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ABSTRACT 

Typical data centers house several powerful ICT (Information and Communication Technology) equipment such as 
servers, storage devices and network equipment that are high-energy consuming. The nature of these high-energy con-
suming equipment is mostly accountable for the very large quantities of emissions which are harmful and unfriendly to 
the environment. The costs associated with energy consumption in data centers increases as the need for more computa-
tional resources increases, so also the appalling effect of CO2 (Carbon IV Oxide) emissions on the environment from 
the constituent ICT facilities-Servers, Cooling systems, Telecommunication systems, Printers, Local Area Network etc. 
Energy related costs would traditionally account for about 42% (forty-two per cent) of the total costs of running a typi-
cal data center. There is a need to have a good balance between optimization of energy budgets in any data center and 
fulfillment of the Service Level Agreements (SLAs), as this ensures continuity/profitability of business and customer’s 
satisfaction. A greener computing from what used to be would not only save/sustain the environment but would also 
optimize energy and by implication saves costs. This paper addresses the challenges of sustainable (or green computing) 
in the cloud and proffer appropriate, plausible and possible solutions. The idle and uptime of a node and the traffic on 
its links (edges) has been a concern for the cloud operators because as the strength and weights of the links to the nodes 
(data centres) increases more energy are also being consumed by and large. It is hereby proposed that the knowledge of 
centrality can achieve the aim of energy sustainability and efficiency therefore enabling efficient allocation of energy 
resources to the right path. Mixed-Mean centrality as a new measure of the importance of a node in a graph is intro-
duced, based on the generalized degree centrality. The mixed-mean centrality reflects not only the strengths (weights) 
and numbers of edges for degree centrality but it combines these features by also applying the closeness centrality 
measures while it goes further to include the weights of the nodes in the consideration for centrality measures. We illus-
trate the benefits of this new measure by applying it to cloud computing, which is typically a complex system. Network 
structure analysis is important in characterizing such complex systems. 
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1. Introduction 

Previously, energy-measurements were carried out ma- 
nually from the nodes and possibly edges of a network 
and from the analysis of the data collected predictions 
can then be made on future-energy consumption. The re- 
sult from this method deviates greatly from reality and is 
largely inadequate to give an adequate and reliable pre- 
diction of future energy usage. Presently, there are en- 
ergy-monitoring solutions that collate energy-consump- 
tion of the equipment in the data centers, thereby making 
possible the analysis of data logs, and as such making it 
easier to predict and identify future trends in energy- 
consumption. 

The above-mentioned task will be more meaningful if 
the nodes that are idle or low performing are located, and  

have the weights on their edges re-allocated or re-as- 
signed to the more active nodes that have adequate ca- 
pacity to accommodate the weights being re-assigned. 
Moreover, trends in the power consumption behavior of a 
data center and its nodes could be analyzed in such a 
manner that future behavior of energy-usage could be 
predicted with good level of accuracy.  

This will go a long way to ensure energy-efficiency 
and sustainable processes as idle nodes when they are in 
power-on state still consumes energy and thereby wast- 
ing useful and scarce resources. 

[1] submitted that “Green” policies should be enforced 
for energy conservation and sustainable processes (e.g. 
introducing alerts when power limits are exceeded, 
thereby indicating which node is consuming or have 
consumed its fair share of power, the alerts can also trig-  
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ger automatic adjustments of workload). 
Centrality is hereby introduced as a suggested solution 

to the challenge of allocation of resources or traffic to a 
node as required. Three basic measures of centrality 
exists, namely Degree Centrality, Closeness Centrality 
and Betweenness Centrality, all formalised by [2]. 

Centrality 

Centrality is hereby introduced as a suggested solution to 
the challenge of allocation of resources or traffic to a 
node as required. Specifically, a mixed-mean centrality 
that stems from the idea of Generalizing Degree of Cen- 
trality and shortest paths of [3] and Topological Central- 
ity of [4] is hereby proposed. There are three standard 
measures of centrality namely Degree Centrality, Close- 
ness Centrality and Betweenness Centrality, all formali- 
sed by [2]. Each of these centralities either concern itself 
with nodes or edges [4]. However, this work concerns 
itself only with the degree and closeness centralities. 

