
Journal of Software Engineering and Applications, 2012, 5, 789-796
http://dx.doi.org/10.4236/jsea.2012.510091 Published Online October 2012 (http://www.SciRP.org/journal/jsea)

789

A Facilitated Interface to Generate a Combined Textual
and Graphical Database System Using Widely Available
Software

Corey Lawson, Kirk Larson, Jonathan Van Erdewyk, Christopher Smith, Al Rizzo, Landon Ross,
Marc Rendell

Creighton University School of Medicine, Omaha, USA.
Email: Rendell@asndi.com

Received August 9th, 2012; revised September 11th, 2012; accepted September 23rd, 2012

ABSTRACT

Data-Base Management System (DBMS) is the current standard for storing information. A DBMS organizes and main-
tains a structure of storage of data. Databases make it possible to store vast amounts of randomly created information
and then retrieve items using associative reasoning in search routines. However, design of databases is cumbersome. If
one is to use a database primarily to directly input information, each field must be predefined manually, and the fields
must be organized to permit coherent data input. This static requirement is problematic and requires that database ta-
ble(s) be predefined and customized at the outset, a difficult proposition since current DBMS lack a user friendly front
end to allow flexible design of the input model. Furthermore, databases are primarily text based, making it difficult to
process graphical data. We have developed a general and nonproprietary approach to the problem of input modeling
designed to make use of the known informational architecture to map data to a database and then retrieve the original
document in freely editable form. We create form templates using ordinary word processing software: Microsoft In-
foPath 2007. Each field in the form is given a unique name identifier in order to be distinguished in the database. It is
possible to export text based documents created initially in Microsoft Word by placing a colon at the beginning of any
desired field location. InfoPath then captures the preceding string and uses it as the label for the field. Each form can be
structured in a way to include any combination of both textual and graphical fields. We input data into InfoPath tem-
plates. We then submit the data through a web service to populate fields in an SQL database. By appropriate indexing,
we can then recall the entire document from the SQL database for editing, with corresponding audit trail. Graphical data
is handled no differently than textual data and is embedded in the database itself permitting direct query approaches.
This technique makes it possible for general users to benefit from a combined text-graphical database environment with
a flexible non-proprietary interface. Consequently, any template can be effortlessly transformed to a database system
and easily recovered in a narrative form.

Keywords: Graphical Database Systems; InfoPath; SQL; Data Mining

1. Introduction

Data-Base Management System (DBMS) is the current
standard for storing information. A DBMS organizes and
maintains a structure of storage of data. Databases make
it possible to store vast amounts of randomly created in-
formation and then retrieve items using associative rea-
soning in search routines. It has even been suggested that
DBMS offer the optimal approach to create information,
superseding the structured narratives of the past [1]. This
view is contested by those who feel that DBMS systems
surrender the innate structure of information possessed
by narrative forms [2]. Databases collect individual data
items but not the operational associations which exist

among these items. It is rightly argued that the optimal
database construct has to be designed to maintain the
coherency between data and the structure into which it is
inputted [3].

Whether or not one shares the enthusiasm for DBMS
as the optimal informatic prototype, it must be recog-
nized that there are important practical limitations in this
approach. If one is to use a database primarily to directly
input information, each field must be predefined manu-
ally, and the fields must be organized to permit coherent
data input. This static requirement is problematic and
requires that database table(s) be predefined and custom-
ized at the outset, a time consuming requirement. If one
possesses a structured model at the outset, one must

Copyright © 2012 SciRes. JSEA

A Facilitated Interface to Generate a Combined Textual and Graphical Database System
Using Widely Available Software

790

recreate a database architecture which matches the origi-
nal structure. There have been advances in developing
workflow models with mapping to databases. Utilitarian
programs such as Adobe’s Life Cycle Designer and Mi-
crosoft’s InfoPath are coming into increasing use to per-
mit a more natural approach to creating forms which then
map directly to associated databases. These techniques
have been used to send textual information to databases.
Although this represents an advance, it is still far from
the multimedia comprehensive DBMS envisaged by
Manovich. At present, there is no general solution to the
problem of conserving well characterized graphical struc-
ture in a transform to a database, let alone multimedia
input. Moreover, data mapping has been unidirectional in
terms of sending items from the narrative domain to the
database. Of course, it is possible to retrieve data entries,
but reconstruction of the original document is difficult,
requiring programs to re-establish structure.

