
Journal of Software Engineering and Applications, 2011, 4, 609-618
doi:10.4236/jsea.2011.411072 Published Online November 2011 (http://www.SciRP.org/journal/jsea)

Copyright © 2011 SciRes. JSEA

609

Knowledge Management of Software Productivity
and Development Time

James A. Rodger, Pankaj Pankaj, Ata Nahouraii

MIS and Decision Sciences, Eberly College of Business & Information Technology, Indiana University of Pennsylvania, Indiana,
USA.
Email: jrodger@iup.edu

Received April 15th, 2011; revised September 20th, 2011; accepted September 30th, 2011.

ABSTRACT

In this paper, we identify a set of factors that may be used to forecast software productivity and software development
time. Software productivity was measured in function points per person hours, and software development time was
measured in number of elapsed days. Using field data on over 130 field software projects from various industries, we
empirically test the impact of team size, integrated computer aided software engineering (ICASE) tools, software de-
velopment type, software development platform, and programming language type on the software development produc-
tivity and development time. Our results indicate that team size, software development type, software development plat-
form, and programming language type significantly impact software development productivity. However, only team size
significantly impacts software development time. Our results indicate that effective management of software develop-
ment teams, and using different management strategies for different software development type environments may im-
prove software development productivity.

Keywords: Software Engineering, Software Metrics, Fourth Generation Languages, CASE Tools, Field Study, Tools

and Techniques, Models And Principles, Team Size, Volatility, Development Platform and Type,
Productivity, Elapsed Development Time

1. Introduction

Competition in software industry has increased signifi-
cantly. One of the ways software companies can stay
competitive is to improve software development produc-
tivity of their software products. However, despite the
advances in software development tools, development
methodology and programming languages, research sh-
ows that productivity improvements have either remain-
ed the same or declined substantially [1].

Several studies in the literature have measured factors
impacting either software productivity or software de-
velopment time [2,3]. Blackburn et al. [4] argue that soft-
ware productivity and software development time are not
the same. For example, low productivity organizations can
reduce the software development time by increasing the
software development team size. While increasing the
number of software developers to reduce software devel-
opment time is an interesting option, Fried [5] argues that
large teams increase the non-productive time due to in-
creased communication and coordination requirements.

Very few researchers have focused on developing mo-
dels to understand the primary antecedents of software

development productivity and software development time.
In fact, we are not aware of any study that uses real-
world data and investigates the impact of certain variab-
les on both software development productivity and soft-
ware development effort. For example, the Blackburn et
al. [4] study uses survey data and measures managerial
perceptions.

Management of both software development producti-
veity and software development time are of paramount
importance. Effective management of software develop-
ment productivity and software development time leads
to a better competitive position for an organization [6]. In
certain cases, managing software development time may
lead to a lower likelihood of schedule overrun and litiga-
tion due to violations of contractual agreements.

In this paper we investigate the impact of team size,
ICASE tools, software development platform, software
development type, and type of programming language on
software development productivity and software devel-
opment time. We use a real-world data set of 130 differ-
ent software development projects. The projects in the data
set were completed between years 1989-2001 in over

Knowledge Management of Software Productivity and Development Time 610

seven different countries. The data are used in many
other studies and is publicly available from the Interna-
tional Software Benchmarking Standards Group [7-9].

The rest of the article is organized as follows. First, us-
ing the software engineering literature, we identify the
factors that may impact the software development pro-
ductivity and software development time. Second, we de-
scribe our data and empirically test the impact of the
identified factors on software productivity and software
development time. In the end, we provide a summary, li-
mitations and future extensions of the research.

1.1. Relevant Literature and Hypotheses

Very few researchers have focused on developing models
to understand the primary antecedents of software de-
velopment productivity and software development time.
Subramanian and Zarnich [10] proposed a theoretical
model that causally predicts the software productivity.
The Subramanian and Zarnich [10] model consists of
three independent variables: ICASE tools, systems deve-
lopment method and ICASE tool experience. Using real-
world data on several software projects from an organi-
zation, Subramanian and Zarnich [10] empirically vali-
dated their model. Foss [11] proposed four essential as-
pects for reducing software development time tools, me-
thodology, people and effective management. Given that
tools, methodology and people impact both software
productivity and development time, we investigated the
impact of these factors on software productivity and de-
velopment time.

1.1.1. Tools and Methodology
Programming methods and tools are known to have an
impact on the software development effort. Programming
methods consist of the programming language, the deve-
lopment platform and the development methodology [10,
12,13].

Programming, project management and design tools—
hereafter called development tools—do have an impact on
software productivity and development time. Develop-
ment tools have been used to improve analyst and pro-
grammer productivity, improve software quality, reduce
maintenance, and increase management control over the
software development process. Automated software de-
velopment tools fall into three categories: programming
support tools, design technique tools and project man-
agement tools [14]. There is qualitative data available
that supports the development tool type as having an im-
pact on the software effort and productivity [15]. Other
researchers have supported these claims [16-18].

