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Abstract 
The Schrödinger perturbation energy for an arbitrary order N of the perturbation has been pre-
sented with the aid of a circular scale of time. The method is of a recurrent character and devel-
oped for a non-degenerate quantum state. It allows one to reduce the inflation of terms necessary 
to calculate known from the Feynman’s diagrammatical approach to a number below that applied 
in the original Schrödinger perturbation theory. 
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1. Introduction 
The conceptual background of quantum mechanics seems to be inadequate when the perturbation methods are 
considered; see e.g. [1]. This also holds true when the problem of a time-independent perturbation applied to a 
non-degenerate quantum state is considered. 

On one side a complicated Schrödinger formalism should be applied, [2], yet on the other side an inflation of 
terms, provided by the diagrammatical method based on the Feynman classification of the perturbation process, 
completed with the aid of the time variable comes into play [3] [4]. Both methods can be tedious to follow espe-
cially when a large perturbation order N  is taken into account. 

The aim of this paper is to address these highlighted problems by applying a circular scale of time with dia-
grams. Several steps in this direction have previously been achieved [5]-[7]. However, an additional simplifica-
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tion of the approach can be attained when partition of the order number N  into separate components is taken 
into account. 

The present contribution combines the results obtained from both the circular scale and the partition proper-
ties of N . This method allows us to calculate the Schrödinger terms for energy for an arbitrary N . The pres-
entation commences with an outline of a theory relating to time. 

2. Subjective Character of the Notion of Time 
Time scale is represented by a sequence of events (time points) with different intervals between them. 

If we are travelling by train for example, we do not really need to rely on a watch to observe time lapse as it is 
sufficient to study the station names. By analysing the stations we are able to estimate not only the geometrical 
distance from the point of our departure, but get also an idea of time progression. The only knowledge we need 
is a sequence of stations extending along our trip. If we do not insist on the accuracy of the intervals of time, we 
can satisfy ourselves to know that “nearer” means an earlier station in time, whereas a “further” station means a 
later moment in time. 

Obviously this kind of parallelism holds true irrespective of the type of track along which the train is travel-
ling, although the tracks can vary in terms of their shape. One type, for example, is that we are systematically 
further from our departure point, but it could also be a different type of track—perhaps circular in nature. This 
would mean that after travelling through several stations the train arrives at its original departure point. Then 
comes an important aspect of the journey. If the track crossing the departure-end station is the only one, its ef-
fect on the train—if it preserves its motion (including the motion direction)—is to repeat its trip along the same 
set of stations as before. 

Another scenario may occur however, if we assume that there is a possibility for the train to choose to travel 
upon a differing track at its original departure end point. Without going into details, a natural conclusion is that a 
journey along an alternative track will be different than that of a former one. 

This simple example depicted above connecting time with a track can raise a question concerning our concept 
of time in general. From childhood we are accustomed to a notion of time which is associated with change. If 
daily events were to be essentially the same, we could need a watch to track each day as otherwise no distinction 
between them could be realised. 

In practice, however, a completely different picture is inscribed in our memory—nothing, or almost nothing, 
repeats itself completely. This means that in all our observations we can find occurrences that do not repeat 
themselves. Therefore this supports a conclusion that time behaves like a train as in the first example quoted 
above. No station is repeated, time is progressing from a start point to an arbitrarily distant moment in the future. 
As it is easy to understand that our start point can be considered by other observers as a rather advanced point in 
time, we can easily also relate to a concept of the past. This notion—considered in an opposite direction to our 
everyday experience of progressing time—can classify events at an arbitrarily greater distance from us. Quanti-
tatively, the past distance becomes similar to the notion of a distant future. 

In effect, if we numerate the events, we obtain a sequence of the form 

1,2,3,4,5, infinity                                   (1) 

for the future, and 

1, 2, 3, 4, 5, minusinfinity− − − − −                              (2) 

for the past. 
Certainly the scale of time, being a result of our observational knowledge and imagination, is not the only one 

which can exist. Let us consider an atom which is not influenced by any external or internal factor. For example 
an atom of a non-radioactive element which in its ground state can remain static for an infinitely large set of 
measurements undertaken by an observer. This set can be represented, for example, by a sequence of constant 
numbers, say 

1,1,1,1, ,                                        (3) 

since the effect of the first measurement does not vary with the next ones, on condition the measurements do not 
influence the atom. 
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A slightly more complicated illustration is that of a periodic mechanical system, for example represented by 
the electron moving in a hydrogen atom described by the Bohr-Sommerfeld atomic theory; see e.g. [8]. Let us 
assume that the electron is moving along an elliptical planar orbit. When two electron positions on the orbit, for 
example the nearest to the nucleus and the most distant from that object, are solely considered, we obtain a set of 
observations labelled by the numbers 

1,2,1,2,1,2,1,2,                                  (4) 

The set can be made infinitely long because no change of two special electron positions in the atom men-
tioned above can be attained in the absence of the system perturbation. Obviously more complicated sets of re-
peated numbers than (4) can represent more complicated periodic systems. 