We have been interested in a general and entirely non-
proprietary approach to the problem of input modeling
designed to make use of the known informational archi-
tecture to map data to a database and then retrieve not
only the data but the original document itself for editing.
A first example is the design of an approach for integra-
tion of ordinary graphics and text based data into a user
friendly interface to a database. Although conceptually
simple, there are practical constraints which make this a
non trivial endeavor. Combination graphical and text
databases have not been highly developed due to the in-
congruity of text based and long binary datasets. Binary
objects, such as photographs, are problematic to store
and retrieve alongside text based items [4,5].

We proposed to develop an integrated interface to a
database which would handle both graphical and text ba-
sed data and permit easy retrieval. We further imposed a
much more limiting constraint that our system be devel-
oped using popularly available software with a minimum
of proprietary code. Herein we describe the results of our
attempt to achieve these goals using ordinary Microsoft
programs: InfoPath as a front end which then communi-
cate to an XML (extensible markup language) constructed
in SQL. XML has become the standard database storage
structure due to the intuitive organization provided by its
standard syntax [6].

2. Methods

2.1. Hardware Components

The system is comprised of an array of Tablet Computers,
a Database Server, a Main File Server and Backup File
Server, an Active Directory Server, an Archiving Hard
Drive Array (Raid 5), Fax Servers and Printers all con-
nected via a closed systems network. The closed system

consists of a Firewall and Routers allowing for a secure
connection to the Internet. There are no proprietary com-
ponents since each hardware item is commercially avail-
able.

2.2. Software Components

The software programs and services used for our system
are all commercially available without any proprietary
code and include the following:

1) Microsoft Windows XP Tablet PC Edition 2005
(SP3): This is a commercial tablet based operating sys-
tem intended for Tablet PC’s. Tablet PCs allow for hand-
written notes, signatures and handwriting recognition
through the use of a pen stylus;

2) Microsoft Office InfoPath 2007: InfoPath is a com-
mercial software program used to design user friendly
form templates, published to and accessed from a com-
mon network location, allowing users to fill out forms for
exportation to a database program;

3) Microsoft SQL Server 2008: MSSQL is a commer-
cial Data-Base Management System (DBMS) program
used to store data in a collection of tables with typed
columns allowing for the retrieval of information through
queries designed to organize and structure the data;

4) Microsoft Windows Server 2008 R2 Edition: Win-
dows server is a commercial server operating system
installed on the database server, active directory server,
main file server and backup file server;

5) Active Directory Account Manager: This allows for
server role management, group policy handling and ad-
ministration, and multiple instance function of the direc-
tory server;

6) Internet Information Services: Internet Information
Services (IIS) 7.5 is a dynamic web service application
manually enabled in Microsoft Windows Server allowing
the user to connect to a centralized intranet environment
in order to handle XML forms;

7) Microsoft Visual Studio Professional 2005: Visual
studio is a commercial integrated development environ-
ment (IDE) used to create dot net framework enabled
applications including the asp.net web service used to relay
data from the InfoPath form to the database.

2.3. Programming Components

We utilize standard coding techniques and programming
practices with minimal proprietary code using the follow-
ing:

1) PHP 5: PHP is a general purpose, cross platform,
scripting language with an extensive library of functions
generally used in web programming. The PHP interpreter
integrates into the web server software such as Microsoft
IIS or the Apache HTTP Daemon;

Copyright © 2012 SciRes. JSEA

A Facilitated Interface to Generate a Combined Textual and Graphical Database System
Using Widely Available Software

791

2) ASP.Net Framework Version 2.0: ASP.NET is a
collection of libraries designed by Microsoft for use in
general purpose programming. This framework is acces-
sible with different Microsoft languages using the Visual
Studio Suite, including Visual C# and Visual Basic.

