. Zeidman

524

Most agree that he suffered a head injury in a California biker bar [37]; some articles describe a brawl, some
people claim he fell from a chair or down a staircase, and others report that he suffered a heart attack. Some
claim he committed suicide and his family covered it up, but most agree that his alcoholism in one way or
another led to his death [5] [36] [38].

Kildall deserves credit for creating the first personal computer operating system, but the syntax of CP/M [39]
looked like a simpler version of many other operating systems in use at the time, including UNIX [40], devel-
oped in 1969, and VAX/VMS [41], introduced in 1978. While he is sometimes remembered as a pauper for “be-
ing cheated by Bill Gates,” DRI was actually a successful company for many years.He eventually sold it to No-
vell in 1991 for $120 million [1]. Regardless of which stories about Kildall and DRI are correct, Kildall was
undeniably very creative and innovative, and very successful. If he was not as successful as Bill Gates, it was
not because CP/M source code was stolen to create MS-DOS.

6. Answers to Criticisms
When the initial article was published in the IEEE Spectrum online magazine [42], some criticisms were stated
by readers that are addressed in this final section of the paper.

6.1. Was Code Claimed to Be Copied?
Some readers stated that Kildall never claimed MS-DOS source code was copied from the CP/M source code.
However, the existing DRI website clearly states that MS-DOS is “an unauthorized clone of CP/M” [9]. The
Software Engineering Lab (SGL) of the Institute of Computer Science Faculty of the University of Mons
(UMONS) [43] defines cloning as follows:

Clones are segments of code that are similar according to some definition of similarity. (Ira Baxter, 2002).
A software clone is a special kind of software duplicate. It is a piece of software (e.g., a code fragment) that
has been obtained by cloning (i.e., duplicating via the copy-and-paste mechanism) another piece of soft-
ware and perhaps making some additional changes to it. This primitive kind of software reuse is more
harmful than it is beneficial. It actually makes the activities of debugging, maintenance and evolution con-
siderably more difficult.

Clearly this definition means that a clone is a source code copy. Note that examining a product to understand
how it works has always been perfectly legal as long as no code is directly copied. In the famous case of Sega v.
Accolade, Judge Stephen Reinhardt of the US Court of Appeals made this clear in his decision [44]:

We conclude that where disassembly is the only way to gain access to the ideas and functional elements
embodied in a copyrighted computer program and where there is a legitimate reason for seeking such
access, disassembly is a fair use of the copyrighted work, as a matter of law.

Granted, this decision came years after MS-DOS was created, but it was a long-standing rule of fair use. Yet
Kildall claimed that QDOS, and subsequently MS-DOS, had been directly copied from CP/M and thus infringed
on his copyright [1] [9]. More importantly, his attorney Gerry Davis, who would have understood copyright law,
claimed that forensic experts had proven that MS-DOS had been copied from CP/M and infringed on the copy-
right [1].

Finally, if Kildall did not believe that MS-DOS was a direct copy of the CP/M source code, how could he
have claimed there was a hidden command in MS-DOS that typed out a secret message [34] [35]? The only way
such a routine could exist in both CP/M and MS-DOS is if source code was directly copied.

6.2. Were APIs Copied?
Some readers of the prior article claimed that application specific interfaces (APIs) were copied but not source
code. First, this does not conform to the claims of infringement that were made by Kildall as explained above.
Second, Tim Paterson admits that he modeled QDOS on CP/M [8], but copying functionality does not constitute
copyright infringement. And in a recent ruling in the case of Oracle v. Google, Judge Alsup stated that APIs are
not protected by copyright even when they are copied directly from the source code [45]:

So long as the specific code used to implement a method is different, anyone is free under the Copyright

R. Zeidman

525

Act to write his or her own code to carry out exactly the same function or specification of any methods
used in the Java API.

While it is not clear that this ruling will be upheld on appeal, the analysis showed no literal or non-literal co-
pying of APIs that would constitute copyright infringement.

