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ABSTRACT 

The need for automatic testing of large-scale web applications suggests the use of model-based testing technology. 
Among various modeling languages, UML is widely spread and used for its simplicity, understandability and ease of 
use. But rigorous analysis for UML model is difficult due to its lack of precise semantics. On the other hand, as a 
formal notation, FSM provides an avenue for automatic generation of test cases, but the requirement for mathematical 
basis makes itself academic inventions divorced from real applications. This paper proposes an approach to 
transforming UML model to FSM model, taking advantage of both languages. As our work focuses on the 
transformation of UML state diagrams to FSM models, a specific transformation mechanism is presented, which deals 
with different elements with different mapping rules. To illustrate the mechanism we proposed, an example of a web 
application for software download is presented. Finally, we give a method for implementation of the mechanism and a 
tool prototype to support the method. 
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1. Introduction 

Providing greater assurance that the software is of high 
quality and reliability, testing has been considered more 
and more important as people gradually realize the great 
effect on their daily life made by software products. 
Hand-crafted methods are acceptable until the coming of 
age when there are full of large-scale manufactures with 
high complexity, especially the appearance of web 
applications which labeled for their additional 
heterogeneity, concurrency and distribution. 

Web applications are usually composed of front-end 
user interfaces, back-end servers including web servers, 
application servers and database servers, which build up a 
new way for deploying software applications. Components 
called for supporting task completion of web applications 
by each server may be programmed in different 
languages and executed on different platforms. In 
addition, web applications are frequently modified due to 
continuous updates of its components, high-speed 
developing technologies and changes of the needs of its 
users. All of these characteristics are challenging the 
traditional testing method which largely depends on the 
testers. On the other hand, most companies keep the 
minimum amount of time as their primary priority to 
meet market demand while customers pay their much 
attention to the reduction of the cost during maintenance, 
leading directly to the calls for effective testing within a 
relative short period of time. 

Generation of test cases is the main task of testing; 
since detections of faults are operated by comparing 
expect outputs with actual ones obtained from running of 
these test cases. Model-based testing, which involves 
developing and using a model describing the structural 
and behavioral aspects of the system to generate test 
cases automatically, is an effective method for testing 
various software artifacts including web applications. As 
the models are developed early in the cycle from 
requirements information [1], the generation of test cases 
can be conducted in parallel with the implementation of 
the System Under Test (SUT), rather than sequentially, 
saving the time supposed to be spent for waiting. Also, it 
supports re-use in future testing as these models capture 
the behavior of a software system and in contrast to a test 
suite, they are much easier to update if the specification 
changes [2]. 

The critical part of model-based testing is the 
construction of models. Among various modeling 
languages, UML has been widely spread and used in 
industry for its simplicity and ease of use. It enables 
modelers to address all the views needed to analyze and 
develop the corresponding system. Further more, as a 
visual language, it can clearly show the structure and 
functions of the system, facilitating understanding and 
communication between designers, modelers, developers 
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and users. Besides, many powerful tools have been 
developed and used to support UML modeling such as 
argoUML. But unfortunately, it is widely acknowledged 
that UML can hardly provide formal semantics, as it 
comprises several different notations with no formal 
semantics attached to the individual diagrams. Therefore, 
it is not possible to apply rigorous automated analysis or 
to execute a UML model in order to test its behavior, 
short of writing code and performing exhaustive testing 
[3]. 

As one of the formal notations, FSM (Finite State 
Machine) provides a significant opportunity for testing 
because it precisely describes what functions the software 
is supposed to provide in a form that can easily be 
manipulated by automated means [4]. Being applied to 
the testing process, its relative theory could be helpful 
and supported for enhancing efficiency. Furthermore, in 
addition to traditional software, a web application’s 
behavior could also be modeled using FSMs theoretically 
and then test cases could be automatically generated by 
traversing the path through the FSM model of the 
application, with each distinct path comprising a single 
test case [5]. Besides, FSM model can be visualized to 
tell intuitively the direction to which a test case is going, 
since state-based specification languages are fairly easy 
to translate into a specification graph as they have natural 
graph representations [4]. Last, the transformation to 
FSM facilitates model checking which verifies certain 
property of the model. However, its requirement for 
mathematical basis limits the range of utilization. 

