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ABSTRACT 

In this paper, we identify a set of factors that may be used to forecast software productivity and software development 
time. Software productivity was measured in function points per person hours, and software development time was 
measured in number of elapsed days. Using field data on over 130 field software projects from various industries, we 
empirically test the impact of team size, integrated computer aided software engineering (ICASE) tools, software de-
velopment type, software development platform, and programming language type on the software development produc-
tivity and development time. Our results indicate that team size, software development type, software development plat-
form, and programming language type significantly impact software development productivity. However, only team size 
significantly impacts software development time. Our results indicate that effective management of software develop-
ment teams, and using different management strategies for different software development type environments may im-
prove software development productivity. 
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1. Introduction 

Competition in software industry has increased signifi-
cantly. One of the ways software companies can stay 
competitive is to improve software development produc- 
tivity of their software products. However, despite the 
advances in software development tools, development 
methodology and programming languages, research sh- 
ows that productivity improvements have either remain- 
ed the same or declined substantially [1]. 

Several studies in the literature have measured factors 
impacting either software productivity or software de-
velopment time [2,3]. Blackburn et al. [4] argue that soft-
ware productivity and software development time are not 
the same. For example, low productivity organizations can 
reduce the software development time by increasing the 
software development team size. While increasing the 
number of software developers to reduce software devel- 
opment time is an interesting option, Fried [5] argues that 
large teams increase the non-productive time due to in- 
creased communication and coordination requirements. 

Very few researchers have focused on developing mo- 
dels to understand the primary antecedents of software 

development productivity and software development time. 
In fact, we are not aware of any study that uses real- 
world data and investigates the impact of certain variab- 
les on both software development productivity and soft- 
ware development effort. For example, the Blackburn et 
al. [4] study uses survey data and measures managerial 
perceptions.  

Management of both software development producti- 
veity and software development time are of paramount 
importance. Effective management of software develop- 
ment productivity and software development time leads 
to a better competitive position for an organization [6]. In 
certain cases, managing software development time may 
lead to a lower likelihood of schedule overrun and litiga- 
tion due to violations of contractual agreements.  

In this paper we investigate the impact of team size, 
ICASE tools, software development platform, software 
development type, and type of programming language on 
software development productivity and software devel- 
opment time. We use a real-world data set of 130 differ-
ent software development projects. The projects in the data 
set were completed between years 1989-2001 in over 
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seven different countries. The data are used in many 
other studies and is publicly available from the Interna-
tional Software Benchmarking Standards Group [7-9].  

The rest of the article is organized as follows. First, us- 
ing the software engineering literature, we identify the 
factors that may impact the software development pro-
ductivity and software development time. Second, we de- 
scribe our data and empirically test the impact of the 
identified factors on software productivity and software 
development time. In the end, we provide a summary, li- 
mitations and future extensions of the research. 

1.1. Relevant Literature and Hypotheses 

Very few researchers have focused on developing models 
to understand the primary antecedents of software de-
velopment productivity and software development time. 
Subramanian and Zarnich [10] proposed a theoretical 
model that causally predicts the software productivity. 
The Subramanian and Zarnich [10] model consists of 
three independent variables: ICASE tools, systems deve- 
lopment method and ICASE tool experience. Using real- 
world data on several software projects from an organi- 
zation, Subramanian and Zarnich [10] empirically vali- 
dated their model. Foss [11] proposed four essential as- 
pects for reducing software development time tools, me- 
thodology, people and effective management. Given that 
tools, methodology and people impact both software 
productivity and development time, we investigated the 
impact of these factors on software productivity and de- 
velopment time. 

1.1.1. Tools and Methodology 
Programming methods and tools are known to have an 
impact on the software development effort. Programming 
methods consist of the programming language, the deve- 
lopment platform and the development methodology [10, 
12,13].  

Programming, project management and design tools— 
hereafter called development tools—do have an impact on 
software productivity and development time. Develop-
ment tools have been used to improve analyst and pro-
grammer productivity, improve software quality, reduce 
maintenance, and increase management control over the 
software development process. Automated software de-
velopment tools fall into three categories: programming 
support tools, design technique tools and project man-
agement tools [14]. There is qualitative data available 
that supports the development tool type as having an im-
pact on the software effort and productivity [15]. Other 
researchers have supported these claims [16-18]. 