6.3. MS-DOS Disk Images
After publishing the IEEE Spectrum article, disk images of earlier versions of MS-DOS disks were obtained.
Because it is not possible to verify the authenticity of these disk images, their analysis is not included in the
main body of the paper, but are included here because the results are interesting and confirm the main analysis.

Gio Wiederhold, Professor Emeritus of Computer Science, Medicine, and Electrical Engineering at Stanford
University, supplied a disk image of an MS-DOS 1.0 floppy disk in his possession. The image included binary
represented in ASCII text and also as raw ASCII text. Searching the raw text for the words “Kildall,” “digital,”
and “DRI” did not find any instances of these words. However, a reference to the name “Robert O’Rear” did
show up that, after some research, was found to be the original project manager of MS-DOS at Microsoft [46].

Searching online a disk image was found posted on a website by vintage computer enthusiast Ray Arachelian
(aka “Tech Knight”) purporting to be an image of an MS-DOS 1.10 floppy disk [47]. Using an old IBM PC run-
ning Windows 98 the image was extracted to a disk using instructions found on another web page by author and
programmer Daniel B. Sedory (aka “Starman”) [48]. Searching the image for the words “Kildall,” “digital,” and
“DRI” did not find any instances of these words.

These disk images were also compared against CP/M and QDOS as described below.

6.3.1. Comparing MS-DOS 1.10 Binary to CP/M Source
The MS-DOS 1.10 binary code comparison actually found fewer matches than the comparison with MS-DOS
1.11. Only 74 of the 95 matching CP/M identifiers that were previously found in MS-DOS 1.11 were found this
time, but 18 other identifiers matched MS-DOS 1.10 that were not found in MS-DOS 1.11, shown in Table 4.

All of these matching identifiers are common words or programming terms found many times on the Internet
as confirmed by Source Detective.

Of the 11 CP/M comments found in the MS-DOS 1.11 binary code, 9 of them were also found in the MS-
DOS 1.10 code. There were no additional CP/M comments found in the MS-DOS 1.10 binary code.

6.3.2. Comparing MS-DOS 1.10 Binary to CP/M Binary
This comparison found that only 63 of the 74 CP/M strings found in MS-DOS 1.11 appeared in MS-DOS 1.10.
Also 4 other matching identifiers were found in MS-DOS 1.10 that were not found in MS-DOS 1.11:

FAST
HEX
OUTPUT
USE

All of these matching strings are common words or programming terms found many times on the Internet as

confirmed by SourceDetective.

6.3.3. Comparing MS-DOS 1.10 Binary to QDOS Source Code and Binary Code
The MS-DOS 1.10 binary was compared to QDOS source code. Before filtering 243 strings were found in

Table 4. Matching identifiers found in MS-DOS 1.10 binary code and CP/M source code.

Identifiers

CLEAR COLUMN CTS DEBUG DEC

DELETE DONE FALSE FOREVER Items

MAKE Note OTHER OUTPUT Position

REQUIRES SCROLL TRUE

R. Zeidman

526

common between MS-DOS 1.10 and QDOS. Surprisingly, this is less than the 252 strings found in common
between MS-DOS 1.11 and QDOS, but some of the matching strings appear to be sequences of random charac-
ters that obviously match coincidentally. Also it is not certain that this is a complete, valid copy of MS-DOS
1.10. A large number of common strings were found including the particularly interesting ones that were found
with MS-DOS1.11 plus this very long string—obviously a concatenation of error messages—that could not be
the result of chance:

HEXCOMError in HEX file--conversion aborted$File not found$Address out of
range--conversion aborted$Disk directory full$

6.3.4. Comparing MS-DOS 1.0 Binary to CP/M Source
In the MS-DOS 1.0 binary code, again fewer matches were found than were found in MS-DOS 1.11. Only 54 of
the 95 matching CP/M identifiers were found that were previously found in MS-DOS 1.11. The were 6 other
matching identifiers in MS-DOS 1.0 that were not found in MS-DOS 1.11:

BIOS
CTS
DEBUG
DEC
ERROLOW

All of these matching identifiers are common words or programming terms found many times on the Internet,

with the possible exception of the term ERRO, which appears to be a truncation of the word ERROR at the end
of an error message in the MS-DOS 1.0 disk image, which leads me to believe that the image may be corrupted.

