
Journal of Software Engineering and Applications, 2013, 6, 42-48
doi:10.4236/jsea.2013.67B008 Published Online July 2013 (http://www.scirp.org/journal/jsea)

Introducing Intelligent Agents Potential into a competent
Integral Multi-Agent Sensor Network Simulation
Architecture Design

A. Filippou1, D. A. Karras2

1University of Bolton, UK; 2Sterea Hellas Institute of Technology, Greece, Automation Dept., Chalkis, Hellas (Greece), P.C..34400
Email: alexfilippoy@yahoo.gr, dakarras@ieee.org, dimitrios.karras@gmail.com.

Received June, 2013

ABSTRACT

During this research we spot several key issues concerning WSN design process and how to introduce intelligence in
the motes. Due to the nature of these networks, debugging after deployment is unrealistic, thus an efficient testing
method is required. WSN simulators perform the task, but still code implementing mote sensing and RF behaviour con-
sists of layered and/or interacting protocols that for the sake of designing accuracy are tested working as a whole, run-
ning on specific hardware. Simulators that provide cross layer simulation and hardware emulation options may be re-
garded as the last milestone of the WSN design process. Especially mechanisms for introducing intelligence into the
WSN decision making process but in the simulation level is an important aspect not tackled so far in the literature at all.
The herein proposed multi-agent simulation architecture aims at designing a novel WSN simulation system independent
of specific hardware platforms but taking into account all hardware entities and events for testing and analysing the be-
haviour of a realistic WSN system. Moreover, the design herein outlined involves the basic mechanisms, with regards to
memory and data management, towards Prolog interpreter implementation in the simulation level.

Keywords: Wireless Sensor Networks (WSN); Simulation; MCU Emulation; CUDA; OpenCL; GPGPU; Intelligent

Agents; Prolog Interpreter

1. Introduction

A WSN is a distributed system. It consists of a usually
large number of autonomous devices that form a network.
The diversity of missions and environments deployed in,
introduces issues and parameters of paramount impor-
tance during design process. Success of this process is
considered delivering specific code running on specific
hardware, both meeting mission and production cost
requirements.

In general, a mote is a device that consists of a me-
dium access hardware interface, a processing module and
a sensor array. In case of WSN, the medium is the RF
channel, and the hardware interface is a RF transceiver.
In case of submerged SNs the medium is water (acoustic
signals) and the hardware interface is a microphone and a
loudspeaker. The trivial case scenario is a Wireless Sen-
sor Network, running on batteries, with limited computa-
tional ability and memory, operating in a harsh and hos-
tile environment. By using simulation tools we gain
pre-deployment knowledge estimating the network’s
behavior. In most cases, the design and implementation
of application and protocol stack code, running on spe-

cific hardware setup, are viewed through energy con-
sumption, security and production cost prisms.

The first task of a WSN after deployment is to config-
ure itself. Every mote uses its transceiver to establish
connections with its neighbors, in order to construct a
topology. The mote acquires its location which is un-
known at the beginning, through collaboration with other
motes, starting from a few motes with known locations.
The Localization protocol responsible for the above task
uses physical quantities such as RSS AoA, ToA, to cal-
culate the mote’s location. After identifying its neighbors,
and being identified, the mote is part of the network, able
to produce sensor data, propagate data to sink, collabo-
rate with neighboring motes to perform a computational
or sensing task, create cluster, and so on. The total activ-
ity of a mote extends to multiple levels – or layers – each
having its own procedure and parameters to calculate
QoS. The overall performance is derived from the com-
bination and cross layer code collaboration [1], and as
stated in [2] does not necessarily means optimal per-
formance in every layer.