Programming languages are the primary methods for 
creating software. The basic challenge for business soft- 
ware builders is to build reliable software as quickly as 
possible. Fourth generation languages automate much of 

the work normally associated with developing software 
applications [19]. The literature on the impact of lan-
guage type on software productivity is inconclusive. Bla- 
ckburn et al. [4] reported that language type does have an 
impact on software development productivity. However, 
Blackburn et al. [2] reported that language type does not 
have an impact on productivity. One of the reasons why 
programming languages might not have an impact on 
effort is that some of the programming languages, such 
as C++, might be more complex than some of the other 
3GLs. 4GLs and recent object-oriented programming 
languages, while complex, provide many functionalities 
that might lead to lower effort. For example, Microsoft 
Foundation Classes (MFC) in Visual C++ and JAVA 
Swing classes in Java programming provide several re-
usable classes that might be used to design graphical user 
interfaces efficiently. 3GL languages don’t provide such 
extensive capabilities; some of the complex visual inter-
faces are only possible in 4GL languages.  

This leads to the following hypothesis: 
Hypothesis 1: The use of 4GL programming language 

will increase software development productivity and re-
duce software development time. 

Integrated CASE (ICASE) tools are designed to pro-
vide support for all phases of the systems development 
life cycle [10]. The capabilities of ICASE tools include 
the following:  

1) Graphical capabilities for modeling user require-
ments, and error and consistency checking. 

2) Prototyping and system simulation capabilities. 
3) Code generating capabilities. 
4) Code testing, code validation, and code reuse capa-

bilities. 
5) Reengineering, reverse engineering, data dictionary 

and database interface capabilities. 
6) Management information acquisition, storing, ma- 

naging and reporting capabilities. 
Banker and Kauffmann [20] showed that the use of IC- 

ASE tools has a significant impact on productivity. Sub- 
ramanian and Zarnich [10], confirming the positive im- 
pact of ICASE tools on productivity, showed that no sig-
nificant differences in productivity are observant for dif- 
ferent types of ICASE tools. Subramanian and Zarnich 
[10] mentioned that programmer experience with ICASE 
tools is an important factor in improving productivity. 
Vessey et al. [21] argued that the use of ICASE tools 
alone cannot warrant productivity improvements, and 
programmers trained in the use of ICASE tools are cruci- 
al for productivity improvements. Blackburn et al. [2] 
speculating on the impact of CASE tools, mentioned that 
increasing project complexity and size are obscuring the 
advantages that CASE tools bring. We propose following 
hypothesis: 
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Hypothesis 2: The use of ICASE tools will increase 
software development productivity and lower software 
development time. 

1.1.2. Team Size 
Team size, as a factor impacting software effort and pro- 
ductivity, has been used in several studies [3,7,22-25]. 
While team size seems to play a role, its impact is not 
clearly established. In a global survey of different coun- 
tries, Blackburn et al. [2] argued that smaller teams 
might be more productive. However, the authors said that 
the assertions about small team size and productivity are 
rarely supported by anecdotal evidence. Microsoft used a 
strategy of employing small teams of star developers and 
found that the strategy, when confronted with the market 
realities of marketing, developing, and maintaining large 
mass-market applications, does not work well [26]. Large 
team size might inhibit productivity due to inefficiencies 
created by the problems of coordination and communica- 
tion between the members of the team [27,28]. However, 
larger team size during the customers’ requirements 
phase might avoid ambiguity, which might improve pro- 
ductivity. Banker and Kemerer [29] argued that software 
projects might benefit from larger team size as special- 
ized personnel with expertise in certain areas might im- 
prove overall productivity. 

Smith et al. [12], in their empirical study on the impact 
of team size on software effort, using an object-oriented 
programming language-based system, showed that team 
size does not have a significant impact on software effort. 
However, Angelis et al. [7], in multi-organizational and 
multi-project data, claimed that team size does have an 
effect on software development effort. Since our data is 
similar to Angelis et al. [7] data, we have the following 
hypothesis: 

Hypothesis 3: An increase in team size will decrease 
software development productivity and increase software 
development time. 

