
J. Software Engineering & Applications, 2010, 3: 240-244 
doi:10.4236/jsea.2010.33029 Published Online March 2010 (http://www.SciRP.org/journal/jsea) 

 

Quantum Number Tricks 

Takashi Mihara 
 

Department of Information Sciences and Arts, Toyo University, Kawagoe, Japan. 
Email: mihara@toyonet.toyo.ac.jp 
 
Received November 23rd, 2009; revised December 21st, 2009; accepted December 29th, 2009. 

 
ABSTRACT 

Some results indicate that quantum information based on quantum physics is more powerful than classical one. In this 
paper, we propose new tricks based on quantum physics. Our tricks are methods inspired by the strategies of quantum 
game theory. In these tricks, magicians have the ability of quantum physics, but spectators have only classical one. We 
propose quantum tricks such that, by manipulating quantum coins and quantum cards, magicians guess spectators’ 
values. 
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1. Introduction 

The studies on quantum information have succeeded in 
such as quantum computation, quantum cryptography, 
quantum communication complexity, and so on. For 
example, Shor’s quantum factoring algorithm is one of 
representative results in these fields [1]. In addition, 
quantum game theory has been also proposed and it has 
been shown that quantum game theory is more powerful 
than classical one. 

In 1998, for a coin flipping game, Meyer proposed a 
quantum strategy for the first time and showed that the 
quantum strategy has an advantage over classical ones [2]. 
Moreover, he also showed the importance of a relation-
ship between quantum game theory and quantum algo-
rithms. 

After that, other types of quantum strategies have been 
also proposed. For example, Eisert et al. proposed a 
quantum strategy with entangled states for a famous 
two-player game called the Prisoner’s Dilemma [3] (also 
see Du et al. [4,5], Eisert and Wilkens [6], and Iqbal and 
Toor [7]). For another famous two-player game called the 
Battle of the Sexes, Marinatto et al. also proposed a 
quantum strategy with entangled states [8]. For these 
games, they showed quantum Nash equilibriums different 
from classical ones.  

In this paper, we propose quantum tricks based on 
methods inspired by the strategies of quantum game the-
ory. Magicians have the ability of quantum physics, but 
spectators have only classical one. By manipulating 
quantum coins and quantum cards, magicians guess 
spectators’ values. For example, we propose tricks such 

that by using entangled states, a magician transmits a 
spectator’s value to another magician without communi-
cating between them.  

The remainder of this paper has the following organi-
zation. In Section 2, we define notations and basic opera-
tions used in this paper. In Section 3, we propose quantum 
coin tricks. In Section 4, we propose quantum card tricks. 
Finally, in Section 5, we provide some concluding re-
marks. 

2. Preliminaries 

First, we denote some basic notations. Let  0 1 B , 

 0 1 ... 1n n    Z

n a
b

a b

, and  for a positive 

integer . Let  and  be integers. We say that  is 
congruent to  to modulus  if  is a divisor of 

1 2 ... 1n n     Z

b
n n


a

  and denote by (mod )a b n , and we denote an 

inner product modulo 2 of  and b  by . Finally, 
let 

a a b
  be an exclusive-OR operator, e.g., (1 1 0 0)     

(1 0 1 0) (0 1 1 0)       . 

Next, we define some basic quantum notations. As 
states of qubit, let and , where 0 (1 0)T   1 (0 1)T  
   is Dirac notation and AT is the transposed matrix of 

matrix A. Throughout this paper, we take  0 1q    

n

B

1 2 …b b b

 

as a computational basis and a measurement basis. 
Moreover, we denote an -qubit basis state by n

1 2b b b1 2 n nb b b                , where 

  is a tensor product and i qb  
N

B 1, 2,...,( ). In 

addition, we denote a basis in an -dimensional system, 

i n
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a basis of qudit states, by , where 

( ) is an integer. We call 

 
qN Nx x    Z Z

N 2 x   a quantum register.  
Finally, we define some unitary matrices used for 

quantum tricks in this paper. Let I  be the 2 2 identity 
matrix. This operation means no operation. A 
Walsh-Hadamard operation H  is  

1 11

1 12
H

 
   

 

( 0 (1 2)( 0 1 )H          

and 

1 (1 2)( 0 1 )H         ). 

Note that H=H-1. This operation is used when we make 
a superposition of states. An operation used when a coin is 
flipped is X,  

0 1

1 0
X

 
  
 

 

(  and ).  0 1X     1 0X    
Moreover, we define an operation between two qubits. 

A Controlled Not gate, CNOT, is  

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

CNOT

 
 
 
 
 
 

 

( , where the first bit c is the 

controlled bit and the second bit  is the target bit). We 
denote the operation by CNOT(ij) when the i-th bit is the 
controlled bit and the 

CNOT c t c t c      
t

j -th bit is the target bit.  

