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ABSTRACT 
In this paper, efficient one-dimensional (1-D) fast integer transform algorithms of the DCT matrix for the H.265 stan-
dard is proposed. Based on the symmetric property of the integer transform matrix and the matrix operations, which 
denote the row/column permutations and the matrix decompositions, along with using the dyadic symmetry modification 
on the standard matrix, the efficient fast 1-D integer transform algorithms are developed. Therefore, the computational 
complexities of the proposed fast integer transform are smaller than those of the direct method. In addition to computa-
tional complexity reduction one of the proposed algorithms provides transformation quality improvement, while the 
other provides more computational complexity reduction while maintaining almost the same transformation quality. 
With lower complexity and better transformation quality, the first proposed fast algorithm is suitable to accelerate the 
quality-demanding video coding computations. On the other hand, with the significant lower complexity, the second 
proposed fast algorithm is suitable to accelerate the video coding computations. 
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1. Introduction 

NOWDAYS the demand for higher quality digital video 
products and faster digital video applications in our daily 
life activities is increasing. These demands start from our 
daily necessary needs, like video conferencing, television 
and surveillance, up to our entertainment, iPods, internet 
video streaming, digital cameras, and all high definition 
(HD) products [1,2]. There have been two primary stan-
dards organizations driving the definition of video coding. 
The International Telecommunications Union (ITU), 
which is an organization focused on telecommunication 
applications and has created the series of H.26x standards 
for low bit rate video telephony. These include H.261, 
H.262, H.263 and H.264. The other organization is the 
International Standards Organization (ISO), which is 
more focused on consumer applications and has defined 
the MPEG series standards for compressing moving pic-
tures. The MPEG standard series include MPEG-1, 
MPEG-2 and MPEG-4 [1,2]. 

In [3], the 16 × 16 2-D matrix for the H.265 standard 
DCT is revealed, using the decomposition and the mod-

ification techniques used in [4-7], this paper will intro-
duce two proposed algorithm that will aim to reduce the 
complexity of the algorithm implementation in addition 
to making it multiplication-free. 

The rest of this paper is organized as follows. In Sec-
tion 2, review of the integer transformation for the H.265 
standard is described. In Section 3, the two proposed 
efficient fast integer transform algorithms for the 2-D 
H.265 standard are introduced with the proposed matrix 
factorizations. Then the computational complexities of 
these proposed algorithms are discussed. In Section 4, 
analysis and comparison of transformation quality be-
tween the proposed fast algorithms and the original me-
thod is shown. In Section 5, comparison of computation-
al complexity done in Section 3 and quality evaluation 
done in Section 4 is discussed. Finally, we give a conclu-
sion. 

2. Review of the Integer Transformation for 
the H.265 Standard 

The H.265 is the newest yet to be released standard for 
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high definition video processing. From [3], the matrix of 
the 2-D 16 × 16 integer cosine transformation for the 
H.265 standard is shown in Equation (1). 

The matrix elements in Equation (1) shows that there is  

symmetric properties between the left side and right side 
of the matrix, this property will be exploited using matrix 
decomposition in order to this matrix into the product of 
sparse matrices in the next section. 

 

   𝑇𝑇 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
45 43 40 35 29 21 13 4 −4 −13 −21 −29 −35 −40 −43 −45
44 38 25 9 −9 −25 −38 −44 −44 −38 −25 −9 9 25 38 44
43 29 4 −21 −40 −45 −35 −13 13 35 45 40 21 −4 −29 −43
42 17 −17 −42 −42 −17 17 42 42 17 −17 −42 −42 −17 17 42
40 4 −35 −43 −13 29 45 21 −21 −45 −29 13 43 35 −4 −40
38 −9 −44 −25 25 44 9 −38 −38 9 44 25 −25 −44 −9 38
35 −21 −43 4 45 13 −40 −29 29 40 −13 −45 −4 43 21 −35
32 −32 −32 32 32 −32 −32 32 32 −32 −32 32 32 −32 −32 32
29 −40 −13 45 −4 −43 21 35 −35 −21 43 4 −45 13 40 −29
25 −44 9 38 −38 −9 44 −25 −25 44 −9 −38 38 9 −44 25
21 −45 29 13 −43 35 4 −40 40 −4 −35 43 −13 −29 45 −21
17 −42 42 −17 −17 42 −42 17 17 −42 42 −17 −17 42 −42 17
13 −35 45 −40 21 4 −29 43 −43 29 −4 −21 40 −45 35 −13
9 −25 38 −44 44 −38 25 −9 −9 25 −38 44 −44 38 −25 9
4 −13 21 −29 35 −40 43 −45 45 −43 40 −35 29 −21 13 −4 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