A characteristic point is that not only in classical physics, but also in quantum theory, we follow the scale of 
time of (1) and (2) which is typical for everyday life. According to this scale the events labelled by time do not 
repeat themselves. Our aim is, in the first step, to point out that an application of such scale in the quantum 
theory is not really justified. To this purpose a time analysis of the quantum-mechanical perturbation problem 
within the formalism introduced by Schrödinger will be carried out. 

3. Schrödinger and Feynman Approaches to the Perturbation Problem of a 
Quantum-Mechanical System 

Schrödinger based his approach to the quantum theory of the atomic systems on the property of duality 
represented by the particle-like and wave-like pictures of the matter. The Hamiltonian operator on which the ap-
proach is based is in fact similar to that of a moving particle. However the operator of the particle momentum is 
chosen in the way that it gives an equation for a wave associated with the examined particle. A well-known fact 
on such an approach is that it gave very satisfactory practical results. When solved accurately, the Schrödinger 
wave equation could produce very accurate data on numerous observables from the atomic world. This espe-
cially concerned the electron energy of atoms. 

The point raised by Schrödinger himself was that, in general, his treatment becomes a very complicated ma-
thematical task for relatively simple systems. Such a situation exists when a rather simple atom is influenced by 
an external field, for example of an electric or magnetic character. To avoid the difficulty of solution of his equ-
ation also being valid in this case, Schrödinger proposed to consider the potential of an external field as a small 
perturbation of the potential governing the atom in the absence of any external influence. In consequence, the 
perturbation formalism operates with the wave functions describing the states 

, , ,p q r 
                                   (5) 

and energies 
, , ,p q rE E E                                      (6) 

of an unperturbed quantum system together with the perturbation potential 

( )perV r                                        (7) 

characteristic for an external physical effect. 
On many occasions it can be assumed that (7) does not depend explicitly on time but is a function solely of 

the position vector r , so it can be said that (7) represents a time-independent perturbation problem. Another 
assumption which facilitates the approach is that the unperturbed state n  is non-degenerate. 

In fact, in order to solve the perturbation problem, Schrödinger developed a complicated formalism which 
does not apply the notion of time at all. This was possible because both the beginning state of an unperturbed 
system (atom) and the state obtained in effect of the perturbation, are assumed to be stationary and therefore in-
dependent of time. When limited to the calculation of the perturbation energy, perE , the method gradually at-
tains the form of components of the series which is 

per 1 2 3 ,n NE E E E E E E∆ = − = ∆ + ∆ + ∆ + + ∆
                     (8) 

on condition we assume that the series is convergent and N is large enough to give a good approximation for 
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deltaE. In practice the complication of iE∆ , and therefore also NE∆  entering (8), increases very rapidly with 
the increase of i  and N. Therefore the calculation also depends on the patience of the calculating person, or 
equipment, which can be an important parameter. If we focus our attention on NE∆ , the number of kinds of the 
perturbation terms entering this energy component increases with N according to the formula [9] [10] 

( )
( )

2 2 !
.

! 1 !N
N

S
N N

−
=

−
                                   (9) 

More than twenty years after Schrödinger’s method, Feynman classified quantum events according to their 
dependence on time. In effect a formalism suitable to calculate the sum E∆  in (8) has also been developed. 

However this calculation did not follow, in general, the series of iE∆  presented by Schrödinger. In fact the 
number of Feynman terms represented by diagrams necessary to calculate NE∆  in (8) is 

( )1 !NP N= −                                     (10) 

(see [4]). This number for large N  heavily exceeds the number NS . In effect, in order to obtain an individual 
perturbation term entering NE∆  in (8), very many Feynman terms indicated by NP  in (10) should be com-
bined. For example for 20N =  we have 

17
20 19! 1.216 10P = = ×                               (10a) 

whereas the number 
9

20 1.767 10 .S = ×                                 (10b) 

Thus (10a) and (10b) imply that on average approximately about 
8

20 20 0.69 10P S = ×                                 (11) 

Feynman terms should be combined in calculating an individual Schrödinger perturbation term entering 
20E∆ . This task can be difficult to realize even with the aid of the computer programming. 

However, the scale of time applied by Feynman does not in fact difffer, from the conventional scale presented 
in (1) and (2): there is no limitation, or constraint, imposed on the time variable applied in that scale. Our aim is 
to present in Sections 4 and 5 an approach where time is classified according to a scale which is different than 
that characterized by (1) and (2). This is a scale represented by a topological circle, or is composed of a set of 
such circles. Efficacy of the scale obtained in this way in calculating the Schrödinger perturbation terms be-
comes evident. 

4. Scale of Time Suitable for the Schrödinger Perturbation Theory 
In general this kind of scale is circular in its nature, since it is based regularly on a loop of time being a topolog-
ical circle. A single circle, called the main loop of time, is characteristic for any N . But for 2N >  the main 
loop scale should be supplemented by the scales having side loops. Qualitatively the side loops are similar, but 
not identical in their character, to the main loop. 