In the next part of this paper, we highlight topology,

Copyright © 2013 SciRes. JSEA

Introducing Intelligent Agents Potential into a competent Integral Multi-Agent
Sensor Network Simulation Architecture Design

43

simulation and hardware design issues that back up our
choices in design of our optimal simulator. We spot the
parameters taken in consideration in order to calculate
the simulation metrics in each case. Our goal is to design
a sensor simulator able to perform cross layer code,
communication medium and environmental simulation,
while keeping an inside view in every aspect of this pro-
cess, giving every detail needed in order to extract con-
clusions about network behavior, in mote, local (an area
containing a number of motes) or global (entire network)
level. Special attention is paid in the design of the basic
mechanisms, related to memory and data management, of
Prolog interpreter implementation in the mote simulation
level, aiming at introducing intelligent decision making
in the mote level and not in the base station only. Such a
distributed intelligent decision making process would be
of major importance in real world applications

2. The Proposed Improved Simulator
Architecture

Although the major issues involved in the design of
WSN simulators have been spotted in some detail in the
literature [3-34], while considering a protocol or the en-
tire protocol collection running on mote’s MCU none of
the so far proposed simulators employs generic hardware
properties management. Hardware specific simulators
like Tossim and Atemu, for instance, lack flexibility
concerning hardware for they are bounded with a specific
platform. Avrora emulates every mote in its own thread,
and thus performs and scales according to thread ability
of the computer it runs on. None of the above takes ad-
vantage of GPGPU abilities (CUDA, OpenCL)

We herein propose an architecture, able of scaling,
providing fine grain detail of the simulation, and config-
uring all the parameters of RF channel, Environment and
Hardware. Our goal is to provide a multi agent simula-
tion tool, to serve among others as a WSN Simulator.
Moreover, our goal is to introduce distributed intelli-
gence in the decision making, by involving Prolog Inter-
preter capabilities in the mote level through implementa-
tion of its basic mechanisms with regards to data and
memory management. Basic mechanisms in the Prolog
implementation concerning runtime level (which is the
most important in the simulation level), are the Activa-
tion Frames, the Binding Records, the Stack Module, the
Backtracking and Unification mechanisms. The mecha-
nism of primary importance in such an implementation is
the stack module management (or heap in early imple-
mentations) [35,36].

Therefore, we herein introduce the design of a stack
module management into the overall WSN simulation
architecture towards achieving distributed intelligence in

the mote level.

2.1. Overall Architecture

Our proposal consists of four basic elements: (a) Agents
(b) The Controller (c) Interfaces (d) Services.

Agents: There are two types of agents. (a) Built in
agents. They are commonly used components such as
plotters, visualizers, or emulators. They are at the dis-
posal of the user and not necessarily part of every simu-
lation. (b) User defined agents. User writes code to de-
fine the agent behaviour. These are implemented by an
interpreter, whose functionality is described later.

The Controller: The controller activates or deactivates
agents according to simulation clock and/or event han-
dling instructions written in user defined code. In case of
a simulation clock, the controller uses a basic time step
which is the greatest common divisor GCD of all time
steps of the clocks of time dependant agents. In case of
time independent agents, their code is activated at every
pace of the controller.

Interfaces: The interfaces of agents are implemented
with a byte array. Two agents communicate through a set
of bytes eg from index a to index b in this array, using
b-a bytes. These two integers (a and b), describe the in-
terface. All interchanged data (numerical quantities, text,
fluctuation of a quantity for a period of time eg a wave-
form from t = k to t = k + 10, signals or combinations) is
described in bytes. Every interface may be used by two
or more agents putting interchanged data in wide scope.
An event handling mechanism notifies every agent using
the interface (eg form a to b) that contents are changed.
An agent may use as many interfaces as user requires. By
using interfaces the user may project data from inside the
agent to defined scope. Below is an example of a mote
built up using four agents and the interface array.

The parts of the interface array that are used by this
mote are coloured with grey. In the above example the
PIC emulator uses 3 inter-faces, of different width, as
shown in figure 1. The pace of the emulator is one ma-
chine cycle,

Sensor
array

PIC 16f887
Emulator

MRF24J40
Tranceiver

Battery

Figure 1. A Mote example.
(usually for MCUs execution of one instruction). In the
lab we may measure the exact energy consumption of

Copyright © 2013 SciRes. JSEA

Introducing Intelligent Agents Potential into a competent Integral Multi-Agent
Sensor Network Simulation Architecture Design

44

one cycle. This emulator uses as input the compiled pro-
gram to be uploaded to the real device. The battery agent
subtracts from a starting quantity energy consumption of
MCU and radio, sending a shut- down signal to MCU
emulator in case of energy depletion deactivating the
virtual mote. Sensor array agent sends analog data to
MCU emulator. The interface is as wide as needed to
describe the possible value range of data. Due to ADC
conversion latency, the ADC may be modelled separately
using a fifth agent.