   

 (1) 

 

3. Proposed Algorithms 
In this section, two proposed algorithm for efficient fast 
multiplication-free for the H.265 standard are presented. 
The proposed algorithms are done using a combination 
of Modified Integer Cosine Transformation, matrix de-
composition and dyadic symmetry. The common part in 
the complexity reduction is discussed first, then each 
algorithm is presented individually and its complexity is 
calculated with it. The aim of the proposed algorithms is 
to reduce the computational complexities, which are refe- 
 
 

 

rred to as the numbers of additions and shift operations 
as much as possiblewhile maintaining reasonable error 
margin. The DCT matrix for the H.265 is given as T in 
Equation (1). 

The symmetric property of the transformation matrix 
is exploited to decompose it into the product of two 
sparse matrices. so the transformation matrix in Equation 
1 can be rewritten in Equation (2) [4,7]. 

1TT T P= ⋅                       (2) 

 

𝑇𝑇𝑇𝑇 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
32 32 32 32 32 32 32 32 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −4 −13 −21 −29 −35 −40 −43 −45

44 38 25 9 −9 −25 −38 −44 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 13 35 45 40 21 −4 −29 −43

42 17 −17 −42 −42 −17 17 42 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −21 −45 −29 13 43 35 −4 −40

38 −9 −44 −25 25 44 9 −38 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 29 40 −13 −45 −4 43 21 −35

32 −32 −32 32 32 −32 −32 32 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −35 −21 43 4 −45 13 40 −29

25 −44 9 38 −38 −9 44 −25 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 40 −4 −35 43 −13 −29 45 −21

17 −42 42 −17 −17 42 −42 17 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −43 29 −4 −21 40 −45 35 −13
9 −25 38 −44 44 −38 25 −9 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 45 −43 40 −35 29 −21 13 −4 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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𝑃𝑃1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
Where  

T r rT P T= ⋅                                             (3) 
 

𝑃𝑃𝑃𝑃 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

and 
 

𝑇𝑇𝑃𝑃 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
32 32 32 32 32 32 32 32 0 0 0 0 0 0 0 0
44 38 25 9 −9 −25 −38 −44 0 0 0 0 0 0 0 0
42 17 −17 −42 −42 −17 17 42 0 0 0 0 0 0 0 0
38 −9 −44 −25 25 44 9 −38 0 0 0 0 0 0 0 0
32 −32 −32 32 32 −32 −32 32 0 0 0 0 0 0 0 0
25 −44 9 38 −38 −9 44 −25 0 0 0 0 0 0 0 0
17 −42 42 −17 −17 42 −42 17 0 0 0 0 0 0 0 0
9 −25 38 −44 44 −38 25 −9 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −4 −13 −21 −29 −35 −40 −43 −45
0 0 0 0 0 0 0 0 13 35 45 40 21 −4 −29 −43
0 0 0 0 0 0 0 0 −21 −45 −29 13 43 35 −4 −40
0 0 0 0 0 0 0 0 29 40 −13 −45 −4 43 21 −35
0 0 0 0 0 0 0 0 −35 −21 43 4 −45 13 40 −29
0 0 0 0 0 0 0 0 40 −4 −35 43 −13 −29 45 −21
0 0 0 0 0 0 0 0 −43 29 −4 −21 40 −45 35 −13
0 0 0 0 0 0 0 0 45 −43 40 −35 29 −21 13 −4 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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The function of P1 is the post-process matrix for the 
input data to the matrix multiplication, and the post- 
process only uses the additions and subtracts. The com-
putational complexities of P1 are 16 additions. In Equa-
tion (2), the elements of TT are scattered; the rearrange-
ment of the elements in TT is required to group the ele-
ments of TT into two 8 × 8 independent matrices. Pr is a 
pre-process matrix that permutes the rows of T, so that it 
is rewritten as in Equation (3) [4,7]. 