The details of the scale depend on the order number N  of the perturbation. If we assume that perturbation of 
a system is an effect of its interaction with perV , N  can be regarded as a number of the system collisions with 

perV  in course of a single cycle of collisions. The time moments of collisions are indicated on the loops by 
points. So, for example, the loop belonging to 7N =  has 7 time points on it. For any N  there exists a single 
scale composed of only one loop of time and having no side loops. But beginning with 2N >  there occurs, 
beyond the main loop of time, other scales which have one or more side loops attached to their main loop. Evi-
dently the main loop on a supplementary scale is submitted to deformation because of the presence of the side 
loops. 

An important point is that the total number of scales, or diagrams representing them, which can be constructed 
is equal to NS . Therefore for 7N =  we have 7 132NS S= =  kinds of the perturbation terms and 132 scales 
(diagrams) which can be obtained: one scale is equal to a single loop, the 131 diagrams possess one or more side 
loops. In these 132 diagrams set, no identical diagrams can occur. This does not mean, however, that all 132 
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energy components entering 7E∆  and represented by the diagrams are different. 
Examples of diagrams for 7N =  are given in Figure 1. 
For any 2N >  the diagrams having side loops are obtained due to contractions of 1N −  time points 

present on the original single main loop of time which has no contractions and consequently no side loops. The 
rule governing contractions is that the lines on diagrams obtained in effect of contractions do not cross [5]. 

This is a sufficient condition to obtain all 1NS −  contracted diagrams for a given N . One point on each 
main loop of time (original or deformated by the presence of the side loops), called the beginning-end point, 
cannot be submitted to contractions. All other time points, including those present on the side loops, can take 
part in contractions. Since the side loops have their own beginning-end points, the property of possible contrac-
tions of these points with other points of time located on the same loop represents the main feature distinguish-
ing the side loops from the main loop. 

Because any diagram represents one kind of the NS  Schrödinger kinds of the perturbation terms ascribed to 
a given N , a problem arises in presenting these kinds in a possibly compact form. Several rules elaborated be-
fore for diagrams allowed us to perform this task. However, the presentation of the diagrams and their analysis 
do not seem to be a convenient method in calculating the energy terms when N  is large. To avoid this diffi-
culty an algebraic approach to the energy calculation is developed and presented in subsequent sections of the 
present paper. 

5. Partition of the Number N 1−  into Its Integer Components and Calculation of 
the Energy Terms 

One kind of the energy terms, namely that corresponding to a single, called main or uncontracted, loop of time is 
very easy to calculate. For example for 7N =  this kind of energy terms becomes 

.VPVPVPVPVPVPV                                    (12) 

The number of P’s is equal to 1 6N − = , and the number of V’s is equal to 7N = . Since state n  is 
perturbed, we have for V the matrix elements of the kind 

, , , , , , ,n V p p V q q V r r V s s V t t V u u V n                    (13) 

whereas the P’s entering (12) are subsequently the reciprocal energy terms: 
1 1 1, , ,

n p n q n rE E E E E E− − −


                                (14) 

For an uncontracted diagram all powers of P are equal to 1 (see (12)), but for contracted ones at least some of 
the powers of P, as well as those of the terms entering (14), can be larger than 1. 

Evidently the summation process over the indices , , , ,p q r s t  and u which have to be performed in (12), or in 
similar terms obtained due to contractions and enclosed within the brackets , does omit the index n of the 
quantum state submitted to perturbation. The superscript per applied for the perturbation potential in (7) has 
been henceforth neglected for the sake of brevity. 
 

             
(a)                  (b)                      (c)                      (d)                        (e) 

Figure 1. Examples of diagrams representing the kinds of the perturbation energy terms belonging to 7N = . The diagram 
(a) is the main loop of time with 7 time points on it without contractions; see term (1) in Table 2. Diagram (b) represents a 
single contraction ( )5 : 6  leading to the side loop giving the factor 1E∆  for the energy term; see term (2) in Table 2. 

Diagram (c) has contraction 4 : 6  leading to the factor 2E∆  for the energy term; see term (7) in Table 2. Finally diagrams 

(d) and (e), having respectively contractions 3 : 6  and 3 : 6 4 : 5 , combine into the factor equal to 3E∆ . This gives a sin-
gle term representing two kinds of the perturbation terms (48), (49) entering Table 3. 
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One of the points of time on the loop (the beginning-end point) is free of manipulations like summation or 
contraction. Let us label it by 7 and attribute to state n. Consequently the points 1, 2, 3, 4, 5, and 6 on the same 
loop can be attributed respectively to , , , ,p q r s t , and u. Since point 7 represents a passive attitude in further 
calculations, we have in fact 6 points of time to our disposal as contraction points. 

The partitions of 6 into components, beginning with the lowest terms is represented in Table 1, the number of 
partitions being equal to ( )6 1 52 2 32− = = . In the 3rd column of Table 1 we give the number 
 
Table 1. List of partitions of the number 1 6N − = , where 7N =  is the perturbation order, and the values of prodS  equal 
to products of iS  entering each partition; see (9). The indices referring partitions to the energy terms entering 7E∆  listed 
in Tables 2-4 are also given. 