This paper proposes a method for transformation from 
UML model to FSM model, taking advantage of both: the 
simplicity and intelligibility of UML and the accuracy 
and derivability of FSM. It also enables the reuse of the 
existing and well-established tools for UML and theories 
for FSM. There’re several kinds of diagrams within UML 
corresponding to different views of the system, our job 
focuses on the transformation of state diagram, as it is 
most often used to model the behavior of an individual 
object. 

The remainder of this article is organized as follows: 
Section 2 reviews existing works in transformation of 
UML models. Section 3 presents a transformation 
mechanism from UML state diagrams to FSM models. 
To illustrate the transformation mechanism, an example 
of transforming from a state diagram representing a web 
application for software download is given in Section 4. 
In section 5, a method for implementing the 
transformation mechanism we proposed is given, together 
with a brief introduction to a tool prototype based on this 
method. Finally, concluding remarks and discussions 
about future works are presented in section 6. 

2. Related Works 

Automatic testing has become a hot spot in the software 
engineering field for facilitating development process of 

software products. But most of the current technologies 
are based on “capture/replay” mechanism, which costs 
too much time and manual works while recording testing 
scenarios and handling with small changes on the 
functional design or user interfaces. Tools running on this 
mechanism will not design or generate test cases 
themselves and will not provide any instruction on the 
coverage situation of the generated test cases. Further 
more, there are even fewer automatic testing tools for 
web applications which requires for even more 
automatism. Most of the present tools [13] do not support 
the function test of web applications including Link 
Checks for checking links of the web application, HTML 
Validators for providing standard HTML syntax 
validation, Web Functional/Regression Test Tools, Web 
Site Security Test Tools, Load and Performance Test 
Tools and etc. Since most of them rely on information 
obtained from codes of the web applications and only 
concentrate on verification of static aspects, we need a 
tool to help verifying the behavior of them while paying 
least price. 

With the appearance and popularity of the concept of 
object-oriented and model-driven, model-based testing 
for software products has aroused much attention in 
industry. Though many researches are done in this field, 
tools developed under their theories still have certain 
gaps with applying to real uses due to their lack of 
systematism and low automatic level [14,15,16,17,18,19]. 

Construction of models is the beginning of 
model-based testing for web applications. The most 
common one is to use Entity Relation Diagrams or UML 
Class Diagrams to model web pages of a web application 
and relationships between them. Isakowitz et al describe 
web applications with a method called Relationship 
Management Methodology [20]. Coda et al proposes a 
model WOOM for modeling web applications in a higher 
level of abstraction [21]. Gellersen et al introduce the 
WebComposition Markup Language for implementing a 
model for Web application development called Web 
Composition [22]. Conallen et al extend UML modeling 
language to model the structure of web applications [23]. 
However, these methods rarely construct models on the 
behavioral and functional aspects of the web applications 
and few testing approaches are figured out for these 
models. 

The model language we use when designing the web 
applications is UML which strongly supports users to 
describe complicated software including web applications. 
But till now, no such complete testing tool has ever been 
implemented as its semi-formal semantics prevents it 
from automatic testing. On the other hand, many methods 
for generation of test cases from formal models are 
presented. [24] generates test cases from an Object- 
Oriented Web Test Model which is a combination of 
Object Relation Diagram, Page Navigation Diagram, 
Object State Diagram, Block Branch Diagram and 
Function Cluster Diagrams, but it will be trapped if there 
are too many objects in the software. Ricca et al models 
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web applications by modeling for each web page and 
obtain test cases according to proposed rules. Still, it 
would only be useful dealing with simple applications 
[5,25], models web applications with FSM which will 
then be used for test cases generation by search for 
different path of the model under different criteria. 
Considering that FSM model is also the most common 
used object for model checking, we choose it for 
destination of our model transformation process and 
origin for test cases generation. 

Formalization of UML models has aroused much 
attention in industry. One of the most active group is the 
precise UML group [6], which is made up of 
international researchers who are interested in providing 
a precise and well-defined semantics for UML, by using 
model-oriented notations, such as Z or VDM. There are 
also works done by other researchers, Borges et al. [7] 
integrate UML class diagrams and a formal specification 
language OhCircus by written UML elements in terms of 
OhCirus. Latella et al. [8] converts UML state diagrams 
into the formal language Promela. Traore et al. [9] 
proposes a transformation mechanism from UML state 
diagrams to PVS which facilitates automatic model 
checking. 

