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Abstract 
In this paper, we demonstrate n -party controlled unitary gate implementations locally on arbi-
trary remote state through linear entangled channel where control parties share entanglement 
with the adjacent control parties and only one of them shares entanglement with the target party. 
In such a network, we describe the protocol of simultaneous implementation of controlled-Her- 
mitian gate starting from three party scenarios. We also explicate the implementation of three 
party controlled-Unitary gates, a generalized form of Toffoli gate and subsequently generalize the 
protocol for n -party using minimal cost. 
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1. Introduction 
One of the most striking features of the quantum world is entanglement. This esoteric quantum property has 
found practical use in the field of quantum information [1]. Qubit teleportation [2] [3], superdense coding [4], 
quantum information splitting [5], secret sharing [6], remote state preparation [7] [8] and many other quantum 
communication protocols have been theoretically and experimentally demonstrated taking recourse to entangle- 
ment. Local implementation of non-local quantum gates is another quantum communication protocol imple- 
menting a multi-partite quantum gate which can not be decomposed into individual local operations between 
spatially distributed qubits. This can be achieved using entangled channels shared by the remote parties and 
local operations with classical communications (LOCC). This quantum task is also called gate teleportation, 
which is necessary for distributed quantum computing. 
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As is well known, controlled-NOT (CNOT), together with the single qubit gate, form the universal gates to 
which other gates can be decomposed [9]. In principle, Controlled-Unitary gates can be implemented locally, 
using only CNOT gate teleportation protocol. Involving less entanglement and communication costs, several 
protocols have been proposed implementing non-local multi-partite operations locally by LOCC using entangled 
channels [10]-[21] and qubit communication [22] [23]. Probabilistic and deterministic gate implementation 
using non-maximally entangled state has been explicated [24]-[27]. Assisted with linear optical manipulations, 
photon entanglement produced from parametric down-conversion, and post-selection from the coincidence 
measurements, the CNOT gate has been teleported experimentally [28]. Later, other experimental protocols 
have been demonstrated [29] [30]. In contrast with the known protocols, we consider here an arbitrary multi- 
partite state, either product or entangled, where all the qubits are remote placed and demonstrate the protocol of 
simultaneous and n -qubit controlled operation in linear entangled channel. 

In the familiar network by Eisert-Jacobs-Papadopoulos-Plenio [10], each of the control parties shares one 
entangled state with the target party and none of the control parties shares entanglement between them whereas 
in linear entangled channel, the control parties share entanglement with the adjacent control parties and only one 
of them shares entanglement with the target party. As this network is linear, the target party has to maintain only 
one entangled channel, which is particularly useful when the entanglement sharing is difficult between each 
controlling agent with the target party. In this paper, we start with a three party scenario, where Alice and Bob 
simultaneously implement controlled-Hermitian ( )CΗ  gate to Charlie in linear entangled network, which is 
then generalized for arbitrary multi-partite state. Next section deals with the implementation of controlled- 
controlled-Unitary gate and the generalization to n -controlled Unitary gate implementation. Finally, we 
conclude with directions for future work. 

2. Simultaneous Implementation of Controlled-Hermitian Gate 
Consider three remote parties Alice, Bob and Charlie possess qubits 1, 4 and 7 respectively of the arbitrary state  

( )0 1 2 3 4 5 6 7147 000 001 010 011 100 101 110 111d d d d d d d dψ = + + + + + + +       (1) 

with 27
0 1i id=Σ = . Now Alice and Bob want to implement Controlled-Hermitian Gate (as well as unitary) on 

Charlie’s system simultaneously where the target qubit is common for both the control parties. To achieve this 
task, Alice and Bob share a Bell state between their respective qubits 2 and 3; Bob and Charlie share a Bell state 
between their respective qubits 5 and 6 :  

( )23 56

1 00 11
2

Φ = Φ = +           (2) 

Here Alice shares entanglement with another control party and Bob shares entanglement with the target party, 
which makes a linear entanglement connection (shown in Figure 1). The combined state of all the qubits 
possessed by Alice, Bob and Charlie is given by,  
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Figure 1. Simultaneous implementation of Controlled-Hermitian gate through 
linear network.                                                    

 
The details protocol of simultaneous CΗ  implementation through linear network is described below, 
Step 1: Alice first applies controlled-NOT gate 12

NC  on her qubits 1 and 2. 
Step 2: Alice measures on qubit 2 in computational basis and Bob applies local operations according to the 

outcomes of the measurements as follows, (here , ,i i i
x z yσ σ σ  are Pauli operators, with superscript “ i ” indicating 

the qubit operand; mnC  denotes controlled-Unitary gate, where “ m ” is the control bit and “ n ” is target bit). 
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Step 3: Bob measures qubit 5 in computational basis and Charlie applies local operations according to the 

outcomes of the measurements as follows, 
 

Outcomes of measurements Local operations after measurements Combined state after measurement and operations 
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Step 4: Finally qubit 3 and 6 are measured in Hadamard basis by Bob and Charlie and corresponding Alice 

applies unitary operations to obtain the desired state. 
 

