
Journal of Software Engineering and Applications, 2013, 6, 15-23
http://dx.doi.org/10.4236/jsea.2013.64A003 Published Online April 2013 (http://www.scirp.org/journal/jsea)

15

Quantitative Security Evaluation for Software System
from Vulnerability Database

Hiroyuki Okamura1, Masataka Tokuzane2, Tadashi Dohi1

1Department of Information Engineering, Graduate School of Engineering, Hiroshima University, Hiroshima, Japan; 2Japan Ground
Self-Defense Force, Kagoshima, Japan.
Email: okamu@rel.hiroshima-u.ac.jp

Received January 12th, 2013; revised February 16th, 2013; accepted February 27th, 2013

Copyright © 2013 Hiroyuki Okamura et al. This is an open access article distributed under the Creative Commons Attribution Li-
cense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

This paper proposes a quantitative security evaluation for software system from the vulnerability data consisting of dis-
covery date, solution date and exploit publish date based on a stochastic model. More precisely, our model considers a
vulnerability life-cycle model and represents the vulnerability discovery process as a non-homogeneous Poisson process.
In a numerical example, we show the quantitative measures for contents management system of an open source project.

Keywords: Quantitative Security Evaluation; Vulnerability Database; Non-Homogeneous Poisson Process, Contents

Management System

1. Introduction

From the latter half of 1990s, many security incidents
have been reported in enterprise systems and personal
computers, such as the denial-of-service attack via com-
puter viruses and the data leak caused by unauthorized
accesses.

Generally, most of security incidents are caused by
software flaws and bugs called security holes and vul-
nerabilities. The effective counter measure against secu-
rity incidents is to validate there is no flaw in the soft-
ware during design and testing phases. Nowadays, for
these purpose, model verification techniques are en-
hanced to validate the software design. For example, the
model checking ensures that the software behaves ac-
cording to its specification mathematically [1], and sev-
eral testing techniques are developed to remove software
faults as many as possible in the testing phase [2]. How-
ever, even if such techniques are applied, it is difficult to
remove all the flaws before releasing the software to the
market due to external circumstances of software devel-
opment; development cost, delivery date and unexpected
specification changes. For such software systems, a secu-
rity patching is one of the feasible solutions that do not
allow an attacker to exploit vulnerabilities.

A security patch is a small program to fix the software
faults causing security holes and vulnerabilities, and is
distributed to the end-users through the Internet or other

means after the software release. The user can remove a
vulnerability by applying a corresponding security patch
which is distributed from the vendor. Ideally, the security
patch should be distributed whenever one discovers a
vulnerability of the software product. However, the de-
velopment and distribution of security patches incur ex-
penses for the vendor, and a short development time
might cause the distribution of a poorly designed patch
causing a new problem. Thus, many of the software
vendors design a plan to distribute a security patch at a
specified period of time, e.g., quarterly distribution, and
the patch fixes all the vulnerabilities which have been
discovered until the distribution time. On the other hand,
from the user perspective, applying a patch involves not
only a tedious task but also a risk that the patch causes an
error like misconfiguration. Therefore, in practice, users,
especially enterprises and firms, also make a plan of
what patches are applied at a specified period of time.
These strategies for the software patch are called patch
management. In [3], Okamura et al. discussed the opti-
mal patch release timing to help the patch management
for enterprise based on the stochastic model.

Essentially, it is important to quantify degree of secu-
rity for the software system to discuss the patch man-
agement. In general, there are two perspectives on the
quantitative evaluation of security: vendor’s and user’s
perspective. From the vendor’s perspective, the risk is
that vendor is to release exploitation of a vulnerability

Copyright © 2013 SciRes. JSEA

Quantitative Security Evaluation for Software System from Vulnerability Database 16

before a patch is distributed. On the other hand, users
should consider the risk caused by the delay of applying
patches as well as the risk of software system itself. In
fact, Okamura et al. [4] tried to evaluate the degree of
security from user’s perspective by considering user pro-
file of the system. In this paper, we focus on the security
risk for vendors.