Services: There are two types of services: (a) built in
library. They are functions and procedures widely used in
fields of engineering or science. (b) User defined: user
writes code to describe the functionality of their proce-
dure or function. Services are sets of procedures and/or
functions in scope of any agent. They are activated when
called by agents and their data is valid even when they
are inactive. An implementation example is the RF me-
dium. When a mote transmits, sends to RF medium ser-
vice its coordinates, time, and transmission power along
with data. RF medium service stores these values in a
table. When a mote listens, the service calculates the
signal at his location, according to all active signals
above a given SNR. In case of an CSMA-CD MAC layer,
both services (transmitting, listening) are active at the
same time.

2.2. The Basic Interpreter

The interpreter consists of three main parts: (a) A 4XN
integer array (b) The actual code that executes user pro-
grams (c) A byte array where data is stored.

1) 4XN Integer Array The simple program is:
1. If (A>0) 2. B B + 1 3. else 4. C C + 5 5. En-

dif 6. D B + C
Ends up translated in tokens and stored in the 4XN in-

teger array. There are 4 basic types of token supported: (a)
decision (b) operator (c) assignment (d) variable or value.
At the first column contains the token code. Columns 2
and 3 contain pointers pointing at the next token to exe-
cute in the token (4XN) array. Column 4 contains pointer
pointing to data memory. In detail, as shown in figures 2
and 3:

Decision: if A > 0 is true then the next token to exe-
cute is the assignment token in line 2, else executes as-
signment token in line 4. Assuming that decision token
code is number 1, and x and y are the indexes that tokens
in lines 2 and 4 are stored respectively, then the line in
which the decision token is stored in the 4XN would be
like:

1 x Y

There is no pointer to data memory for there is no

value involved. The expression A > 0 is stored directly
below the decision token row. When the interpreter
reaches a decision token, evaluates the expression below
and according to its truth selects next token (x or y).
With the decision token we may also implement for,
while, do until statements using the pointers x,y accord-
ingly.

Operator: Operator > compares variable A with value
0. Assuming that operator > token code is 2, and vari-
able-value token code is 3 then the expression is stored:

The algorithm that evaluates expressions is
Evaluate (x)
{y=Token(x,2); z=Token(x,3)
IF z=0 and y=0 THEN return mem (Token
(x,4));
ELSEIF z=0 THEN return op (Token(x,1),
evaluate(y))
ELSEIF y=0 THEN Return op(Token(x,1),
evaluate(z))
ELSE Return op(Token(x,1),evaluate(y),
evaluate(z))
ENDIF}, where x, y, z are indexes in the 4XN array
of tokens, and m, n are indexes in the data memory
(array of type byte).

Assignment: The assignment token evaluates the ex-
pression on its right, stores the result in memory, and
proceeds to next token execution. From assignment token
in line 2, next to be executed is the assignment token in
line 6. The same for assignment token in line 4. The to-
ken code for the assignment is 4 and for the + is 5. The
memory pointer in column 4 in an assignment row,
points the location to store the results. Completing the
arrays:

Data Types: The interpreter engine uses its own set of
basic data types: Char, string, int, real, boolean, byte,
binary and their combinations (structs). Binary is used
for binary numbers bigger than 255. From the user’s
point of view, data memory and interfaces are transparent.
From inside the agent, interface is seen and used as a
simple variable or a struct. The interpreter’s engine is
responsible for any transformation needed, relieving user
from the task. The basic advantage of this interpreter
implementation is that is simple and can be used also:

 Indx 1 2 3 4

10 1 x y

11 2 12 13

12 3 0 0 m

13 3 0 0 n

Memory

<A>

0

Figure 2. 4XN token array and memory array.

Copyright © 2013 SciRes. JSEA

Introducing Intelligent Agents Potential into a competent Integral Multi-Agent
Sensor Network Simulation Architecture Design

Copyright © 2013 SciRes. JSEA

45

Index 1 2 3 4

10 1 14 18 0

11 2 12 13 0

12 3 0 0 m

13 3 0 0 n

14 4 22 o

15 5 16 17 0

16 3 0 0 o

17 3 0 0 p

18 4 22 q

19 5 20 21 0

20 3 0 0 q

21 3 0 0 r

22 4 s

23 5 24 25 0

24 3 0 0 o

25 3 0 0 q

indx

m <A>

n 0

o

p 1

q <C>

r 5

s <D>

Figure 3. The representation of the program in the two ar-
rays.

