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ABSTRACT 

Researchers have often commented on the high correlation between McCabe’s Cyclomatic Complexity (CC) and lines 
of code (LOC). Many have believed this correlation high enough to justify adjusting CC by LOC or even substituting 
LOC for CC. However, from an empirical standpoint the relationship of CC to LOC is still an open one. We undertake 
the largest statistical study of this relationship to date. Employing modern regression techniques, we find the linearity 
of this relationship has been severely underestimated, so much so that CC can be said to have absolutely no explana-
tory power of its own. This research presents evidence that LOC and CC have a stable practically perfect linear rela-
tionship that holds across programmers, languages, code paradigms (procedural versus object-oriented), and software 
processes. Linear models are developed relating LOC and CC.  These models are verified against over 1.2 million 
randomly selected source files from the SourceForge code repository. These files represent software projects from three 
target languages (C, C++, and Java) and a variety of programmer experience levels, software architectures, and de-
velopment methodologies. The models developed are found to successfully predict roughly 90% of CC’s variance by 
LOC alone. This suggest not only that the linear relationship between LOC and CC is stable, but the aspects of code 
complexity that CC measures, such as the size of the test case space, grow linearly with source code size across  lan-
guages and programming paradigms. 
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1. Introduction 

Software complexity is traditionally a direct indicator of 
software quality and cost [1-6]. The greater the com-
plexity (by some measure) the more fault prone the soft-
ware resulting in higher cost. Much effort has gone into 
identifying techniques and metrics to ‘measure’ the com-
plexity of software and software modules [7]. Logically, 
many of these measures have been shown to be corre-
lated in some manner. Understanding these relationships 
is important to understanding and evaluating the metrics 
themselves and ultimately in reducing software devel-
opment and maintenance efforts. This research reexam-
ines the relationship between Lines of Code (LOC) and 
McCabe’s Cyclomatic Complexity (CC) a traditional 
complexity metric. 

First introduced in 1976 [8], McCabe’s Cyclomatic 
Complexity (CC) is intended to measure software com-
plexity by examining the software program’s flow graph. 
In practice, CC amounts to a count of the “decision 

points” present in the software. CC can be calculated as: 

CC = E – N + 2P 

where 

E is the number of edges,  

N is the number of nodes, and  

P is the number of discrete connected components. 

CC was originally meant as a measure of the size of 
the test case space [8]. 

While numerous studies [1–3,9] have examine the re-
lationship between LOC and CC, few have made it their 
central point of inquiry. As a result, while many state, 
sometimes strongly, that LOC and CC have a linear rela-
tionship, few investigate statistical issues such as the 
distribution of variance among LOC and CC. Shepperd, 
for example, uses data from previous studies to argues 
that CC was often “merely a proxy for ... lines of code” 
[9]. Many investigators either consciously or serendipi-
tously avoid the issue entirely by using mixed metrics 
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such as error density or adjustments for size [5, 10]. Oth-
ers investigating the relationship of CC to some other 
factor explicitly tested for a detrimental multi-collinear 
effect from LOC [11]. While previous studies have indi-
cated the large role that LOC seems to play in CC [12], 
they stop short of claiming a general model of the rela-
tionship. While we do not seek to settle the issue, it is for 
these reasons that this research reexamines the relation-
ship of LOC and CC in the context of a large empirical 
study. 

2. Study Methodology 

As a baseline and to confirm the LOC/CC relationship 
results reported in the literature, a pilot study looked at 5 
NASA projects from the PROMISE Software Engineer-
ing Repository [13]. The PROMISE Repository is a col-
lection of publicly available datasets for software engi-
neering researchers. The NASA projects were originally 
archived in the NASA Metrics Data Program. Table 1 
shows the Pearson Moment of Correlation between LOC 
and CC. 

The correlation is remarkably high (average 0.896), 
yet does have a significant variance. When expanding on 
this pilot, variance was examined closely for the larger 
sample population. 

2.1 Sample Population 

For the larger study, the SourceForge.net (SourceForge) 
software repository was chosen because of its breadth 
and popularity [14]. SourceForge is the most popular 
public software repository on the Internet and is second 
only to Download.com as the most popular provider of 

software on the web [15]. SourceForge is home to pro-
jects actively sponsored and developed by companies 
such as HP [16] and IBM [17] as well as academic and 
other open-source projects. SourceForge is home to over 
170 thousand different software projects all with their 
full codebases publicly available. 

