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Abstract 
This paper introduces the concept and motivates the use of finite-interval 
based measures for physically realizable and measurable quantities, which we 
call  -measures. We demonstrate the utility and power of  -measures by 
illustrating their use in an interval-based analysis of a prototypical Bell’s in-
equality in the measurement of the polarization states of an entangled pair of 
photons. We show that the use of finite intervals in place of real-numbered 
values in the Bell inequality leads to reduced violations. We demonstrate that, 
under some conditions, an interval-based but otherwise classically calculated 
probability measure can be made to arbitrarily closely approximate its quan-
tal counterpart. More generally, we claim by heuristic arguments and by for-
mal analogy with finite-state machines that  -measures can provide a more 
accurate model of both classical and quantal physical property values than 
point-like, real numbers—as originally proposed by Tuero Sunaga in 1958. 
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1. Introduction 

We present first two heuristic arguments, followed by theoretical and numerical 
demonstrations, to support motivation of a concept to replace point-like 
real-numbered physical property values with intervals of value we call 
-measures, which may be weighted by some function. The exact nature of the 
weighting is not crucial, however, to the interval-based representation. In Sect. 
1.1, we show how these arguments suggest that the conventionally assumed as-
signment of real numbers to represent physical property values may not be tena-
ble (see, e.g., [1]), and instead  -measures can provide more accurate models 
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of manifest physical reality. In Sect. 1.2, we introduce the concept of finite inter-
vals as defined and practiced in computing theory. In Sect. 2, we apply the 
-measure concept to a new analysis of Bell’s theorem using well established in-
terval-analysis theorems to show that violations of the classically derived Bell’s 
inequality may thereby be reduced to expectations arbitrarily approaching their 
quantum prediction counterparts that are consistent with results of Bell tests. In 
Sect. 3, we offer concluding, general remarks highlighting how the use of finite 
intervals to represent physically measurable quantities may have significant im-
pact on analysis of physical systems, both classical and quantal, and how, in par-
ticular, the new results derived from interval-based analysis may also impact 
technologies based on them. 

1.1.  -Measure Description of a Physically Measurable Quantity 

Measurement of any physical property value and generic manifestation of any 
physical property value are equivalent processes at some fundamental level. This 
equivalence is foundational to environmental decoherence theory since certain 
manifestations of value are physically realized1 via “implicit measurement” of 
objects by the environment in which they exist [2]. This is precisely the essence 
of the equivalence claim, that object properties become physically manifest by 
unavoidable implicit measurement resulting from any and every interaction. 
This means that certain attributes of any process to measure physical values are 
common attributes of any generic process of manifestation of physical values. 
For example, all physically realizable measurements are performed using resolu-
tion-limited devices and processes, so generic manifestation of physical values 
are equally resolution-limited. Therefore, no physically realizable measurement 
and no physically realizable manifestation of any physical property value are ex-
pected to be represented by a single, point-like, real number. Such an assignment 
would require realization of infinite (physical) resolution. Infinite resolution is 
clearly untenable, and hence, a non-physical abstraction. This suggests that any 
assignment that relies on a finite resolution can only be manifest as finite inter-
vals of values, i.e., “ -measures”. 

From a communication theoretic point of view, suppose a communication 
signal could have a producible and detectable parameter represented by a real 
number. Since real numbers are infinitely precise and can be represented ma-
thematically [1] only by an infinite number of digits, such a signal would contain 
an infinite amount of information. Conveyance of this signal from one point to 
another would constitute an infinite change of entropy, or an exchange of infi-
nite information [3], in a finite time through a finite spectral width channel, 
which is not physically possible, even if the channel were noise-free. Therefore 

 

 