Of the 11 CP/M comments found in the MS-DOS 1.11 binary code, only 5 of them were also found in the
MS-DOS 1.0 code. There were two CP/M comments found in the MS-DOS 1.0 binary code that were not found
in MS-DOS 1.11:

CMP
MOVE

6.3.5. Comparing MS-DOS 1.0 Binary to CP/M Binary
This comparison found that only 55 of the 74 CP/M strings found in MS-DOS 1.11 appeared in MS-DOS 1.0.
There were 4 other matching identifiers in MS-DOS 1.0 that were not found in MS-DOS 1.11:

CMP
ERROR$
HEX
LOAD

All of these matching strings are common words or programming terms found many times on the Internet.

6.3.6. Comparing MS-DOS 1.0 Binary to QDOS Source Code and Binary Code
The MS-DOS 1.0 binary was compared to QDOS source code. Before filtering, 234 strings were found in com-
mon between MS-DOS 1.10 and QDOS. This is surprisingly less than the 252 matching strings found in MS-
DOS 1.11 and less than the 243 matching strings found in MS-DOS 1.10 Again though, some of the matching
strings appear to be sequences of random characters that match coincidentally, and itis not known for certain that
this is a complete, valid copy of MS-DOS 1.0. However, again a large number of common strings was found in-
cluding the particularly interesting ones that were found with MS-DOS1.11 plus this very long string—ob-
viously a concatenation of error messages—that could not be the result of chance:

HEXCOMError in HEX file--conversion aborted$File not found$Address out of
range--conversion aborted$Disk directory full$

6.4. Defamation Lawsuit
Some readers have pointed out that Tim Paterson sued Little, Brown and Co, the publisher of the book They

R. Zeidman

527

Made America and its authors Harold Evans, Gail Buckland, and David Lefer for defamation. The book con-
tends that Paterson “[took] a ride on” Kildall’s operating system, appropriated the “look and feel” of the CP/M
operating system, and copied much of his operating system interface from CP/M. Paterson contended that
statements in the book were “false and defamatory.”

That case was dismissed on summary judgment (i.e., without even holding a trial) by US District Judge Tho-
mas S. Zilly. This is not proof that Paterson copied CP/M. There was no trial, no forensic examination, no expert
testimony, and no offering of arguments or evidence regarding copying. This was a defamation case, not a copy-
right infringement case. In the US, speech, even incorrect speech, is protected by our valued First Amendment.
According to the Free Online Dictionary, defamation is [49]:

Any intentional false communication, either written or spoken, that harms a person’s reputation; decreases
the respect, regard, or confidence in which a person is held; or induces disparaging, hostile, or disagreeable
opinions or feelings against a person.

If the authors of the book believed MS-DOS was copied, whether they were correct or not, they had the right
to say so. Judge Zilly made this clear in his order [50]:

Plaintiff Tim Paterson has failed to provide evidence that statements in Sir Harold Evans’ chapter on Gary
Kildall are provably false or defamatory. The statements in the Kildall chapter constitute non-actionable
opinion protected by the First Amendment, or statements that are not provably false. In addition, as a li-
mited purpose figure Mr. Paterson has failed to provide any evidence that Sir Harold Evans acted with ac-
tual malice.

So this summary judgment draws no conclusion about whether MS-DOS was copied from CP/M, but only
that the authors believed that to be the case and thus had a first Amendment right to say so, just as the readers of
my article have a First Amendment right to publicly disagree with my conclusion.

References
[1] Hamm, S. and Greene, J. (2004) The Man Who Could Have Been Bill Gates. Business Week.

http://www.businessweek.com/magazine/content/04_43/b3905109_mz063.htm
[2] Computer History Museum (2013) What Was the First PC?

http://www.computerhistory.org/revolution/personal-computers/17/297
[3] Wallace, J. and Erickson, J. (1992) Hard Drive. John Wiley & Sons, Hoboken.
[4] Bellins, M. (2011) Putting Microsoft on the Map: History of the MS-DOS Operating Systems, IBM & Microsoft.