3. Results

3.1. Form Design

Documents are created using ordinary word processing,
in this case Microsoft Word. The documents are exported
directly to form templates in Microsoft InfoPath 2007.
Each field in the form is given a unique name identifier
in order to be distinguished in the database by placing
colon at the beginning of any desired field location. In-
foPath then captures the preceding string and uses it as
the label for the field. Each form can be structured in a
way to include any combination of these fields, in any
order. These include: Text Box Fields are used to enter
any amount of plain text information. This can be done in
a single line or can be manually enabled to allow for
multiple line input, wrapping the text box to self-expand
the form or showing a scroll bar when multiple lines are
entered. The text can also be validated with rules to re-
quire specific types of input or values.

Rich Text Box Fields are like regular text box fields
but automatically allow for multiple line input. The user
can also add different formatting styles to the text such as
font, size, color, bold, italics, underline alignment, and
spacing. These fields allow for direct input of images into
the form.

Combo Box Fields are a unique form of data entry, al-
lowing the user to select from a dropdown list of prede-
fined values. Before or after the selection the user also
has the ability to edit the list item, or manually enter unique
information.

Date Picker Fields allow the user to select a date from
a calendar display, and can also be enabled to pass the
current time for a timestamp.

Check Box Fields are used to define true/false or yes/
no values to key elements of a form. This field can be
cleared or checked at its default state and can assign value
to the element as 0, 1, true, or false.

Option Button Fields allow the user to select from a
predefined set of values similar to a dropdown box. Each
value is mutually exclusive of the other, allowing only
one selection to take on the value of the entire field.

Ink Picture Fields are used to allow for pen stylus in-
put for signatures, free form drawings and handwritten
notes. Each ink picture field can be resized to allow for
adequate room to sign or draw on a canvas style field
(Figure 1). Digitally signing the form can limit the use
and distribution by locking it as read only. It can be de-

Figure 1. Signature example.

fined to allow for single or multiple signatures. Multiple
signatures can be used independently to co-sign or to
counter-sign in order of precedence. InfoPath also makes
use of tables to format data layouts; moreover, it supports
a particular type of table that can be used to add fields
dynamically as they are needed. The repeating table is a
dynamic table that can be populated with data entry fields.
Rows can be added to the table creating a new set of data
using the same name; likewise sets of data can be re-
moved from the table.

3.2. Form Design

InfoPath provides two methods of capturing data entered
into a form, saving the form in xml format or submitting
the data to a database using a data connection. The data
connection separates InfoPath from other products such
as Microsoft Word or Adobe Acrobat, both of which pro-
duce fillable forms. Through the data connection, the form
data can be exported to a database. InfoPath supports
different data connection approaches including: direct
SQL, SharePoint Document Library or List, eMail, and
Web Service. The web service we use in our application
communicates with InfoPath using XML SOAP to trans-
fer data in xml format. We use an XML format organizer
to insure compatibility with standard XML requirements.
The save file of an InfoPath form is in native xml and
can be read with any text editor. This also makes it pos-
sible to input this xml as a string in the database table.
XML data is relayed to the web service, in this case an
asp.net application, where it is processed and inserted
into a Microsoft SQL database. All XML data is stored in
a single table. Conversely, any string can be read from
the database straight back to InfoPath. The conversion of
database string to file is performed by a simple PHP
script which runs in the web browser and xml files are
created by the database upon submission to provide ac-
cess without a web browser. Figure 2 shows the scheme
of data flow though our system.

Using the Ink Picture field (Figure 1), the user can
store any pen stylus input as Long Binary Data (LBD) in

Copyright © 2012 SciRes. JSEA

A Facilitated Interface to Generate a Combined Textual and Graphical Database System
Using Widely Available Software

792

Figure 2. XML example.

the database (Figure 2). The LBD is submitted manually
through ASP.net using an Open Database Connectivity
(ODBC) data source as XML. The LBD is perceived as a
string of characters and numbers, unique to the input. The
drawings, signatures and handwritten notes are stored in
the database and can be queried to return values to allow
for a comparison of before and after elements. These ele-
ments are then linked to the user with a date and time
stamp.