2. Standard Centrality Measures 

Degree centrality meausre is concerned with the degree 
of a certain node in a directed graph (or network), that is 
the number of edges or links or ties that enters a node 
(wherein referred to as in-degree) or the number of edges 
that come out of the node (wherein referred to as out- 
degree), this being applicable to directed graphs. Con- 
versely, in an undirected graph it is the number of ties or 
edges attached to the node that becomes a concern. For- 
mally, [5] in the Mathematics of Networks defines the 
degree Ki of a node i is 

 
=1

n

i D ij
j

K C i A                (1) 

where n = number of nodes in the network. 
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by tie, we mean an edge and Aij is an element of the 
adjacency matrix A, that is, A is an n × n symmetric 
matrix (implying Aij = Aji). e.g. 
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The matrix in (3) above implies that the entry A12 will 
be equal to A21 if A is an adjacency matrix. The degree 
centrality has as part of its advantage that only local 
structure round the node could be known, for ease of 
calculation this is acceptable, but it becomes a concern if 
a node is central and not easily accessible to other nodes 

for one reason or another. It is described by Zhuge [4]  
as shown in (4) below: 

   degree

1D

s
C S

n



            (4) 

where s = node and n = total number of nodes in the 
graph.  

Closeness centrality takes the distance from the focal 
node to other nodes in a graph into consideration but it 
has the setback of not taking disconnected nodes (those 
who are not in the same graph) into consideration. Zhuge 
[4] formally expresses closeness centrality as  

   
1

d ,C
G

t S s

n
C s

s t






             (5) 

where n = number of nodes, dG(s,t) = geodesic distance 
between s and t.  

Table 1 represents the results of the two standard cen- 
trality measures according to Figure 1. 

As seen in the table above Node B has the highest of 
the centralities for the degree and closeness centrality 
measures.  

3. Generalised Degree Centrality Measure 

Each of the three standard degrees mentioned above 
concerns itself with either nodes or edges (Zhuge, [4]). 
There have been several attempts to generalise the three 
node centrality measures but most have solely focused on 
weights of edges and not number of edges (Opsahl et al, 
[3]). Since weights are of importance, the Equations (4) 
and (5) above can be extended to include weights, there- 
fore, the weighted degree centrality of node s is hereby 
represented by  

 
1

n

st
W t
D

w
C s

n





                (6) 

where wst is the sum of the weights of edges connected to 
the particular source node s and, t represents a particular 
target node. In the same vein, the weighted closeness 
centrality,  W

DC s  is also represented by  

   
1

d ,
W
C

w

n
C s

s t





              (7) 

which is the weight of geodesic paths between s and t. 
In the attempt to incorporate the measures of both 

degree and strength of edges (i.e. numbers and weights of 
edges respectively), [3] considered a graph with 6 nodes 
(Figure 2) as shown and also introduced the ideal of 
generalised degree centrality measure. 

A tuning parameter α was introduced to take care of 
the weightedness of the degree and strength of the edges, 
this being the product of degree of a focal node and the  
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Figure 1. (or Graph 1). A six nodes network, circle repre- 
sents nodes. (Source: T. Opsahl et al. (2010) p. 245 [3]). 
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Figure 2. (or Graph 2). A six nodes network, circle repre- 
sents nodes and square represents weights of edge, e.g. 
number of visits. (Source: [3], p. 245). 
 
Table 1. Effect of the two basic centrality meausres (degree 
and closeness centrality measure). 

 
No. of  

degrees 
Degree  

centrality 

No. of  
geodesic  

paths from  
(s to t) 

Closeness 
centrality 

NODE  CD Σd 
(s,t) CC 

A 2 0.4 9 0.555555556 

B 4 0.8 6 0.833333333 

C 2 0.4 9 0.555555556 

D 1 0.2 9 0.555555556 

E 2 0.4 8 0.625 

F 1 0.2 12 0.416666667 

 
average weight to these nodes as adjusted by the in- 
troduced tuning parameter. So, for weighted degree cen- 
trality at α we have  

   1w i
D i i
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      (8) 

where ki = degree of nodes  w
i Ds c s  as defined in (6) 

above, and α is ≥0. 
For weighted closeness centrality at we also have 
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      (9) 

where ki = degree of nodes while  w
i Cs c s  is as defin- 

ed in (7) above, where α is ≥0. When applied to Figure 2, 
Table 2 shows the results for the weighted degree cen- 
trality measure and the closeness degree centrality mea- 
sure. 