As shown in Equation (3), the matrix Pr can be used as 
a pre-process matrix. Pr doesn’t have any complexity at 
all while serving the purpose of rearranging TT into Tr 
where the matrix can be easily represented as the direct 
sum of its two non-zero areas. The result of the direct 
sum is shown in Equation (4). 

00 11rT T T= ⊕                   (4) 
Where  

00

32 32 32 32 32 32 32 32
44 38 25 9 9 25 38 44
42 17 17 42 42 17 17 42
38 9 44 25 25 44 9 38
32 32 32 32 32 32 32 32
25 44 9 38 38 9 44 25
17 42 42 17 17 42 42 17
9 25 38 44 44 38 25 9

T

 
 − − − − 
 − − − −
 

− − − − =  − − − −
 

− − − − 
 − − − − 

− − − −  

 

And 

11

4 13 21 29 35 40 43 45
13 35 45 40 21 4 29 43
21 45 29 13 43 35 4 40

29 40 13 45 4 43 21 35
35 21 43 4 45 13 40 29

40 4 35 43 13 29 45 21
43 29 4 21 40 45 35 13

45 43 40 35 29 21 13 4

T

− − − − − − − − 
 − − − 
 − − − − −
 

− − − =  − − − −
 

− − − − − 
 − − − − − 

− − − −  

 

The computation of T00 can be called the computation 
of the even frequency part in the transform matrix, and 
the computation of T11 can be called the computation of 
the odd frequency part in the transform matrix [4]. 

In Equation (4), the integers of matrix T00 have the 
symmetry property, using matrix decomposition T00 can 
be expressed as the product of the three sparse matrices 
R1, T0 and R2 as was done with the original matrix T 
[4,7]. The result of the decomposition for T00 is shown in 
Equation (5). 

00 0 1rT R T R= ⋅ ⋅               (5) 

Where 
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

rR

 
 
 
 
 
 =  
 
 
 
 
  

 

0

32 32 32 32 0 0 0 0
42 17 17 42 0 0 0 0
32 32 32 32 0 0 0 0
17 42 42 17 0 0 0 0
0 0 0 0 9 25 38 44
0 0 0 0 25 44 9 38
0 0 0 0 38 9 44 25
0 0 0 0 44 38 25 9

T

 
 − − 
 − −
 

− − =  − − − −
 

− 
 − − − 

− −  

 

And  

1

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1

R

 
 
 
 
 
 =  −
 

− 
 − 
−  

 

As shown in the above equation, R1 can be implemented 
using additions and subtractions only and have a com-
plexity of 8 additions, while Rr doesn’t have any com-
plexity at all [4], as for T0 it can be expressed by the di-
rect sum of matrices T0E and T0O, as shown in Equation 
(6). 

0 0 0E OT T T= ⊕              (6) 
Where 

0

32 32 32 32
42 17 17 42
32 32 32 32
17 42 42 17

ET

 
 − − =
 − −
 

− − 

 

0

9 25 38 44
25 44 9 38
38 9 44 25

44 38 25 9

OT

− − − − 
 − =
 − − −
 

− − 

 

The symmetry of the matrix T0E can be further exploited 
using matrix decomposition to decompose the matrix into 
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the product of sparse matrices U1 and U2 [4], as shown in 
Equation (7). 

0 1 2ET U U= ⋅                (7) 
Where 

1

32 32 0 0
0 0 17 42

32 32 0 0
0 0 42 17

U

 
 − − =
 −
 

− 

 

And 

2

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

U

 
 
 =
 −
 
− 

 

In Equation (7), U2 can be implemented using addi-
tions and subtractions only and have a complexity of 4 
additions, while U1 can be implemented using 10 addi-
tions and 10 shifts. This would sum up to a complexity of 
14 addition and 10 shift operations for Equation (7) [4].  

Although there is no symmetry present in matrix T0O, 
the matrix addition can be used to segment the matrix 
into two matrices with more value coherence in their 
elements, as shown in Equation (8). 

0 0 1OT K K= +                (8) 

Where     0

9 24 40 36
24 36 9 40
40 9 36 24

36 40 24 9

K

− − − − 
 − =
 − − −
 

− − 

 

And          1

0 1 2 8
1 8 0 2
2 0 8 1
8 2 1 0

K

− − 
 
 =
 −
 
 

 

After using the matrix addition, K0 can be simplified 
using matrix decomposition into the product of matrices 
K2 and K3. The result of the decomposition for K0 is 
shown in Equation (9). 