1We use the term “physically realized”, while admittedly not rigidly definable, because it offers a 
working definition of the notion of a physically realized entity as one that can exist in and have in-
fluence on physical reality, while having physical properties that are, in principle, measurable by a 
physical device. It is to be contrasted with an abstracted physical property, which may be formally 
useful but may not be measurable by a physical device. 
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the signal parameter cannot be validly represented by a single real number. A 
 -measured parameter, on the other hand, has finite precision and finite in-
formation content, requiring a finite spectral width and finite time to convey. 
Further, the physics principle known as the Bekenstein bound [4] dictates that 
infinite entropy, or information, cannot exist in a finite region of space with fi-
nite energy, which can be interpreted as precluding both production and detec-
tion of any signal with a real-numbered parameter. It is interesting to note that 
 -measures are “naturally” endowed with interval entropy and related infor-
mation content [5]. 

Using these and other similar arguments, we assert that realizable and mea-
surable property values are more accurately modeled by  -measures than by 
point-like real-numbered values of zero measure. We further assert that 
-measures apply to both classical and quantal physically realizable values. At 
some level, the interval ( -measure) model is in conflict with the convention of 
classical physics to assume measurable property values are mathematically 
represented by real numbers; this conventional representation may be too re-
strictive. 

The conflict is perhaps less pronounced for quantal measurement outcomes 
due to the intrinsic uncertainties and ambiguities in a quantal description, but 
there is a critical difference in  -measured quantal superposition and conven-
tional quantal superposition:  -measured outcome values, even when weighted 
by some appropriate function, are not envisaged to be associated with a proba-
bility metric across eigenvalues. Because  -measure intervals apply to each 
single measurement, or manifestation of value, the eigenvalues within an interval 
are assumed associated with a non-statistical ontic metric. While the exact defi-
nition and meaning of this ontic metric is not yet clear (and the subject of a fol-
low-on paper), the assertion that it is non-statistical means that single measure-
ment outcomes have distributed value, i.e., they are  -measures. This inter-
val-based representation suggests that all realizable quantum states that result 
from measurement are comprised of simultaneously physically existing eigens-
tates. Every physically realizable quantum state is a superposition of multiple 
states in every realizable basis, i.e., a basis with physically measurable eigenva-
lues. A  -measured state cannot be represented by a single, real-numbered di-
rection in an abstract space of realizable eigenvalues. 
 -measured quantum state definitions open the opportunity to form an en-

tropy metric calculated just like Shannon information entropy [2] is calculated 
from a symbol alphabet probability density function, i.e., ( ) ( )d logxf x f x−∫ , 
where ( )f x  is defined as the modulus squared of a state vector as a function of 
x eigenvalues. A critical difference in a  -measured entropy, however, is that 
the function value is an ontic, or physical, metric as opposed to an epistemic, or 
informational/probability, metric. This is because the eigenstates of a  -measured 
state are treated as simultaneously physically existing eigenstates in superposi-
tion, yet the entropy of the state can never be zero [4] in any realizable basis 

https://doi.org/10.4236/jmp.2019.106041


F. P. Eblen, A. F. Barghouty 
 

 

DOI: 10.4236/jmp.2019.106041 588 Journal of Modern Physics 
 

since this would require a single real-numbered eigenvalue, a non-realizable ent-
ity in the  -measure concept (see, e.g. [6]). 

Application of  -measures to physical values is analogous to the application 
of intervals to the values typical of finite-state machines, which are incapable of 
specifying or processing real-numbered values. The application of interval anal-
ysis herein to all physically realizable property values is likewise suggested for 
fundamentally similar reasons. Physical objects, systems of objects, and processes, 
such as classical and quantum measurement, are limited in their ability to ma-
nifest real-numbered property values by parameters such as spectral limits, 
process and time limits, and various other constraints. Both classical and quantal 
physically realizable objects and systems thus can be viewed in some sense as fi-
nite-state machines. 