Entangled states can be made by using H and . 
For example, 

CNOT

1
0 0 ( 0 1 ) 0

2
1

( 0 0 1 1 )
2

N

H

C OT





         

        
 

Finally, we define two matrices for -state transition. 
Let . A quantum Fourier transform [1], QFT, is  

N

NxZ

1
2

0

1
|

N
xy N

y

QFT x e y
N








      

and  
1

1 2

0

1 N
xy N

y

QFT y e x
N




 



        

3. Quantum Coin Tricks 

In this section, we show some quantum coin tricks using 
quantum states. Throughout this paper, we use Alice and 

Bob as names of magicians, and use Carol and Davis as 
names of spectators participating in a magic show. 
Moreover, Alice and Bob can cooperate but cannot 
communicate with each other during each show.  

First, we show a simple coin trick using a two-qubit 
entangled state. 

Coincidence: First, Alice prepares one coin and put it 
in a box. The box is a container such that no one cannot 
see the state of the coin but can operate it. Next, Carol 
flips the coin or not. Then, Bob guesses the state of the 
coin, i.e., either head (H) or tail (T). 

Method of Coincidence 

We denote H and T by 0   and , respectively.  1 
1) Beforehand, Alice and Bob share an entangled state  

1
( 0 0 1 1 )

2
          

where Alice has the first qubit and Bob has the second 
qubit. Alice’s qubit is in a box.  

2) Carol flips Alice’s coin or not. This means that Carol 
applies X  to Alice’s qubit if she wants to flip the coin; 
otherwise she applies I  to it. Then, if she flips it, the 
state becomes  

1
( 1 0 0 1 )

2
          

3) Alice and Bob apply H  to the state. Then it be-
comes  

1
( 0 0 1 1 )

2
         

if Carol flipped the coin; otherwise the state does not 
change, i.e.,  

1
( 0 0 1 1 )

2
          

4) Bob measures his qubit and announces the value(H 
or T) to Carol.  

5) Carol opens the box and confirms that her value is 
same as Bob’s value.  

This trick can be easily extended to multiple coins by 

preparing the entangled states (1 2)( 0 0 1 1 )          

corresponding to the number of coins.  
Next, we show a trick guessing the number of Carol 

flipping coins.  
Flip-Flop1: First, Alice prepares  coins in all the 

coins being head. Next, Carol flips some coins such that 
the state of coins is . Alice flips some coins. Carol 
flips some coins. Alice flips some coins. Then, Carol finds 
that the state of final coins is m. 

k

kmB
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Method of Flip-Flop1 

1) Alice prepares a state  (all the coins are head), 

exhibits it to Carol, and puts it in a box.  

0k 

2) Carol flips some coins and the state becomes m  .  

3) Alice applies kH   to it and the state becomes  

2 1

0

1
( 1)

2

k

m x

k
x

x






    

4) Carol flips some coins and the state becomes  

2 1

0

1
( 1)

2

k

m x

k
x

x r






     

where .  krB
5) Alice applies kH   to it and the state becomes  

2 1 2 1
( )

2
0 0

2 1 2 1
( )

2
0 0

1
( 1) ( 1)

2

1
( 1) ( 1)

2

( 1)

k k

k k

m x x r y

k
y x

r y m y x

k
y x

r m

y

y

m

 
  

 

 
  

 



   

  

   

 

     

6) Carol opens the box and confirms .  m
Finally, we show a trick modifying Flip-Flop1.  
Flip-Flop2: First, Alice prepares k  coins in all the 

coins being head. Next, Carol flips some coins such that 
the state of coins is . Alice flips some coins. 

Carol flips some coins such that the added state of coins is 
. Alice flips some coins. Carol flips some coins. 

Alice flips some coins. Then, Alice guesses the value of 
 if Carol announces the value of ; otherwise, Alice 

guesses the value of  if Carol announces the value of 

. 

1
km B

2m

2
km B

1m

1m

2m

Method of Flip-Flop2 

1) Alice prepares a state 0k  , exhibits it to Carol, and 

puts it in a box.  
2) Carol flips some coins and the state becomes 1m  .  

3) Alice does not flip them in her turn.  
4) Carol flips some coins and the state becomes 

.  1 2m m  

5) Alice applies kH   to it and the state becomes  

1 2

2 1
( )

0

1
( 1)

2

k

m m x

k
x

x


 



    

6) Carol flips some coins and the state becomes  

1 2

2 1
( )

0

1
( 1)

2

k

m m x

k
x

x r


 



     

where krB .  
7) Alice applies kH   to it and the state becomes  

1 2

1 2

2 1 2 1
( ) ( )

2
0 0

2 1 2 1
( )

2
0 0

1 2

1
( 1) ( 1)

2

1
( 1) ( 1)

2

( 1)

k k

k k

m m x x r y

k
y x

m m y xr y

k
y x

r y

y

y

m m

 
   

 

 
  

 



   

   

    

 

    

Then, Alice measures it and obtains .  1 2m m
8) Carol announces either  or . Then, Alice 

guesses  if Carol announced ; otherwise she 

guesses .  