0 2 3K K K= ⋅                 (9) 
Where 

2

1 0 0 4
0 1 4 0
0 4 1 0
4 0 0 1

K

 
 
 =
 −
 
− 

 

And 

3

9 8 8 0
8 0 9 8

8 9 0 8
0 8 8 9

K

− − 
 − − =
 −
 

− − − 

 

As shown in the above equation; K1 can be implement- 
ted using additions and shifts only and have a complexity 
of 8 additions and 8 shifts, the addition between K1 and 
the product of K2 and K3 has a complexity of 4 additions, 
As for the matrix K2 it have a complexity of 4 additions 
and 4 shifts, while on the other hand K3 have a complex-
ity of 12 additions and 4 shifts. This in the end sums the 
complexity of T0O to 28 additions and 16 shifts [4,5]. All 
of the above decomposition and summation sum the 
complexity of T00 to 66 additions and 32 shifts [4,5]. 

Turning to matrix T11 which represents the computa-
tion of the odd frequency part, the matrix as shown in 
Equation (10), doesn't have the symmetric property 
within its elements, in order to be able to decompose this 
matrix the modification techniques will be used. For the 
decomposition of this matrix two proposed algorithms 
will be presented in this paper. 

3.1 Proposed Algorithm 1 
For Proposed Algorithm 1, the odd frequency modified 
integer cosine transformation matrix based on the dyadic 
symmetry concept used by Wai-Kuen Cham in [7] is 
obtained by modifying the positions of the elements in 
the matrix to provide the matrix basic vectors with or-
thogonality regardless of the matrix elements values [7]. 
The matrix T11 and the modified matrix are shown in 
Equation (10) below. 

11 1modT T=∶               (10) 
Where 

11

4 13 21 29 35 40 43 45
13 35 45 40 21 4 29 43
21 45 29 13 43 35 4 40

29 40 13 45 4 43 21 35
35 21 43 4 45 13 40 29

40 4 35 43 13 29 45 21
43 29 4 21 40 45 35 13

45 43 40 35 29 21 13 4

T

− − − − − − − − 
 − − − 
 − − − − −
 

− − − =  − − − −
 

− − − − − 
 − − − − − 

− − − −  

 

and 

1mod

4 13 21 29 35 40 43 45
35 40 43 45 4 13 21 29
21 29 4 13 43 45 35 40

45 43 40 35 29 21 13 4
43 45 35 40 21 29 4 13

13 4 29 21 40 35 45 43
29 21 13 4 45 43 40 35

40 35 45 43 13 4 29 21

T

− − − − − − − − 
 − − − − 
 − − − −
 

− − − − =  − − − − −
 

− − − − 
 − − − − 

− − − −     
Replacing T11 with T1mod as the new odd frequency 
transformation matrix [7], this matrix can be segmented 
into two matrices with more value coherence in their 
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elements as was done in the matrix T00O, as shown in 
Equation (11). 

1mod 1 2m mT T T= +               (11) 
Where

1

4 16 24 32 36 44 44 44
36 44 44 44 4 16 24 32
24 32 4 16 44 44 36 44

44 44 44 36 32 24 16 4
44 44 36 44 24 32 4 16

16 4 32 24 44 36 44 44
32 24 16 4 44 44 44 36

44 36 44 44 16 4 32 24

mT

− − − − − − − − 
 − − − − 
 − − − −
 

− − − − =  − − − − −
 

− − − − 
 − − − − 

− − − −  

 

and 2

0 3 3 3 1 4 1 1
1 4 1 1 0 3 3 3

3 3 0 3 1 1 1 4
1 1 4 1 3 3 3 0
1 1 1 4 3 3 0 3
3 0 3 3 4 1 1 1

3 3 3 0 1 1 4 1
4 1 1 1 3 0 3 3

mT

− 
 − − − 
 − −
 

− − − =  − −
 
− − − 
 − − 
− − −  

 

In Equation (11), the segment Tm1 from the matrix ad-
dition segmentation done on the matrix T1mod has sym-
metric properties; hence it can be further simplified using 
matrix decomposition algorithm into the product of three 
sparse matrices [7]. The result of this matrix decomposi-
tion is shown in Equation (12). 