1.2.  -Measures Represented by Finite Intervals 

The mathematical formalism of interval analysis was developed and has seen its 
primary application in computing theory for numerical analysis and mathemat-
ical modeling. It is a relatively recent cross-disciplinary field pioneered by M. 
Warmus [7], T. Sunaga [8], R. Moore [9], and U. Kulisch [10]. (For these and 
other early contributions, see [11]). According to [11], it was Sunaga [8] who 
first foresaw the fundamental connection between the mathematical concept of 
an interval and its applications to real systems and applied analysis. Applications 
to the physical sciences have thus far been extremely limited, however, to studies 
of formal systems through the “intervalization” of their representative differen-
tial or algebraic equations [12] [13]. 

The need for the concept of an interval was spawned by the need in the above 
numerical applications to enclose a real number when it can be specified only 
with limited accuracy, i.e., it cannot be exactly represented on any fi-
nite-precision machine. In physical systems, inaccuracy in measurement coupled 
with known or unknown uncertainty and variability in physical parameters, ini-
tial and boundary conditions, etc., formally inhibit the manifestation of mea-
surable quantities as real numbers, to be treated via the machineries of real 
numbers’ arithmetic and algebra. Special axioms and special interval arithmetic 
and algebra were clearly needed to endow the new field with rigorous mathe-
matical foundations. 

In numerical analysis, finite intervals of one or more dimensions are seen as 
extensions of real (or complex) numbers. As mathematical objects, intervals in 
themselves do not form proper vector spaces [14] [15]. Interval arithmetic and in-
terval algebra have nonetheless been developed by abstracting their real-numbered 
counterparts, based primarily on set theory and algebraic geometry [16]. How-
ever, compared to real-number objects, intervals have “extended” properties. As 
we demonstrate below, these properties provide for a powerful analytical tool in 
the description and/or analysis of real physical systems when property values are 
represented by  -measures. 
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2. Application to Bell’s Theorem 

In Sect. 2.1, we demonstrate how, under some conditions, an intervalized but 
otherwise classically calculated correlation function can be made to arbitrarily 
come close to its quantal counterpart. The demonstration is essentially a re-casting 
using intervals and interval analysis of a limiting case derived by Bell [17]. Using 
proxies of the interval-valued correlation functions, and using two basic theo-
rems of interval analysis suggest that, under some conditions, the two can be 
made to come arbitrarily close to each other. In Sect. 2.2, we test this assertion by 
applying it to a prototypical measurement of the polarization states of an entan-
gled pair of photons. 

2.1. Theoretical Illustration 

We demonstrate in this section the validity of the following assertion: Expressed 
as interval-valued functionals, as opposed to real number-valued functions, the 
distance between a classically calculated correlation function, of two measured 
interval quantities, and its quantal counterpart can be shown (under some con-
ditions) to arbitrarily approach zero.2 

Let the two measured interval-variables be [ ]min max,X X X=  and 
[ ]min max,Y Y Y= , where we assume that both are one-dimensional intervals (ge-

neralization to higher dimensions may not be trivial, see, e.g., [18]). We denote 
their real-numbered values, i.e., their degenerate values, as x and y, and the unit 
vectors along their directions by x̂  and ŷ . By definition, a classically calcu-
lated correlation function of X and Y, ( ), ˆ ˆ, ;cl

X YC x y λ , will always involve a 
weighted sum over the parameter λ  of their inner product. For the sake of this 
demonstration we do not distinguish between a Riemann and a Lebesque inte-
gration; we only assume the existence of an integrable real-valued function or 
functional. Its quantal counterpart, assuming an entangled single state, is a dot 
product (in the same metric space), which can be expressed as ˆ ˆx y− ⋅ . For 
real-valued inner and dot products, it has been shown [17], Equation (18), that  

( ) ( ), ˆ ˆ ˆ ˆ, ; ,cl
x yC x y x yλ + ⋅ ≤                      (1) 

where   is a small number but which cannot be made arbitrarily small, i.e., will 
always be bounded from below due to the finite precision of any physical mea-
surement. Our demonstration of the assertion made above is essentially a recast 
of Equation (1) in its interval analog for intervals X and Y, but in which the ana-
log of   is shown that it can be made arbitrarily small. The conditions pertain 
to our assumed low dimensionality of the intervals and of the unit vectors, in 
addition to the assumed forms of the inner and dot products, our proxy correla-
tion functions. 