However, few researches on the transformation to the 
FSM model can be found. Erich et al. [11] gives a 
hierarchical finite state machine model for state diagrams, 
which is capable of acquiring the hierarchical information, 
but it does not mention the method for transformation to 
FSM models with the removal of hierarchy. [10] 
transforms time-extended UML state diagram into timed 
automata, but special elements of the state diagram are 
not under its consideration.  

The method we proposed enables the transformation of 
state diagrams with special elements, such as completion 
transition, fork, join and history state. Besides, the 
flatness of the resulting FSM model can greatly support 
the automation of the generation of test cases. 

3. Transformation Mechanism from UML 
State Diagram to FSM Model 

As UML and FSM are source and target models of the 
transformation mechanism respectively, a brief 
introduction of both is given below. 

3.1 UML 

The Unified Modeling Language (UML) is becoming a 
standard language for specifying, constructing and 
documenting the artifacts of a software-intensive system. 
It can model from different perspectives with several 
kinds of diagrams that express static and dynamic aspects 
of a system. As a visualized model, UML conveys 
information intuitively to our human beings who can get 
better understanding through graphics. Besides, it is easy 
to learn and use, making it more attractive to those who 
model. Because of the characteristics mentioned above 
UML severs as the ideal model for describing the real. 

Class diagram, object diagram, use case diagram, 
sequence diagram, communication diagram, activity 
diagram and state diagram are the most commonly used 
diagrams in UML. Class and object diagrams model the 
static design view of a system, mostly about relationships 
between objects, while rest of them focus on dynamic 
aspects. For the purpose of capturing unexpected outputs, 
we obtain most of the information needed for testing 
from behavioral models. 

As one of the behavioral models, state diagram is often 
used to model the life cycle of certain object, from its 
motivation to termination. Since most systems involve 
more than one object, state diagrams are considered to be 
the minimal unit for representing behaviors. We therefore 
begin our research with UML state diagrams. 

3.2 UML State Diagram 

State diagram, which has been mainly discussed in this 
paper, specifies the sequences of situations an object goes 
through during its lifetime in response to events, together 
with its responses to those events. Many elements are 
involved for expressing semantics of the diagram. 

States represent certain situations the object stays, each 
with a name for distinguishing itself from others. There 
are several types of states within state diagrams. 

States that have no substructures are called simple 
states, others are called composite states. A composite 
state may contain nested states either concurrent or 
sequential which are called orthogonal substates and 
nonorthogonal substates respectively. Given a set of 
nonorthogonal substates in the context of an enclosing 
composite state called OR-state, the object is said to be in 
the composite state and in only one of those substates at a 
time [12]. In the case of orthogonal substates, the concept 
of region is introduced which specifies each state 
machine that execute in parallel in the context of the 
enclosing composite state called AND-state. Only one 
substate from each of the orthogonal regions is active as 
long as the object remains in the corresponding AND- 
state. 

Initial state indicates the default starting place for the 
state diagram or substate while final state indicates that 
the execution of the state machine or the enclosing state 
has been completed. Another special state is the history 
state which allows an OR-state to remember the last 
substate that was active prior to the leaving from the 
OR-state. 

Transitions are relationships between a pair of states 
indicating that an object in the first state will enter the 
second state when a specified event occurs under certain 
condition. Therefore, a transition t comprises three parts: 
source state denoted by src(t) which is the state affected 
by the transition; target state denoted by dst(t) which the 
object enters after the completion of the transition; label 
denoted by EGA(t) which contains events, guards, and 
actions. 
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Semantics of transitions varies according to its source 
and target state. When leading out of a composite state, a 
fired transition leaves the active nested states before 
leaving the composite one. When targeting a composite 
sate, a fired transition would lead the object to the initial 
state of each nested machine running in parallel after 
entering the composite state. 

In addition to these regular transitions, there exist some 
special ones. Completion transition is a transition with 
no event trigger, the fire of which depends on the 
completion of the behavior within its source state. 
Transition join which sources multiple states allows the 
object to leave all the orthogonal regions of an AND-state 
at one time. Similarly, transition fork which targets 
multiple states enables passing directly to all the 
orthogonal regions of an AND-state. The initial state of 
the regions which have no target states of the fork will be 
activated. 