1.1.3. Computer Platform 
Computer platform, as a factor impacting software deve- 
lopment time and productivity, has been used in several 
studies [30,31]. The computer platform refers to the both 
the machine complex and infrastructure software and is a 
function of execution time constraints, main storage con- 
straints and platform volatility [30]. The platform char- 
acteristics in which application software development 
programming needs to be accomplished is determined by 
a target machine such as a mainframe, minicomputer, or 
personal computer [32]. Platform difficulty (factors) is 
rated from very low to very high and can be used to deter- 
mine software development productivity and elapsed time 
[30].  

In the modern client-server architecture, personal com- 
puters are used as clients and small or mid-range com- 
puters are used as servers [33]. Mainframe computers 
continue to be used for centralized data management 
functions midrange computers have become popular in 
distributed data processing [34]. While the older legacy 
systems are run on mainframes, the newer systems runn- 
ing on the personal computer or midrange platforms fun- 
ction to interact with the legacy systems. Based on the 
foregoing discussion, we propose following hypothesis: 

Hypothesis 4: An increase in computer platform com-
plexity will increase software development productivity 
and lower software development time. 

1.1.4. Software Development Type 
It is a well documented that the costs of enhancing soft-
ware applications to accommodate new and evolving 
user requirements is significant [35]. Software develop- 
ment can fall into three major types. These categories 
include new, redevelopment and enhancement software 
types. According to ISBSG standards, new development 
types mean that a full analysis of the application area is 
performed, followed by the complete development life 
cycle, (planning/feasibility, analysis, design, construc- 
tion and implementation). An example of a new develop- 
ment type may be a project that delivers new function to 
the business or client. The project addresses an area of 
business, (or provides a new utility), which has not been 
addressed before or provides total replacement of an exi- 
sting system with inclusion of new functionality. In the 
re-development of an existing application, the functional 
requirements of the application are known and will re- 
quire minimum or no have no changes. Re-development 
may involve a change to either the hardware or software 
platform. Automated tools may be used to generate the 
application. This includes a project to re-structure or re- 
engineer an application to improve efficiency on the sa- 
me hardware or software platform. For re-development, 
normally only technical analysis is required. Enhance- 
ment changes are development types made to an existing 
application where new functionality has been added, or 
existing functionality has been changed or deleted. This 
would include adding a module to an existing application, 
irrespective of whether any of the existing functionality 
is changed or deleted. Enhancements do not have errors 
but require significant costs for system upgrades [36]. 
Adding, changing and deleting software functionality to 
adapt to new and evolving business requirements is the 
foundation of software enhancements [35]. Software 
volatility is a factor that drives enhancement costs and 
errors [37,38]. Further, there is an opportunity to intro- 
duce a new series of errors every time an application is 
modified [39]. We propose following hypothesis:  
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Hypothesis 5: An increase in software volatility will 
decrease software development productivity and increase 
software development time. 

Manova is used to test the resulting model seen in 
Figure 1. 

2. Data and Experiments 

We obtained the data on 1238 software projects from In- 
ternational Software Benchmarking Standards Group (IS- 
BSG). The ISBSG (release 7) data are used by several 
companies for benchmarking software projects and are 
available in the public domain. The ISBSG procedures 
encourage software development teams to submit their 
project data to the repository in return for a free report, 
which graphically benchmarks their projects against si- 
milarly profiled projects in the ISBSG repository [7]. The 
software project data typically are submitted by the soft- 
ware project manager, who completes a series of special 
ISBSG data validation forms to report the confidence 
he/she has in the information he/she provides. ISBSG has 
developed a special mutually exclusive data quality rat-
ing that reflects the quality of data related to any given 
project. Each project is assigned a data quality rating of 
A, B, and C to denote the following: 

 A = The project data satisfies all the criteria for 
seemingly sound data. 

 B = The project data appears fundamentally 
sound, but some data attributes might not be fun- 
damentally sound. 

 C = The project data has some fundamental short- 
comings. 