In the past literature, many researches considered the
risk of security in software system from the vendor’s
perspective. Wang et al. [5] presented a continuous-time
Markov model to evaluate the security in the intrusion-
tolerant database system. Jonsson et al. [6] discussed the
security model based on the analysis of attacker’s be-
havior. In these papers, they considered the quantitative
security for specific systems and it cannot always be ap-
plied to any kind of software system. Also Kimura [7]
proposed a stochastic model, which is similar to the clas-
sical software reliability growth model, and presented a
quantitative evaluation for the security of software sys-
tem. His method focused on the vulnerability discovery
process only and therefore it can be applied to many
kinds of software system. However, the model derived in
[7] is essentially equivalent to testing-domain dependent
software reliability growth model [8]. Thus, it cannot re-
present a variety of patterns for the vulnerability discov-
ery process.

In this paper, we refine the quantitative software secu-
rity model based on the vulnerability discovery process
by using general distributions. Although the model pre-
sented here does not exactly include the model in [7], we
adopt the similar situation where vendors and attackers
compete to make a patch and to find an exploit. In addi-
tion, we present an illustrative example of the quantita-
tive security evaluation of contents management system
from the vulnerability data.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe the vulnerability model with respect
to its discovery process. Section 3 presents the formula-
tion of a quantitative security measure based on the vul-
nerability discovery process, patch release distribution
and exploitation time distribution. Section 4 is devoted to
the experiment for our quantitative security evaluation
based on the vulnerability data.

2. Vulnerability Discovery Model

2.1. Vulnerability Life Cycle

Vulnerability is defined as a fault on system require-
ments or a program that allows an attacker to violate the
system integrity. A vulnerability is often caused by flaws
on software requirements as well as software bugs, and
thus it is more difficult to find vulnerabilities by software
testing than to detect usual software bugs.

Arbaugh et al. [9] presented a vulnerability life-cycle

model which consists of the following seven states:
 Birth: The birth of a vulnerability, strictly speaking a

flaw, occurs at software requirement or software de-
sign.

 Discovery: Someone discovers a flaw on software
security, and then the flaw becomes a vulnerability.

 Disclosure: The vulnerability is disclosed when the
discoverer reveals details of the problem.

 Correction: The vulnerability is correctable by de-
veloping and releasing a security patch.

 Publicity: The vulnerability and its problem become
known by disclosing them to public medias.

 Scripting: An exploitation of the vulnerability is re-
leased. In this state, crackers with little or no skill can
exploit the vulnerability to violate the integrity of
system.

 Death: The vulnerability dies when one applies a se-
curity patch to all the vulnerable systems.

Figure 1 illustrates the state transition of a typical vul-
nerability in the life-cycle model.

2.2. Vulnerability Discovery Process

In the vulnerability life cycle, we focus on the discovery
and disclosure states. In general, the software vendor
begins to take a counteraction against a vulnerability
after discovering the vulnerability in the software opera-
tion phase. That is, the number of discovered vulnerabili-
ties is a significant measure to determine a security
strategy of the vendor.

To describe the vulnerability discovery process, we
make the following assumptions:
 (A-1) The software has a finite number of vulner-

abilities to be discovered.
 (A-2) The time to discover a vulnerability is stochas-

tically distributed, and all the times are mutually in-
dependent random variables.

Under the above assumptions, we model the number of
discovered vulnerabilities at time t, D (t), as follows.

         | 0 1
m nn

V V

m
P D t n D m F t F t

n

 
    

 
, (1)

Figure 1. A typical state transition in a vulnerability life-
cycle model.