4. Mixed-Mean Centrality 

Introduced hereby is a second similar graph to the one in 
Figure 2 differing only in the weights attached, it is be- 
lieved that weights of each tie can actually be dependent 
on two scenarios (in this case, visit by the focal node and 
number of messages sent by the nodes through the net- 
work). The weights in Figure 2 are the number of visi- 
tation by the focal nodes to their neighbors while the 
weights in Figure 3 below represents the number of mess- 
ages sent by the focal node, this was applied to a subset of 
EIES dataset [6]. 

Figure 3 shows different ranking values for different 
graphs/or networks, for instance, in Table 3, the first 
graph (after the application of the tuning parameter to 
weighted degree centrality measure) made node F to 
have the highest centrality when  1 1 2  , while the 
same application to the second graph made node A to 
have the highest centrality. When α < 1, node B has the 
highest centrality in both cases. Our intention is to com- 
bine the results for the two graphs so as to have a fairly 
well-representative result and not only by using weighted 
degree centrality but also including weighted closeness 
centrality.This is reflected in Table 4 . 

When the weighted closeness centrality is considered 
for α > 1, node D has the highest centrality in graph1 
while node F has the highest in graph 2, but with α < 1 
node B retains the highest centrality position in Graph 1 
and in Graph 2.  

In Table 5, considering the average (i.e. mean) of the 
weighted degree centralities for the two graphs; when 

 1 1 2   returns node A as the most central while with 
tuning parameter 1 2  , node B is returned as the 
most central. Whereas the weighted closeness centrality 
measure when  1 1 2   and 1 2   returns node D 
and node B respectively in both cases as having the 
highest centrality. From the results above when 1 2  , 
node B has higher marginal value of cardinality than any 
other nodes in both graphs. 

Table four below presents the results of the Mixed- 
Mean centralities of the two graphs, that is the summa- 
tion of the mean of the Weighted Degree and Weighted 
Closeness centralities. That is, 

Mixed-Mean Centralities = (CDW1 + CDW2)/2 + 
(CCW1 + CCW2)/2 = (CDW1 + CDW2 + CCW1 + 
CCW2)/2 
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Table 2. Results for the weighted degree centrality measure and the closeness degree centrality measure with the positive 
tuning parameters. 

 
No. of  

degrees 
Degree  

centrality 

No. of 
geodesic

paths 
from 

(s to t)

Closeness 
centrality 

CDW1
W
DC     CCW1

W
CC      

NODE Ki CD Σd (s,t) CC Σw (s,t) Si α = 0 α = 1/2 α = 1 α = 1(1/2) Σdw (s,t) Si α = 0 α = 1/2 α = 1 α = 1(1/2)

A 2 0.4 9 0.556 8 1.6 2 1.789 1.6 1.431 30 0.167 2 0.577 0.167 0.048 

B 4 0.8 6 0.833 8 1.6 4 2.530 1.6 1.012 15 0.333 4 1.155 0.333 0.096 

C 2 0.4 9 0.556 6 1.2 2 1.549 1.2 0.930 18 0.278 2 0.745 0.278 0.104 

D 1 0.2 9 0.556 1 0.2 1 0.447 0.2 0.089 20 0.25 1 0.5 0.25 0.125 

E 2 0.4 8 0.625 8 1.6 2 1.789 1.6 1.431 18 0.278 2 0.745 0.278 0.104 

F 1 0.2 12 0.417 7 1.4 1 1.183 1.4 1.657 46 0.109 1 0.330 0.109 0.036 

 
Table 3. Table showing the effect of the tuning parameters on the two graphs of discuss. 