Companies participating in ISBSG benchmarking ac- 
quired project data in several different ways. FP data on 
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Figure 1. Determinants of elapsed software development 
time and productivity. 

the projects were acquired mostly by an automated proc- 
ess (about 40%) or obtained from the development tools 
(about 21%). The software effort data were mostly re- 
corded (about 59%). In certain cases, the software effort 
data were derived from the actual project cost (about 13%). 
In many cases, the data acquisition procedures were miss-
ing or unknown. 

The software projects in ISBSG release 7 data came 
from 20 different countries. Figure 2 illustrates the major 
data-contributing countries. The top three known contri- 
buting countries were the United States, Australia and 
Canada. Over 97% of the projects were completed be-
tween the years 1989-2001. Most of the projects (about 
50%) were completed between the years 1999-2001. 
Figure 3 illustrates the data quality rating of the ISBSG 
release 7 data on the 1238 projects, and Figure 4 illus-
trates the industry type distribution for the 1238 projects. 

The ISBSG data set included data on integrated CASE 
tools, programming languages, development type, de-
velopment platform, elapsed time, productivity and team 
size. Of the total 1238 software projects, only 138 pro-
jects had complete data on all five independent and de-
pendent variables for investigating elapsed time and pro- 
ductivity. For the elapsed time and productivity model, 
we used all 138 projects, respectively, in our analysis. 

 

 

Figure 2. ISBSG release 7 project data origin by country. 
 

 

Figure 3. Data quality distribution of the ISBSG release 7 
project data. 
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7.8% for productivity model. All other projects used up- 
per CASE tools, no CASE tools or lower CASE tools. 

 

Figure 7 illustrates project distribution by industry type 
and Figure 8 illustrates data quality for the 138 projects 
in the elapsed time and productivity model. The majority 
of projects, about 22.2%, were from the banking industry 
for the elapsed time and productivity model. When com- 
paring the industry distribution and data quality for the 
138 projects with the original set of 1238 projects, we see 
that the data quality distribution for the 138 projects is 
very similar to the data quality distribution for the ori- 
ginal 1238 projects. For the elapsed time and produc- 
tiveity model, 65.9% was A quality and 34.1% was B 
quality.  

Figure 9 illustrates project distribution by platform type 
for the elapsed time and productivity models. Figure 10 
illustrates development type for the 138 elapsed time and 
productivity projects respectively. The majority of platfo- 
rms, about 47.62%, were main frames for the elapsed 
time and productivity model. The majority of develop- 
ment types, about 69%, were new development for the 
elapsed time and productivity model.  

Figure 4. Industry type distribution in the ISBSG release 7 
project data. 

 
Figure 5 illustrates the distribution of projects by diff- 

erent programming languages and Figure 6 illustrates C- 
ASE tool types. The majority of the projects used a four- 
th generation programming language. ICASE tools were 
used in only about 7.9% of the elapsed time model and  

 

  

Figure 6. Distribution of projects by type of CASE tool used 
for elapsed time and productivity. 

Figure 5. Distribution of projects by type of programming 
language for elapsed time and productivity. 
 

 
 

Figure 7. Distribution of projects by industry type for ela- 
psed time and productivity. Figure 8. Data quality distribution elapsed time. 
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Figure 9. Development platform distribution for elapsed 
time and productivity. 
 

 

Figure 10. Development type distribution for elapsed time 
and productivity. 

 
We used the Multiple Analysis of Variance (MA- 

NOVA) procedure to test all hypotheses. Table 1 illus- 
trates the results of the multivariate tests for the five in- 
dependent and the two dependent variables, elapsed time 
and productivity. The Pillar’s Trace, Wilk’s Lamda, Ho- 
telling’s Trace and Roy’s Largest Root were significant 
at the 0.05 level of significance for development type. 

Pillar’s Trace, Wilk’s Lamda, Hotelling’s Trace and 
Roy’s Largest Root were significant at the 0.000 level of 
significance for development platform and team size and 
language generation. Pillar’s Trace, Wilk’s Lamda, Ho- 
telling’s Trace and Roy’s Largest Root were not signify- 
cant for I-CASE. 