Programming languages are the primary methods for
creating software. The basic challenge for business soft-
ware builders is to build reliable software as quickly as
possible. Fourth generation languages automate much of

the work normally associated with developing software
applications [19]. The literature on the impact of lan-
guage type on software productivity is inconclusive. Bla-
ckburn et al. [4] reported that language type does have an
impact on software development productivity. However,
Blackburn et al. [2] reported that language type does not
have an impact on productivity. One of the reasons why
programming languages might not have an impact on
effort is that some of the programming languages, such
as C++, might be more complex than some of the other
3GLs. 4GLs and recent object-oriented programming
languages, while complex, provide many functionalities
that might lead to lower effort. For example, Microsoft
Foundation Classes (MFC) in Visual C++ and JAVA
Swing classes in Java programming provide several re-
usable classes that might be used to design graphical user
interfaces efficiently. 3GL languages don’t provide such
extensive capabilities; some of the complex visual inter-
faces are only possible in 4GL languages.

This leads to the following hypothesis:
Hypothesis 1: The use of 4GL programming language

will increase software development productivity and re-
duce software development time.

Integrated CASE (ICASE) tools are designed to pro-
vide support for all phases of the systems development
life cycle [10]. The capabilities of ICASE tools include
the following:

1) Graphical capabilities for modeling user require-
ments, and error and consistency checking.

2) Prototyping and system simulation capabilities.
3) Code generating capabilities.
4) Code testing, code validation, and code reuse capa-

bilities.
5) Reengineering, reverse engineering, data dictionary

and database interface capabilities.
6) Management information acquisition, storing, ma-

naging and reporting capabilities.
Banker and Kauffmann [20] showed that the use of IC-

ASE tools has a significant impact on productivity. Sub-
ramanian and Zarnich [10], confirming the positive im-
pact of ICASE tools on productivity, showed that no sig-
nificant differences in productivity are observant for dif-
ferent types of ICASE tools. Subramanian and Zarnich
[10] mentioned that programmer experience with ICASE
tools is an important factor in improving productivity.
Vessey et al. [21] argued that the use of ICASE tools
alone cannot warrant productivity improvements, and
programmers trained in the use of ICASE tools are cruci-
al for productivity improvements. Blackburn et al. [2]
speculating on the impact of CASE tools, mentioned that
increasing project complexity and size are obscuring the
advantages that CASE tools bring. We propose following
hypothesis:

Copyright © 2011 SciRes. JSEA

Knowledge Management of Software Productivity and Development Time 611

Hypothesis 2: The use of ICASE tools will increase
software development productivity and lower software
development time.

1.1.2. Team Size
Team size, as a factor impacting software effort and pro-
ductivity, has been used in several studies [3,7,22-25].
While team size seems to play a role, its impact is not
clearly established. In a global survey of different coun-
tries, Blackburn et al. [2] argued that smaller teams
might be more productive. However, the authors said that
the assertions about small team size and productivity are
rarely supported by anecdotal evidence. Microsoft used a
strategy of employing small teams of star developers and
found that the strategy, when confronted with the market
realities of marketing, developing, and maintaining large
mass-market applications, does not work well [26]. Large
team size might inhibit productivity due to inefficiencies
created by the problems of coordination and communica-
tion between the members of the team [27,28]. However,
larger team size during the customers’ requirements
phase might avoid ambiguity, which might improve pro-
ductivity. Banker and Kemerer [29] argued that software
projects might benefit from larger team size as special-
ized personnel with expertise in certain areas might im-
prove overall productivity.

Smith et al. [12], in their empirical study on the impact
of team size on software effort, using an object-oriented
programming language-based system, showed that team
size does not have a significant impact on software effort.
However, Angelis et al. [7], in multi-organizational and
multi-project data, claimed that team size does have an
effect on software development effort. Since our data is
similar to Angelis et al. [7] data, we have the following
hypothesis:

Hypothesis 3: An increase in team size will decrease
software development productivity and increase software
development time.

1.1.3. Computer Platform
Computer platform, as a factor impacting software deve-
lopment time and productivity, has been used in several
studies [30,31]. The computer platform refers to the both
the machine complex and infrastructure software and is a
function of execution time constraints, main storage con-
straints and platform volatility [30]. The platform char-
acteristics in which application software development
programming needs to be accomplished is determined by
a target machine such as a mainframe, minicomputer, or
personal computer [32]. Platform difficulty (factors) is
rated from very low to very high and can be used to deter-
mine software development productivity and elapsed time
[30].

In the modern client-server architecture, personal com-
puters are used as clients and small or mid-range com-
puters are used as servers [33]. Mainframe computers
continue to be used for centralized data management
functions midrange computers have become popular in
distributed data processing [34]. While the older legacy
systems are run on mainframes, the newer systems runn-
ing on the personal computer or midrange platforms fun-
ction to interact with the legacy systems. Based on the
foregoing discussion, we propose following hypothesis:

Hypothesis 4: An increase in computer platform com-
plexity will increase software development productivity
and lower software development time.