Data for first graph data for second graph 

 
No. of 

deg 
Deg  

centrality 

No. of 
geodesic 

paths from 
(s to t) 

Closeness 
centrality 

CDW1 W
DC     CDW2 W

DC     

NODE Ki CD Σd 
(s,t) CC Σw (s,t) Si α = 0 α = 1/2 α = 1 α = 1(1/2) Σw (s,t) Si α = 0 α = 1/2 α = 1 α = 1(1/2)

A 2 0.4 9 0.556 8 1.6 2 1.789 1.6 1.431 516 103.2 2 14.367 103.2 741.318

B 4 0.8 6 0.833 8 1.6 4 2.530 1.6 1.012 537 107.4 4 20.727 107.4 556.514

C 2 0.4 9 0.556 6 1.2 2 1.549 1.2 0.930 45 9 2 4.243 9 19.092 

D 1 0.2 9 0.556 1 0.2 1 0.447 0.2 0.089 17 3.4 1 1.844 3.4 6.269 

E 2 0.4 8 0.625 8 1.6 2 1.789 1.6 1.431 19 3.8 2 2.757 3.8 5.238 

F 1 0.2 12 0.417 7 1.4 1 1.183 1.4 1.657 4 0.8 1 0.894 0.8 0.716 

 
Table 4. The weighted closeness centrality results from the two graphs. 

 
No. of  

deg 
CCW1 W

CC     CCW2 W
CC     

NODE Ki Σw (s,t) Si α = 0 α = 1/2 α = 1 α = 1(1/2) Σw (v,t) Si α = 0 α = 1/2 α = 1 α = 1(1/2)

A 2 30 0.17 2 0.58 0.17 0.05 598 0.008 2 0.13 0.008 0.0005 

B 4 15 0.33 4 1.15 0.33 0.10 87 0.057 4 0.48 0.057 0.0069 

C 2 18 0.28 2 0.75 0.28 0.10 121 0.041 2 0.29 0.041 0.0059 

D 1 20 0.25 1 0.5 0.25 0.13 155 0.032 1 0.18 0.032 0.0058 

E 2 18 0.28 2 0.75 0.28 0.10 117 0.043 2 0.29 0.043 0.0062 

F 1 46 0.11 1 0.33 0.11 0.04 123 0.041 1 0.20 0.041 0.0082 
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Table 5. The two weighted centralities measure and their averages for the two graphs. (Mean Weighted Centralities for 
Degree and Closeness Centralities). 

 (CDW1 + CDW2)/2    (CCW1 + CCW2)/2    

NODE α = 0 α = 1/2 α = 1 α = 1(1/2) α = 0 α = 1/2 α = 1 α = 1(1/2) 

A 2 8.08 52.4 371.37 2 0.353 0.088 0.024 

B 4 11.63 54.5 278.76 4 0.817 0.195 0.052 

C 2 2.90 5.1 10.01 2 0.516 0.159 0.055 

D 1 1.15 1.8 3.18 1 0.339 0.141 0.065 

E 2 2.28 2.7 3.33 2 0.518 0.160 0.055 

F 1 1.04 1.1 1.19 1 0.266 0.075 0.022 

 
 D 
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Figure 3. (Graph 3). A six nodes network, circle represents 
nodes and square represents weights of edge (number of 
messages). 
 

From the result of Table 6, when 1 2   the most 
central node is B while node A becomes the most central 
when  1 1 2  . As shown earlier, in the trivial case 
when no weights are attached to the nodes (as in Graph1, 
Table 1), node B is the most central of all nodes as 
regards degree centrality and closeness centrality. The 
Table 7 shows the summary result of the activity carried 
out so far: 

In the trivial case of Graph 1, and all other cases 
whereby the tuning parameter 1 2  , node B is always 
the most central. However, the centrality varies when the 
tuning parameter  1 1 2  , in fact node B was never 
the most central in this case, the centrality varies between 
node D and node F, while for our mixed-mean centrality 
node A becomes the most central in this case of 

 1 1 2  . 

Application to Data Set 

On applying the same to a subset of the Freeman EIES 
(Electronic Information Exchange System) dataset as 
presented by Opsahl et al. [3], the Table 8 was gener- 
ated: 

The ranking positions of the mixed-mean weighted 
centrality above shows the ranking according to the mean 
of the weightedness of closeness and degree centrality 
measures at different level of α, thus, it can be inferred 

that Gary Coombs ranked highest in terms of centralities  
for both  1 1 2   and 1 2  . 

However, in terms of the mean of the closeness cen- 
tralities for both tuning parameters  1 1 2   and 

1 2  , it ranked lowest, thereby indicating that the 
mixture of the centralities for the two graphs could and 
actually make a less important or influential node to 
become the most important and influential when consi- 
dered on the basis of mixed-mean centrality. 