In lieu of the inner product, we will have an interval-valued integral function, 
or a functional, and in lieu of the dot product for unit vectors, an assumed in-
terval-valued functional related to the range of the first. The interval analog of 

 

 

2By “demonstration” we mean here that what follows is neither a rigorous nor a general validation of 
the above assertion. 
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the inner product can be written as  

( ) [ ] [ ], , ,, ,
ˆ ˆ, ; , ,cl cl cl

X Y X Y X YZ lower Z upper
C x y C Cλ  = ∂ ∂  ∫ ∫              (2) 

where lower and upper refer to the lower and upper Darboux integrals [13]. It is 
important to note that  

[ ] [ ], ,
cl cl
x y X YZ Z

C C∂ ∈ ∂∫ ∫                        (3) 

over the same interval “[Z]”, which follows from our assumed interval-extension 
of ,

cl
x yC . Although generalization to an extended λ  is straightforward and 

could present interesting cases for further analysis, for purposes of this demon-
stration, we take the parameter λ  to be the same in both the real-numbered 
valued and interval-valued cases. Since the interval [ ] [ ][ ]Z X Y=  has a range 
[ ]1, 1− + , ,

cl
X YC  can be written as:  

[ ]( ), ,cl
X YC Z F Z= ×                        (4) 

where [ ]( )F Z  is a functional of Z. Note that the above form for ,
cl
X YC  is not 

unique; as uniqueness is not required for this demonstration. Also, the exact 
form of the interval-valued function F is not required, but that it is analytic and 
convergent over an interval 0Z  that includes Z, and over which interval the 
derivative of F exists and does not contain zero. These general properties [13] 
follow since F is assumed to be an “extension” of the real-valued function f, i.e., 
the integral function that gives ,

cl
x yC ; since,  

( ) ( ) 0const for ,  ,f x f y x y x y Z− ≤ − ∈              (5) 

we have for F,  

[ ]( )( ) ( ) 0const for  ,d F Z d Z Z Z≤ ⊆                (6) 

where ( )d ⋅  denotes the diameter (or width) of its interval argument. 
A fundamental property of any extended function, F, of an interval is its “en-

closure” property, i.e.,  

[ ]( ) [ ]( ); ,F Z F Z⊆                        (7) 

where [ ]( );F Z  is the range of the function F over the interval [ ]Z , [ ]( )F Z  
is now a “functional” of the interval [ ]Z , and “⊆ ” denotes “a subset of”. Al-
most all derived properties of intervals, including their mapping, differentiation 
and integration, differential (or integral) equations-based applications are based 
on the enclosure property [12] [13]. We will use this property below. 

The extended functional [ ]( )F Z  is further assumed divisible into smaller 
subintervals, where it can be regarded as the union of these subintervals,  

[ ]( ) [ ]( )
1

;  ,
k

F Z k F Z
=

= 





                     (8) 

and where smaller refers to the diameter of each sub-interval Z   being reduced 
by the factor 1,2, , k=  . 

For the interval-valued dot product of the unit vectors, being a projection of 
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one unit vector onto the other, and since the range is also [ ]1, 1− + , we make the 
ansatz and connect this with the functional F via its range,  

( ) [ ]( )ˆ ˆ const ; ,x y F Z⋅ =                     (9) 

or with any linear function of [ ]( );F Z , where [ ]( );F Z  is the range of F 
over the interval Z. Again, this relation is not unique for ˆ ˆx y⋅ . 