1.1.4. Software Development Type
It is a well documented that the costs of enhancing soft-
ware applications to accommodate new and evolving
user requirements is significant [35]. Software develop-
ment can fall into three major types. These categories
include new, redevelopment and enhancement software
types. According to ISBSG standards, new development
types mean that a full analysis of the application area is
performed, followed by the complete development life
cycle, (planning/feasibility, analysis, design, construc-
tion and implementation). An example of a new develop-
ment type may be a project that delivers new function to
the business or client. The project addresses an area of
business, (or provides a new utility), which has not been
addressed before or provides total replacement of an exi-
sting system with inclusion of new functionality. In the
re-development of an existing application, the functional
requirements of the application are known and will re-
quire minimum or no have no changes. Re-development
may involve a change to either the hardware or software
platform. Automated tools may be used to generate the
application. This includes a project to re-structure or re-
engineer an application to improve efficiency on the sa-
me hardware or software platform. For re-development,
normally only technical analysis is required. Enhance-
ment changes are development types made to an existing
application where new functionality has been added, or
existing functionality has been changed or deleted. This
would include adding a module to an existing application,
irrespective of whether any of the existing functionality
is changed or deleted. Enhancements do not have errors
but require significant costs for system upgrades [36].
Adding, changing and deleting software functionality to
adapt to new and evolving business requirements is the
foundation of software enhancements [35]. Software
volatility is a factor that drives enhancement costs and
errors [37,38]. Further, there is an opportunity to intro-
duce a new series of errors every time an application is
modified [39]. We propose following hypothesis:

Copyright © 2011 SciRes. JSEA

Knowledge Management of Software Productivity and Development Time 612

Hypothesis 5: An increase in software volatility will
decrease software development productivity and increase
software development time.

Manova is used to test the resulting model seen in
Figure 1.

2. Data and Experiments

We obtained the data on 1238 software projects from In-
ternational Software Benchmarking Standards Group (IS-
BSG). The ISBSG (release 7) data are used by several
companies for benchmarking software projects and are
available in the public domain. The ISBSG procedures
encourage software development teams to submit their
project data to the repository in return for a free report,
which graphically benchmarks their projects against si-
milarly profiled projects in the ISBSG repository [7]. The
software project data typically are submitted by the soft-
ware project manager, who completes a series of special
ISBSG data validation forms to report the confidence
he/she has in the information he/she provides. ISBSG has
developed a special mutually exclusive data quality rat-
ing that reflects the quality of data related to any given
project. Each project is assigned a data quality rating of
A, B, and C to denote the following:

 A = The project data satisfies all the criteria for
seemingly sound data.

 B = The project data appears fundamentally
sound, but some data attributes might not be fun-
damentally sound.

 C = The project data has some fundamental short-
comings.

Companies participating in ISBSG benchmarking ac-
quired project data in several different ways. FP data on

Elapsed
Time/
Productivity

Development
Platform

Development

Type Volatility

H3

H1

H2

H5

H4

Team Size

Development
Language

ICASE

Figure 1. Determinants of elapsed software development
time and productivity.

the projects were acquired mostly by an automated proc-
ess (about 40%) or obtained from the development tools
(about 21%). The software effort data were mostly re-
corded (about 59%). In certain cases, the software effort
data were derived from the actual project cost (about 13%).
In many cases, the data acquisition procedures were miss-
ing or unknown.

The software projects in ISBSG release 7 data came
from 20 different countries. Figure 2 illustrates the major
data-contributing countries. The top three known contri-
buting countries were the United States, Australia and
Canada. Over 97% of the projects were completed be-
tween the years 1989-2001. Most of the projects (about
50%) were completed between the years 1999-2001.
Figure 3 illustrates the data quality rating of the ISBSG
release 7 data on the 1238 projects, and Figure 4 illus-
trates the industry type distribution for the 1238 projects.

The ISBSG data set included data on integrated CASE
tools, programming languages, development type, de-
velopment platform, elapsed time, productivity and team
size. Of the total 1238 software projects, only 138 pro-
jects had complete data on all five independent and de-
pendent variables for investigating elapsed time and pro-
ductivity. For the elapsed time and productivity model,
we used all 138 projects, respectively, in our analysis.

Figure 2. ISBSG release 7 project data origin by country.

Figure 3. Data quality distribution of the ISBSG release 7
project data.

Copyright © 2011 SciRes. JSEA

Knowledge Management of Software Productivity and Development Time

Copyright © 2011 SciRes. JSEA

613

7.8% for productivity model. All other projects used up-
per CASE tools, no CASE tools or lower CASE tools.

Figure 7 illustrates project distribution by industry type
and Figure 8 illustrates data quality for the 138 projects
in the elapsed time and productivity model. The majority
of projects, about 22.2%, were from the banking industry
for the elapsed time and productivity model. When com-
paring the industry distribution and data quality for the
138 projects with the original set of 1238 projects, we see
that the data quality distribution for the 138 projects is
very similar to the data quality distribution for the ori-
ginal 1238 projects. For the elapsed time and produc-
tiveity model, 65.9% was A quality and 34.1% was B
quality.