Copyright © 2013 SciRes. JSEA

Quantitative Security Evaluation for Software System from Vulnerability Database 17

where m is the total number of undiscovered vulnerabili-
ties at time t = 0 and FV (t) is a cumulative distribution
function (c.d.f.) of the discovery time for a vulnerability.
In addition, when the total number of undiscovered vul-
nerabilities follows a Poisson distribution with mean ,
the probability mass function (p.m.f.) of D (t) is given by

       exp .
!

n

V
V

F t
P D t n F t

n


    (2)

Equation (2) equals the p.m.f. of non-homogeneous
Poisson process (NHPP) with the mean value function

 VF t . This framework is essentially same as NHPP-
based software reliability models (SRMs) [10,11]. Thus,
by applying well-known statistical distributions to FV (t),
we can obtain the vulnerability-discovery processes
which correspond to several existing NHPP-based SRMs.
For example, when FV (t) is a truncated logistic distribu-
tion, the corresponding NHPP-based vulnerability dis-
covery model equals an inflection S-shaped model
[12,13]. The inflection S-shaped model has almost same
representation ability as the vulnerability discovery
model proposed by [14-17], since both models draw a
logistic curve as the expected number of discovered vul-
nerabilities.

3. Security Evaluation Model

From vendor’s perspective, the security path to fix the
vulnerability should be distributed before the exploitation
of it is released. That is, for the vulnerability life cycle,
the state should be Death before Scripting. However, as
seen in zero-day virus, the patch distribution is often de-
layed before releasing the exploitation. In addition, if a
large number of vulnerabilities are discovered just after
the release of software product, there is an increased risk
of exploiting the vulnerabilities by malicious users. This
is clearly the risk for the vendor.

To evaluate the vendor’s risk, let TD and TS be the
random times for distributing the security path of a vul-
nerability and releasing the exploitation of it, respec-
tively, just after the vulnerability is discovered. Also, we
assume that TD and TS have respective c.d.f.’s FD (t) = P
(TD ≤ t) and FS (t) = P (TS ≥ t), and FS (t) is allowed to be
defective, i.e., it is not always FS (∞) = 1. This means that
there exists a probability that the vulnerability cannot be
exploited for malicious attacks.

Let S(t) be the number of vulnerabilities whose ex-
ploitation is released before the patch is distributed. Then
the process S(t) can be analyzed by similar way to
Mt/G/∞ queueing process with two different competitive
services. Since the number of discovered vulnerabilities
is described by an NHPP, we have

          | .
n x

P S t x P S t x D t n P D t n




     (3)

Next we focus on the probability that the exploitation
of a vulnerability is released before time t, provided that
the vulnerability is discovered at TV = s (≥ t). The prob-
ability can be derived by the conditional probabilities on
whether the patch is distributed before time t or not. The
probability in the case where the patch is released before
time t is given by

     
0

, | d
t s

S C C V S C ,P T T T t s T s F u F u


      (4)

where in general   1 F t F  t . Also, the probability
in the case where the patch is not released before time t is

     , |S C V S CP T t s T t s T s F t s F t s .        (5)

Therefore, we have the conditional probability that the
exploitation of a vulnerability is released before time t
provided that the vulnerability is discovered at s as fol-
lows.

 
 
 

   
0

, |

, |

, |

.

S S C V

S C C V

S C V

t s

C S

P T t s T T T s

P T T T t s T s

P T t s T t s T s

F u dF u


   

    

     

 

 (6)

According to the argument of Mt/G/∞ process [18], we
obtain

    
 
      

0

|

, 1 , d
t n xxV

V

P S t x D t n

nf s
,s t s t

xF t
 



 

 
  

 
 s

 (7)

where    dV V df t F t t and

   , , |S S C V .s t P T t s T T T s      (8)

Substituting Equation (7) into Equation (3) yields

       exp ,
!

x
G t

P S t x G t 
x


   (9)

where

       
0 0

d d . (10)
t t s

V C SG t f s F u F u s


  
That is, the number of vulnerabilities whose exploita-

tion is released before the patch distribution also become
an NHPP with mean value function .  G t

Based on the NHPP, we define the quantitative soft-
ware security function from vendor’s perspective as the
probability that there is no vulnerability whose exploita-
tion is released before a patch during time interval [s, t +
s):

      
     

| 0

exp .

SS t s P S t s S s

G t s G s

   

   
 (11)

Copyright © 2013 SciRes. JSEA

Quantitative Security Evaluation for Software System from Vulnerability Database 18

4. Numerical Example

In this section, we present quantitative security evalua-
tion for a contents management system (CMS), which
manages Web sites with graphical user interface. Since
the vulnerability of CMS is exploited for altering Web
site from the outside, the security evaluation of CMS is
significant issue. In particular, we focus on two different
versions of Joomla project1, which is a CMS developed
as an open source project.