Next, we take advantage of two basic theorems of interval analysis [9] [12]. 
The first concerns the distance between two intervals, also referred to as the 
Hausdorff distance [12],  . For our demonstration, the distance between 

[ ]( );F Z  and [ ]( )F Z  is given by:  

[ ]( ) [ ]( )( ) [ ]( ); , const ,F Z F Z d Z
∞

≤            (10) 

where [ ]( )( ) [ ]const d F Z Z
∞

≤ , and the constants 0≥ . || ||∞⋅  denotes the 
maximum norm. Applied to the subdivided [ ]( );F Z k , the Hausdorff distance 
becomes  

[ ]( ) [ ]( )( ) ( ) 2
0 2; , ;  const .F Z F Z k d Z k

∞
 ≤          (11) 

What the above theorem suggests is that [ ]( );F Z , our proxy for the interva-
lized dot product, can be arbitrarily close to [ ]( );F Z k , our proxy for the inter-
valized inner product, if the subdivision of [ ]( )F Z  is made sufficiently fine. 
Clearly, this is only true under the conditions (i.e., low dimensionality of the in-
tervals and the unit vectors) and assumptions made (i.e., the assumed specific 
forms of the inner and dot products). Applications to different forms and/or any 
generalization are clearly beyond the scope of the assertion. 

2.2. Numerical Illustration 

Our first application of the  -measure concept is to an interval-based analysis 
of a prototypical [19] [20] form of Bell’s inequality [17] [21]. The quan-
tum-mechanical probability for a measurement of the polarization states of an 
entangled pair of photons can be shown to be proportional to the cosine (or sine) 
squared of the measured polarization angles [21]. (See Appendix for an illu-
strated structure of a prototypical Bell test using the entangled spin states case, 
which is, in essence, the same as the polarization states but easier to illustrate.) If 

1θ  is the measured polarization angle detected by detector 1 of photon 1, and 
similarly for 2θ , the probability of detecting a photon along the 2-dimensional 
axes, x y− , of each detector is  

( ) ( )2 2
1 2 1 2sin or cosxyp θ θ θ θ∝ − ∝ −              (12) 

for each of the four possible combinations that add up to unity. When a third 
detector is introduced, a Bell’s inequality can constrain the degree of polariza-
tion correlation among the angular separations in such a way that  

( ) ( ) ( )2 2 2
2 1 3 2 3 1sin sin sin .θ θ θ θ θ θ− + − ≥ −           (13) 

To intervalize Equation (13), we re-express the measured angles, 1 2,θ θ , and 
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3θ  as angle intervals, [ ]1 1 1 1 1,θ δθ θ δθΘ = − + , [ ]2 2 2 2 2,θ δθ θ δθΘ = − +  and 
[ ]3 3 3 3 3,θ δθ θ δθΘ = − + , where iδθ  is the total uncertainty in measuring iθ , 

i.e., including all system and random errors in the set-up and the measuring de-
vices. Note that in the limit of 0iδθ → , [ ]1 ,i iθ θΘ = , i.e., it is a degenerate in-
terval. Being a statement about probability measures and their correlations, the 
form of Equation (2) is retained when expressed as  

( ) ( ) ( )2 2 2
3 1 2 1 3 2sin sin sin .Θ −Θ ⊆ Θ −Θ + Θ −Θ           (14) 

Intervalized, Equation (14) suggests that the interval  
( ) ( )2 2

2 1 3 2sin sinΘ −Θ + Θ −Θ  will always include the interval ( )2
3 1sin Θ −Θ . 

Note that the sine of an interval is also an interval since the sine function will 
map every point in the interval argument to a point in the interval image of the 
function. 