1 1 2 3 4mT M M M= ⋅ ⋅ ⋅            (12) 

Where 1

2 0 1 1 1 3 1 0
3 1 1 1 0 2 0 1
1 3 1 0 1 0 2 1

0 1 0 1 3 1 1 2
1 1 3 2 0 1 0 1
1 1 1 0 2 0 1 3
0 2 0 1 1 1 3 1
1 0 2 3 1 1 1 0

M

− − − − 
 − 
 − − −
 

− − =  − − − −
 

− − 
 − − − − − 
− − −  

 

  

2

0 0 0 0 1 1 0 1
0 0 1 1 0 0 1 0
0 1 0 1 0 0 1 0
0 1 1 0 0 0 1 0
0 1 1 1 0 0 0 0
1 0 0 0 0 1 0 1
1 0 0 0 1 0 0 1
1 0 0 0 1 1 0 0

M

− 
 
 
 − −
 

− − =  − −
 
− − − 
 − − 
−  

 

and 

3

1 1 2 0 1 0 2 0
2 0 1 1 2 0 1 0

2 1 0 0 1 1 2 0
1 1 0 2 0 1 0 2
0 2 1 1 0 2 0 1
1 2 0 0 1 1 0 2

0 0 2 1 2 0 1 1
0 0 1 2 0 2 1 1

M

− − 
 − − − 
 − − −
 

− =  −
 
− − − 
 − − − 
  

 

As shown from the equation above; M1 can be imple-
mented using additions and shifts only and have a com-
plexity of 48 additions and 8 shifts, while M2 can be im-
plemented using only additions and have a complexity of 
16 additions, As for the matrix M3 it have a complexity 
of 32 additions and 8 shifts. This in the end sums the 
complexity of Tm1 to 96 additions and 40 shifts [7]. On 
the other hand, Tm2 can be implemented using additions 
and shifts only, and has a complexity of 72 additions and 
8 shifts [4,5,7]. 

By using equations from Equation (2) to Equation (12), 
the efficient fast multiplication-free integer transforma-
tion for the 2-D DCT matrix for the H.265 standard for 
proposed algorithm 1 is given as shown in Equation (13). 

( ) ( )( ){ 1 2 1 2 3 1.r rT P R U U K K K R  = ⋅ ⋅ ⊕ + ⋅ ⋅ ⊕    

( ) }1 1 2 3 14mT M M M P + ⋅ ⋅ ⋅ ⋅            (13) 

3.2 Proposed Algorithm 2 
In the proposed algorithm presented in this section the 
same complexity reduction and decomposition tech-
niques will be done, the difference will be that in the odd 
frequencies matrix in the step done in Equation (10) in-
stead of only using dyadic symmetry to rearrange the 
elements of the matrix, a modification in values of the 
elements will be done so that it matches the matrix Tm1 
in Equation (11). The resultant odd frequency matrix is 
given in Equation (14). 

11 1mod 2T T=∶              (14) 
Where 

1mod 2

4 16 24 32 36 44 44 44
36 44 44 44 4 16 24 32
24 32 4 16 44 44 36 44

44 44 44 36 32 24 16 4
44 44 36 44 24 32 4 16

16 4 32 24 44 36 44 44
32 24 16 4 44 44 44 36

44 36 44 44 16 4 32 24

T

− − − − − − − − 
 − − − − 
 − − − −
 

− − − − =  − − − − −
 

− − − − 
 − − − − 

− − − −  
The odd frequency matrix for proposed algorithm 2 
T1mod2 can be decomposed for complexity reduction in 
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the same manner as done in Equation (12) in Subsection 
3.1. This means that the two proposed algorithm have 
exactly the same decomposition and segmentation, the 
only exception is that the odd frequency part for proposed 
algorithm 2 consists of Tm1 only while for proposed algo-
rithm 1 it consists of the addition of Tm1 and Tm2.  

By using equations from Equation (2) to Equation (14), 
the efficient fast multiplication-free integer transforma-
tion for the 2-D DCT matrix for the H.265 standard for 
proposed algorithm 2 is given as shown in Equation (15). 

( ) ( )( ){ 1 2 1 2 3 1r rT P R U U K K K R  = ⋅ ⋅ ⋅ ⊕ + ⋅ ⋅ ⊕    

( ) }1 2 3 14M M M P ⋅ ⋅ ⋅ ⋅            (15) 

For the proposed algorithms and the original algorithm, 
the complexity evaluation is done by calculating the 
number of additions, shifts and multiplications needed to 
implement it. The complexity evaluation summary for 
the proposed and original algorithms is shown in Table 
1. 