Figure 9 illustrates project distribution by platform type
for the elapsed time and productivity models. Figure 10
illustrates development type for the 138 elapsed time and
productivity projects respectively. The majority of platfo-
rms, about 47.62%, were main frames for the elapsed
time and productivity model. The majority of develop-
ment types, about 69%, were new development for the
elapsed time and productivity model.

Figure 4. Industry type distribution in the ISBSG release 7
project data.

Figure 5 illustrates the distribution of projects by diff-

erent programming languages and Figure 6 illustrates C-
ASE tool types. The majority of the projects used a four-
th generation programming language. ICASE tools were
used in only about 7.9% of the elapsed time model and

Figure 6. Distribution of projects by type of CASE tool used
for elapsed time and productivity.

Figure 5. Distribution of projects by type of programming
language for elapsed time and productivity.

Figure 7. Distribution of projects by industry type for ela-
psed time and productivity. Figure 8. Data quality distribution elapsed time.

Knowledge Management of Software Productivity and Development Time 614

Figure 9. Development platform distribution for elapsed
time and productivity.

Figure 10. Development type distribution for elapsed time
and productivity.

We used the Multiple Analysis of Variance (MA-

NOVA) procedure to test all hypotheses. Table 1 illus-
trates the results of the multivariate tests for the five in-
dependent and the two dependent variables, elapsed time
and productivity. The Pillar’s Trace, Wilk’s Lamda, Ho-
telling’s Trace and Roy’s Largest Root were significant
at the 0.05 level of significance for development type.

Pillar’s Trace, Wilk’s Lamda, Hotelling’s Trace and
Roy’s Largest Root were significant at the 0.000 level of
significance for development platform and team size and
language generation. Pillar’s Trace, Wilk’s Lamda, Ho-
telling’s Trace and Roy’s Largest Root were not signify-
cant for I-CASE.

Table 2 illustrates the tests of between-subjects effects

Table 1. Multivariate tests (b).

Effect Value F(a) Hypothesis degree fr Error df Sig.

Pillai’s Trace 0.646 99.581 2.000 109.000 0.000*

Wilks’ Lambda 0.354 99.581 2.000 109.000 0.000*

Hotelling’s Trace 1.827 99.581 2.000 109.000 0.000*
Intercept

Roy’s Largest Root 1.827 99.581 2.000 109.000 0.000*

Pillai’s Trace 0.098 2.825 4.000 220.000 0.026**

Wilks’ Lambda 0.902 2.870 4.000 218.000 0.024**

Hotelling’s Trace 0.108 2.913 4.000 216.000 0.022**
Development type

Roy’s Largest Root 0.106 5.832 2.000 110.000 0.004*

Pillai’s Trace 0.326 10.720 4.000 220.000 0.000*

Wilks’ Lambda 0.675 11.830 4.000 218.000 0.000*

Hotelling’s Trace 0.479 12.940 4.000 216.000 0.000*
Development platform

Roy’s Largest Root 0.475 26.129 2.000 110.000 0.000*

Pillai’s Trace 0.010 0.532 2.000 109.000 0.589

Wilks’ Lambda 0.990 0.532 2.000 109.000 0.589

Hotelling’s Trace 0.010 0.532 2.000 109.000 0.589
I-CASE tool

Roy’s Largest Root 0.010 0.532 2.000 109.000 0.589

Pillai’s Trace 0.086 5.143 2.000 109.000 0.007*

Wilks’ Lambda 0.914 5.143 2.000 109.000 0.007*

Hotelling’s Trace 0.094 5.143 2.000 109.000 0.007*
Generation

Roy’s Largest Root 0.094 5.143 2.000 109.000 0.007*

Pillai’s Trace 0.693 2.775 42.000 220.000 0.000*

Wilks’ Lambda 0.410 2.916 42.000 218.000 0.000*

Hotelling’s Trace 1.189 3.058 42.000 216.000 0.000*
Team Size

Roy’s Largest Root 0.916 4.799 21.000 110.000 0.000*
* significant at the 0.01 level; ** significant at the 0.05 level; a Exact statistic; b Design: Intercept + Development type + Development platform + I-CASE tool +
Generation + Team Size.

Copyright © 2011 SciRes. JSEA

Knowledge Management of Software Productivity and Development Time 615

Table 2. Tests of between-subjects effects.

Source Dependent Variable Type III Sum of Squares df Mean Square F Sig.