5. Mixed-Mean Centrality with Nodes’ 
Weights 

Consideration has been given to weightedness of edges 
before now, but the nodes can and do have weights, so 
the principle discussed above is hereby extended to 
include the node weights for the two graphs of discourse. 
This means, consideration will now be given not only to 
the number of ties and tie weights but also to the weights 
of the nodes. Introducing weights to the nodes of Figure 
3, we have the new Figure 4 shown. 

Where A (Joel Levine) = 5; B (Jon Sonquist) = 6; C 
(Brian Foster) = 7; D (Ev Rogers) = 8; E (Gary Coombs) 
= 9; F (Ed Lauman) = 10 are arbitrary weights assigned 
to the nodes of the sample EIES data set, these could be 
the number of resources available to each of the nodes. 

The tuning parameter  was now introduced to take 
care of the weightedness of the nodes, and degree/ 
strength of the edges, this being the product of degree of 
a focal node, the average weight to these nodes as 
adjusted by the introduced tuning parameter and the 
weight accorded to each node. So, for weighted degree 
centrality at α and  we shall now have 

   1w i
D i i i

i

s
c i k k s z

k




i
   

     
 

     (10) 

where ki = degree of nodes  w
i Ds c s  as defined in (7) 

above zi = weight of nodes, where 0  ;  

 : 1 1Z       
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Table 6. Mixed-Mean Centralities of the two Graphs. 

{(CDW1 + CDW2)/2 + (CCW1 + CCW2)/2} 

NODE α = 0 α = 1/2 α = 1 α = 1(1/2) 

A 2 4.22 26.24 185.70 

B 4 6.22 27.35 139.40 

C 2 1.71 2.63 5.03 

D 1 0.74 0.97 1.62 

E 2 1.40 1.43 1.69 

F 1 0.65 0.59 0.60 

 
Table 7. A summary of the graphs considered and the most central node in each case. 

Degree centrality Closeness centrality 
Graphs & Tables 

α = 1/2 α = 1(1/2) α = 1/2 α = 1(1/2) 

Graph 1 with weights on the edges (Table 2) B F B D 

Graph 2 with different weights on the edges (Table 3 & Table 4) B A B F 

Mean-Weighted Centralities for Graph 1 & Graph 2 (Table 5) B A B D 

 
Table 8. Mixed-Mean Weighted centrality applied to EIES Dataset. 

 
No. of 
Deg 

(CCW1 + CCW2)/2    (CDW1 + CDW2)/2     
Mixed-Mean  

Centrality 

NODE Ki α = 0 α = 1/2 α = 1 α = 1(1/2) α = 0 α = 1/2 α = 1 α = 1(1/2) α = 0 α = 1/2 α = 1 α = 1(1/2)

Joel Levine 27 27 2.64 0.27 0.03 27 13.04 6.3 3.04 27 7.84 3.29 1.54 

Jon Sonquist 28 28 6.83 1.67 0.41 28 8.31 3.1 1.30 28 7.57 2.38 0.85 

Brian Foster 29 29 2.24 0.21 0.02 29 11.21 4.5 1.87 29 6.73 2.35 0.94 

Ev Rogers 30 30 5.70 1.38 0.37 30 8.55 3.3 1.43 30 7.13 2.34
0.90 

Gary Coombs 31 31 1.95 0.13 0.01 31 16.86 9.5 5.53 31 9.40 4.81 2.77 

Ed Lauman 32 32 3.00 0.38 0.05 32 10.39 3.8 1.51 32 6.70 2.09 0.78 

 

D = 8 

B = 6 

E = 9 

F = 10 

A = 5 

C = 7 

 

Figure 4. A six nodes network, circle represents nodes and 
their respective weights using the EIES sample data set. 
 
Applying the new model above to the EIES data set of 
our discuss will generate the following tables—Tables 
9-11 for the new weighted degree centrality (with node 
weights): 

Table 9 shows that when weights are attached to the 

nodes of the EIES data set, Gary Coombs ranked first  
while Ed Lauman ranked second when 1 2   and 

 1 1 2  , whereas in Table 6 whereby the nodes were 
not accorded weights, Gary Coombs though ranked first 
but Ed Lauman ranked last, even when the  1 1 2  . 