MCUs: The interpreter is uploaded in the MCU
EEPROM. Application and protocol coding now becomes
data. Sink transmits code along with data altering WSN
mission at runtime.

In the 4XN array we may store 1 or more programs.
Each program starts at a specific index of this array. The
interpreter using a priority mechanism may execute these
programs concurrently, by executing a number of tokens
of each, in every pace. This feature makes the interpreter
able to serve as a base of a WSN OS.

GPGPU: The function evaluate(x) is the part of the
interpreter that calculates expressions. The other part is a
simple switch (x) statement where x is the token code.
Using a non recursive version of evaluate(x) we elimi-
nate external dependencies and calls. One would expect
difficulty in handling the sum of data involved due to
variety of data types. In our case all data and code are
contained in two arrays. Code and data can fit in a
CUDA thread. In other words, one agent in every thread.
The amount of data is constant (arrays). Both are copied
to GPU memory using:
#define X 100; #define Y 4; #define Z 1000;
Int Tkn [X] [Y]; Byte mem [Z]; cudaMemcpy
(dTkn,Tkn, X*Y*sizeof(int), cudaMem-
cpyHostToDevice); cudaMemcpy(devicemem,
mem,z,cudaMemcpyHostToDevice);

2.3. The Interpreter Equipped with Complex
Data Types Capabilities towards Gaining the
Potential of Building Intelligent Mote Agents
through Provision of Prolog Mechanisms

Implementation of stack module management regarding

basic Prolog mechanisms realization, with respect to data
types and memory management implies a methodology
for Function Calls application. In the next paragraphs we
provide the principles of the relevant design.
A Specific token is used for all user defined functions
that return a value. An array is added to implement the
stack mechanism in order to provide the recursive ability.
Every function has the input struct, (the set of input pa-
rameters) and the output value. Every instance of the
function created in the recursive chain, uses the struct
and output value locations in memory only once, at the
beginning and at the end respectively. Thus there are no
instances created for the struct and the output value.
When function starts, it copies the input struct contents to
its local variables. An instance of local variables is cre-
ated for every instance of the function. This is imple-
mented using a 3XL array of pointers as shown below in
Figures 4 and 5, where, also, its association with mem-
ory and the 4 X N token array is defined.

The T1 is the token for the user defined function. The
Pointer P1 points at the first line of function code, P2
points at memory workspace where the input struct is
stored. Pointer P3 points at the location where the output
value is to be stored.

Pointers P4 and P5 point at the Stack Pointer Array
(SPA). At SPA (P4,3) = P6 is the pointer that points at
the initial location of the variable V1 in memory work-
space. At every function call, the interpreter copies val-
ues from the input struct to local variables (V1,V2).
Pointers P4, P5, P6, P7 are initialized during parsing.
<var1.1> and <var2.1> are the first instances of V1 and
V2 respectively. Every recursive function call pushes a
new instance of local variables to stack. In case of V1,
the second call pushes to the next available location in
stack, in this case S1. The SPA (P4,1) = S1 points at this
location. In SPA (S1,3) = P8 points at the location in
memory of the second instance of V1 (<var1.2>). When
the second instance of the function completes execution,
then the stack of its local variables backtracks to
SPA(S1,2)=P4 and SPA(S2,2) = P5 for V1 and V2 re-
spectively, and performs SPA(P4,1) 0 and
SPA(P5,1)0.

An algorithm example is the n factorial (n!):
Function Factorial (n)

 if (n==0) {
 Factorial 1
 }
 Else {
 Factorial n * Factorial (n-1)
 }
 End Function

Introducing Intelligent Agents Potential into a competent Integral Multi-Agent
Sensor Network Simulation Architecture Design

46

 Memory Workspace

(bytes) 1XM

idx

P2 struct

…

….

P3 output

…

…

P6 <var1.1>

P7 <var2.1>

P8 <var1.2>

P9 <var2.2>

3XL Stack Pointer

Array

idx

P4 S1 P6

P5 S2 P7

S1 0 P4 P8

S2 0 P5 P9

 4XN Token Array

idx

X T1 P1 P2 P3

 …

 ….