The enclosure property, Equation (7), can be used, as an example, to show 
that  

( ) ( ) ( )2
3 1 3 1 3 1sin sin sin .Θ −Θ ⊆ Θ −Θ × Θ −Θ             (15) 

Another intriguing property of interval functionals is their dependence on the 
algebraic form or structure of the enclosing function f, or its extended pair F. 
This dependence stems from the set-theoretic attributes of intervals. For exam-
ple, another form of Equation (14) that is equivalent for degenerate intervals, i.e., 
real numbers, but is not for finite intervals is  

( ) ( )
( ) ( )( ) ( ) ( )( )

2 2
3 1 2 1

3 1 2 1 3 1 2 1

sin sin

sin sin sin sin .

Θ −Θ − Θ −Θ

≠ Θ −Θ + Θ −Θ Θ −Θ − Θ −Θ
    (16) 

“Inequality violation” of Equation (14) is when the left hand side of the equa-
tion minus the right hand side becomes negative. This is indeed seen for the 
quantum-mechanically calculated probabilities at various angles and over ex-
tended domains of none-zero measures (see Figure 1). For our demonstration, 
however, all we need is to choose carefully a small set of angles (or even a single 
set of angles) at which Equation (13) is violated by an amount much larger than 
a typical experimental value of the order of the error in angular measurement 
δθ , typically ~0.1 deg. For clarity of illustration we choose 1θ  to be identically 
zero, and 2 36θ =  deg and 3 72θ =  deg, since the surface dips appreciably, 
~0.1, below the zero plane for this choice. The expected standard deviation in 
Equation (13), given non zero 2δθ  and 3δθ , can easily be calculated given δθ  
to be only ~10−4. 

For [ ]0.01,0.25δθ ∈ , we calculate the probability (at 2 36θ =  deg and 

3 72θ =  deg) of no violation for each δθ . This is when that difference in the 
two parts of Equation (14) crosses the zero plane. We assume that both the in-
tervalized difference and the difference that is calculated using error propagation 
are centered Gaussians. To arrive at the probability of no violation, we simply 
integrate from the center of the interval to the zero point, after normalizing to 
unity and subtracting 1/2. Since, for purposes of this demonstration, we do not  
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Figure 1. Density plot of Equation (13) evaluated at 1 0θ =  for [ ]2 3, π,πθ θ ∈ − . The 

surface is seen to dip below zero for some angles. 
 
ascribe any weighting function to the intervalized angles, the calculated proba-
bilities are more representative of upper limits rather than most likely values. 

Figure 2 shows the calculated probability of no violation as a function of the 
size of the error in the angle measurement, δθ . From Figure 2 we see that in-
tervalizing measured polarization angles, i.e., using their  -measures, and us-
ing interval arithmetic to calculate probabilities and correlations can lead to 
re-interpreting violations as non-violations with the probabilities as estimated 
above. The calculated probabilities of no-violation themselves show a strong, 
nonlinear geometric relation to the assumed uncertainty in the measured angles. 
This is due both to the structure of Equation (14) and the size of the error in the 
measured angles, i.e., not just the presence of the error itself. For this particular 
photon polarization-angle example, Figure 2 suggests that uncertainties in the 
measured angles need to be less than 0.05 deg to differentiate clear violation 
from no violation. 

As mentioned above, the calculated no-violation probabilities using inter-
val-based quantities appear to depend on the algebraic structure of the inequality 
itself. A critical parameter in the interval estimation for the probabilities is the 
Hausdorff distance, Equation (11). In Figure 3, we show the dependence of this 
distance on the number of subdivisions needed for the proxy classical correla-
tion interval to enclose the proxy quantal correlation interval. The distance is  
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Figure 2. Probability of no violation of Bell’s inequality versus the total uncertainty in the 
measurements of 2θ  and 3θ . The top set of points is from Equation (14), the interva-
lized inequality, while the bottom set is from the not intervalized inequality, Equation 
(13). 
 