Project Elapsed Time 1770.704a 27 65.582 1.945 0.009*
Corrected Model

Productivity 115.786b 27 4.288 8.359 0.000*

Project Elapsed Time 1658.895 1 1658.895 49.204 0.000*
Intercept

Productivity 83.106 1 83.106 161.990 0.000*

Project Elapsed Time 104.390 2 52.195 1.548 0.217
Development Type

Productivity 4.802 2 2.401 4.680 0.011**

Project Elapsed Time 89.171 2 44.585 1.322 0.271
Development Platform

Productivity 26.252 2 13.126 25.585 0.000*

Project Elapsed Time 6.344 1 6.344 0.188 0.665
I-CASE tool

Productivity 0.479 1 0.479 0.934 0.336

Project Elapsed Time 28.023 1 28.023 0.831 0.364
Generation

Productivity 4.705 1 4.705 9.171 0.003*

Project Elapsed Time 1295.088 21 61.671 1.829 0.024**
Team Size

Productivity 48.736 21 2.321 4.524 0.000*

Project Elapsed Time 3708.616 110 33.715
Error

Productivity 56.433 110 0.513

Project Elapsed Time 15219.960 138
Total

Productivity 589.846 138

Project Elapsed Time 5479.320 137
Corrected Total

Productivity 172.219 137

* significant at the .01 level; ** significant at the .05 level; a R Squared = 0.323 (Adjusted R Squared = 0.157); b R Squared = 0.672 (Adjusted R Squared = 0.592).

in the elapsed time and productivity model. It also illus-
trates the results of the overall model fit. The results indi-
cate that the overall model fit was satisfactory. The F-
value was 8.359 for productivity and 1.945 for elapsed
time. The model fit was significant at the 0.01 level of
significance for both elapsed time and productivity. The
R-square for elapsed time was 0.323. This indicates that
the independent variables explain about 32% of the vari-
ance in the dependent variable. The R-square for pro-
ductivity was 0.672. This indicates that the independent
variables explain about 67% of the variance in the de-
pendent variable.

The results provide support for hypothesis one. The
coefficient for 4GL is significant for productivity (p =
0.003) and not significant for elapsed time (p = 0.364).
This indicates that the use of 4GL programming langua-
ges do reduce software elapsed time and increase produc-
tivity. For hypothesis two, no significant impact of IC-
ASE tools was found on the software elapsed develop-
ment time or productivity. This indicates that use of IC-
ASE tools do not have an impact on the software devel-
opment elapsed time or productivity. Hypothesis three
was supported at the 0.05 level of significance, for elap-
sed time, indicating that the increase in team size will
lead to an increase in the software development elapsed

time (p = 0.024). However, productivity was also suppor-
ted at the 0.000 level of significance indicating that the
increase in team size will lead to an increase in producti-
vity (p = 0.000). These results may suggest a nonlinear
relationship is at work here. Hypothesis four was sup-
ported. The coefficient for platform is significant for
productivity (p = 0.000) and not significant for elapsed
time (p = 0.271). This indicates that the platform used
has an impact of reducing software elapsed time and in-
crease productivity. Hypothesis five, which investigated
development type volatility, was supported, indicating
that enhanced development lead to increases in software
development elapsed time. The coefficient for volatility
is significant for productivity (p = 0.011) and not signi-
ficant for elapsed time (p = 0.217). This indicates that the
development type volatility has an impact of reducing
software elapsed time and increase productivity.

In order to increase the confidence on the pair-wise
comparisons for development type volatility and platform
type, the Tukey method was utilized in the elapsed time
and productivity model. Post hoc tests are not performed
for generation because there are fewer than three groups.
Post hoc tests are not performed for LNSIZE because at
least one group has fewer than two cases. These results
can be seen in Tables 3 and 4.

Copyright © 2011 SciRes. JSEA

Knowledge Management of Software Productivity and Development Time 616

Table 3. Mean differences for development type volatility
for productivity.

 Redevelopment Enhancement

Enhancement 0.330 (p = 0.548)

New 0.960 (p = 0.026)** 0.270 (p = 0.127)

** The mean difference is significant at the 0.05 level.

Table 4. Mean difference for platform type for productivity.

 Main Frame Personal Computer

Personal Computer 1.304 (p = 0.000)*

Mid-Range 0.321 (p = 0.115) 0.983 (p = 0.000)*

* The mean difference is significant at the 0.01 level.

3. Discussion, Limitations and Conclusions

We have investigated the factors impacting the software
elapsed time and productivity. Using the existing litera-
ture, we identified several variables that might impact so-
ftware elapsed time and productivity. Further, using a da-
ta set of 138 projects for elapsed time and productivity,
we empirically tested the impact of several factors on
these dependent variables.

Tabachnick and Fidell [40], state that for multiple
continuous dependent variables, multiple discrete inde-
pendent variables and some continuous independent va-
riables, a researcher should run Factorial MANCOVA.
MANOVA works best with either highly negatively cor-
related dependent variables or moderately correlated de-
pendent variables when correlation is less than 0.6. Since
our correlation between productivity and elapsed time is
a negative number, greater than 0.60, the use of MA-
NOVA is more powerful than using two ANOVAs.