From the open source vulnerability database (OSV-
DB)2, we collect the vulnerabilities for Joomla 1.5.x and
2.5.x. Tables 1 and 2 present the vulnerability data for
Joomla 1.5.x and 2.5.x recorded in OSVDB. The the
columns Informed, Solution and Exploit Publish indicate
the date when the vendor informs the vulnerability, the
patch is distributed, and the exploit of the vulnerability is
released. If informed or solution date is missed, we fill it
as the disclosure date in the database.

Based on the vulnerability data, we first determine the
vulnerability discovery process from the vendor infor-
med date. That is, the vendor informed date is regarded
as the discovery date of vulnerability. In the experiment,
since the vulnerability discovery process is essentially
same as the software reliability growth model, we apply
the candidates presented in Table 3 as representative
models. In addition, efficient ML estimation algorithms

Table 1. Vulnerability data for Joomla 1.5.x in OSVDB.

ID Infomed Solution Exploit Publish

- 2008/1/24 (Release Date)

42894 2008/2/11 2008/4/1

47476 2008/8/12 2008/8/22

49801 2008/10/3 2008/11/10

49802 2008/11/9 2008/11/10

51172 2009/1/7 2009/1/12 2009/1/7

53582 2009/3/25 2009/3/25

53583 2009/3/25 2009/3/25

53584 2009/3/25 2009/3/25

59801 2009/9/5 2009/11/3

65011 2010/5/28 2010/5/28

68625 2010/10/6 2010/10/9

69026 2010/11/5 2010/11/5

80112 2012/3/11 2012/3/15

80708 2012/3/27 2012/3/27

Table 2. Vulnerability data for Joomla 2.5.x in OSVDB.

ID Informed Solution Exploit Publish

- 2012/1/26 (Release Date)

78824 2012/1/29 2012/2/2

78826 2012/1/29 2012/2/2

80880 2012/2/3 2012/4/2

79836 2012/2/29 2012/3/5

79837 2012/2/29 2012/3/6 2012/3/19

87332 2012/2/29 2012/3/6 2012/3/19

80111 2012/3/11 2012/3/15

80705 2012/3/15 2012/3/15 2012/3/15

81586 2012/3/26 2012/3/26

87038 2012/4/20 2012/9/13 2012/5/3

87744 2012/4/20 2012/9/13 2012/5/3

83070 2012/4/29 2012/6/18 2012/6/18

83069 2012/5/1 2012/6/18 2012/6/18

83490 2012/6/28 2012/7/1

87254 2012/10/15 2012/11/8

Table 3. Candidates of vulnerability discovery model.

Model Discovery time distribution

EXP exponential [19,20]

GAMMA gamma [19,21]

PARETO Pareto [22,23]

TNORM truncated normal [24]

LNORM log-normal [24,25]

TLOGIS truncated logistic [12,13]

LLOGIS log-logistic [13,26]

TXVMAX truncated extreme-value at maximum [27]

LXVMAX logarithmic extreme-value at maximum [27]

TXVMIN truncated extreme-value at minimum [27]

LXVMIN logarithmic extreme-value at minimum [27,28]

based on the EM algorithm have been developed for all
the models [13,19,27,29]. Furthermore, the model selec-
tion is performed by AIC (Akaike information criterion)
[30], which is defined by

 
 

AIC 2 Maximum of log-likelihood

2 the number of model parameters .

 


 (12)

According to the argument of information criterion, 1http://http://www.joomla.org/. 2http://http://www.osvdb.org/.

Copyright © 2013 SciRes. JSEA

Quantitative Security Evaluation for Software System from Vulnerability Database 19

the model with smaller AIC is better fitting to the ob-
served data. Table 4 shows the maximum log-likelihood
(MLL) and AIC for all the candidates in the vulnerability
of Joomla 1.5.x. Similarly, Table 5 indicates the results
of Joomla 2.5.x.