3.3. Authentication and Security

Multiple different users with appropriate permissions can
access the templates and fill out the necessary forms. These
users can be verified through the active directory to ensure
security of each form. If a user is not authenticated, they
will be unable to submit any information to the database.
Active directory, or LDAP server, is a service run by the
windows server platform to store user names and pass-
words. The system creates a domain to which client
computers connect at login. The domain controller, syn-
onymous with active directory, is also responsible for
maintaining user permissions and privileges on the client
computers connected to the domain. The active directory
connection is initiated by the dot.net web service upon
submission of the InfoPath form.

3.4. Version Control and Auditing

Unique ID numbers are assigned to new documents upon
submission. This ID is used to keep track of versions.
When a document is recalled from the database, the ID
designates any subsequent submission as a change to the
original document. Timestamps and Usernames are tagged
to each document in the database table, as well as to the
XML as it is entered into InfoPath.

When saving or submitting a document, we use a file
naming convention to automatically concatenate the fields
in the form for the title. The user then has the ability to
full-text search through all of the submitted forms for any
specific saved information. The query will return a list of
matched results and allow the user to view before

and after elements of the form. Auditing and change con-
trol are a simple matter of retrieving all documents with a
particular ID and comparing the dissimilar xml elements
with each other, as the xml element titles are static and
built into the form. The comparison routine is a string to
string comparison of each xml element in a form with the
elements of different versions of the same exact form,
with the same exact elements.

3.5. Redundancy and Backup

There are multiple pathways to store the information on
the file servers and the database server. Each form tem-
plate is published to the Main File Server, which is con-
tinuously replicated real time by the Backup File Server.
Once the information is entered in the InfoPath forms, it
is submitted to the SQL Database and exported to the
Main File Server for direct access. The information is
stored on the Database Server and is configured to backup
each database to the Backup File Server (Figure 3).

3.6. Review and Retrieval

As mentioned in the Redundancy and Backup section;
there are several ways to store the information. Each of
these steps has the capability for the user to review the
information entered. The data can then be queried in the
Database using PHP WebServices or accessed from a file
archive that is “read-only” and updated with each database
entry upon submission of the document, by a PHP script
called by the .NET web service (Figure 3). The use

Figure 3. Data flow diagram.

Copyright © 2012 SciRes. JSEA

A Facilitated Interface to Generate a Combined Textual and Graphical Database System
Using Widely Available Software

Copyright © 2012 SciRes. JSEA

793

plication title, with name and date of birth of the appli-
cant as the field label permitting retrieval of the entire
document, which is stored as a data element (Figure 5).

of a single table database to hold xml data allows for a
flexible dynamic environment, capable of storing data
with any structure. This way the user does not have to
enforce structure upon entry. Instead the structure of the
database is applied on the back end, in this case the PHP
web service. The SQL database stores the version infor-
mation for each submission and facilitates the audit trail.
The database API allows for quick access to information
and the ability to query information within the xml. This
provides the ability to search through entered data and
compare data between documents given a defined set of
parameters facilitated by the PHP WebService upon re-
trieval.

4. Discussion

We have presented herein an approach to design of flexi-
ble applied databases incorporating graphical information.
The structure is controlled by entry routines which are
conventional narrative based and non-proprietary, typical
of word processing such as Microsoft Word. This natural
approach to creation of information contrasts with the
difficulty of custom design of databases to directly receive
data input. Applied databases are challenging to design.
If information is uncorrelated with no sequential organi-
zation, there is no disadvantage in database entry. How-
ever, if there is high correlation or defined associations in
the data items, it is much more difficult to design the
database to mimic the natural flow of the data. It is much
easier to create and document relational information in
the narrative domain than to build a custom database to
record the input.

We illustrate this approach with a simple construct: a
passport application form mimicking the actual forms
employed by the United States Department of State. These
forms have both text and graphic input, the most critical
items being a photograph of the applicant, and a signa-
ture, along with the official seal, and the signature of the
approving official. We have prepared a passport applica-
tion for several US presidents (Figure 4). The application
data is then submitted to the SQL Database. The original
application can be retrieved as by querying the ap- We selected InfoPath for the present exercise because

Figure 4. George Washington’s passport application.