Partition index Partition prodS  Index referring to the perturbation terms in Tables 2-4 

1 1 + 1 + 1 + 1 + 1 1 (1) 

2 1 + 1 + 1 + 1 + 2 1 (2) 

3 1 + 1 + 1 + 2 + 1 1 (3) 

4 1 + 1 + 2 + 1 + 1 1 (4) 

5 1 + 2 + 1 + 1 + 1 1 (5) 

6 2 + 1 + 1 + 1 + 1 1 (6) 

7 1 + 1 + 1 + 3 2 (7), (8) 

8 1 + 1 + 3 + 1 2 (9), (10) 

9 1 + 3 + 1 + 1 2 (11), (12) 

10 3 + 1 + 1 + 1 2 (13), (14) 

11 1 + 1 + 2 + 2 1 (15) 

12 1 + 2 + 1 + 2 1 (16) 

13 2 + 1 + 1 + 2 1 (17) 

14 1 + 2 + 2 + 1 1 (18) 

15 2 + 1 + 2 + 1 1 (19) 

16 2 + 2 + 1 + 1 1 (20) 

17 1 + 2 + 3 2 (21), (22) 

18 2 + 1 + 3 2 (23), (24) 

19 1 + 3 + 2 2 (25), (26) 

20 3 + 1 + 2 2 (27), (28) 

21 2 + 3 + 1 2 (29), (30) 

22 3 + 2 + 1 2 (31), (32) 

23 2 + 2 + 2 1 (33) 

24 3 + 3 4 (34) - (37) 

25 2 + 4 5 (38) - (42) 

26 4 + 2 5 (43) - (47) 

27 1 + 1 + 4 5 (48) - (52) 

28 1 + 4 + 1 5 (53) - (57) 

29 4 + 1 + 1 5 (58) - (62) 

30 1 + 5 14 (63) - (76) 

31 5 + 1 14 (77) - (90) 

32 6 42 (91) - (132) 

The sum of 32 prodS  entering the table is 7 132S = . 
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prodS  

which is a product of iS , where i  are the numbers entering a given partition and iS  are obtained from the 
Formula (9) ( i N=  is substituted for each number entering partition). A characteristic point is that a sum of 

prodS  for all partitions in Table 1 is equal to 7 132NS S= = . 
In order to obtain the energy terms, it can be noted that the component numbers ( )c  entering partitions 

which are larger than 1 can be submitted to partitions they own. In fact it is of use to submit to partitions only 
the numbers 

( ) 1.c −                                        (15) 

For example for 2c =  we obtain 1 in (15), so only a single partition is present: 

( )2 1 1.− =                                      (16) 

This result is associated with the first order ( )1N =  perturbation term 

1E n V n∆ =                                    (17) 

which enters as a factor multiplying the result obtained from the main loop of time given in the form of the 
product of V and P enclosed within the brackets ; see Tables 2-4. 

On the other hand, for 3c =  the partitions of the number 

( )3 1 2− =                                      (18) 

are 

2 2=                                        (19) 

and 

2 1 1.= +                                       (20) 

The energy terms multiplying the contribution coming from the bracket term  given by the main loop of 
time are respectively: 

2E∆                                         (21) 

for partition (19), and 

( )2
1 1 1E E E∆ ∆ = ∆                                  (22) 

for partition (20). Similar partitions can be done for 

( ) 1 3,4,5c − =                                   (23) 

which come from ( ) ( ) ( ) ( )4 , 5 , 6c =  presented in Table 1. The resulted energy terms are given in Tables 2-4. 
A characteristic point is that the exponents of P ’s in Tables 2-4 change with partitions taken into account 

after the bracket terms . This is an effect of the change of the number of the terms iE∆  which have to be 
taken into account as a result of partitions. This point is made more evident in Table 4 where the energy terms 
are correlated with partitions done in the case of a single number 

( ) ( )1 6 1 5.c − = − =                                 (24) 

Also the prodS  for partitions of the number 5 and their sum are given explicitly in this case. 
A general rule for the exponents of P  and partitions is connected with the number of energy terms which 

are present after the bracket term . When only one energy term is present after the term , this means that 
only a single contraction of the time points has been done on the main loop. In effect of such contraction the 
exponent of P —which is at place of the time point where contraction is present—changes (increases) its value 
by one giving 
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Table 2. List of 37 kinds of the perturbation terms entering 7E∆  corresponding to partitions presented in Table 1 from 1 to 24. 