The results provide support for hypothesis one. The
coefficient for 4GL is significant for productivity (p =
0.003) and not significant for elapsed time (p = 0.364).
This indicates that the use of 4GL programming lang-
uages do reduce software elapsed time and increase pro-
ductivity. For hypothesis two, no significant impact of
ICASE tools was found on the software elapsed deve-
lopment time or productivity. This indicates that use of
ICASE tools do not have an impact on the software
development elapsed time or productivity. Hypothesis th-
ree was supported at the 0.05 level of significance, for
elapsed time, indicating that the increase in team size
will lead to an increase in the software development ela-
psed time (p = 0.024). However, productivity was also
supported at the 0.000 level of significance indicating
that the increase in team size will lead to an increase in
productivity (p = 0.000). These results may suggest a

nonlinear relationship is at work here. Hypothesis four
was supported. The coefficient for platform is significant
for productivity (p = 0.000) and not significant for ela-
psed time (p = 0.271). This indicates that the platform
used has an impact of reducing software elapsed time and
increase productivity. Hypothesis five, which inves-
tigated development type volatility, was supported, indi-
cating that enhanced development lead to increases in
software development elapsed time. The coefficient for
volatility is significant for productivity (p = 0.011) and
not significant for elapsed time (p = 0.217). This indi-
cates that the development type volatility has an impact
of reducing software elapsed time and increase pro-
ductivity.

ICASE tools have been known to have significant im-
pact on productivity [10,20]. In our case, the non-si-
gnificant impact of ICASE tools on elapsed time and pro-
ductivity could be because of several reasons. First, over
90% of our data set did not contain ICASE tools, and the
limited number of ICASE tools might have jeopardized
the statistical significance. Second, we did not have in-
formation on the programmers’ ICASE tool experience.
Subramanian and Zarnich [10] indicated that ICASE tool
experience is one of the contributing factors for lower
productivity in ICASE tool projects. Kemerer [41], high-
lighting the importance of ICASE tool experience, wrote
the following.

Integrated CASE tools have raised the stakes of the
learning issue. Because these tools cover the entire life
cycle, there is more to learn, and therefore the study of
learning—and the learning-curve phenomenon—is be-
coming especially relevant.

Thus, we believe that lack of information about IC-
ASE tool experience might have impacted the signi-
ficance results between the ICASE tool and software pro-
ject elapsed time and productivity effort hypotheses.

The type of programming language did not have an
impact on software project elapsed time (p = 0.364), but
did impact productivity (p = 0.003). The descriptive stati-
stics of the data indicate that about 51% of the projects
were developed in 4GL languages, and 49% of the pro-
jects were developed in 3GL programming languages.
Thus, we believe that our data was not very biased for
any particular generation of programming languages. The
insignificance of programming language on software
project elapsed time could be due to several reasons. The
first reason might be that the programmers’ experience in
programming language might play a role. A few lang-
uages are more difficult to learn than others. Second, the
complexity of a language type might compensate for any
other advantages that it might offer, such as code and
design reuse. We observed very interesting results in reg-
ard to team size. First, an increase in team size generally

Copyright © 2011 SciRes. JSEA

Knowledge Management of Software Productivity and Development Time 617

leads to higher software project elapsed time and decrea-
sed productivity. This increase in software project elap-
sed time might be due to increased communication requi-
rements that in turn lead to decreased overall produc-
tivity.

The heterogeneity of software project elapsed time, de-
velopment effort recording techniques, and data quality of
projects improve the external validity of our study at the
expense of internal validity of the study. Given that our
data came from multiple projects and multiple organiza-
tions, heterogeneity was expected. We do, however, note
that there may be certain limitations related to the inter-
nal validity of the study. There may be other factors that
may limit the generalization of the results of our study.
First, we had very few ICASE tools in our data set, whi-
ch might have had an impact on both internal and exter-
nal validity of hypotheses related to ICASE tools. Second,
we did not have programmers’ experience information on
ICASE tools and programming languages, which is kn-
own to have an impact on the software development ef-
fort. Third, the non-parametric dataset and parametric
regression model might have provided us a lower fit, and
the regression results might in fact be improved by using
non-parametric models. Since our data is available in the
public domain, we believe that future research may add-
ress some of these issues.

REFERENCES
[1] R. L. Glass, “The Realities of Software Technology Pay-

offs,” Communications of the ACM, Vol. 42, No. 2, 1999,
pp. 74-79. doi:10.1145/293411.293481

[2] J. D. Blackburn, G. D. Scudder and L. N. Van Wassen-
hove, “Improving Speed and Productivity of Software
Development: A Global Survey of Software Developers,”
IEEE Transactions on Software Engineering, Vol. 22, No.
12, 1996, pp. 875-885. doi:10.1109/32.553636

[3] R. Banker and S. A. Slaughter, “A Field Study of Scale
Economies in Software Maintenance,” Management Sci-
ence, Vol. 43, No. 12, 1997, pp. 1709-1725.
doi:10.1287/mnsc.43.12.1709