From these tables, it can seen that EXP is the best to
represent the vulnerability discovery processes in both
Joomla 1.5.x and 2.5.x. Figures 2 and 3 depict the cu-
mulative number of vulnerabilities of Joomla 1.5.x and
2.5.x from their release date. The figures include the
mean value functions of EXP models fitting to the ob-
serve data. The current date is 2013/1/11. From the fig-
ures, we find that the vulnerability discovery of Joomla
1.5.x has not converged yet. In contrast, the vulnerability
discovery of Joomla 2.5.x almost converges. In fact, the

Table 4. MLL and AIC of candidates for Joomla 1.5.x.

Model MLL AIC

EXP −124.63 253.25

GAMMA −124.52 255.05

PARETO −124.63 255.26

TNORM −124.56 255.12

LNORM −124.89 255.78

TLOGIS −124.53 255.05

LLOGIS −124.53 255.05

TXVMAX −124.48 254.96

LXVMAX −125.02 256.03

TXVMIN −124.57 255.15

LXVMIN −124.51 255.02

Table 5. MLL and AIC of candidates for Joomla 2.5.x.

Model MLL AIC

EXP −100.63 205.25

GAMMA −100.63 207.25

PARETO −100.63 207.26

TNORM −100.72 207.45

LNORM −101.19 208.39

TLOGIS −100.62 207.23

LLOGIS −101.01 208.02

TXVMAX −100.61 207.23

LXVMAX −101.51 209.03

TXVMIN −100.86 207.72

LXVMIN −100.63 207.25

expected number of residual vulnerabilities are 2.41 in
Joomla 1.5.x and 0.12 in Joomla 2.5.x.

We estimate the distribution of patch release timing
from the data. The means (variances) of patch distribu-
tion are 13.1 days (424.0 days2) in Joomla 1.5.x and 34.7
days (2474.7 days2) in Joomla 2.5.x. Since the variances
are large, we cannot utilize the several well-known dis-
tributions such as normal distribution. To simplify the
argument of distribution selection, this paper applies the
phase-type (PH) distributions to represent for patch dis-
tribution.

The PH distribution is defined by the absorbing time in
a continuous-time Markov chain consisting of several
transient states and one absorbing state. It can approxi-
mate any distribution with any precision. That is, by us-
ing the PH distribution, we can reduce the problem of
distribution selection into the parameter estimation of PH
distribution. In addition, efficient algorithm for sam-
ple-based estimation of PH distribution has been pro-
posed in [31]. Figure 4 illustrates estimated density func-
tion of patch distributions for Joomla 1.5.x and 2.5.x.
The numbers of phases are 13 and 12 in Joomla 1.5.x and
2.5.x, respectively, which are determined by the phase
orders [32]. Both distributions have two modes around 1
and 5 days. However, since the tails of distributions are
long, the means (variances) of estimated PH distributions
are 13.1 days (642.9 days2) in Joomla 1.5.x and 34.7 days
(3380.0 days2).

Next we determine the distribution of exploitation
based on the exploit publish date. However, in the tables,
vulnerabilities are not always exploited for a malicious
attack, and exploitation of several of vulnerabilities has
not been discovered. Also, the number of vulnerabilities
whose exploitation is released is too small to determine
the distribution form. Thus in the paper, we assume that
the distribution of exploitation is given by the following
exponential-type distribution.

  1 e ,s
S SF t p    (13)

where pS is the probability that the exploitation of the
vulnerability exists and λ is the exploitation rate provided
that there exists the exploitation of the vulnerability. The
probability pS can be estimated as the fraction of the
number of vulnerabilities whose exploitation exists over
the total number of vulnerabilities. Then we have pS =
1/14 in Joomla 1.5.x and pS = 7/15 in Joomla 2.5.x. Also,
the exploitation rates are given by the reciprocal number
of mean time to exploit, namely, 1/λ = 1 (day) in Joomla
1.5.x and 1/λ = 24.1 (days) in Joomla 2.5.x.