With clear semantics of each element, the 
transformation mechanism which deals with different 
elements with different mapping rules can be determined. 

3.3 FSM Model 

Finite State Machines (FSM) are models each built with a 
set of states, as well as transitions going from one state to 
another, which are triggered either by inputs from outside 
or changes within the system itself. The execution would 
start from a state called start state and keep running until 
reaching a state called accept state. As its mathematic 
nature, we can establish a formal representation for FSM 
which is the target model during the transformation 
process for facilitating automation. 

Definition1. A FSM (Finite State Machine) A is a 
quintuple (Q, L, δδδδ, q0, q), where Q is a finite set of states 
of A, L is a finite set of transition labels of A, δδδδ : Q×L→→→→ 
Q is the transition function relating two states by the 
transition going between them, q0∈∈∈∈Q is the start state, 
q∈∈∈∈Q is the accept state. 

If transition t∈∈∈∈δδδδ represented as (s, l, s′′′′), then source (t) 
= s, target (t) = s′′′′, label (t) = l.  

3.4 Transformation from State Diagram to FSM 
Model 

As can be seen from the definition of FSM model, states 
involved are all basic ones, indicating that the removal of 
hierarchy is needed during the transformation process. 
For the sake of being conformed to the semantics of 
original models, the hierarchical relations between states 
of the state diagram should be obtained as critical 
information for generating corresponding FSM model 
without hierarchy. We therefore take the translation of 
topological structures of state diagrams to mathematic 
models of Hierarchical Finite State Machines (HFSM) as 
a preliminary step towards model transformation due to 
the fact that HFSM provides a simple and precise manner 
to illustrate the topological structure of a state diagram. 

Different from FSM, HFSM contains states with inner 
structures. We could take HFSM as parallel and/or 
hierarchical composition of FSMs with states of higher 
hierarchy representing FSMs of lower hierarchy. A 
definition of HFSM is given bellow according to this 
point of view. 

Definition2. Given a finite set of FSMs F = {A1,.., An} 
with mutually distinct state spaces Q(Ai), 

φφφφ : UUUUA∈∈∈∈F Q(A) →→→→ P(F) is a composition function on F iff 
− ∃1A∈F ∧ A∉U ran(φ), which indicates a unique 

root FSM denoted by φroot 
− ∀A∈U ran(φ) • ∃1s∈UA′∈F\ {A} Q(A′) • A∈φ(s) 
− ∀S ⊆ UA∈F Q(A) • ∃s∈S • S ∩ U A∈φ (s) Q(A) = ∅. 

Definition3. Hierarchical finite state machine (HFSM) 
is a pair (F, φφφφ ) where F is a set of FSMs with mutually 
distinct state spaces, φφφφ is a composition function on F. 

With the definition of HFSM, the topological structure 
of the original state diagram could be obtained in a 
formal representation, which is specified by the 
composition function φφφφ. Construction of such structure 
starts from the top hierarchy, and then gradually comes to 
completion by detailing each composite state that belongs 
to the state diagram level by level. Establish φφφφ (s) = Ai 
and F = F ∪∪∪∪ {Ai} if the composite state s is an OR-state 
with a sub-machine Ai enclosed, while φφφφ (s) = {A1, A2,…, 
An} and F = F∪∪∪∪{A1}∪∪∪∪{A2}∪∪∪∪…∪∪∪∪{An} if the composite 
state s is an AND-state with sub-machines A1, A2,…, An 
each located in the corresponding orthogonal region of s. 
The state pointed by initial state turns to be the start state 
of the corresponding FSM, while the state which points at 
final state becomes the accept state. 

Once the representation for topological structure is 
present, we can get to know the hierarchical relation 
between states which can be specified by the following 
function. When given a HFSM (F, φφφφ ):  

χ : UA∈F Q(A) → P ( UA∈F Q(A)) 
   χ (s) = {s′ | ∃A∈F • A∈φ (s) ∧ s′∈Q(A)} 

With hierarchical information represented in 
mathematic form, the transformation to the resulting 
FSM model starts from that of transitions of the original 
state diagram. But some preliminary conceptions have to 
be introduced first. 