Index of the perturbation term Perturbation term Contractions present on a circular scale of time 

(1) VPVPVPVPVPVPV  No contraction 

(2) 2
1VPVPVPVPVP V E− ∆  5 : 6  

(3) 2
1VPVPVPVP VPV E− ∆  4 :5  

(4) 2
1VPVPVP VPVPV E− ∆  3 : 4  

(5) 2
1VPVP VPVPVPV E− ∆  2 :3  

(6) 2
1VP VPVPVPVPV E− ∆  1: 2  

(7) 2
2VPVPVPVP V E− ∆  4 : 6  

(8) ( )23
1VPVPVPVP V E∆  4 :5 : 6  

(9) 2
2VPVPVP VPV E− ∆  3 :5  

(10) ( )23
1VPVPVP VPV E∆  3 : 4 :5  

(11) 2
2VPVP VPVPV E− ∆  2 : 4  

(12) ( )23
1VPVP VPVPV E∆  2 :3: 4  

(13) 2
2VP VPVPVPV E− ∆  1:3  

(14) ( )23
1VP VPVPVPV E∆  1: 2 :3  

(15) ( )22 2
1VPVPVP VP V E∆  3 : 4 5 : 6  

(16) ( )22 2
1VPVP VPVP V E∆  2 :3 5 : 6  

(17) ( )22 2
1VP VPVPVP V E∆  1: 2 5 : 6  

(18) ( )22 2
1VPVP VP VPV E∆  2 :3 4 :5  

(19) ( )22 2
1VP VPVP VPV E∆  1: 2 4 :5  

(20) ( )22 2
1VP VP VPVPV E∆  1: 2 3: 4  

(21) 2 2
1 2VPVP VP V E E∆ ∆  2 :3 4 : 6  

(22) ( )32 3
1VPVP VP V E− ∆  2 :3 4 :5 : 6  

(23) 2 2
1 2VP VPVP V E E∆ ∆  1: 2 4 : 6  

(24) ( )32 3
1VP VPVP V E− ∆  1: 2 4 :5 : 6  

(25) 2 2
2 1VPVP VP V E E∆ ∆  2 : 4 5 : 6  

(26) ( )33 2
1VPVP VP V E− ∆  2 :3: 4 5 : 6  

(27) 2 2
2 1VP VPVP V E E∆ ∆  1:3 5 : 6  

(28) ( )33 2
1VP VPVP V E− ∆  1: 2 :3 5 : 6  

(29) 2 2
1 2VP VP VPV E E∆ ∆  1: 2 3:5  

(30) ( )32 3
1VP VP VPV E− ∆  1: 2 3: 4 :5  

(31) 2 2
2 1VP VP VPV E E∆ ∆  1:3 4 :5  

(32) ( )33 2
1VP VP VPV E− ∆  1: 2 :3 4 :5  

(33) ( )32 2 2
1VP VP VP V E− ∆  1: 2 3: 4 5 : 6   

(34) ( )22 2
2VP VP V E∆  1:3 4 : 6  

(35) ( )23 2
1 2VP VP V E E− ∆ ∆  1: 2 :3 4 : 6  

(36) ( )22 3
2 1VP VP V E E− ∆ ∆  1:3 4 :5 : 6  

(37) ( )43 3
1VP VP V E∆  1: 2 :3 4 :5 : 6  
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Table 3. List of 53 kinds of the perturbation terms entering ΔE7 corresponding to partitions presented in Table 1 from 25 to 
31. Combinations of several kinds into one term iE∆  are taken into account for 3i =  ( )3 2S =  and 4i =  ( )4 5S = . 

Index of the perturbation term Perturbation term Contractions on the circular scale 

(38), (39) 2 2
1 3VP VP V E E∆ ∆  1: 2 3: 6  and 1: 2 3: 6 4 :5   

(40) ( )22 3
1 2VP VP V E E− ∆ ∆  1: 2 3:5 : 6  

(41) ( )22 3
1 2VP VP V E E− ∆ ∆  1: 2 3: 4 : 6  

(42) ( )42 4
1VP VP V E∆  1: 2 3: 4 :5 : 6  

(43), (44) 2 2
3 1VP VP V E E∆ ∆  1: 4 5 : 6  and 1: 4 2 :3 5 : 6   

(45) ( )23 2
2 1VP VP V E E− ∆ ∆  1:3: 4 5 : 6  

(46) ( )23 2
1 2VP VP V E E− ∆ ∆  1: 2 : 4 5 : 6  

(47) ( )44 2
1VP VP V E∆  1: 2 :3: 4 5 : 6  

(48), (49) 2
3VPVPVP V E− ∆  3 : 6  and 3: 6 4 :5  

(50) 3
2 1VPVPVP V E E∆ ∆  3 :5 : 6  

(51) 3
1 2VPVPVP V E E∆ ∆  3 : 4 : 6  

(52) ( )34
1VPVPVP V E− ∆  3 : 4 :5 : 6  

(53), (54) 2
3VPVP VPV E− ∆  2 :5  and 2 :5 3: 4  

(55) 3
2 1VPVP VPV E E∆ ∆  2 : 4 :5  

(56) 3
1 2VPVP VPV E E∆ ∆  2 :3:5  

(57) ( )34
1VPVP VPV E− ∆  2 :3: 4 :5  

(58), (59) 2
3VP VPVPV E− ∆  1: 4  and 1: 4 2 :3  

(60) 3
2 1VP VPVPV E E∆ ∆  1:3: 4  

(61) 3
1 2VP VPVPV E E∆ ∆  1: 2 : 4  

(62) ( )34
1VP VPVPV E− ∆  1: 2 :3: 4  

(63) - (67) 2
4VPVP V E− ∆  2 : 6  and other contractions (a) 