Since FV(t) and FS(t) are exponential distributions and
FD(t) is PH distribution, Equation (10) can be expressed
as a matrix exponential form. Based on G(t) in Joomla
1.5.x and 2.5.x, we can evaluate quantitative measures
for security. Figure 5 illustrates the quantitative software

Copyright © 2013 SciRes. JSEA

Quantitative Security Evaluation for Software System from Vulnerability Database

Copyright © 2013 SciRes. JSEA

20

Figure 2. The cumulative number of vulnerabilities in Joomla 1.5.x.

Figure 3. The cumulative number of vulnerabilities in Joomla 2.5.x.

security functions of Joomla 1.5.x and 2.5.x given by
Equation (11) from their release date, i.e., SS(t|0). Also
Figure 6 indicates the software security functions of

Joomla 1.5.x and 2.5.x from their current date. As seen in
Figure 5, the quantitative software security of Joomla
1.5.x is higher than that of Joomla 2.5.x after their re-

Quantitative Security Evaluation for Software System from Vulnerability Database 21

Figure 4. Estimated patch distributions.

Figure 5. Quantitative software security functions from release date.

leases. This is caused by two factors: the first is to find
the greater number of vulnerabilities of Joomla 2.5.x in
early phase just after the release, and the second is there

are a greater number of vulnerabilities whose exploita-
tion are released in Joomla 2.5.x. On the other hand, the
quantitative software security functions from the current

Copyright © 2013 SciRes. JSEA

Quantitative Security Evaluation for Software System from Vulnerability Database 22

Figure 6. Quantitative software security functions from current date.

date in Figure 6 have different tendency from those from
the release date in Figure 5. The quantitative software
security of Joomla 2.5.x is marked by the convergence to
a certain level. In the case where the operation during
over 200 days, Joomla 2.5.x is more secure than Joomla
1.5.x. However, in early phase, Joomla 1.5.x is still se-
cure, compared to Joomla 2.5.x. This is because the
number of vulnerabilities of Joomla 2.5.x is almost con-
verged at the current date as shown in Figure 3, though
the vulnerabilities of Joomla 1.5.x are expected to remain
even at the current date. This result suggests that Joomla
1.5.x is more secure at the current date, but it should be
replaced with Joomla 2.5.x around 200 days after from
the viewpoint of security.

5. Conclusions

This paper has presented a quantitative security evalua-
tion for software system from vendor’s perspective. Con-
cretely, we have proposed a general method to quantify
the degree of security from the vulnerability database.
The concept of our approach is similar to the software
reliability growth models, and the advantage of our
method is the applicability, namely, our method can be
applied to any kind of software system if its vulnerability
data can be obtained. In the numerical example, we have
illustrated how to evaluate the software by using the
vulnerability data for CMS.

In future, we will try to perform the experiments for
other types of software system and comprehensively
compare quantitative software security functions. In ad-
dition, we will derive the security measure from the user

perspective based on the proposed model.

6. Acknowledgements

This research was supported by the Ministry of Educa-
tion, Science, Sports and Culture, Grant-in-Aid for Sci-
entific Research (C), Grant No. 23500047 (2011-2013)
and Grant No. 23510171 (2011-2013).

REFERENCES
[1] E. M. Clarke Jr., O. Grumberg and D. A. Peled, “Model

Checking,” MIT Press, Cambridge, 1999.

[2] G. J. Myers and C. Sandler, “The Art of Software Test-
ing,” John Wiley & Sons, Hoboken, 2004.

[3] H. Okamura, M. Tokuzane and T. Dohi, “Optimal Secu-
rity Patch Release Timing under Non-Homogeneous Vul-
nerability-Discovery Processes,” Proceedings of 20th In-
ternational Symposium on Software Reliability Engineer-
ing (ISSRE’09), Mysuru, 16-19 November 2009, pp. 120-
128.

[4] H. Okamura, M. Tokuzane and T. Dohi, “Security Evalu-
ation for Software System with Vulnerability Life Cy-
cleand User Profiles,” Proceedings of 2012 Workshop on
Dependable Transportation/Recent Advances in Software
Dependability (WDTS-RASD 2012), Niigata, 18-19 No-
vember 2012, pp. 39-44.