[4] J. Blackburn, G. Scudder, L. Van Wassenhove and C. Hill,
“Time Based Software Development,” Integrated Manu-
facturing Systems, Vol. 7, No. 2, 1996a, pp. 35-45.
doi:10.1108/09576069610111918

[5] L. Fried, “Team Size and Productivity in Systems De-
velopment,” Journal of Information Systems Manage-
ment, Vol. 8, No. 3, 1991, pp. 27-41.
doi:10.1080/07399019108964994

[6] P. C. Pendharkar and J. A. Rodger, “A Probabilistic
Model and a Belief Updating Procedure for Predicting
Software Development Effort,” IEEE Transactions on
Software Engineering, Vol. 31, No. 7, 2005, pp. 615-624.
doi:10.1109/TSE.2005.75

[7] L. Angelis, I. Stamelos and M. Morisio, “Building a

Software Cost Estimation Model Based on Categorical
Data,” Proceedings of Seventh International Software
Metrics Symposium, London, UK, 2001, pp. 4-15.

[8] C. J. Lokan, “An Empirical Analysis of Function Point
Adjustment Factors,” Information and Software Tech-
nology, Vol. 42, 2000, pp. 649-660.
doi:10.1016/S0950-5849(00)00108-7

[9] I. Stamelos, L. Angelis, M. Morisio, E. Sakellaris and G.
L. Bleris, “Estimating the Development Cost of Custom
Software,” Information & Management, Vol. 40, 2003,
pp. 729-741. doi:10.1016/S0378-7206(02)00099-X

[10] G. H. Subramanian and G. E. Zarnich, “An Examination
of Some Software Development Effort and Productivity
Determinants in ICASE Tool Projects,” Journal of Man-
agement Information Systems, Vol. 12, No. 14, 1996, pp.
143-160.

[11] W. B. Foss, “Fast, Faster, Fastest Development,” Com-
puterworld, Vol. 27, No. 22, 1993, pp. 81-83.

[12] R. K. Smith, J. F. Hale and A. S. Parrish, “An Empirical
Study Using Task Assignment Patterns to Improve the
Accuracy of Software Effort Estimation,” IEEE Transac-
tions on Software Engineering, Vol. 27, No. 3, 2001.
doi:10.1109/32.910861

[13] C. D. Wrigley and A. S. Dexter, “A Model of Measuring
Information System Size,” MIS Quaterly, Vol. 15, No. 2,
1991, pp. 245-257. doi:10.2307/249386

[14] W. Gregory and W. Wojtkowski, “Applications Software
Programming with Fourth-Generation Languages,” Boyd
and Fraser, Boston, 1990.

[15] M. A. Cusumano and C. E. Kemerer, “A Quantitative
Analysis of U.S. and Japanese Practice and Performance
in Software Development,” Management Science, Vol. 16,
No. 11, 1990, pp. 1384-1406.
doi:10.1287/mnsc.36.11.1384

[16] G. Gamota and W. Frieman, “Gaining Ground: Japan’s
Strides in Science and Technology,” Ballinger, Cam-
bridge, 1988.

[17] C. Johnson, “Software in Japan,” Electronic Engineering
Times, 1985, p. 1.

[18] M. V. Zelkowitz, et al., “Software Engineering Practices
in the U.S. and Japan,” IEEE Computer, 1984, pp. 57-66.

[19] P. Mimno, “Power to the Users,” Computerworld, 1985,
pp. 11-28.

[20] R. D. Banker and R. J. Kauffman, “Reuse and Productivity in
Integrated Computer-Aided Software Engineering: An Em-
pirical Study,” MIS Quarterly, Vol. 15, No. 3, 1991, pp.
375-401. doi:10.2307/249649

[21] I. Vessey, S. L. Jarvenpaa and N. Tractinsky, “Evaluation
of Vendor Products: CASE Tools as Methodology
Companions,” Communications of the ACM, Vol. 35, No.
4, 1992, pp. 90-105. doi:10.1145/129852.129860

[22] G. R. Finne, G. E. Witting and J. M. Dersharnais, “Es-
timation Software Development Effort with Case-Based
Reasoning,” The 2nd International Conference on Case-
Based Reasoning (ICCBR-97), Providence, 1997, pp.
13-32.

Copyright © 2011 SciRes. JSEA

http://dx.doi.org/10.1145/293411.293481
http://dx.doi.org/10.1109/32.553636
http://dx.doi.org/10.1287/mnsc.43.12.1709
http://dx.doi.org/10.1108/09576069610111918
http://dx.doi.org/10.1080/07399019108964994
http://dx.doi.org/10.1109/TSE.2005.75
http://dx.doi.org/10.1016/S0950-5849(00)00108-7
http://dx.doi.org/10.1016/S0378-7206(02)00099-X
http://dx.doi.org/10.1109/32.910861
http://dx.doi.org/10.2307/249386
http://dx.doi.org/10.1287/mnsc.36.11.1384
http://dx.doi.org/10.2307/249649
http://dx.doi.org/10.1145/129852.129860