4. Analysis and Comparison of  
Transformation Quality 

In order to test the efficiency of the proposed algorithms, 
evaluation of the quality of the reconstructed video com-
pared to the original video is done using the quality as-
sessment metrics; the three quality metrics used in this 
paper are the MSE, PSNR and the SSIM. The tests done 
in this section are applied to standard high definition 
video quality assessment sequences as developed by Dr. 
Karl Mauthe at Taurus Media Technik. The full descrip-
tion of the test sequences used is shown in Table 2. 

Using the Matlab computational tool the quality me-
trics for original and the proposed algorithms were cal-
culated for 100 frames of the four different standard test 
sequences. The aim is to evaluate the algorithms quality 
and reliability, and determine the efficiency of each of 
the proposed algorithms compared to the original. 

Table 1. Complexity Evaluation Comparison table for Origi- 
nal and Proposed Algorithms 

 Complexity 
Operation Original 

Algorithm 
Proposed Algo-
rithm 1 

Proposed Al-
gorithm 2 

Additions 240 242 162 
Multiplications 256 0 0 
Shifts 0 58 50 
 

Table 2. Test Sequences Information 

Sequence  #Frames Short Description 

Blue sky 250 
Top of two trees against blue sky. 
High contrast, small color differences 
in the sky, many details. Camera rota-
tion. 

Pedestrian Area 375 
Shot of a pedestrian area. Low camera 
position, people pass by very close to 
the camera. High depth of field. Static 
camera. 

Riverbed 250 
Riverbed seen through the water. Very 
hard to code. 

Station 313 
View from a bridge to Munich station. 
Evening shot. Long zoom out. Many 
details, regular structures (tracks). 

 
The quality metrics results of the quality assessment 

for the Blue Sky sequence are shown in the Figures 1, 2 
and 3. 

The quality metrics results of the quality assessment 
for the Pedestrian Area sequence are shown in the Fig-
ures 4, 5 and 6. 

The quality metrics results of the quality assessment 
for the Riverbed sequence are shown in the Figures 7, 8 
and 9. 

The quality metrics results of the quality assessment 
for the Station_2 sequence are shown in the Figures 10, 
11 and 12. 

The figures from 1 to 12 show all the test results done 
to evaluate the quality of the proposed algorithms com-
pared to the original algorithm, all these results are 

 

 
Figure 1. Mean MSE for Original and Proposed Algorithms 
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Figure 2. Mean PSNR for Original and Proposed Algorithms 

 

 
Figure 3. Mean SSIM for Original and Proposed Algorithms 

 

 
Figure 4. Mean MSE for Original and Proposed Algorithms 

 
summarized and combined with the complexity of all 
the algorithms to determine the efficiency of the pro-
posed algorithms. Tables 3, 4 and 5 show the summa-
rized results for the MSE, PSNR and the MSSIM re-
spectively. 

5. Comparison of Computational  
Complexity and Quality Evaluation 

In this section, evaluation of the proposed algorithms ver-
sus the original algorithm is done through a comparison 
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Figure 5. Mean PSNR for Original and Proposed Algorithms 

 
Figure 6. Mean SSIM for Original and Proposed Algorithms 

 

 
Figure 7. Mean MSE for Original and Proposed Algorithms 

 
Table 3. Average MSE Comparison table for Original and Proposed Algorithms 

 Average MSE 
Sequence Original Algorithm Proposed Algorithm 1 Proposed Algorithm 2 
Blue_Sky 1.2513 0.3399 2.8050 
Pedestrian_Area 1.0966 0.2893 1.1636 
Riverbed 1.0009 0.2646 1.4918 
Station 0.9314 0.2449 1.0008 
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Table 4. Average PSNR Comparison table for Original and Proposed Algorithms 

 Average PSNR 

Sequence Original Algorithm Proposed Algorithm 1 Proposed Algorithm 2 

Blue_Sky 47.3093 52.9384 45.2233 

Pedestrian_Area 47.8787 53.5946 47.8456 

Riverbed 48.2731 54.0194 47.3802 

Station 49.0446 54.7329 48.3484 

 
Table 5. Average SSIM Comparison table for Original and Proposed Algorithms 

 Average MSSIM 

Sequence Original Algorithm Proposed Algorithm 1 Proposed Algorithm 2 
Blue_Sky 0.9994 0.9998 0.9970 
Pedestrian_Area 0.9994 0.9998 0.9981 
Riverbed 0.9995 0.9998 0.9976 
Station 0.9995 0.9998 0.9982 