[5] H. Wang and P. Liu, “Modeling and Evaluating the Sur-
vivability of an Intrusion Tolerant Database System,”
ESORICS 2006, LNCS 4189, Hamburg, 18-20 September
2006, pp. 207-224.

[6] E. Jonsson and T. Olovsson, “A Quantitative Model of
the Security Intrusion Process Based Onattacker Behav-

Copyright © 2013 SciRes. JSEA

Quantitative Security Evaluation for Software System from Vulnerability Database 23

ior,” IEEE Transactions on Software Engineering, Vol.
23, No. 4, 1997, pp. 235-245. doi:10.1109/32.588541

[7] M. Kimura, “A Study on Software Vulnerability Assess-
ment Modeling and Its Application to E-Mail Distribution
Software System,” The Journal of Reliability Engineering
Association of Japan (Japanese), Vol. 25, No. 3, 2003, pp.
279-283.

[8] T. Fujiwara and S. Yamada, “Testing-Domain Dependent
Software Reliability Growth Models and Their Compari-
sons of Goodness-of-Fit,” Proceedings of the 7th ISSAT
International Conference on Reliability and Quality in
Design, Washington DC, 8-10 August 2001, pp. 36-40.

[9] W. A. Arbaugh, W. L. Fithen and J. McHugh “`Windows
of Vulnerability: A Case Study Analysis,” IEEE Com-
puter, Vol. 33, No. 12, 2000, pp. 52-59.
doi:10.1109/2.889093

[10] J. D. Musa, “Software Reliability Engineering,” McGraw-
Hill, New York, 1999.

[11] M. R. Lyu, “Handbook of Software Reliability Engineer-
ing,” McGraw-Hill, New York, 1996.

[12] M. Ohba, “Inflection S-Shaped Software Reliability
Growth Model,” In: S. Osaki and Y. Hatoyama, Eds., Sto-
chastic Models in Reliability Theory, Springer-Varlag,
Berlin, 1984, pp. 144-165.
doi:10.1007/978-3-642-45587-2_10

[13] H. Okamura, T. Dohi and S. Osaki, “EM Algorithms for
Logistic Software Reliability Models,” Proceedings of
7th IASTED International Conference on Software Engi-
neering, Innsbruck, 17-19 February 2004, pp. 14-22.

[14] O. H. Alhazmi and Y. K. Malaiya, “Application of Vul-
nerability Discovery Models to Major Operating Sys-
tems,” IEEE Transactions on Reliability, Vol. 57, No. 1,
2008, pp. 14-22. doi:10.1109/TR.2008.916872

[15] O. H. Alhazmi and Y. K. Malaiya, “Measuring and En-
hancing Prediction Capabilities of Vulnerability Discov-
ery Models for Apache and IIS HTTP Servers,” Proceed-
ings of 17th International Symposium on Software Reli-
ability Engineering, Raleigh, 7-10 November 2006, pp.
343-352.

[16] S.-W. Woo, O. H. Alhazmi and Y. K. Malaiya, “Assess-
ing Vulnerabilities in Apache and IIS HTTP Servers,”
Proceedings of 2nd IEEE International Symposium on
Dependable, Autonomic and Secure Computing, Indian-
apolis, 29 September-1 October 2006, pp. 103-110.

[17] O. H. Alhazmi and Y. K. Malaiya, “Modeling the Vul-
nerability Discovery Process,” Proceedings of 16th In-
ternational Symposium on Software Reliability Engineer-
ing, Chicago, 8-11 November 2005, pp. 129-138.

[18] H. Tijms, “A First Course in Stochastic Models,” John
Wiley & Sons, Hoboken, 2003. doi:10.1002/047001363X

[19] H. Okamura, Y. Watanabe and T. Dohi, “An Iterative
Scheme for Maximum Likelihood Estimation in Software
Reliability Modeling,” Proceedings of 14th International
Symposium on Software Reliability Engineering, Denver,

17-20 November 2003, pp. 246-256.