1m 2m

12m

1m

m

Let  be the number of coins. Then, the complexity of 
these methods mentioned in this section is in  time 

because each operation of 

k
( )O k

X , H , and  can be 
executed in  time. 

CNOT
(1)O

4. Quantum Card Tricks 

In this section, we show some quantum card tricks using 
quantum states. Magicians Alice and Bob guesses the 
numbers selected by spectators Carol and Davis. 
Throughout this section, let arithmetic operations be 
executed to modulus a prime integer .  N

First, let (Alice, Carol) and (Bob, Davis) be two pairs. 
Then, we show tricks such that Alice guesses Davis’s 
number and Bob guesses Carol’s number. 

Telepathy: First, Alice prepares a card written a 
number, and puts in a box. The number of this card can be 
rewritten. Next, Carol multiplies it by  and adds a 

random  to it, where . Finally, Bob prepares 

the 

m

r

1
Nm r  Z

N   numbered cards. Carol opens the box and 
obtains a number. By turning over Bob’s card corre-
sponding the number, Carol confirms that the reverse side 
of the card is m. 

Method of Telepathy 

1) Beforehand, Alice and Bob share the following en-
tangled state.  

1

0

1 N

x

x x
N





     

where Alice has the first register and Bob has the second 
register. Alice’s register is put in a box.  

2) Carol multiplies Alice’s register by , and adds  
to it. Then, the state becomes 

m r

1

0

1 N

x

mx r x
N





      

3) Alice and Bob apply  to it and the state be-

comes  

QFT

Copyright © 2010 SciRes.                                                                                 JSEA 



Quantum Number Tricks 243 

1 2

1 2

1 1 2

1 2

1

1 2

1 1 1
2 ( ) 2

1 23
0 0 0

1 1 1
2 2 ( )

1 23
0 0 0

2
1 2

0(mod )

1

1

1

N N N
mx r y N xy N

y y x

N N N
ry N my y x N

y y x

ry N

my y N

e e y y
N

e e y
N

e y y
N

 

 



  
  

  

  
  

  



 

y

   

    

    

 

 



 

 

 

)

 

Then, Bob measures it and obtains  satisfying 

.  
2y

1 2 0(mod )my y N 
4) Bob prepares a set of pairs  satisfying 

. That is, he writes  to the sur-

face of a card and writes  to the reverse side. He 
makes cards corresponding to all the possible pairs of 

. Then, he exhibits the set of the cards to Carol.  

1(m y

1y1 2 0(mod )my y N 

1( )m y

m

5) Carol opens the box and knows . Then, she turns 

over Bob’s card written  and confirms that the value of 

the reverse side is m. 

1y

1y

Mutual Telepathy: Let Alice and Carol be one pair, 
and Bob and Davis be another pair. First, Alice prepares a 
card written a number, and puts in a box. Bob also pre-
pares a card written a number, and puts in another box. 
Next, Carol multiplies it by , and adds a random  to 

it. Davis multiplies it by , and adds a random  to it. 

Here, . Finally, Bob prepares the 

1m

2

1r

N

m 2r

1 2 1 2 Nm m r r    Z 1  

numbered cards. Carol opens the box and obtains a 
number. By turning over Bob’s card corresponding the 
number, Carol confirms that the reverse side of the card is 

. In addition, Alice prepares the  numbered 

cards. Davis opens the box and obtains a number. By 
turning over Alice’s card corresponding the number, 
Davis confirms that the reverse side of the card is . 

1m 1N 

2m

Method of Mutual Telepathy 

1) Beforehand, Alice and Bob share the following en-
tangled state.  

1

0

1 N

x

x x
N





     

where Alice has the first register and Bob has the second 
register. Alice’s register is put in a box, and Bob’s register 
is put another box.  