A Facilitated Interface to Generate a Combined Textual and Graphical Database System
Using Widely Available Software

794

Figure 5. SQL output the three president applications, database elements are truncated due to space limitations.

it offers a highly available and non-proprietary user-friend-
ly front end. This approach separates the design of the
template from the data in the form, making the output file
clean and more useful. We could have designed a sub-
mission routine using Microsoft Word or an alternative
text editor. However, this would have required use of
supplementary code to provide certain desired functions.

We chose InfoPath purely based on our self imposed
constraint to minimize proprietary code by selection of
commercial software incorporating most required features.
This approach could have been used with other simple
form based programs. One of the powerful features of
our approach is the ability to recover the entire InfoPath
document by a query to the database. This permits us to

Copyright © 2012 SciRes. JSEA

A Facilitated Interface to Generate a Combined Textual and Graphical Database System
Using Widely Available Software

795

build a virtual file archiving system. In contrast to a file-
system, a database environment allows for better access
of data. File systems store files and other objects only as
data streams, indexed by directory and file names, with
limited information about the data stored in individual
files. Databases allow retrieval based on any attribute or
data-property (i.e. SQL columns). A database can search
through tables using queries, a feature absent from a file
system. The use of queries can then be implemented in
software applications to create a custom interface for the
retrieval of data. Previous implementations by this site
included a network share with pdf files titled with defined
identifiers, allowing the user to find required documents [7].
However, this method required that the user browse a
directory system populated with user defined folders to
add more identifying information. The search functional-
ity of this system was lacking, only allowing for the search
of user defined identifiers and not within file data ele-
ments themselves. The database method eliminates this
shortcoming while maintaining the same user defined
identifiers (as xml fields). Yet, the same defined identifi-
ers can be used as a query element to retrieve the entire
document and return it to the InfoPath environment for
editing operations.

The SQL database stores the version information for
each submission and facilitates the audit trail. The data-
base API allows for quick access to information and the
ability to query information within the xml. This provi-
des the ability to search through entered data and com-
pare data between documents given a defined set of pa-
rameters facilitated by the PHP WebService upon re-
trieval.

InfoPath is used because it offers a user-friendly front
end from which the user will enter data. It separates the
design of the template from the data in the form, making
the output file clean and more useful. The save file of an
InfoPath form is in native xml and can be read with any
text editor. This also makes it possible to input this xml
as a sting in the database table which can be read from
the database straight to InfoPath. The conversion of da-
tabase string to file is performed by a simple PHP script
which runs in the web browser, and xml files are created
by the database upon submission to provide access with-
out a web browser, the only downside being the amount
of customized software to view (InfoPath), transmit
(ASP.NET web service), store (SQL server), and retrieve
documents (PHP WebServices).

Databases also improve the ability for auditing com-
pared to file system approaches. The file system can only
tell you who, where, and when files were accessed or
changed. They have limited capabilities to capture what
was changed. Using tags on an immutable database (all
changes are new entries in a shadow table) no version is

ever lost and tighter control on who, what, when, where,
and why changes were made can be implemented.

InfoPath incorporates native support for Microsoft
SharePoint submission to a database. SharePoint provides a
web interface, through IIS, where forms can be accessed
or created. Native InfoPath forms can be made to submit
to a SharePoint document library mimicking a file system,
or to a SharePoint list, mimicking a database or spread
sheet. However, Sharepoint lacks certain features which
limit its usefulness for graphical applications. InfoPath
allows for an expanded use of controls in the creation
and use of forms (Table 1).

SharePoint allows for many of these controls but is
missing a key component when trying to submit fields
larger than 255 characters and does not allow for the
ability to use these controls including both text and pic-
ture/pen input in the same form. Sharepoint does not pro-
vide support for InfoPath’s binary data tools, like ink
picture controls. SharePoint lists also have a 255 charac-
ter limit and cannot store binary data as base64. If a
small b64 string was stored in a list, it would retain its
text quality. SharePoint offers no native support to de-
code the string and display it in its binary form. Further-
more, the Sharepoint document library approach doesn’t
incorporate a searchable xml database and suffers simi-
larly to a file system where data cannot be searched. In
addition, the Sharepoint listing is somewhat convoluted
and requires every field to be named similar to a pure
database approach.