Table 2 illustrates the tests of between-subjects effects 
 

Table 1. Multivariate tests (b). 

Effect  Value F(a) Hypothesis degree fr Error df Sig. 

Pillai’s Trace 0.646 99.581 2.000 109.000 0.000* 

Wilks’ Lambda 0.354 99.581 2.000 109.000 0.000* 

Hotelling’s Trace 1.827 99.581 2.000 109.000 0.000* 
Intercept 

Roy’s Largest Root 1.827 99.581 2.000 109.000 0.000* 

Pillai’s Trace 0.098 2.825 4.000 220.000 0.026** 

Wilks’ Lambda 0.902 2.870 4.000 218.000 0.024** 

Hotelling’s Trace 0.108 2.913 4.000 216.000 0.022** 
Development type  

Roy’s Largest Root 0.106 5.832 2.000 110.000 0.004* 

Pillai’s Trace 0.326 10.720 4.000 220.000 0.000* 

Wilks’ Lambda 0.675 11.830 4.000 218.000 0.000* 

Hotelling’s Trace 0.479 12.940 4.000 216.000 0.000* 
Development platform 

Roy’s Largest Root 0.475 26.129 2.000 110.000 0.000* 

Pillai’s Trace 0.010 0.532 2.000 109.000 0.589 

Wilks’ Lambda 0.990 0.532 2.000 109.000 0.589 

Hotelling’s Trace 0.010 0.532 2.000 109.000 0.589 
I-CASE tool 

Roy’s Largest Root 0.010 0.532 2.000 109.000 0.589 

Pillai’s Trace 0.086 5.143 2.000 109.000 0.007* 

Wilks’ Lambda 0.914 5.143 2.000 109.000 0.007* 

Hotelling’s Trace 0.094 5.143 2.000 109.000 0.007* 
Generation 

Roy’s Largest Root 0.094 5.143 2.000 109.000 0.007* 

Pillai’s Trace 0.693 2.775 42.000 220.000 0.000* 

Wilks’ Lambda 0.410 2.916 42.000 218.000 0.000* 

Hotelling’s Trace 1.189 3.058 42.000 216.000 0.000* 
Team Size 

Roy’s Largest Root 0.916 4.799 21.000 110.000 0.000* 
* significant at the 0.01 level; ** significant at the 0.05 level; a Exact statistic; b Design: Intercept + Development type + Development platform + I-CASE tool + 
Generation + Team Size. 
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Table 2. Tests of between-subjects effects. 

Source Dependent Variable Type III Sum of Squares df Mean Square F Sig. 

Project Elapsed Time 1770.704a 27 65.582 1.945 0.009* 
Corrected Model 

Productivity 115.786b 27 4.288 8.359 0.000* 

Project Elapsed Time 1658.895 1 1658.895 49.204 0.000* 
Intercept 

Productivity 83.106 1 83.106 161.990 0.000* 

Project Elapsed Time 104.390 2 52.195 1.548 0.217 
Development Type 

Productivity 4.802 2 2.401 4.680 0.011** 

Project Elapsed Time 89.171 2 44.585 1.322 0.271 
Development Platform 

Productivity 26.252 2 13.126 25.585 0.000* 

Project Elapsed Time 6.344 1 6.344 0.188 0.665 
I-CASE tool 

Productivity 0.479 1 0.479 0.934 0.336 

Project Elapsed Time 28.023 1 28.023 0.831 0.364 
Generation 

Productivity 4.705 1 4.705 9.171 0.003* 

Project Elapsed Time 1295.088 21 61.671 1.829 0.024** 
Team Size 

Productivity 48.736 21 2.321 4.524 0.000* 

Project Elapsed Time 3708.616 110 33.715   
Error 

Productivity 56.433 110 0.513   

Project Elapsed Time 15219.960 138    
Total 

Productivity 589.846 138    

Project Elapsed Time 5479.320 137    
Corrected Total 

Productivity 172.219 137    

* significant at the .01 level; ** significant at the .05 level; a R Squared = 0.323 (Adjusted R Squared = 0.157); b R Squared = 0.672 (Adjusted R Squared = 0.592). 

 
in the elapsed time and productivity model. It also illus-
trates the results of the overall model fit. The results indi- 
cate that the overall model fit was satisfactory. The F- 
value was 8.359 for productivity and 1.945 for elapsed 
time. The model fit was significant at the 0.01 level of 
significance for both elapsed time and productivity. The 
R-square for elapsed time was 0.323. This indicates that 
the independent variables explain about 32% of the vari- 
ance in the dependent variable. The R-square for pro- 
ductivity was 0.672. This indicates that the independent 
variables explain about 67% of the variance in the de- 
pendent variable.  