(68), (69) 3
3 1VPVP V E E∆ ∆  2 :5 : 6  and 2 :5 : 6 3: 4  

(70) - (71) 3
3 1VPVP V E E∆ ∆  2 :3: 6  and 2 :3: 6 4 :5  

(72) ( )24
1 2VPVP V E E− ∆ ∆  2 :3:5 : 6  

(73) ( )24
2 1VPVP V E E− ∆ ∆  2 :3: 4 : 6  

(74) ( )24
2 1VPVP V E E− ∆ ∆  2 : 4 :5 : 6  

(75) ( )45
1VPVP V E∆  2 :3: 4 :5 : 6  

(76) ( )23
2VPVP V E∆  2 : 4 : 6  

(77) - (81) 2
4VP VPV E− ∆  1:5  and other contractions (b) 

(82), (83) 3
3 1VP VPV E E∆ ∆  1: 4 :5  and 1: 4 :5 2 :3  

(84), (85) 3
1 3VP VPV E E∆ ∆  1: 2 :5  and 1: 2 :5 3: 4  

(86) ( )24
1 2VP VPV E E− ∆ ∆  1: 2 : 4 :5  

(87) ( )24
1 2VP VPV E E− ∆ ∆  1: 2 :3:5  

(88) ( )24
2 1VP VPV E E− ∆ ∆  1:3: 4 :5  

(89) ( )45
1VP VPV E∆  1: 2 :3: 4 :5  

(90) ( )23
2VP VPV E∆  1:3:5  

(a) The remaining four contractions are: 3 : 4 , 3 : 5 , 4 : 5  and 3 : 4 : 5 ; (b) The remaining four contractions are: 2 : 3 , 2 : 4 , 3 : 4  and 2 : 3 : 4 . 
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Table 4. List of 42 kinds of the perturbation terms entering 7E∆  corresponding to partition index 32 presented in Table 1: 
6 6= . 

Indices of the perturbation terms Perturbation term Contractions on the circular scale 

(91) - (104) 2
5VP V E− ∆  1: 6  and other contractions (a) 

(105) - (109) 3
4 1VP V E E∆ ∆  1: 2 : 6  and other contractions (b) 

(110) - (114) 3
1 4VP V E E∆ ∆  1:5 : 6  and other contractions (c) 

(115), (116) 3
3 2VP V E E∆ ∆  1: 4 : 6  and 1: 4 : 6 2 :3  

(117), (118) 3
2 3VP V E E∆ ∆  1:3: 6  and 1:3: 6 4 :5  

(119), (120) ( )24
1 3VP V E E− ∆ ∆  1: 2 :3: 6  and 1: 2 :3: 6 4 :5  

(121), (122) 4
1 3 1VP V E E E− ∆ ∆ ∆  1: 2 :5 : 6  and 1: 2 :5 : 6 3: 4  

(123), (124) ( )24
3 1VP V E E− ∆ ∆  1: 4 :5 : 6  and 1: 4 :5 : 6 2 :3  

(125) ( )24
2 1VP V E E− ∆ ∆  1:3:5 : 6  

(126) 4
2 1 2VP V E E E− ∆ ∆ ∆  1:3: 4 : 6  

(127) ( )24
1 2VP V E E− ∆ ∆  1: 2 : 4 : 6  

(128) ( )35
1 2VP V E E∆ ∆  1: 2 :3: 4 : 6  

(129) ( )25
1 2 1VP V E E E∆ ∆ ∆  1: 2 :3:5 : 6  

(130) ( )25
1 2 1VP V E E E∆ ∆ ∆  1: 2 : 4 :5 : 6  

(131) ( )35
2 1VP V E E∆ ∆  1:3: 4 :5 : 6  

(132) ( )56
1VP V E− ∆  1: 2 :3: 4 :5 : 6  

(a) Other 13 contractions are: 2 : 3, 2 : 4, 2 : 5, 3 : 4 , 3 : 5 , 4 : 5 , 2 : 3 : 4 , 2 : 3 : 5 , 2 : 4 : 5 , 2 : 5 3 : 4 , 3 : 4 : 5 , 2 : 3 : 4 : 5 , 2 : 3 4 : 5 ; (b) 
Other 4 contractions are: 1: 2 : 6 3 : 4 , 1: 2 : 6 3 : 5 , 1: 2 : 6 4 : 5 , 1: 2 : 6 3 : 4 : 5 ; (c) Other 4 contractions are: 1: 5 : 6 2 : 3 , 
1: 5 : 6 2 : 4 , 1: 5 : 6 3 : 4 , 1: 5 : 6 2 : 3 : 4 . 
 

1 1 2;+ =                                     (25) 

in case of presence of the product of two energy terms iE∆  after  this exponent of P  increases by two: 

1 2 3;+ =                                     (26) 

etc. The maximum increase of the exponent is dictated by the number submitted to partition which is 5 in the 
examined case, so the exponent of P  is then 

1 5 6.+ =                                     (27) 

Let us note that in Table 4 we have the bracket term  with only one P6 inside. This correlates with a sin-
gle number ( ) ( )6c =  which is taken into account in partitions of 1 7 1 6N − = − = ; see Table 1. 