Definition4. A set C ⊆ UA∈F Q(A) is a configuration 
of a given HFSM (F, φφφφ ) iff 

−∃1 s∈Q(φroot) • s∈C 
−s∈C ∧ A∈φ(s) ⇒ ∃1s′∈Q(A) • s′∈C 
−s∈C ∧ ∃ s′ • s ∈χ(s′) ⇒ s′∈C 
Definition5. Given a HFSM (F, φφφφ ) with C as the set of 

all its configurations and s as one of its states, function 
config: UA∈F Q(A) → P (UA∈F Q(A)) 

config (s) = { ci | ci ⊆ C ∧ s∈ci } 
Definition6. Given a HFSM (F, φφφφ), the default 

configuration of certain state sd is denoted as a function 
deconfig: UA∈F Q(A) → P (UA∈F Q(A))   

deconfig (sd) = X ⇔ ∃1X : config (sd) •  
∀s • ( s∈X ∧ sd∉χ*(s) ⇒ I q0 (φi(s)) ⊆ X ) 
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Definition7. Given a state diagram with one of its 
transitions t, Uexit is the uppermost one among the states 
of the set exit = {exiti |||| ∀∀∀∀j: N •••• srcj (t) ∈∈∈∈χχχχ*(exit i) ∧∧∧∧ dstj (t) 
∉∉∉∉ χχχχ*(exit i)}, Uenter is the uppermost one among the 
states of the set enter = {enteri |||| ∀∀∀∀j: N •••• srcj (t)∉∉∉∉ 
χχχχ*(enter i) ∧∧∧∧ targetj (t) ∈∈∈∈ χχχχ*(enter i)}. 

States of the resulting FSM model are configurations 
each represent a set of states of the original state diagram 
which are active at present. Therefore, transitions 
involved are running from one configuration to another, 
which leads to the fact that each transition of the state 
diagram may correspond to several transitions within 
target FSM model according to the number of 
configurations the source state of the original transition 
belongs to. Suppose confTranSet is the transition set of 
the resulting FSM, the algorithm for obtaining the set is 
specified below: 
      for each transition t 
        if EGA(t) = ∅ 
         TempSet = I q (φi (src (t))) 
         for each qi ∈ TempSet 
              configi = config (qi) 
         ConfSet = I configi 

        DefConf = deconfig ( dst (t)) 
       if t is a  join 
         for each si ∈ src (t) 
         configi = config (si) 

ConfSet = I configi 

DefConf = deconfig ( dst (t )) 
       if t is a  fork ∧ dst (t) > 1 
         ConfSet = config ( src (t)) 
         defDst = U (deconfig ( dsti (t)) ∩ χ* ( dsti (t))) 
         NdefDst = I (deconfig ( dsti (t)) \ χ* ( dsti (t))) 
         DefConf = defDst ∪ NdefDst                                                                                                                                                                                                                                                                                                                                       
       else 
         ConfSet = config ( src (t)) 
         DefConf = deconfig ( dst (t)) 
      while ( ConfSet is not empty ) 
         get a souconf ∈ ConfSet 
         tarconf = ( souconf \ χ* ( Uexit (t)) ∪ 

(χ* ( Uenter (t) ∩ DefConf ) 
         source (t′′′′) = souconf 
         target (t′′′′) = tarconf 
         label (t′′′′) = EGA (t) 
         confTranSet = confTranSet ∪ { t′′′′} 
         confSet = confSet\{souconf} 

Then the state set can be generated by filling up with 
states related to each element of the transition set 
confTranSet. The initial and accept state of the resulting 
FSM model InitState and AccState can also be 
determined. 

InitState = deconfig ( q0 (φroot)) 
AccState = config ( q (φroot )) 
This is the process during which state set of the 

original state diagram are mapping into that of the 
resulting FSM model. But there’re some exceptions. 

History states are not involved in the algorithm due to 
their different semantics with other common states; we 
handle them in a special way. 