2.2 Population Candidate Stratification 

Based on the observations of the PROMISE Repository, 
the large sample population of SourceForge projects was 
stratified based on three popular languages: C, C++ and 
Java. Identification of the implementation language is 
part of project creation on SourceForge. This self-re-
ported information was used to establish three subject 
candidate populations. Table 2 shows the number, by 
language, of candidate projects considered for this study 
as well as the number of projects actually selected and 
analyzed. 

Projects that mixed candidate languages were elimi-
nated. That is: while a project that employed Python and 
C was considered an acceptable candidate, a project that 
used Java and C++ was not. 

2.3 Subject Selection 

One thousand subjects were randomly chosen from the 
stratified lists (column two of table 2). All of the chosen 
subjects needed to employ the Subversion (SVN) version 
control system [18] rather than the more traditional CVS, 
so this criterion was used to further discriminate amongst 
projects. The speed and reliability of SVN made this ex-
periment practical. The choice of SVN over CVS did not 
affect the sample statistics. A complete discussion of this 
issue and other analysis is given in the Results section. 

 
Table 1. Representative NASA projects and their pearson moment between LOC and CC 

Project Language Pearson Moment 

spacecraft instrument C 0.94 

real-time predictive simulation C 0.82 

data storage manager C++ 0.90 

science data processor C++ 0.96 

satellite flight software C 0.86 

 
Table 2. Candidate population sizes (in projects) and final number of active subjects 

Language Candidate Projects Selected Active Projects (at least one source file) 

Java 21,739 728 

C 13,336 749 

C++ 15,194 747 
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Figure 1. LOC and CC versus number of source files 

 
Given its breadth and scope, many of the projects in 

SourceForge are no longer active or are simply non-ex-
istent – project space exists but no files exist. Rather than 
risk tainting the samples by overstating the “active” pro-
jects, the one thousand subjects for each language were 
randomly selected from the candidate populations with 
no regard to project activity level or completeness. This 
resulted in a number of the projects in the sample not 
having any source files at all. The final number of “ac-
tive” (one or more source files) projects contained in the 
final samples is given in Table 2 (column three). It is 
noted that the ratio of active to non-existent projects 
seems fairly constant between languages (3% - 5%). 
When the selection process was finished, the sample 
projects to be analyzed (about 750 per language) con-
sisted of more than a quarter terabyte of source code. 

2.4 The Metric Tools 

To collect the actual CC and LOC metrics, the study em-
ployed two tools. The main tool was the popular com-
mercial tool RSM (Resource Standard Metrics). RSM 
was chosen because of its ISO certification and its use at 

various Fortune 100 companies [19]. For comparison, the 
C and C++ Code Counter (CCCC) [20] open-source tool 
was employed. CCCC and RSM provided similar results 
for LOC and CC. 

3. Descriptive Statistics 

The study examined roughly 1.2 million files, over 
400,000 C files alone. Figure 1 shows the distribution of 
LOC and CC for each language. 

Before proceeding with any regressive or other corre-
lation analysis the assumption of normality was con-
firmed by an Anderson-Darling analysis. At a 95% con-
fidence level, it was concluded that all distributions were 
log normal distributions, save for C language files. The C 
language samples’ LOC and CC instead have a Pareto 
(also known as a Bradford) distribution. The Pareto dis-
tribution is very similar to the log normal distribution 
except that its population distribution is less even. In this 
case, relatively fewer projects account for more of the 
CC and LOC. Since both log normal and Pareto have 
similar curvature issues, the rest of our analysis were 
performed in a log adjusted space. An example of such 
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an adjustment is presented below in Figure 2, which 
shows the log adjusted LOC distribution for the C++ 
samples. These adjustments result in almost ideal normal 
curves for the sample populations. 

3.1 Variance Issues 

To test the assumption of evenly distributed variances, A 
Breusch-Pagan [21] test was performed on each of the 
samples with a significance level of .05. In each case 
homoscedasticity was rejected. This indicates that the 
variance within the sample populations was not uniform. 
This is a significant finding. Equality of variance is a 
required assumption for most traditional forms of regres-
sion. These traditional forms of regression are exactly the 
types of regression used in previous research. Our results 
indicate that this unevenness is more than just a theoreti-
cal concern. Below it is shown that a Pearson analysis is 
skewed compared to a more robust analysis. 