In Appendix the energy terms for 1, 2,3, 4,5N =  and 6 are calculated in the same way as for 7N =  above. 
The sign of an energy term is dictated by the number λ  of loops entering the diagram, or—which is perhaps 

more suitable to apply in case of the present paper—the number of factors entering the energy term: 

( ) 11 .λ+−                                     (28) 

More briefly, the term is taken with a positive sign for an odd λ , but enters with a negative sign for an even 
λ . 
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6. Summary 
In the paper we presented a way of calculating the Schrödinger perturbation energy by a method which can be 
easily extended to large perturbation orders N. A non-degenerate quantum state and its perturbation by a 
time-independent potential are examined. 

The method, in its original shape, has applied a circular scale of time with contractions of the time points 
present on the scale. By contraction of all time points on the scale (beyond the beginning-end point) in the way 
that no contraction lines drawn between the points can cross together, the number of kinds of the energy pertur-
bation terms known from the Schrödinger theory, as well as simple formulae for calculating these terms, could 
be obtained [5]-[7]. In the present paper the same aim is accomplished in a more compact, namely algebraic way. 
In this case the partitions of the number 

1N −                                       (29) 

are of use. An advantage of the algebraic approach is that it can be readily extended to an arbitrary order N. 
A similar time scale and algebraic method based on it have been applied before [11] in deriving the recur-

rence formulae for NS . A general view on the earlier approaches to the method is given in [12]. 
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Appendix: Terms of the Schrödinger Perturbation Energy Belonging to Orders 
from N 1=  to N 6=  
The perturbation energy of orders 1N =  and 2N =  can be represented by single terms ( )1 2 1S S= =  which 
are 

1 for 1V E N= ∆ =                                  (A.1) 

and 

2 for 2;VPV E N= ∆ =                                (A.2) 

for notation see Section 1 of the main text. 
The perturbation energy of order 3N =  is composed of two terms ( )3 2S =  corresponding to the following 

partitions of 1 2N − = : 

1 1 2,+ =                                       (A.3) 

2 2.=                                        (A.4) 
The terms are respectively 

,VPVPV                                      (A.5) 

2
1.VP V E− ∆                                     (A.6) 

The perturbation energy of 4N =  is a sum of the five terms ( )4 5S =  coming from the following 
partitions of 1 3N − = : 

1 1 1 3,+ + =                                      (A.7) 

1 2 3,+ =                                       (A.8) 

2 1 3,+ =                                       (A.9) 

3 3.=                                       (A.10) 
The terms are 

( ), 1 ,VPVPVPV                                     (A.11) 

( )2
1, 1 ,VPVP V E− ∆                                    (A.12) 

( )2
1, 1 ,VP VPV E− ∆                                    (A.13) 

( )2 3
2 1 1, 2 .VP V E VP V E E− ∆ + ∆ ∆                        (A.14) 

It can be noted that partition (A.10) gives two terms entering (A.14). Henceforth the number of kinds of the 
perturbation terms represented by a given formula is indicated in brackets 

For 5N =  partitions of 1 4N − =  are of importance: 
1 1 1 1 4,+ + + =                                    (A.15) 

1 1 2 4,+ + =                                      (A.16) 

1 2 1 4,+ + =                                      (A.17) 

2 1 1 4,+ + =                                      (A.18) 

1 3 4,+ =                                        (A.19) 

3 1 4,+ =                                        (A.20) 
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2 2 4,+ =                                        (A.21) 

4 4.=                                           (A.22) 
They give respectively 

( ), 1VPVPVPVPV                                (A.23) 

( )2
1, 1VPVPVP V E− ∆                             (A.24) 

( )2
1, 1VPVP VPV E− ∆                             (A.25) 

( )2
1, 1VP VPVPV E− ∆                             (A.26) 

( )2
2 , 1VPVP V E− ∆                               (A.27) 

( )3
1 1, 1VPVP V E E∆ ∆                              (A.28) 

( )2
2 , 1VP VPV E− ∆                               (A.29) 

( )3
1 1, 1VP VPV E E∆ ∆                              (A.30) 

( )2 2
1 1, 1VP VP V E E∆ ∆                             (A.31) 

( )2
3 , 2VP V E− ∆                                 (A.32) 

( )3
2 1, 1VP V E E∆ ∆                                (A.33) 

( )3
1 2 , 1VP V E E∆ ∆                                (A.34) 

( ) ( )34
1 . 1VP V E− ∆                              (A.35) 

Partitions (A.19) and (A.20) give each two kinds of terms since 3 2S = , they are (A.27) and (A.28) for (A.19) 
and (A.29) and (A.30) for (A.20). 

Partition (A.22) gives five kinds of terms since 4 5.S =  They are represented by (A.32) which contains two 
kinds of terms because 3E∆  has two components, and by (A.33), (A.34) and (A.35) any of which provides a 
single component to 5E∆ . This is so because 1 2 1S S= = . The prodS  corresponding to each kind of terms pre-
sented in (A.23)-(A.35) are given in brackets after the symbol of these terms. 