About.com Guide. http://inventors.about.com/od/computersoftware/a/Putting-Microsoft-On-The-Map.htm
[5] Akass, C. (2006) The Man Who Gave Bill Gates the World. Computeractive.

http://www.computeractive.co.uk/pcw/news/1923088/the-bill-gates-world
[6] Smith, T. (2011) Microsoft’s MS-DOS Is 30 Today. The Register.

http://www.reghardware.com/2011/07/27/ms_dos_turns_30
[7] Honan, M. (2011) Bill Gates Spent the Best Money of His Life 30 Years Ago Today. Gizmodo.

http://gizmodo.com/5825184/bill-gates-spent-the-best-money-of-his-life-30-years-ago-today, July 27, 2011
[8] Conner, D. (1998) Father of DOS Still Having Fun at Microsoft. MicroNews.

http://www.patersontech.com/dos/microsoft-micronews.aspx
[9] CP/M (2011) The First PC Operating System. http://www.digitalresearch.biz/CPM.HTM
[10] World Intellectual Property Organization (WIPO) (2010) Intellectual Property—Some Basic Definitions.

http://www.wipo.int/about-ip/en/studies/publications/ip_definitions.htm
[11] US Copyright Office, Library of Congress (2008) Circular 1, Copyright Basics.
[12] (1970) The Law Professor Behind: ASH, SOUP, PUMP and CRASH. New York Times.

http://banzhaf.net/docs/NYTimesBehindASHSoup.pdf
[13] Hollaar, L. (2009) Legal Protection of Digital Information, BNA Books. http://digital-law-online.info
[14] Melling, L. and Zeidman, B. (2012) Comparing Android Applications to Find Copying. Journal of Digital Forensics,

Security and Law, 7, 55.
[15] Zeidman, R. (2009) DUPE: The Depository of Universal Plagiarism Examples. 5th International Conference on IT Se-

curity Incident Management & IT Forensics, 15-17 September 2009.

http://www.businessweek.com/magazine/content/04_43/b3905109_mz063.htm
http://www.computerhistory.org/revolution/personal-computers/17/297
http://inventors.about.com/od/computersoftware/a/Putting-Microsoft-On-The-Map.htm
http://www.computeractive.co.uk/pcw/news/1923088/the-bill-gates-world
http://www.reghardware.com/2011/07/27/ms_dos_turns_30
http://gizmodo.com/5825184/bill-gates-spent-the-best-money-of-his-life-30-years-ago-today
http://www.patersontech.com/dos/microsoft-micronews.aspx
http://www.digitalresearch.biz/CPM.HTM
http://www.wipo.int/about-ip/en/studies/publications/ip_definitions.htm
http://banzhaf.net/docs/NYTimesBehindASHSoup.pdf
http://digital-law-online.info/

R. Zeidman

528

http://www1.gi-ev.de/fachbereiche/sicherheit/fg/sidar/imf/imf2009/slides/19-RumpSession1-Zeidman_DUPE_IMF200
9.pdf

[16] Zeidman, R. (2008) Multidimensional Correlation of Software Source Code. The 3rd International Workshop on Sys-
tematic Approaches to Digital Forensic Engineering, Oakland, 22 May 2008, 144-156.
http://dx.doi.org/10.1109/SADFE.2008.9

[17] Zeidman, R. (2007) Iterative Filtering of Retrieved Information to Increase Relevance. Journal of Systemics, Cybernetics
and Informatics, 5, 91-96.

[18] Zeidman, B. (2006) Software Source Code Correlation. 5th IEEE/ACIS International Conference on Computer and In-
formation Science, 10-12 July 2006, Honolulu, 383-392.

[19] Clough, P. (2000) Plagiarism in Natural and Programming Languages: An Overview of Current Tools and Technolo-
gies. Research Memoranda, CS-00-05, Department of Computer Science, University of Sheffield, Sheffield.