 
Figure 3. The Hausdorff distance, Equation (11), normalized to the interval diameter as a 
function of k, i.e., the number of enclosing intervals. 
 
normalized to the diameter of the interval at each k, such that a distance of unity 
is the smallest possible distance. Here, 16k =  seems to give a rapid (but not 
necessarily too rapid) of a convergence, almost in an exponential rather than a 
geometric fashion. This feature may be important in designing Bell tests opti-
mized for error constraints and the algebraic form or structure of the inequality. 
Rapid convergence (the “right” form of the inequality) can compensate for the 
size of the measurement error. In this particular illustration, however, given the 
exponential convergence, the form of the inequality, Equation (14), seems less of 
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a consequence to the calculated no-violation probabilities than the size of the 
measurement error. 

3. Discussion 

We have introduced and motivated the use of finite intervals to represent physi-
cally measurable quantities, we call  -measures, in place of the real-numbered 
representation, which we consider untenable. We demonstrate the utility of 
-measures using theoretical and numerical illustrations. Our theoretical demon-
stration, an interval-based recasting of Bell’s inequality using proxy correlation 
functionals, shows that, under some conditions, two measured interval quanti-
ties—a classically calculated correlation function and its quantal counterpart—can 
come arbitrarily close to each other. This is in stark contrast to the Bell theorem 
claim, which assumes classical property values are real-numbered, that no hid-
den variable theory [21] [22] [23] [24] can produce this arbitrary closeness. 

In our numerical demonstration, we apply interval analysis to a measurement 
of the polarization states of an entangled pair of photons. We calculate the 
probabilities of no violation and demonstrate that quantal violation of the Bell 
inequality is likely less severe under the assumption of  -measured values. 
This means that Bell tests should be considered less compelling as proof of 
quantum correlations and non-locality [25] [26] [27] [28]. 

These demonstrations, along with our heuristic arguments, motivate the need 
for and use of  -measures to more accurately model physical property values 
than the traditionally assumed real-numbered representation. We assert that the 
interval-based  -measured representation applies to both classical and quantal 
physical values, and that their desirability and need for broader application to 
physical theories in general seems apparent. The development of interval analy-
sis for computing theory and its application to finite-state computing machines 
was predicated by the need to represent numerical values and quantities that are 
only approximate by necessity in a real world computing machine. It may be at 
first counterintuitive to think, for example, any microscopic or macroscopic ob-
ject can have two or more simultaneous values for any one of its physical prop-
erties. Upon analysis, however, it becomes evident that distributed values as 
provided by  -measures are more tenable than real-numbered values, just like 
in finite-state machines. Thus we suggest that the application of  -measures 
and interval analysis should see rapid and pervasive growth in applications to 
many physical and other theories. 

More than 60 years ago, mathematician Tuero Sunaga, working in the field of 
communication theory at the University of Tokyo wrote [8]: “The interval con-
cept is on the borderline linking pure mathematics with reality and pure analysis 
with applied analysis.” Since that time, however, the application of interval anal-
ysis has been almost entirely restricted to the theory of computing machines. It 
is past time that Sunaga’s vision and seminal contributions regarding interval 
analysis are realized in broader applications as they may have dramatic and far 
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reaching impacts. 
More specifically to NASA, the need for advancements in communication and 

computing theories and related technologies make broader applications of 
-measures to physical systems even more compelling. Our own future work on 
this effort will include more rigorous interval-based mathematical modeling of 
Bell-like tests, re-formulation of some well known models of physical systems 
using interval-based analysis, and a better appreciation of the benefits and limi-
tations of the new analysis when applied to physical theory, with the goal of 
supporting the advancement of quantum-based analysis, modeling and technol-
ogies. 
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Appendix: The Structure of a Bell Test 

In 1964, Irish physicist John S. Bell proposed a revolutionary theorem that could 
possibly prove the existence of quantal correlations of entangled objects. His 
theorem showed that violations of a classical probability inequality could be 
tested so as to prove classical correlations of detected particles cannot be made 
arbitrarily close to quantal correlations (see, e.g., [29] [30], and references 
therein). We illustrate the Bell theorem and tests with an example Bell test 
structure with these key elements (see Figure 4): 1) A source of twin photons, P1 
and P2, entangled with the same quantum spin state. 2) A set of two detectors, 
D1 and D2, one for each of the entangled pair. 3) An adjustable relative angle, 
θ , between the two detectors, along with relationships for the classical correla-
tion function to the relative detector angle and for the quantal correlation func-
tion (Figure 5). 