P1 V1 P4

 V2 P5

Figure 4. The 3XL array of pointers for stack implementation and its association with the 4 X N Token array and Memory

Figure 5. The 3XL array of pointers for stack implementation of the factorial example and its association with the 4 X N To-
ken array and Memory

Copyright © 2013 SciRes. JSEA

Introducing Intelligent Agents Potential into a competent Integral Multi-Agent
Sensor Network Simulation Architecture Design

47

The only variable used is n. At first call the interpreter
copies the input struct (a single value of 4) at memory
workspace MW(SPA(p4,3)). A double connected list is
created to store the instances of n with entry point the
pointer P4. The pointer P4 points next to S1 etc and the
list expands till P4 S1 S2 S3 S4 When n
reaches 0, the expansion stops and the function returns
the value 1. The list backtracks form S4 to SPA(S4,2) =
S3, and so on. For every local variable (in this case only
n) a double connected list is created. Variables may
backtrack independently, and may be of any data type.

This mechanism is used by function tokens, but may
be used also for dynamic data types or structs such as
lists, stacks etc. thus it may serve as base for implemen-
tation of prolog clauses, and basic rules.

3. Other Simulator Approaches and
Prospects for the Proposed Design

The proposed architecture is similar with the architecture
of SENSE [32]. SENSE is built on top of COST. A sim-
ulation is dealt as a composition of components. Each
component is implemented in C++, and communicates
with other components via inports and outports.

Inports and outports are used to reduce interdependen-
cies between components and allow code reuse. The
universal interface mechanism in our architecture pro-
vides the ability of interchanging any type of data and of
any size and organization (structs). An interface may
serve as a private channel used by two agents, or as a
group channel, only by the use of two indexes that spec-
ify the channel width and location on the byte array.

Avrora, AvroraZ, tossim and Atemu, are AVR emula-
tors, with AvroraZ [33] giving the ability of emulating
the cc2420 chip. All are limited to AVR MCU’s imple-
mentations, and they do no support network-communi-
cation level simulation [34]. SensorMaker [34] is written
in C, provides network information in fine grain, (packet
collisions, packet path, cluster layout) along with mote
information mainly energy level. However, modelling –
coding gap still remains for the designer to fill. Collect-
ing ideas and implementations, we conclude the set of
desired features of a simulating tool:

(1) Easy to use [34] (2) code reuse [32] (3) Hardware
emulation [14,33] (4) Visualization and interpretation of
data [34] (5) Network toolbox [34] (6) precise timing
[14,33].

Our proposal is a multi agent simulator equipped with
the capability of distributes intelligence in the mote level
through Prolog interpreter mechanisms realization re-
garding complex data types and memory management
via stack management. Using agents and services the
user may implement hardware emulation, channel – me-
dium (RF sound) modelling, environmental phenomena

modelling, event monitors and handlers, data visualisa-
tion interpretation and storage. All the components of the
simulator are connected directly, or via the multi type
interface structure. The simulation controller activates
each agent (a) according to a time interval (time depend-
ant agents), (b) at every pace (continually), (c) or ac-
cording to an event (a change in an interface, a memory
location, a variation of an environmental parameter etc).
Agent or service behaviour is implemented in code
which is executed by the interpreter or the simulator. The
interpreter’s back end is an array of tokens in which the
user’s code is translated. The interpreter’s front end is a
C like language, but in the future others will be supported
(Delphi, Basic). Controller may control channel (RF or
sound) simulation, Environmental (temperature varia-
tions over an area) simulation and device simulation/
emulation (model/real code)

REFERENCES
[1] W. Masri and Z. Mammeri, “On QoS Mapping in TDMA

Based Wireless Sensor Networks,” Wireless and Mobile
Networking IFIP Joint Conference on Mobile Wireless
Communications Networks MWCN 2008.

[2] B.-L. Wenning, et al., “Environmental Monitoring Aware
Routing in Wireless Sensor Networks,” Wireless and
Mobile Networking IFIP Joint Conference on Mobile
Wireless Communications Networks MWCN 2008.