However the above ranking is only for the case 
whereby the value of 1  , it is quite of interest to us to 
see what would happen if 1   . Table 10 illustrates 
the result when 1   . 

Table 10 shows that when weights are attached to the 
nodes of the EIES data set at 1   , Gary Coombs and 
Joel Levine together ranked first and second respectively 
when  1 1 2   but when 1 2   Joel Levine 
ranked first and Jon Sonquist ranked second. 

Finally, the rankings for the different situations of beta 
after weights z have been attached to the nodes of Table 
8 gives the following result:   
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Table 9. Table showing the effect of the tuning parameters on the EIES data sets using the Mixed-Mean Centrality after 
attaching weights to the nodes,  in this case is 1. 

 No. of Deg Mixed-Mean Centrality With Node Weights 

Node Ki α = 0 α = 1/2 α = 1 α = 1(1/2) 

Joel Levine 27 135 43.38 16.43 7.68 

Jon Sonquist 28 168 45.43 14.30 5.11 

Brian Foster 29 203 47.08 16.47 6.61 

Ev Rogers 30 240 57.00 18.70 7.22 

Gary Coombs 31 279 84.62 43.32 24.92 

Ed Lauman 32 320 66.96 20.90 7.83 

 
Table 10. Table showing the effect of the tuning parameters on the EIES data sets using the Mixed-Mean Centrality after 
attaching weights to the nodes,  in this case is –1. 

 No. of Deg Mixed-Mean Centrality with Node Weights 

Node Ki α = 0 α = 1/2 α = 1 α = 1(1/2) 

Joel Levine 27 5.40 1.74 0.66 0.3072 

Jon Sonquist 28 4.67 1.26 0.40 0.1419 

Brian Foster 29 4.14 0.96 0.34 0.1350 

Ev Rogers 30 3.75 0.89 0.29 0.1128 

Gary Coombs 31 3.44 1.04 0.53 0.3077 

Ed Lauman 32 3.20 0.67 0.21 0.0782 

 
Table 11. Table showing different rankings of nodes after weight z have been attached to the nodes of Table 6 with varying 
values of . 

  = 0  = 1  = –1 

Nodes z Deg α = 0 α = 1/2 α = 1 α = 1(1/2) α = 0 α = 1/2 α = 1 α = 1(1/2) α = 0 α = 1/2 α = 1 α = 1(1/2)

Joel Levine 5 27 27 7.84 3.29 1.54 135 43.38 16.43 7.68 5.40 1.74 0.66 0.3072 

Jon Sonquist 6 28 28 7.57 2.38 0.85 168 45.43 14.30 5.11 4.67 1.26 0.40 0.1419 

Brian Foster 7 29 29 6.73 2.35 0.94 203 47.08 16.47 6.61 4.14 0.96 0.34 0.1350 

Ev Rogers 8 30 30 7.13 2.34 0.90 240 57.00 18.70 7.22 3.75 0.89 0.29 0.1128 

Gary Coombs 9 31 31 9.40 4.81 2.77 279 84.62 43.32 24.92 3.44 1.04 0.53 0.3077 

Ed Lauman 10 32 32 6.70 2.09 0.78 320 66.96 20.90 7.83 3.20 0.67 0.21 0.0782 

 
From Table 11, it can be seen clearly that as  changes 
value from 0 to 1 and –1 Gary Coombs (though not the 
one with highest degree or highest weight) maintains the 
highest ranking when 1 1 2   . When 1 2  , Gary 
Coombs maintained the lead at 1   only to drop to 
the third position when 1   . 

6. Power Usage Effectiveness (PUE) 

It is generally known that even when machines are idle 
they still consume reasonable energy in that process, but 

the lower the PUE of a data centre the better and most  
energy-efficient conscious data centres will always aim 
to reduce the PUE to the barest minimum, that is con- 
ceivably as close as possible to the unit value. As such, 
one can say that the PUE has a reasonable impact on the 
energy-efficiency of a data centre. 