2) Carol multiplies Alice’s register by  and adds  

to it. Davis multiplies Bob’s register by  and adds  

to it. Then, the state becomes  

1m

2m
1r

2r

1

1 1 2 2
0

1 N

x

m x r m x r
N





     

In addition, Davis announces  to Bob.  2m

3) Alice and Bob apply  to it and the state be-

comes  

QFT

1 1 2 2 1 1 2 2

1 2

1 1 2 2

1 1 2 2

1 1 1
2 ( ) 2 ( )

1 23
0 0 0

2 ( )
1 2

0(mod )

1

1

N N N
r y r y N m y m y x N

y y x

r y r y N

m y m y N

e e y
N

e y y
N

 



  
   

  

 

 

y   

 

  



 

   

 

Then, Alice and Bob measure it and obtain 1y  and 

2y , respectively, satisfying . 1 1 2 2 0(mom y m y  d )N

4) Bob prepares a set of pairs  satisfying 1 1(m y )

1 1 2 2 0(mod )m y m y N 

1 1( )m y

. That is, he writes  to the 

surface of a card and writes  to the reverse side. He 

makes cards corresponding to all the possible pairs of 

1y

1m

 . Then, he exhibits the set of the cards to Carol.  

5) Carol opens the box and knows y1. Then, she turns 
over Bob’s card written y1 and confirms that the value of 
the reverse side is m1. Note that Alice can also know m1 
here. 

6) Alice also prepares a set of pairs (m2,y2) satisfying 

1 1 2 2 0(mod )m y m y N  , and Davis can find the correct 

pair (m2,y2). 
Next, we show a card trick similar to Flip-Flop2. 
Prediction: First, Alice prepares a card written 0, and 

puts it in a box. Next, Carol adds  to it. Alice 

executes some operation. Carol multiplies it by m2 and 
adds a random  to it, where . Alice executes 

some operation, opens the box, and obtains a number. 
Finally, Alice prepares the N–1 numbered cards. By turn-
ing over Alice’s card corresponding m1, Carol confirms 
that the reverse side of the card is m2. 

1 Nm Z

N
 Zr 2m r

Method of Prediction 

1) Alice prepares a state , exhibits it to Carol, and 

puts it in a box.  

0 

2) Carol adds  to it and the state becomes 1m 1m  .  

3) Alice applies  to it and the state becomes  QFT

1

1
2

0

1 N
m x N

x

e x
N






    

4) Carol multiplies it by  and adds  to it. Then, 

the state becomes  
2m r

1

1
2

2
0

1 N
m x N

x

e m x
N






   r  

  5) Alice applies  to it and the state becomes  QFT

Copyright © 2010 SciRes.                                                                                 JSEA 
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5) Carol opens the box, obtains w, and confirms that the 
value of the reverse side is m. 

1 2

1 2

1 1
2 2 ( )

2
0 0

1 1
2 ( )2

2
0 0

2

1

1

N N
m x N m x r y N

y x

N N
m m y x Nry N

y x

ry N

e e y
N

e e
N

e y

 
  

 

 
 

 



y

 

  

  



 

 





 





 
Let  be the time complexity of arithmetic opera-

tions, where  is the size of the input. In addition, let 
 be the time complexity of QF . It is know that 

both  and  are within polynomial of . Then, 

the complexity of their methods mentioned in this section 
is in 

( )c n

( )c n

( (loO c

n

g N

( )q n T

( )q n

) (lq

n

og ))N  time. 
where . Then, Alice measures it 

and obtains .  
1 2 0(mod )m m y N 

y

6) Alice prepares a set of pairs  satisfying 

. That is, she writes  to the 

surface of a card and writes  to the reverse side. she 

makes cards corresponding to all the possible pairs of 
. Then, she exhibits the set of the cards to Carol.  

1 2(m m )

1 2 0(mod )m m y N 

1 2( )m m

1m

2m

5. Conclusions 

In this paper, we proposed new coin tricks and card tricks 
based on quantum physics. In these tricks, magicians had 
the ability of quantum physics, but spectators had only 
classical one. Therefore, magicians could manipulate 
coins and cards as quantum states. Moreover, by sharing 
entangled states, they could transmit spectators’ values 
without communicating between them. 

7) Carol turns over Alice’s card written  and con-

firms that the value of the reverse side is . 
1m

2m

Finally, we show a trick such that Alice guesses the 
number selected by Carol in a situation that Alice prepares 
a set of cards beforehand. 

Since our tricks are simple and straightforward ones 
using quantum states, they are somewhat clumsy. There-
fore, it is a future work to construct polished tricks. 
Moreover, in our tricks, spectators had only classical 
power. Therefore, it is an interesting problem that we 
construct quantum tricks when spectators also have 
quantum power. 

Mindreading: Beforehand, Alice prepares a set of 
 cards. She writes each  to each card and 

writes 

1N  Ny Z

( )y  to the reverse side, where ( )y  is a ran-

dom permutation of y . First, Carol selects Nm 

N
Z

Z  and 

announces it to Alice. Alice prepares a card, and puts in a 
box. Next, Carol adds a random  to it. Alice 

executes some operation. Finally, Carol opens the box, 
and obtains a number. By turning over Alice’s card cor-
responding to the number, Carol confirms that the reverse 
side of the card is m. 
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