4. Results 

The Pearson Moment was calculated between the log of 

the LOC and the log of the CC for the samples as was the 
explanatory power of the log of the LOC over the vari-
ance of the log of the CC. These log transformations ad-
just for the curvature present in the samples' log normal 
distributions. Table 3 gives the Pearson Moment and 
variance by language and tool. The CCCC tool could not 
process Java files. 

Earlier, it was discussed that samples were limited to 
those that utilized SVN. As a check that this did not in-
validate the results, a small random sample of 32 projects 
per language were selected that utilized another open- 
source versioning system (CVS). Table 4 gives those 
results. 

Table 3 and Table 4 below indicate a strong linear cor-
relation between the log of LOC and the log of CC, and 
hence between LOC and CC. This correlation is strong 
regardless of language. When CCCC failed to be capable 
of processing a source file in a project, the project was 
removed from the CCCC sample. Despite the fact that this 
meant CCCC's sample was differentiated, the two tools 
still both indicate the same strong correlation. 

 

 

Figure 2. Log adjusted C++ LOC distribution 

 
Table 3. Pearson moment in log adjusted space by language and tool 

Language Tool Files Pearson Moment Percent of Variance 

Java 
RSM 

CCCC 
480,336 

NA 
0.88 
NA 

78.3 
NA 

RSM 401,474 0.88 78.4 
C 

CCCC 399,483 0.91 82.7 

RSM 411,718 0.87 76.2 
C++ 

CCCC 410,051 0.85 72.9 
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Table 4. Pearson moment in log adjusted space by language (32 CVS projects each) 

Language Pearson Moment Percent of Variance 

Java 0.91 82.5 

C 0.87 76.8 

C++ 0.93 86.4 

 
Table 5. Coefficient of determination for Siegal repeated median regression and “equivalent” pearson moment 

Language Coefficient of Determination Equivalent Pearson Moment 

Java 0.87 0.93 

C 0.93 0.97 

C++ 0.97 0.98 

 
Concerns over variance made it necessary to run a 

more robust test than Pearson. The test chosen was the 
Siegal repeated median regression, a technique known to 
be robust against heteroscedasticity and tolerant to up to 
50% of the data points being outliers [22]. Siegal is 
computationally intensive. To accommodate the compu-
tational complexity given the sample size, 3000 data 
points were randomly sub-selected from the samples. A 
linear model for a each sub-sample was created using 
repeated median regression. These models were then 
used to predict CC for all the samples of a language 
population based solely on LOC. To assess how predic-
tive these models were, their coefficient of determination 
were computed (see column two of Table 5.).  So that 
the accuracy of our repeated median regression models 
could be compared to more traditional models, the 
equivalent Pearson Moment for each coefficient were 
also calculated. These are what the Pearson Moments in 
a traditional model would have to have been in order to 
account for the same amount of variance as our Sie-
gal-based models. All of the calculations here described 
were performed in the same log adjusted space as with 
our previous Pearson Moment calculations.  The results 
for each language are shown in Table 5. 

As shown in Table 5, once the study accounted for 
issues of variance LOC and CC, extremely accurate 
linear models were developed. It is worth reiterating: 
while the models were developed using sub-samples, 
the values in Table 5 are from applying the model to the 
whole populations. Our models can use log of LOC to 
explain all but 13% of the log of CC's variance (on av-
erage they explain 90% of the variance). Based on these 
results we propose: 

LOC and CC are measuring the same property. 
Whether this means that LOC and CC are merely esti-
mates of each other or if they are both estimates of some 
third factor is left as an open question. Regardless, the 
fact that LOC and CC do measure each other indicates 

that models using one or the other must be careful of 
collinear effects. 

Figure 3 shows how similar the models are for each 
language. Figure 3 shows the graph of the Siegal re-
peated median model for each language. For clarity's 
sake this graph is in the un-adjusted space. 