[7] has this to say about the PUE of its data centres, 
“In fact, our best site could boast a PUE as low as 1.06 if 
we used an interpretation commonly used in the industry. 
However, we’re sticking to a higher standard because we 
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believe it’s better to measure and optimize everything on  
our site, not just part of it. Therefore, we report a com- 
prehensive PUE of 1.13 across all our data centers, in all 
seasons, including all sources of overhead.” 

An extract of the quarterly PUE from Google’s four- 
teen (14) data centres spanning the period between 2008 
to 2012 is shown in Table 12. 

[8] opined that “PUE is defined as the ratio of two 
numbers, data center input power over IT load power. 
While it at first appears to be a problem of simply ob- 
taining two measurements and taking their ratio, it rarely 
is this simple in production data centers”, while Google 
(2012) postulates the equation below as being a measure 
of PUE: 

+ + +ESIS EITS ETX EHV E
PUE

EITS ECRAC EUPS EL


 
+ +

+ 1

LV EF

V ENet
  (11) 

ESIS: Energy consumption for supporting infrastruc- 
ture power substations feeding the cooling plant, lighting, 
office space, and some network equipment. 

EITS: Energy consumption for IT power substations 
feeding servers, network, storage, and computer room air 
conditioners (CRACs). 

ETX: Medium and high voltage transformer losses. 
EHV: High voltage cable losses. 
ELV: Low voltage cable losses. 
EF: Energy consumption from on-site fuels including 

natural gas & fuel oils. 
ECRAC: CRAC energy consumption. 
EUPS: Energy loss at uninterruptible power supplies 

(UPSes) which feed servers, network, and storage equip- 
ment. 

ENet1: Network room energy fed from type 1 unit 
substitution. 

Traffic Density Ratio 

We introduce a Traffic Density Ratio (TDR) for each of 
the nodes and it can be described as: 

i
i n

i
i

TD
TDR

TD



               (12) 

 
Table 12. PUE data for Google’s data Centres. 

Year/Quarter 2008 2009 2010 2011 2012

Q1 N/A 1.15 1.15 1.13 1.11 

Q2 N/A 1.20 1.17 1.14 1.12 

Q3 1.23 1.22 1.20 1.16 N/A 

Q4 1.16 1.16 1.13 1.12 N/A 

Average/annum 1.20 1.18 1.16 1.14 1.12 

http://www.google.com/about/datacenters/efficiency/internal/index.html#me
asuring-efficiency (Source of extract). 

where TD is the traffic density i = node i and n = total 
number of nodes in the graph. 

The traffic density at each node i is measured in MB/s, 
and the lower the TDR of a node, the lower the traffic on 
that particular node, but the TDR is directly proportional 
to the PUE, that is,  

iPUE TDR PUE k TDR         (13) 

where by 0 1iTDR  . 
Thus, as TDR of any node approaches zero, it is rea-

sonable to believe that the PUE will also tend to zero, 
and as such all the traffic on such a node could be di-
verted towards a more performing and capable node, 
while the node whose PUE is almost at zero could be 
shut down, thereby saving much energy.  

7. Future Studies 

1) The concept developed herein shall be applied to 
real data from cloud data centres. 

2) The tuning parameters α and  can each be con- 
sidered as a range of values, thereby introducing dy- 
namism as a measure of centrality. 

3) While considering the centrality for the location of 
the high/low energy consuming nodes/edges, other 
important factors to take into cognizance are the Power 
Usage Effectiveness (PUE) and Traffic Density Ratio 
(TDR).  

8. Contribution 

1) Two graphs were considered and effects of the com- 
bined weights on both edges and nodes were evaluated 
taking the closeness centrality and degree centrality into 
cognisance. 

2) The resulting Mixed-Mean centrality was then ap- 
plied to the EIES data set while introducing two tuning 
parameters α and . 

9. Conclusions 

The scenario presented here can be applied to cloud 
computing by using the idea of mixed-mean centrality to 
discover the most central and therefore the most energy 
consuming nodes, so as to help in making provision for 
energy-efficiency, thus minimising costs and saving the 
environment. It can be used in locating the performance 
level of a particular node or edge and thus aiding in 
decision on which node or edge deserves attention. This 
can be most especially useful for security and fault- 
tolerance purposes. 

Resource allocation is also an applicable area of this 
centrality measure as it will aid in optimisation of re- 
sources, thereby saving costs. 
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