 

  
Figure 8. Mean PSNR for Original and Proposed Algorithms 

 

 
Figure 9. Mean SSIM for Original and Proposed Algorithms 
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Figure 10. Mean MSE for Original and Proposed Algorithms 

 

  
Figure 11. Mean PSNR for Original and Proposed Algorithms 

 

 
Figure 12. Mean SSIM for Original and Proposed Algorithms 



Efficient Fast Multiplication Free Integer Transformation for the 1-D DCT of the H.265 Standard 

Copyright © 2010 SciRes.                                                                                 JSEA 

795 

between the results of Section 3 and Section 4. 
In terms of quality assessment Table 3 clearly shows 

the advantage of Proposed Algorithm 1 over Proposed 
Algorithm 2 and even the Original algorithm as it was 
able to achieve the smallest values for the MSE index 
over 4 different test sequences. Table 4 backs the results 
shown in Table 3, and also shows that the different in 
quality measured by the PSNR index between the ori-
ginnal algorithm and Proposed Algorithm 2 is not high, 
which means that both achieve comparable qualities. 
Table 5 shows that according to a more (HVS) based 
index, Proposed Algorithm 1 still achieve the best result 
with the original algorithm coming in second place, and 
proposed algorithm achieving lower structural similarity 
than both. However the values in this table indicate that 
the results for the three algorithms are all almost in the 
same range, and achieve what is considered high struc-
tural similarity. These improved results achieved by the 
proposed algorithms compared to the original one are 
due to applying the dyadic symmetry on the transforma-
tion matrix odd-frequency part which makes the trans-
formation matrix as a whole symmetric and hence elimi-
nates the transformation error as the product of the 
transformation matrix multiplied by its transpose will 
yield an identity matrix. 

As for the complexity point of view, taking into con-
sideration that multiplications are the process in terms of 
complexity and hardware followed by additions and fi-
nally shifts. Table 1 clearly shows the superiority of 
proposed Algorithm 2 over the other two algorithms in 
terms of less complexity, and emphasis the fact that both 
of the proposed algorithms are multiplication-free, also 
the table shows that proposed Algorithm 1 is far less 
complex than the original algorithm, although it requires 
two more additions than the original algorithm, it has no 
multiplications and small number of shifts. 

Finally form all the results obtained in this section, it 
can be concluded that the proposed Algorithm 1 achieves 
the highest quality in encoding and decoding while main-
taining less complexity than the original algorithm, which 
means that it would be suitable for quality-oriented appli-
cations, however on the other hand proposed Algorithm 2 
achieves the dramatically less complexity than the origi-
nal algorithm without having any noticeable or detectable 
quality degradation, which makes this algorithm suitable 
for speed or hardware oriented applications. 

6. Conclusions 
A new 16 × 16 DCT matrix was recently introduced for 
the highly anticipated H.265 standard, this DCT matrix is 

developed for high definition videos encoding and de-
coding, the aim is to make them less complex and faster 
for video communication and transmission, like in high 
definition broadcasting and storage. Two new algorithms 
were proposed in this paper. The first technique is a 
quality oriented algorithm while offering multiplica-
tion-free complexity. The second algorithm is a com-
plexity and speed oriented algorithm while maintaining 
almost the same quality offered by the original algorithm. 

The aim of proposing an efficient fast 1-D algorithm 
for this DCT matrix is to reduce the complexity and 
hence the hardware and increase the speed of computa-
tion to meet the constantly improving demands in the 
fields of communication and transmission. Quality As-
sessment Tests were carried out and the quality metrics 
MSE, PSNR and SSIM were calculated to evaluate the 
performance of the proposed algorithms compared to the 
original one. The test results showed that the first pro-
posed algorithm offers better quality, objective and sub-
jective, while offering less complexity and multiplica-
tion-free computation. While the second proposed algo-
rithm offers almost the same quality, objective and sub-
jective, while offering much less complexity and multip-
lication-free computation than the original algorithm and 
the first proposed one. 
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