[3] S. Dziembowski, A. Mei and A. Panconesi “On Active
Attacks on Sensor Network Key Distribution Schemes,”
Algorithmic Aspects of Wireless Sensor Networks 5th
International Workshop ALGOSENSORS 2009 Rhodes
Greece July 10, 11, 2009.

[4] C. Karlof and D. Wagner, “Secure routing in wireless
sensor networks: attacks and countermeasures,” Ad Hoc
Networks, Vol. 1, No. 2-3, 2003, pp. 293-315.
 doi:10.1016/S1570-8705(03)00008-8

[5] E. Serpedin and Q. Chaudhari, “Synchronization in
Wireless Sensor Networks Parameter Estimation Pefor-
mance Benchmarks and Protocols,” Cambridge Univer-
sity Press 2009. doi:10.1017/CBO9780511627194

[6] A. Giridhar and P. R. Kumar, “The Spatial Smoothing
Method of Clock Synchronization in Wireless Networks,”
Theoretical Aspects of Distributed Computing in Sensor
Networks Springer 2011.

[7] S. Slijepcevic and M. Potkonjak, “Power Efficient Or-
ganization of Wireless Sensor Networks,” Proceedings of
IEEE International Conference on Communications, Vol.
2, 2001, pp. 472-447.

[8] G. Q. Mao and B. Fidan “Localization Algorithms and
Strategies for Wireless Sensor Networks,” Premier Ref-
erence Source – information Science Reference 2009.

[9] www.opnet.com.

[10] T. He, R. Stoleru, A. Stankovic John, “Range Free Lo-
calization. Technical Report,” , University of Virginia

Copyright © 2013 SciRes. JSEA

http://dx.doi.org/10.1016/S1570-8705(03)00008-8
http://dx.doi.org/10.1017/CBO9780511627194

Introducing Intelligent Agents Potential into a competent Integral Multi-Agent
Sensor Network Simulation Architecture Design

Copyright © 2013 SciRes. JSEA

48

(2006)

[11] Timo Ojala et al “UBI-AMI: Real-Time Metering of En-
ergy Consumption at Homes Using Multi-Hop IP-based
Wireless Sensor Networks” Advances In Grid and Perva-
sive Computing GPC Oulu Finland 2011, pp. 274-284

[12] M.A Labrador, P.M. Wightman “Topology Control in
Wireless Sensor Networks,” Springer 2009.

[13] T. Watteyne, et al. “Centroid Virtual Coordinates – A
novel Near – Shortest Path Routing Paradigm,” Computer
Networks 17 October, 2008.

[14] P. Levis, N. Lee, M. Welsh and D. Culler, “Tossim: Ac-
curate and scalable simulation of entire tinyos applica-
tions,” First International Conference on Embedded Net-
worked Sensor Systems (SenSys 2003) (November 2003).

[15] Khan M, Abdelzaher T.,Gupta K.K “Towards Diagnostic
Simulation in Sensor Networks,” Distributed Computing
in Sensor Systems 4th IEEE International Conference
DCOSS 2008 Santorini Island Greece June 11-14, 2008.

[16] W. B. Heinzelman, A. P. Chandrakasan and H.
Balakrishnan, “An Application-specific Protocol Archi-
tecture for Wireless Microsensor Networks,” IEEE
Transactions on Wireless Communications, Vol. 1, No. 4,
2002, pp. 660-670. doi:10.1109/TWC.2002.804190

[17] S. Lindsey and C. S. Raghavendra, “PEGASIS: Power
Efficient Gathering in Sensor Information Systems,” in:
Proc. IEEE Aerospace Conference, Big Sky, Montana,
March 2002. doi:10.1109/AERO.2002.1035242

[18] A. Manjeshwar and D. P. Agrawal, “TEEN: A Protocol
For Enhanced Eficiency in Wireless Sensor Networks,” in
Proceedings of the 1International Workshop on Parallel
and Distributed Computing Issues in Wireless Networks
and Mobile Computing, San Francisco, CA April 2001.

[19] H. Frey and I. Stojmenovic, “On delivery guarantees of
face and combined greedy-face routing algorithms in ad
hoc and sensor networks,” in twelfth ACM Annual Inter-
national Conference on Mobile Computing and Network-
ing (MOBICOM) Los Angeles CA USA ACM September
23-29, 2006, pp. 390-401.