The results provide support for hypothesis one. The 
coefficient for 4GL is significant for productivity (p = 
0.003) and not significant for elapsed time (p = 0.364). 
This indicates that the use of 4GL programming langua- 
ges do reduce software elapsed time and increase produc- 
tivity. For hypothesis two, no significant impact of IC- 
ASE tools was found on the software elapsed develop- 
ment time or productivity. This indicates that use of IC- 
ASE tools do not have an impact on the software devel- 
opment elapsed time or productivity. Hypothesis three 
was supported at the 0.05 level of significance, for elap- 
sed time, indicating that the increase in team size will 
lead to an increase in the software development elapsed 

time (p = 0.024). However, productivity was also suppor- 
ted at the 0.000 level of significance indicating that the 
increase in team size will lead to an increase in producti- 
vity (p = 0.000). These results may suggest a nonlinear 
relationship is at work here. Hypothesis four was sup- 
ported. The coefficient for platform is significant for 
productivity (p = 0.000) and not significant for elapsed 
time (p = 0.271). This indicates that the platform used 
has an impact of reducing software elapsed time and in- 
crease productivity. Hypothesis five, which investigated 
development type volatility, was supported, indicating 
that enhanced development lead to increases in software 
development elapsed time. The coefficient for volatility 
is significant for productivity (p = 0.011) and not signi- 
ficant for elapsed time (p = 0.217). This indicates that the 
development type volatility has an impact of reducing 
software elapsed time and increase productivity.  

In order to increase the confidence on the pair-wise 
comparisons for development type volatility and platform 
type, the Tukey method was utilized in the elapsed time 
and productivity model. Post hoc tests are not performed 
for generation because there are fewer than three groups. 
Post hoc tests are not performed for LNSIZE because at 
least one group has fewer than two cases. These results 
can be seen in Tables 3 and 4. 
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Table 3. Mean differences for development type volatility 
for productivity. 

 Redevelopment Enhancement 

Enhancement 0.330 (p = 0.548)  

New 0.960 (p = 0.026)** 0.270 (p = 0.127) 

** The mean difference is significant at the 0.05 level. 

 
Table 4. Mean difference for platform type for productivity. 

 Main Frame Personal Computer

Personal Computer 1.304 (p = 0.000)*  

Mid-Range 0.321 (p = 0.115) 0.983 (p = 0.000)* 

* The mean difference is significant at the 0.01 level. 

3. Discussion, Limitations and Conclusions 

We have investigated the factors impacting the software 
elapsed time and productivity. Using the existing litera- 
ture, we identified several variables that might impact so- 
ftware elapsed time and productivity. Further, using a da- 
ta set of 138 projects for elapsed time and productivity, 
we empirically tested the impact of several factors on 
these dependent variables.  

Tabachnick and Fidell [40], state that for multiple 
continuous dependent variables, multiple discrete inde- 
pendent variables and some continuous independent va- 
riables, a researcher should run Factorial MANCOVA. 
MANOVA works best with either highly negatively cor- 
related dependent variables or moderately correlated de- 
pendent variables when correlation is less than 0.6. Since 
our correlation between productivity and elapsed time is 
a negative number, greater than 0.60, the use of MA- 
NOVA is more powerful than using two ANOVAs.  