[20] Parker, A. and Hamblen, J. (1989) Computer Algorithms for Plagiarism Detection. IEEE Transactions on Education,
32, 94-99. http://dx.doi.org/10.1109/13.28038

[21] Whale, G. (1990) Identification of Program Similarity in Large Populations. The Computer Journal, 33, 140-146.
http://dx.doi.org/10.1093/comjnl/33.2.140

[22] Wise, M.J. (1996) YAP3: Improved Detection of Similarities in Computer Program and Other Texts. SIGCSE ’96,
Philadelphia, 15-17 February 1996, 130-134.

[23] Heckel, P. (1978) A Technique for Isolating Differences Between Files. Communications of the ACM, 21, 264-268.
[24] Wise, M.J. (1993) String Similarity via Greedy String Tiling and Running Karp-Rabin Matching. Department of Com-

puter Science Technical Report, Sydney University, Sydney.
[25] Prechelt, L., Malpohl, G. and Philippsen, M. (2002) Finding Plagiarisms among a Set of Programs with JPlag. Journal

of Universal Computer Science, 8, 1016-1038.
[26] Schleimer, S., Wilkerson, D. and Aiken, A. (2003) Winnowing: Local Algorithms for Document Fingerprinting.

SIGMOD 2003, San Diego, 9-12 June 2003, 76-85.
[27] Zeidman, B. (2011) The Software IP Detective’s Handbook. 1st Edition, Prentice Hall, Upper Saddle River.
[28] Chaudry, G. (2011) The Unofficial CP/M Web Site. http://www.cpm.z80.de
[29] Harte, H.M. (2008) Howard’s Seattle Computer Products SCP 86-DOS Resource Website. http://www.86dos.org
[30] (2011) CUSTOMIZING MS-DOS Version 1.23 and Later.

http://www.bitsavers.org/pdf/seattleComputer/Customizing_MS-DOS_1.23_and_Later.pdf
[31] Johnson, H. (2013) Tarbell S-100 Boards and Docs. http://www.retrotechnology.com/herbs_stuff/d_tarbell.html
[32] Harte, H. (2005) Tarbell Electronics, Tarbell Electronics Manuals. http://www.hartetechnologies.com/manuals/Tarbell
[33] Shvets, G. (2011) Intel 8086 Microprocessor Architecture. CPU World.

http://www.cpu-world.com/Arch/8086.html
[34] Pournelle, J. (2011) Interview Discussing Kildall Secret Command in DOS.

http://aolradio.podcast.aol.com/twit/TWiT0073H.mp3
[35] Evans, H., Buckland, G. and Lefer, D. (2004) They Made America. Little, Brown and Co., New York.
[36] Rivlin, G. (1999) The Plot to Get Bill Gates. 1st Edition, Crown Business, Random House, New York.
[37] (2011) Digital Research Family Members. http://www.digitalresearch.biz
[38] Young, J. and Kildall, G. (1997) The DOS that Wasn’t. Forbes.com, 7 July 1997.
[39] Digital Research, Inc. (1976) An Introduction to CP/M Features and Facilities.

http://www.cpm.z80.de/manuals/cpm13int.pdf
[40] Ritchie, D.M. (1979) The Evolution of the Unix Time-Sharing System. Language Design and Programming Metho-

dology, Sydney, September 1979. http://www.read.seas.harvard.edu/~kohler/class/aosref/ritchie84evolution.pdf
[41] VargaÉkosEndre (2011) VAX: Virtual Address Extension. http://hampage.hu/vax/e_main.html
[42] Zeidman, B. (2012) Did Bill Gates Steal the Heart of DOS? IEEE Spectrum.