[20] H. Okamura, A. Murayama and T. Dohi, “EM Algorithm
for Discrete Software Reliability Models: A Unified Pa-
rameter Estimation Method,” Proceedings of 8th IEEE
International Symposium on High Assurance Systems En-
gineering, Tampa, 25-26 March 2004, pp. 219-228.

[21] K. Ohishi, H. Okamura and T. Dohi, “Gompertz Software
Reliability Model: Estimation Algorithm and Empirical
Validation,” Journal of Systems and Software, Vol. 82,
No. 3, 2009, pp. 535-543. doi:10.1016/j.jss.2008.11.840

[22] H. Akaike, “Information Theory and an Extension of the
Maximum Likelihood Principle,” Proceedings of 2nd In-
ternational Symposium on Information Theory, 1973, pp.
267-281.

[23] A. L. Goel and K. Okumoto, “Time-Dependent Error-
Detection Rate Model for Software Reliability and Other
Performance Measures,” IEEE Transactions on Reliabi-
lity, Vol. R-28, No. 3, 1979, pp. 206-211.
doi:10.1109/TR.1979.5220566

[24] S. Yamada, M. Ohba and S. Osaki, “S-Shaped Reliability
Growth Modeling for Software Error Detection,” IEEE
Transactions on Reliability, Vol. R-32, No. 5, 1983, pp.
475-478. doi:10.1109/TR.1983.5221735

[25] B. Littlewood, “Rationale for a Modified Duane Model,”
IEEE Transactions on Reliability, Vol. R-33, No. 2, 1984,
pp. 157-159. doi:10.1109/TR.1984.5221762

[26] H. Okamura, Y. Watanabe and T. Dohi, “Estimating
Mixed Software Reliability Models Based on the EM
Algorithms,” Proceedings of 2002 International Sympo-
sium on Empirical Software Engineering, Napa, 3-4 Oc-
tober 2002, pp. 69-78.

[27] H. Okamura, T. Dohi and S. Osaki, “Software Reliability
Growth Models with Normal Failure Time Distributions,”
Reliability Engineering and System Safety, 2013 (in Press).

[28] J. A. Achcar, D. K. Dey and M. Niverthi, “A Bayesian
Approach Using Nonhomogeneous Poisson Processes for
Software Reliability Models,” In: A. P. Basu, K. S. Basu
and S. Mukhopadhyay, Eds., Frontiers in Reliability,
World Scientific, Singapore City, 1998, pp. 1-18.

[29] S. S. Gokhale and K. S. Trivedi, “Log-Logistic Software
Reliability Growth Model,” Proceedings of 3rd IEEE In-
ternational High-Assurance Systems Engineering Sympo-
sium, Washington DC, 13-14 November 1998, pp. 34-41.

[30] A. L. Goel, “Software Reliability Models: Assumptions,
Limitations and Applicability,” IEEE Transactions on
Software Engineering, Vol. SE-11, No. 12, 1985, pp. 1411-
1423. doi:10.1109/TSE.1985.232177

[31] H. Okamura, T. Dohi and K. S. Trivedi, “A Refined EM
Algorithm for PH Distributions,” Performance Evalua-
tion, Vol. 68, No. 10, 2011, pp. 938-954.
doi:10.1016/j.peva.2011.04.001

[32] Q.-M. He and H. Zhang, “On Matrix Exponential Distri-
butions,” Advances in Applied Probability, Vol. 39, No. 1,
2007, pp. 271-292. doi:10.1239/aap/1175266478

Copyright © 2013 SciRes. JSEA

http://dx.doi.org/10.1109/2.889093
http://dx.doi.org/10.1007/978-3-642-45587-2_10
http://dx.doi.org/10.1109/TR.2008.916872
http://dx.doi.org/10.1002/047001363X
http://dx.doi.org/10.1016/j.jss.2008.11.840
http://dx.doi.org/10.1109/TR.1979.5220566
http://dx.doi.org/10.1109/TR.1983.5221735
http://dx.doi.org/10.1109/TR.1984.5221762
http://dx.doi.org/10.1109/TSE.1985.232177
http://dx.doi.org/10.1016/j.peva.2011.04.001
http://dx.doi.org/10.1239/aap/1175266478