For each history state h referring to certain OR-state 
Ors with a state set HS composed of all its nonorthogonal 
substates, we build relations of the target states of 
transitions leading out of state Ors with each hsi 
(hsi∈∈∈∈HS). Relations, represented by transitions, should 
be established in pairs, indicating returning to the same 
state that was last active when leaving the enclosing 
OR-state. Suppose the target state of the transition 
leading out of Ors is Htar, and the label of the transition 
is denoted as l, for each hsi (hsi ∈∈∈∈HS), a new transition 
labeled “back (hsi)” is created with Htar and hsi as its 
source and target state. With a transition set obtained by 
the method above, the problem is then turning into the 
transformation from each element of the set to its 
counterparts of the resulting FSM model. Meanwhile, 
existing transitions of the newly established FSM model 
which labeled l should be modified. Suppose t is a 
transition of the resulting FSM model labeled l, then 
label′ (t) = label (t) + s (s∈source (t)). 

Till now, a FSM model carrying the same semantics 
with the original state diagram is constructed and 
completed. 

4. An Example: Software Download 

An example of state diagram is shown in Figure 1, which 
models a web application for software download. The 
life cycle of the web application starts from its main page 
(MP), then turns to download or search module according 
to the choice of users. When entering the download 
module, two entities will be triggered: a web page for 
illustrating the usage of the software about to download 
by a video clip, a dialog box for download operation. 

According to the transformation mechanism we 
proposed, the topological structure of the state diagram 
should be captured first by constructing a HFSM model. 
The resulting HFSM model can be generated as follows: 

A1: ( { S1, S2, S3, S4 }, { l1, l2, l3, l4 }, { ( S1, l1 ) → 
S2, ( S1, l2 ) → S3, ( S2, l3 ) → S4, ( S3, l4 ) → 
S4 }, S1, S4 ) 

A2: ( { S5, S6 }, { l5 }, { ( S5, l5 ) → S6 }, S5, S6 ) 
A3: ( { S7, S8, S9 }, { l6, l7 }, { ( S7, l6 ) → S8, ( S8, l7 ) 

→ S9 }, S7, S9 ) 
A4: ( { S10, S11, S12 }, { l8, l9 }, { ( S10, l8 ) → S11, 

( S11, l9 ) → S12 }, S10, S12 ) 
φ: φ root = { A 1 }, φ (S2) = { A2, A3 }, φ (S3) = { A4 }, φ 

(S1) = φ (S4) = … = φ (S13) = ∅ 
F = ({ A1,…, A4}, φ ) 
Then, each transition of the exampled state diagram 

could be transformed into several transitions of the 
resulting FSM model by the algorithm we proposed with 
the HFSM model above. The results are shown as follows 
where Li indicates the transition of the state diagram 
which labeled li; Ci indicates one of the configurations of 
the HFSM model. 
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L1: C1 = { root, S1}, C2 = { root, S2, S5, S7 }, 
( C1, l1 ) → C2  

L2: C3 = { root, S3, S10 }, ( C1, l2 ) → C3  
L3: C4 = { root, S2, S6, S9 }, C5 = { root, S4 }, ( C4, 

l3 ) → C5 
L4: C6 = { root, S3, S11 }, C7 = { root, S3, S12 }, ( C3, 

l4 ) → C5, ( C6, l4 ) → C5, ( C7, l4 ) → C5 
L5: C8 = { root, S2, S5, S8 }, C9 = {root, S2, S5, S9 }, 

C10 = { root, S2, S6, S7 }, C11 = { root, S2, 
S6, S8,}, C12 = {root, S2, S6, S9 }, ( C2, l5 ) 
→ C10, ( C8, l5 ) → C11, 
( C9, l5 ) → C12 

L6: ( C2, l6 ) → C8, ( C10, l6 ) → C11 
L7: ( C8, l7 ) → C9, ( C11, l7 ) → C12 
L8: ( C3, l8 ) → C6 
L9: ( C6, l9 ) → C7 
L10: ( C1, l10 ) → C8, ( C1, l10 ) → C11 
L11: C13 = { root, S13 }, ( C12, l11 ) → C13 
L12: ( C7, l12 ) → C2 
L13: ( C6, l13 ) → C13 
We can now generate the state set of the resulting FSM 

model, which is filled up with all the configurations 
mentioned above: Q = { C1,…, C13}. The initial state is 
C1 while the accept state is C5. 