http://spectrum.ieee.org/computing/software/did-bill-gates-steal-the-heart-of-dos
[43] (2012) Software Engineering Terminology, Software Engineering Lab (SGL) of the Institute of Computer Science Fa-

culty of the University of Mons. http://informatique.umons.ac.be/genlog/SE/SE-contents.html
[44] Sega Enterprises Ltd. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1993)
[45] Oracle America, Inc. v. Google Inc., No. C 10-03561 WHA (N.D. Calif. April 10, 2012)
[46] Gobry, P.E. (2011) 10 Behind-the-Scenes Crankers Who Built The World's Greatest Startups. Business Insider, 6 April

http://www1.gi-ev.de/fachbereiche/sicherheit/fg/sidar/imf/imf2009/slides/19-RumpSession1-Zeidman_DUPE_IMF2009.pdf
http://www1.gi-ev.de/fachbereiche/sicherheit/fg/sidar/imf/imf2009/slides/19-RumpSession1-Zeidman_DUPE_IMF2009.pdf
http://dx.doi.org/10.1109/SADFE.2008.9
http://dx.doi.org/10.1109/13.28038
http://dx.doi.org/10.1093/comjnl/33.2.140
http://www.cpm.z80.de/
http://www.86dos.org/
http://www.bitsavers.org/pdf/seattleComputer/Customizing_MS-DOS_1.23_and_Later.pdf
http://www.retrotechnology.com/herbs_stuff/d_tarbell.html
http://www.hartetechnologies.com/manuals/Tarbell
http://www.cpu-world.com/Arch/8086.html
http://aolradio.podcast.aol.com/twit/TWiT0073H.mp3
http://www.digitalresearch.biz/
http://www.cpm.z80.de/manuals/cpm13int.pdf
http://www.read.seas.harvard.edu/%7Ekohler/class/aosref/ritchie84evolution.pdf
http://hampage.hu/vax/e_main.html
http://spectrum.ieee.org/computing/software/did-bill-gates-steal-the-heart-of-dos
http://informatique.umons.ac.be/genlog/SE/SE-contents.html

R. Zeidman

529

2011.
[47] (2011) IBM DOS 1.10 Ripped and Packaged by Tech Knight for the Endangered Software Archive.

http://www.mirrors.org/archived_software/www.techknight.com/esa/download
[48] Sedory, D.B. (2008) Tutorial on Extracting “Disk Images” from a *.DIM File Using HxD (a Disk/Hex Editor).

http://thestarman.pcministry.com/tool/hxd/dimtut.htm
[49] (2007) Defamation Definition. Free Online Dictionary. http://legal-dictionary.thefreedictionary.com/defamation
[50] Paterson v. Little, Brown & Co., 502 F. Supp. 2d 1124, 1128 (W.D. Wash. 2007)

http://www.mirrors.org/archived_software/www.techknight.com/esa/download
http://thestarman.pcministry.com/tool/hxd/dimtut.htm
http://legal-dictionary.thefreedictionary.com/defamation

	A Code Correlation Comparison of the DOS and CP/M Operating Systems
	Abstract
	Keywords
	1. Introduction
	1.1. Historical Background
	1.2. Legal Background

	2. Code Comparisons
	2.1. Comparing CP/M Source to QDOS Source
	2.1.1. Common Statement
	2.1.2. Common Comments

	2.2. Comparing MS-DOS Binary to CP/M Source
	2.3. Comparing MS-DOS Binary to CP/M Binary

	3. Comparing MS-DOS to QDOS
	4. Kildall’s Hidden Message
	5. Conclusions
	6. Answers to Criticisms
	6.1. Was Code Claimed to Be Copied?
	6.2. Were APIs Copied?
	6.3. MS-DOS Disk Images
	6.3.1. Comparing MS-DOS 1.10 Binary to CP/M Source
	6.3.2. Comparing MS-DOS 1.10 Binary to CP/M Binary
	6.3.3. Comparing MS-DOS 1.10 Binary to QDOS Source Code and Binary Code
	6.3.4. Comparing MS-DOS 1.0 Binary to CP/M Source
	6.3.5. Comparing MS-DOS 1.0 Binary to CP/M Binary
	6.3.6. Comparing MS-DOS 1.0 Binary to QDOS Source Code and Binary Code

	6.4. Defamation Lawsuit

	References