4.1 Model Validation 

It is worth reiterating how our Siegal repeated median 
models were developed. They were built using data from 
a small portion of each language population and then 
used to predict attributes of the entire, larger, language 
population. This is an important point because it means 
that the link between LOC and CC that the models rep-
resent have been externally validated as indicated by 
Zuse [23]. We have used LOC to accurately predict CC 
in a large (hundred of projects, thousands of files) varied 
(professional, amateur, and academic) population.  
SourceForge provides a heterogeneous cross-section of 
the general software population. 

5. Threats to Validity 

It would be misleading to think that this study concerning 
metric directly mitigates internal validity threats. While 
they are considered metrics in their own right, there is a 
great deal of dispute as to how to practically “measure” 
CC and LOC. We attempt to address this issue through 
our use of multiple measures in the form of our two 
toolsets. However, this is by no means an exhaustive 
solution to the problem and was not possible for Java. 

We present strong statistical evidence for the general 
applicability of our findings across languages, paradigms, 
and skill-sets. We stress that while this generally appli-
cability is statistically true, it is only true in aggregate. 
The general applicability to any given project is still an 

pen issue. o
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Figure 3. Siegal repeated median model for each language 

 
6. Discussion 

It is known that accurately estimating collinear factor’s 
linearity can be difficult. By utilizing the large sample 
size in this study, the co-linearity of CC and LOC was 
statistically determined. These results help to address 
some of the contradictory findings in previous studies 
[2,3,6,9,24,25,26] regarding CC, LOC, errors, mainte-
nance effort, and so forth. Factors as linearly related as 
LOC and CC should be considered collinear. Models that 
fail to properly bind together collinear or multi-collinear 
factors will often have unstable explanatory power. The 
instability of predictions based on collinear factors can 
provide a theoretical explanation for so many contradic-
tory findings. While likely not the dominant factor, this 
effect could also provide a partial explanation for why 
researcher such as Menzies et al. have discovered so 
much more predictive power in hybrid predictors than 
so-called mono-metrics [27]. In support of Menzies et al, 
hybrid metrics can properly bind these factors where 
mono-metrics cannot. Mono-metrics lack needed infor-
mation that is captured by combined or hybrid metrics. 

The linear relationship between LOC and CC raises 
has several direct implications for software maintainers 
and evolution management. 

CC has no (or very little) explanatory power of its own. 

This implies that indicators that rely on CC may more 
easily be calculated and normalized by using LOC. Cal-
culation of CC requires some cost however small. The 
results from this study indicate there is no more insight 
gained from CC when compared to LOC. 

The relationship between CC and LOC is near linear 
regardless of language type for the three languages in this 
study. This result implies that the characteristic of com-
plexity and test case size measured by CC and LOC is the 
same in a procedural language (C), an objected-oriented 
language (Java) and a hybrid language (C++). It also im-
plies that if CC indeed measures some aspects of com-
plexity, then developers tend to add these aspects to a 
program at an incredibly steady rate (at least in practice). 

Modules where LOC does not predict CC are outliers 
and should be targeted for closer scrutiny. These models 
on average accounted for 90% of CC’s variance. This 
means that any source-file/program which does not fit 
this model is in a statistical sense an outlier. If the outlier 
status of these modules to the model is equally (or even 
partially) indicative of a similar status for true complex-
ity then these linear models themselves can be used as a 
form of complexity metric or at least as a monitor for 
possible complexity issues. Modules where LOC does 
not predict CC (or vice-versa) may indicate an overly- 
complex module with a high density of decision points or 
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an overly-simple module that may need to be refactored. 
We plan to pursue this line of inquiry in future work. 

7. Conclusions 

We carried out a large empirical study of the relationship 
between LOC and CC for a sample population that 
crossed languages, methodologies, and programming 
paradigms. We found that due mostly to issues regarding 
population variance, that the linearity of the relationship 
between these two measurements has been severely un-
derestimated. Using modern statistical tools we develop 
linear models that can account for the majority of CC by 
LOC alone. We conclude that CC has no explanatory 
power of its own and that LOC and CC measure the same 
property. We also conclude that if CC does have any va-
lidity as a measure of either complexity or test space size, 
then we must conclude these factors grow linearly with 
size regardless of software language, paradigm, or meth-
odology. The stability of the linear relationships we 
found suggests future work in examining their worth as 
metrics in their own right. 
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