Finally, noticing there’s a history state H within the 
state S3, we should add several new transitions to the 
transition set of the FSM model: 

( C5, “back (S10)” ) → C3, ( C5, “back (S11)” ) → C6, 
( C5, “back (S12)” ) → C7 
Meanwhile, transitions labeled l4 should be modified into: 
( C3, l4 (S10)) → C5, ( C6, l4 (S11)) → C5, ( C7, l4 

(S12)) → C5. 

5. Implementation of the Transformation 
Mechanism 

As automatic testing is our final goal of model 
transformation, the implementation of such mechanism 
by computer itself is required. The method proposed in 

this section can be applied to all the diagrams of UML 
model, only the transformation mechanism varies when 
dealing with different kinds. Since computers are unable 
to understand and analyze meanings conveyed by 
diagrams, texts carrying equivalent amount of information 
would help. Here, we choose XMI. 

5.1 XMI 

XML Metadata Interchange (XMI) is a standard that 
enables users to express objects using Extensible Markup 
Language (XML), the universal format for representing 
data on the WWW. As a bridge across the gap of objects 
and XML, it provides a standard mapping from objects 
defined by UML to XML, fulfilling object-oriented 
feature of both UML and programming languages. In 
addition, many mature tools supporting transformation 
from UML diagrams to corresponding XMI files are 
presented, such as argoUML. Therefore, XMI becomes 
the ideal textual representation of those UML diagrams. 

5.2 Implementation Method 

First of all, XMI files are needed which can be easily 
obtained as output of argoUML with inputs as UML 
diagrams. As shown in Figure 2, when receiving the 
resulting XMI, we extract semantics by recognizing 
different tags which indicate the location of information 
related to certain elements of the UML diagrams. Then, 
data structure based on the corresponding HFSM model 
could be constructed. With topological information 
provided by the data structure, mapping rule for 
transforming to FSM models works. Finally, resulting 
models are made to be hold in XML files with schema 
defined by ourselves. 

A tool prototype has been developed to support our 
transformation mechanism and implementation method. 
It takes state diagrams carried by XMI files as inputs and 
resulting FSM model carried by XML files as output. 
Also, one can modify the chosen XMI file through an 
edition platform provided by the tool before 
transformation operation starts. 

 

Figure 1. State diagram of a web application for software download   
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Figure 2. Implementation process 
 
5.3 Simulation 

For the purpose of verifying the correctness of our 
approach, we use the tool developed by ourselves to 
simulate the example presented in the previous section. 

Figure 3 shows an interface of our tool for automatic 
testing for web applications. The characters in the main 
frame are the textual representation of the exampled state 
diagram. 

After choosing transformation function of the tool, the 
model will then be transformed into FSM model written 
in XML language, as shown in Figure 4. 

 

Figure 3. An interface of the tool for automatic testing 
for web applications 

 

Figure 4. FSM model written in XML language 

To illustrate the resulting FSM model more clearly, our 
tool implements the visualization of its textual 
representation, which can be seen in Figure 5. 

6. Conclusions 

This paper proposes a method for transformation from 
UML model to FSM model. It allows users to model a 
system with the language they used to without barriers 
towards automatic and efficient testing. As we focus on 
the translation of state diagrams, a specific 
transformation mechanism is proposed which enables 
generation of corresponding FSM models with same 
semantics. 

Modelers create one state diagram for each object of 
the system and other UML diagrams for relations 
between them. Since our specific transformation 
mechanism serves for every single state diagram, 
synthesis of the FSM models each obtained from one of 
these state diagrams should be discussed. It depends on 
the information provided by other UML diagrams like 
class diagrams, sequence diagrams etc. Besides, these 
UML diagrams themselves need to be transformed into 
FSM with meta-model we defined so as to generate target 
model that covers information carried in all of the given 
UML models. They could either be transformed directly 
into FSM models, or to state diagrams as the first step, 
which would then come into FSM models by the 
mechanism we proposed. Experiments about comparison 
on efficiencies of both should be hold with complete 
transition mechanisms before the choice can be made. 

Besides, details of elements contained in labels 
including event, guard and action, as well as the action 
attribute of states, are not considered in our research, 
their affections to the correctness of transformation is 
also a part of the future work. 

 

Figure 5. The visualization of the model’s textual 
representation 
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