If quantal correlations are as predicted by the theory, Bell test data show a co-
sine squared-relationship of correlation with respect to the relative detector an-
gle (the red curve in Figure 5). If classical correlations are correct, on the other 
hand, the relationship will be linear (the blue curve in Figure 5). Figure 6 and 
Figure 7 illustrate the justifications for the linear and the cosine-squared rela-
tionships, respectively. 

The classical and quantum correlations are most easily illustrated using pho-
tons with the same spin, though twin polarization photons are essentially the 
same. The angle of Detector 1, designated D1, is used as a reference angle of 
0-deg. The angle of D2 relative to D1 is θ . For the classical case, the green arc 
in Figure 6 shows where these detectors will agree, i.e., be correlated, while the 
red arc shows where they will disagree. Clearly, as θ  increases linearly, the 
green arc will diminish linearly and the red arc will increase linearly. This shows 
the relationship of correlation to relative detector angle to be linear for the clas-
sical case. Linearity can also be appreciated to stem from the assumed uniform 
distribution of a random θ . 

The quantal case is very different, as illustrated by Figure 7. Quantum theory 
dictates that when D1 detects P1 spin, for example, spin up, the quantum spin 
state of P2 must assume the same spin angle, i.e., spin up. So P2 must strike D2 
with the D1 detected angle of P1. But since D2 is at a relative angle of θ  with 
D1, the P2 quantum spin state must be projected onto D2, i.e., multiplied by the  
 

 
Figure 4. A notional Bell test setup. Key elements are 1) a source of twin photons, P1 and 
P2, entangled with the same quantum spin state, 2) a set of two detectors, D1 and D2, one 
for each of the entangled pair, and 3) an adjustable relative angle, θ , between the two 
detectors.  
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Figure 5. Prototypical classical correlation (in blue) and quantum correlation (in red) as 
functions of the relative detector angle θ . 
 

 
Figure 6. Classical correlation as a linear function of θ ; linear increases in θ  cause 
correspondingly linear changes in the green and red arc lengths. 
 
cosθ . Since quantum probability is the square of the state amplitude, the mul-
tiplier becomes 2cos θ . This means the probability of a D1 detection being the 
same as a D2 detection, i.e., the probability of agreement, or correlation, is a 
function of 2cos θ . 

So, if quantum predictions are correct, Bell test data will reproduce the red 
curve in Figure 5 for many measurements of random spin and random detector 
angles. If classical predictions are correct, the blue curve will be reproduced. 
Many actual Bell tests consistently have reproduced the quantum prediction. 
However, there is a critical built-in assumption for the classical case and the Bell 
inequality: that property values, such as spin or polarization, are real-numbered 
values. 

But, as we have argued in this paper, if one replaces real-numbered values 
with “quasi classical” interval values, or  -measures, the differences between 
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the two results may not be as pronounced or as differentiated, at least under 
some conditions (see Figure 8). One obvious result of this finding is that the va-
lidity of using conventional Bell tests to demonstrate quantum correlations may 
be less compelling when using  -measures than a real-number representation. 

 

 
Figure 7. Quantum correlation as a function of 2cos θ . P2 assumes the direction of the 
P1 state detected by D1, e.g., spin up. This state is then projected onto the D2 up direction. 
The projected amplitude is squared so as to get the absolute probability. 

 

 
Figure 8. For  -measured (intervalized) spin angles, correlated and uncorrelated re-
gions can overlap. 
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