[20] T Watteyne, et al., “On using virtual coordinates for
routing in the context of wireless sensor networks,” in
18th Annual International Symposium on Personal Indoor
and Mobile Radio Communications (PIMRC) Athens
Greece IEEE, September 3-7, 2007.

[21] C. Inatanagonwiwat, R. Govindan and D. Estrin, “Di-

rected Diffusion: A Scalable and Robust Communication

Paradigm for Sensor Networksm,” Mobicom 2000, Bos-
ton, MA, USA (2000).

[22] Jon S. Wilson ed. “Sensor Technology Handbook,” El-
sevier 2005.

[23] Patrick Kuckertz et al, “Sniper Fire Localization Using
Wireless Sensor Networks and Genetic Algorithm Based
Data Fusion,” Military Communications Conference 2007
MILCOM 2007 IEEE (2007).

[24] Muhammad Imran et al. “Application-Centric Connec-
tivity Restoration Algorithm for Wireless Sensor and Ac-
tor Networks,” Advances in Grip and Pervasice Comput-
ing GPC 2011, pp. 243-253.

[25] H. M. Ammari “Challenges and Opportunities of Con-
nected k Covered Wireless Sensor Networks - From Sen-
sor Deployment to Data Gathering,” Springer 2009.

[26] J. Fraden, “Handbook of Modern Sensors – Physics De-
signs and Applications,” Springer Verlag, 2004.

[27] P. Balister, S. Kumar, Z. Zheng and P. Sinsha, “Trap
Coverage : Allowing Coverage Holes of Bounded Di-
ameter in Wireless Sensor Networks,” Infocom/IEEE
2009.

[28] M. Cardei, M. T. Thai, Y. Li and W. Wu, “En-
ergy-efficient Target Coverage in Wireless Sensor Net-
works,” In: IEEE INFOCOM (2005).

[29] M. X. Cheng, L. Ruan and W. Wu, “Achieving minimum
coverage breach under bandwidth constraints in wireless
sensor networks,” IEEE INFOCOM (2005).

[30] O. Saukh, R. Sauter and P. J. Marron, “Time-Bounded
and Space-Bounded Sensing in Wireless Sensor Net-
works,” Distributed Computing in Sensor Systems
DCOSS 2008, LNCS 5067, pp. 357-371.

[31] C. K. Liang and Y. T. Chen, “The Target Coverage Prob-
lem in Directional Sensor Networks with Rotatable An-
gles,” Distributed Computing in Sensor Systems DCOSS
2008, LNCS 5067, pp. 264-273.

[32] C. Gilbert, et al., “SENSE: a wireless sensor network
simulator,” Advances in Pervasive Computing and Net-
working (2005), pp. 249-267.

[33] de P. Alberola, Rodolfo and D. Pesch, “AvroraZ: extend-
ing Avrora with an IEEE 802.15. 4 compliant radio chip
model,” Proceedings of the 3nd ACM workshop on Per-
formance monitoring and measurement of heterogeneous
wireless and wired networks. ACM, 2008.

[34] Y. Sangho, et al., “SensorMaker: A Wireless Sensor
Network Simulator for Scalable and Fine-grained Instru-
mentation,” Computational Science and Its Applica-
tions–ICCSA 2008, pp. 800-810.

[35] M. Bruynooghe, The Memory Management of PROLOG
Implementations, in Clark, K. L. and S. Tarnlund (1982,
eds.), Logic Programming, Academic Press, London.

[36] P. Civera, G. Piccinini and M. Zamboni, “Implementation
Studies for a VLSI Prolog Coprocessor,” in IEEE Micro,
Vol.9/1 February 1989 pp.10-23. doi:10.1109/40.16791

http://dx.doi.org/10.1109/TWC.2002.804190
http://dx.doi.org/10.1109/AERO.2002.1035242
http://dx.doi.org/10.1109/40.16791

	2. The Proposed Improved Simulator Architecture
	2.1. Overall Architecture
	2.2. The Basic Interpreter
	2.3. The Interpreter Equipped with Complex Data Types Capabilities towards Gaining the Potential of Building Intelligent Mote Agents through Provision of Prolog Mechanisms
	3. Other Simulator Approaches and Prospects for the Proposed Design