The alternative to an integrated text graphics database
is a linked structure wherein the textual data base calls on
an image database with hyperlinks allowing access to
graphical items. This is a standard approach to graphical
data storage, which has the advantage of reducing pro-
cessing requirements. Our technique can be applied to
such a construct. However, the complexity of query gen-
eration makes this approach less desirable.

The original application can be retrieved as by query-

Table 1. InfoPath comparative advantages.

Controls InfoPath Sharepoint

Text box √ √

Check box √ √

Button √ √

Repeating section √ √

Hyperlink √ √

Repeating table √ √

File attachment √ √

Date picker √ √

Rich text box √ √

Combo box √

Ink picture √

Digital signatures √

Copyright © 2012 SciRes. JSEA

A Facilitated Interface to Generate a Combined Textual and Graphical Database System
Using Widely Available Software

Copyright © 2012 SciRes. JSEA

796

ing the application title, with name and date of birth of
the applicant as the field label permitting retrieval of the
entire document.

5. Conclusion

We have presented herein a first attempt at design of
facilitated data entry for flexible database operation, al-
lowing both graphical and text input. A key requirement
of our approach is that the database integration be dy-
namic, not simply storage based. We are able to retrieve
database elements for modification in a user friendly
narrative environment. All operations are logged in an
audit trail with date and time stamps. We have full ad-
ministrative control over the data entry operations, in-
cluding the ability to lock all or portions of the database.
A database management system allows unlimited storage
and retrieval of data. The limitation of the database is in
the loss of predefined architecture of the information
submitted to the system. The relation of data elements
which may exist in the human mind is still best main-
tained in structured narrative form. We have shown that
it is possible to maintain relationships by using flexible
structured interfaces for data input. The tools exist today
to allow graphical and text based information to coexist
in such interfaces. Most important, this strategy is based
on freely available popular software. Our approach is
non-proprietary offering facile database management to
general users. Future efforts should be directed at con-
structs which allow the full spectrum of media informa-
tion to be processed by database systems.

6. Acknowledgements

Portions of this paper were presented at the International
Conference and Exhibition on Biometrics & Biostatistics
5-7 March 2012, Omaha, USA.

REFERENCES
[1] L. Manovich, “Database as a Symbolic,” Convergence,

Vol. 5, No. 2, 1999, pp. 80-99.

[2] I. Snyder, “New Media and Cultural Form: Narrative
Versus,” In: A. Adams and S. Brindley, Eds., Teaching
English with ICT, Open University Press & McGraw Hill,
London, 2004, pp. 67-79.

[3] M. LeMay, “Reconsidering Database Form: Input,” 2005.
www.dichtung-digital.org/2005/2-Lemay.htm

[4] V. Castelli and L. D. Bergman, “Frontmatter and Index,
in Image Databases: Search and Retrieval of Digital Im-
agery,” John Wiley & Sons, Inc., New York, 2002.

[5] V. Castelli, “Progressive Search and Retrieval from Im-
age Databases,” In: A. Kent, Ed., Encyclopedia of Library
and Information Science, Marcel Dekker, Inc., New York,
2002, pp. 284-309.

[6] Z. Lin, B. S. He and B. Choi, “A Quantitative Summary
of XML Structures,” Conceptual Modeling–ER 2006, Sprin-
ger/Heidelberg, Berlin, 2006, pp. 228-240.
doi:10.1007/11901181_18

[7] A. Bansal, R. Chamberlain, S. Karr, S. Kwasa, B.
McLaughlin, B. Nguyen, M. Rendell, K. Schmit and C.
Smith, “A 21 CFR Part 11 Compliant Graphically Based
Electronic System for Clinical Research,” Journal of Me-
dical Systems, Vol. 36, No. 3, 2012, pp. 1661-1672.

http://dx.doi.org/10.1007/11901181_18