Outcomes of Measurements Local operations after measurements Combined state after measurement and operations 
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The pictorial representation of local unitary operations, measurements and classical communications of this 
protocol has been depicted in Figure 1. The simultaneous remote implementation of controlled-Hermitian gate 
from two parties to one consumes 2 ebits and total 5 cbits to communicate the measurement outcomes. The 
generalized protocol for n -party of simultaneous CΗ  gate implementation described in Figure 2, is an 
extension of the above protocol. For n -party, the communication cost is ( )1n −  ebits and ( )2 2 2n n+ −  
cbits. 

From the above protocol, it can be inferred that the Unitary as well as Hermitian operators have significance 
in linear entangled network. This operator has the additional property of involution (i.e., the operator is same as 
its inverse), which is responsible for making this protocol deterministic. Most of the important gates like 
controlled-Pauli gates, controlled-Hadamard gate etc., belong to this category, making this implementation 
powerful. 

3. Multiparty Controlled Unitary Gate Implementation 
It has been shown that a more general form of Toffoli gate, i.e., controlled-controlled-Unitary gate can be 
deterministically implemented using two Bell pairs (2 ebits of entanglement) and 4 cbits to communicate the 
measurement outcomes [10]. Here, we demonstrate the implementation of this non-local gate with the same 
communication cost using linear entangled channel (shown in Figure 3). For illustration, we consider the same 
qubit distribution shared by Alice, Bob and Charlie described in Equation (3):  

1234567 147 23 56ζ ψ= ⊗ Φ ⊗ Φ  (4) 

where we want to implement controlled-controlled-Unitary gate, 147C  (here qubit 1 and 4 are control bits and 
qubit 7 is target bit) on 147ψ . The details of the protocol is illustrated below, 

Step 1: Alice first applies controlled-NOT gate 12
NC , on her two qubits. 

Step 2: Then she measures qubit 2 in computational basis and Bob applies unitary gates as follow.  
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Figure 2. Simultaneous implementation of n-party controlled her- 
mitian gate through linear network (Here iC  denotes the control 
parties and T denotes the target party).                           
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Figure 3. Controlled-controlled-Unitary gate implementation through linear 
network.                                                         

 
Step 3: Bob measures on qubit 5 in computational basis and accordingly Charlie performs unitary gates, (here 
ψ  is denoted as ψ ). 

 
Outcomes of measurements Local operations after measurements Combined state after measurement and operations 
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Step 4: After that Charlie measures qubit 6 in Hadamard basis and Bob applies local operations depending on 

the outcomes. 
 

Outcomes of measurements Local operations after measure-
ments Combined state after measurement and operations 
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Step 5: Finally qubit 3 is measured in Hadamard basis and Bob performs unitary gates to get the desired state 

which is shared by three parties. 
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measurements 
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measurements Combined state after measurement and operations 
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The above procedure can be generalized to implement a n -qubit gate, where ( )1n −  qubits are controls and 

the unitary operator acts on the target qubit, only if, all the control qubits are 1 s. The protocol is illustrated in 
Figure 4 and for n -party gate the communication cost is ( )1n −  ebits and ( )2 1n −  cbits which is optimal as 
shown in [10]. 

4. Conclusion 
In conclusion, we have described non-local gate implementation protocols in linear entanglement network by 
LOCC. Although the classical communication cost for implementing simultaneous controlled-gate is more as 
compared to the scenario in [10], the linear network is advantageous for large n , as each party shares only two  
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Figure 4. N party Controlled-Unitary gate implementation.                 

 
entangled states and the target as well as the first control party share one entangled state. The fact that, our 
network comprises of Bell states, which are realized in laboratory conditions, makes our protocol experimentally 
achievable [3]. Optimal protocol for the simultaneous controlled-Unitary and other non-local gate implemen- 
tations in linear entangled channels can be further investigated. 
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