The results provide support for hypothesis one. The 
coefficient for 4GL is significant for productivity (p = 
0.003) and not significant for elapsed time (p = 0.364). 
This indicates that the use of 4GL programming lang- 
uages do reduce software elapsed time and increase pro- 
ductivity. For hypothesis two, no significant impact of 
ICASE tools was found on the software elapsed deve- 
lopment time or productivity. This indicates that use of 
ICASE tools do not have an impact on the software 
development elapsed time or productivity. Hypothesis th- 
ree was supported at the 0.05 level of significance, for 
elapsed time, indicating that the increase in team size 
will lead to an increase in the software development ela- 
psed time (p = 0.024). However, productivity was also 
supported at the 0.000 level of significance indicating 
that the increase in team size will lead to an increase in 
productivity (p = 0.000). These results may suggest a 

nonlinear relationship is at work here. Hypothesis four 
was supported. The coefficient for platform is significant 
for productivity (p = 0.000) and not significant for ela- 
psed time (p = 0.271). This indicates that the platform 
used has an impact of reducing software elapsed time and 
increase productivity. Hypothesis five, which inves- 
tigated development type volatility, was supported, indi- 
cating that enhanced development lead to increases in 
software development elapsed time. The coefficient for 
volatility is significant for productivity (p = 0.011) and 
not significant for elapsed time (p = 0.217). This indi- 
cates that the development type volatility has an impact 
of reducing software elapsed time and increase pro- 
ductivity.  

ICASE tools have been known to have significant im- 
pact on productivity [10,20]. In our case, the non-si- 
gnificant impact of ICASE tools on elapsed time and pro- 
ductivity could be because of several reasons. First, over 
90% of our data set did not contain ICASE tools, and the 
limited number of ICASE tools might have jeopardized 
the statistical significance. Second, we did not have in- 
formation on the programmers’ ICASE tool experience. 
Subramanian and Zarnich [10] indicated that ICASE tool 
experience is one of the contributing factors for lower 
productivity in ICASE tool projects. Kemerer [41], high- 
lighting the importance of ICASE tool experience, wrote 
the following.  

Integrated CASE tools have raised the stakes of the 
learning issue. Because these tools cover the entire life 
cycle, there is more to learn, and therefore the study of 
learning—and the learning-curve phenomenon—is be- 
coming especially relevant.  

Thus, we believe that lack of information about IC- 
ASE tool experience might have impacted the signi- 
ficance results between the ICASE tool and software pro- 
ject elapsed time and productivity effort hypotheses.  

The type of programming language did not have an 
impact on software project elapsed time (p = 0.364), but 
did impact productivity (p = 0.003). The descriptive stati- 
stics of the data indicate that about 51% of the projects 
were developed in 4GL languages, and 49% of the pro- 
jects were developed in 3GL programming languages. 
Thus, we believe that our data was not very biased for 
any particular generation of programming languages. The 
insignificance of programming language on software 
project elapsed time could be due to several reasons. The 
first reason might be that the programmers’ experience in 
programming language might play a role. A few lang- 
uages are more difficult to learn than others. Second, the 
complexity of a language type might compensate for any 
other advantages that it might offer, such as code and 
design reuse. We observed very interesting results in reg- 
ard to team size. First, an increase in team size generally 
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leads to higher software project elapsed time and decrea- 
sed productivity. This increase in software project elap- 
sed time might be due to increased communication requi- 
rements that in turn lead to decreased overall produc- 
tivity. 

The heterogeneity of software project elapsed time, de- 
velopment effort recording techniques, and data quality of 
projects improve the external validity of our study at the 
expense of internal validity of the study. Given that our 
data came from multiple projects and multiple organiza- 
tions, heterogeneity was expected. We do, however, note 
that there may be certain limitations related to the inter- 
nal validity of the study. There may be other factors that 
may limit the generalization of the results of our study. 
First, we had very few ICASE tools in our data set, whi- 
ch might have had an impact on both internal and exter- 
nal validity of hypotheses related to ICASE tools. Second, 
we did not have programmers’ experience information on 
ICASE tools and programming languages, which is kn- 
own to have an impact on the software development ef- 
fort. Third, the non-parametric dataset and parametric 
regression model might have provided us a lower fit, and 
the regression results might in fact be improved by using 
non-parametric models. Since our data is available in the 
public domain, we believe that future research may add- 
ress some of these issues.  
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