A characteristic point concerning the numbers given in brackets from (A.23) to (A.35) is that their sum is 
equal to 5 14NS S= = . 

The calculation of 6E∆  is connected with partitions of 1 6 1 5N − = − = . They are 
1 1 1 1 1 5,+ + + + =                                  (A.36) 

1 1 1 2 5,+ + + =                                    (A.37) 

1 1 2 1 5,+ + + =                                    (A.38) 

1 2 1 1 5,+ + + =                                    (A.39) 

2 1 1 1 5,+ + + =                                    (A.40) 

1 2 2 5,+ + =                                       (A.41) 

2 1 2 5,+ + =                                       (A.42) 

2 2 1 5,+ + =                                       (A.43) 
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1 1 3 5,+ + =                                      (A.44) 

1 3 1 5,+ + =                                      (A.45) 

3 1 1 5,+ + =                                      (A.46) 

1 4 5,+ =                                        (A.47) 

4 1 5,+ =                                        (A.48) 

2 3 5,+ =                                        (A.49) 

3 2 5,+ =                                        (A.50) 

5 5.=                                           (A.51) 

The partitions provide us with 6E∆  which is a sum of the following kinds of terms: 

( ), 1VPVPVPVPVPV                                 (A.52) 

( )2
1, 1VPVPVPVP V E− ∆                              (A.53) 

( )2
1, 1VPVPVP VPV E− ∆                              (A.54) 

( )2
1, 1VPVP VPVPV E− ∆                              (A.55) 

( )2
1, 1VP VPVPVPV E− ∆                             (A.56) 

( ) ( )22 2
1 , 1VPVP VP V E∆                              (A.57) 

( ) ( )22 2
1 , 1VP VPVP V E∆                              (A.58) 

( ) ( )22 2
1 , 1VP VP VPV E∆                              (A.59) 

( )2
2 , 1VPVPVP V E− ∆                                (A.60) 

( ) ( )23
1 , 1VPVPVP V E∆                               (A.61) 

( )2
2 , 1VPVP VPV E− ∆                                (A.62) 

( ) ( )23
1 , 1VPVP VPV E∆                               (A.63) 

( )2
2 , 1VP VPVPV E− ∆                                (A.64) 

( ) ( )23
1 , 1VP VPVPV E∆                               (A.65) 

( )2
3 , 2VPVP V E− ∆                                  (A.66) 

( )3
2 1, 1VPVP V E E∆ ∆                                 (A.67) 

( )3
1 2 , 1VPVP V E E∆ ∆                                 (A.68) 

( ) ( )34
1 , 1VPVP V E− ∆                                (A.69) 

( )2
3 , 2VP VPV E− ∆                                 (A.70) 
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( )3
2 1, 1VP VPV E E∆ ∆                               (A.71) 

( )3
1 2 , 1VP VPV E E∆ ∆                               (A.72) 

( ) ( )34
1 , 1VP VPV E− ∆                              (A.73) 

( )2 2
1 2 , 1VP VP V E E∆ ∆                              (A.74) 

( ) ( )32 3
1 , 1VP VP V E− ∆                              (A.75) 

( )2 2
2 1, 1VP VP V E E∆ ∆                              (A.76) 

( ) ( )33 2
1 , 1VP VP V E− ∆                              (A.77) 

( )2
4 , 5VP V E− ∆                                  (A.78) 

( )3
3 , 2VP V E E∆ ∆                                 (A.79) 

( )3
1 3 , 2VP V E E∆ ∆                                 (A.80) 

( )3
2 2 , 1VP V E E∆ ∆                                 (A.81) 

( )4
2 1 1, 1VP V E E E− ∆ ∆ ∆                             (A.82) 

( )4
1 2 1, 1VP V E E E− ∆ ∆ ∆                             (A.83) 

( )4
1 1 2 , 1VP V E E E− ∆ ∆ ∆                             (A.84) 

( ) ( )45
1 . 1VP V E∆                                  (A.85) 

Let us note that any partition having 3 as its component [(A.44)-(A.46) and (A.49), (A.50)] provides us with 
two kinds of terms ( )3 2S = , partition having 4 provides us with five kinds of terms ( )4 5S = , and partition 
equal to 5 gives 14 kinds of terms because 5 14S = . The same multiplicity concerns iE∆ : the energy term 
having index 3i =  corresponds to two kinds of perturbation terms and that having index 4i =  corresponds to 
five kinds of perturbation terms. The sum of the prodS  given in brackets from (A.52) to (A.85) is equal to 

6 42NS S= = . 
A characteristic point is that if some number α  is entering partition of 1N − , the indices i  of iE∆  cor-

responding to the side loops obtained in effect of the presence of that α  satisfy the partitions of the number 
1α − ; see e.g. the set of iE∆  in (A.78)-(A.85) due to the presence of partition (A.51). Evidently the largest i  

will be that equal to 1α − ; see (A.78). 
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