Knowledge Management of Software Productivity and Development Time

Copyright © 2011 SciRes. JSEA

618

[23] T. E. Hastings and A. S. Sajeev, “A Vector-Based
Approach to Software Size Measurement and Effort Esti-
mation.” IEEE Transactions on Software Engineering,
Vol. 27, No. 4, 2001, pp. 337-350.
doi:10.1109/32.917523

[24] E. S. June and J. K. Lee, “Quasi-Optimal Case Selective
Neural Network Model for Software Effort Estimation,”
Expert Systems with Application, Vol. 21, 2001, pp. 1-14.
doi:10.1016/S0957-4174(01)00021-5

[25] K. Sengupta, T. K. Abdel-Hamid and M. Bosley, “Coping
with Staffing Delays in Software Project Management:
An Experimental Investigation,” IEEE Transactions on
Systems, Man and Cybernetics-Part A: Systems and Hu-
mans, Vol. 29, No. 1, 1999, pp. 77-91.
doi:10.1109/3468.736362

[26] C. F. Kemerer, “Progress, Obstacles, and Opportunities in
Software Engineering Economics,” Communications of
the ACM, Vol. 41, No. 8, 1998, pp. 63-66.
doi:10.1145/280324.280334

[27] P. C. Pendharkar and J. A. Rodger, “An Empirical Study
of the Impact of Team Size on Software Development
Effort,” Information Technology and Management, 2007.

[28] P. C. Pendharkar and J. A. Rodger, “The Relationship
between Software Development Team Size and Software
Development Cost,” Communications of the ACM, forth-
coming, 2007.

[29] R. D. Banker and C. F. Kemerer, “Scale Economies in
New Software Development,” IEEE Transactions on So-
ftware Engineering, Vol. 15, No. 10, 1989, pp. 1199-1205.
doi:10.1145/280324.280334

[30] A. J. Albrecht and J. E. Gaffney, “Software Function,
Source Lines of Code, and Development Effort Prediction:
A Software Science Validation,” IEEE Transaction on
Software Engineering, Vol. 6, 1983, pp. 639-647.
doi:10.1109/TSE.1983.235271

[31] B. W. Boehm, B. Clar, C. Horowitz, C. Westland, R.

Madachy and R. Selby, “Cost Models for Future Software
Life Cycle Processes: COCOMO 2.0.0,” Annals of Soft-
ware Engineering, Vol. 1, No. 1, 1995, pp. 1-30.
doi:10.1007/BF02249046

[32] L. Greiner, “Is Development a Slave to the Platform?”
Computing Canada, Vol. 30, No. 17, 2004, p. 18.

[33] G. B. Shelly, T. J. Cashman and H. J. Rosenblatt, “Sys-
tems Analysis and Design,” 7th Edition, Boston: Thomp-
son-Course Technology.

[34] R. M. Stair and G. W. Reynolds, “Principles of Informa-
tion Systems,” Thomson-Course Technology, New York,
2003.

[35] R. D. Banker and S. Slaughter, “The Moderating Effects
of Structure on Volatility and Complexity in Software
Enhancement,” Information Systems Research, Vol. 11,
No. 3, 2000, pp. 219-240.
doi:10.1287/isre.11.3.219.12209

[36] B. Unhelkar, “Process Quality Assurance for UML-Based
Projects,” Addison Wesley, Boston, 2003.

[37] G. Butchner, “Addressing Software Volatility in the
System Life Cycle,” Unpublished Doctoral Thesis, 1997.

[38] J. A. Hager, “Software Cost Reduction Methods in Prac-
tice: A Post-Mortem Analysis,” Journal of Systems and
Software, Vol. 14, No. 2, 1991, pp. 67-77.
doi:10.1016/0164-1212(91)90091-J

[39] B. Littlewood and L. Strigini, “Validation of Ultrahigh
Dependability for Software-Based Systems,” Communi-
cations of the ACM, Vol. 36, No. 11, 1993, pp. 69-80.
doi:10.1145/163359.163373

[40] B. G. Tabachnick and L. S. Fidell, “Using Multivariate
Statistics,” Needham Heights, MA: Allyn and Bacon,
2001.

[41] C. F. Kemerer, “How the Learning Curve Affects CASE
Tool Adoption,” IEEE Software, 1992, pp. 23-28.
doi:10.1109/52.136161

http://dx.doi.org/10.1109/32.917523
http://dx.doi.org/10.1016/S0957-4174(01)00021-5
http://dx.doi.org/10.1109/3468.736362
http://dx.doi.org/10.1145/280324.280334
http://dx.doi.org/10.1145/280324.280334
http://dx.doi.org/10.1109/TSE.1983.235271
http://dx.doi.org/10.1007/BF02249046
http://dx.doi.org/10.1287/isre.11.3.219.12209
http://dx.doi.org/10.1016/0164-1212(91)90091-J
http://dx.doi.org/10.1145/163359.163373
http://dx.doi.org/10.1109/52.136161

