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Abstract 
The non perturbative guiding center transformation is extended to the relati-
vistic regime and takes into account electromagnetic fluctuations. The main 
solutions are obtained in covariant form: the gyrating particle and the guiding 
particle solutions, both in gyro-kinetic as in MHD orderings. Moreover, the 
presence of a gravitational field is also considered. The way to introduce the 
gravitational field is original and based on the Einstein conjecture on the fea-
sibility to extend the general relativity theory to include electromagnetism by 
geometry, if applied to the extended phase space. In gyro-kinetic theory, some 
interesting novelties appear in a natural way, such as the exactness of the con-
servation of a magnetic moment, or the fact that the gyro-phase is treated as 
the non observable fifth dimension of the Kaluza-Klein model. Electrody-
namics becomes non local, without the inconsistency of self-energy. Finally, 
the gyrocenter transformation is considered in the presence of stochastic e.m. 
fluctuations for explaining quantum behaviors via Nelson’s approach. The 
gyrocenter law of motion is the Schrödinger equation. 
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1. Introduction 

In plasma physics, the gyrokinetic codes are heavily used because they offer the 
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possibility to understand plasma mechanisms from first principles. The collec-
tive dynamic is the effect of the self-consistent interaction of single particles with 
electromagnetic fields. The particle interaction with electromagnetic (e.m.) fields 
is described by the Lorentz’s force law, whilst the e.m. fields are described by 
Maxwell’s equations. The difficulty is in the nonlinearity of the problem, because 
the same e.m. fields that influence the motion of the single particle are sustained 
by the four-current charge density made by the same particles. 

The lagrangian for describing electrodynamics is the sum of the single particle 
lagrangian, ( ), ,t x v , times of the distribution function of particles, ( ), ,f t x v , 
plus the e.m. lagrangian. The action is often expressed as [1]:  

( ) ( )plasma d d d , , , , d d ,
4

F F
S t x v f t x v t x v t x

αβ
αβ= −∫ ∫            (1) 

where Fαβ  is the e.m. tensor. This problem is so difficult that some 
approximations are often considered: the motion of the particles is approximated, 
e.g. in laboratory plasmas the relativistic effects are neglected and/or the 
non-uniformity of the magnetic field is ignored. In the present work, we use a 
non-perturbative approach for describing the particle relativistic motion in a 
self-consistent e.m. field. Moreover, mainly for astrophysical and cosmic 
plasmas, the present description is extended to a general relativistic formulation 
when the presence of a gravitational field is not negligible. It is worth noticing 
that the solution of an exact Vlasov-Maxwell-Einstein system gives the most 
complete description of what concerns the classical field theory approach for 
studying plasmas. 

The work is divided in four parts. In the first part, the single particle 
lagrangian and its Euler-Lagrangian (EL) equations of motion, i.e. the Lorentz’ 
force law, are studied. In the second part the non-perturbative guiding center 
description is described, which differs a lot from the standard perturbative 
approach [2], for obtaining the solutions of the Lorentz’ force law.  

In the third part, it is proposed a method for describing electrodynamics 
within the general relativity, also for solving the problem of the self-energy. 
Finally, in the fourth part of this work, electromagnetic fluctuations are 
considered for obtaining the gyrocenter transformation. The e.m. fluctuations 
are, firstly, considered as stochastic and the present derivation of the gyrocenter 
transformation is very different from [3]. Once fluctuations are considered it will 
be possible to include quantum effects through the Nelson’s approach (if applied 
to the guiding center instead of the particle). The introduction of the stochastic 
calculus, even if necessary, doesn’t mean that there are some changes on the 
physical laws. The Lorentz’ force law could remain valid also at a micro-scale. 
The result is very ambitious because from totally classical assumptions, it will be 
possible to propose an explanation of gravitation, electromagnetism and, at least, 
some aspects of quantum mechanics within the same framework of gyrokinetics 
applied to general relativity.  

We can begin by noticing that there is an asymmetry in the action (1) between 
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the particle part and the field part. The e.m. action is obtained by integrating the 
lagrangian density over a definite portion of space-time. This is because Faraday 
defined a field as an object that depends only on space-time variables, e.g. the 
magnetic field is ( ),B B t x= . Differently, in the particle action, the motion of 
charges is described on the whole phase-space during time evolution. The 
integration is done over the extended phase-space (the phase space plus time). In 
principle, for restoring the symmetry between the two lagrangians, matter plus 
fields, it should be simple to think at an action written as  

plasma plasmad d d ,S t x v= ∫                           (2) 

where ( ) ( )plasma , , , , somethingnewf t x v t x v= + “ ”  and the property that  

somethingnew d .
4

F F
v

αβ
αβ= −∫“ ”                      (3) 

Introducing the phase space lagrangian, which is a lagrangian density over the 
extended phase-space, ( )plasma plasma , , , ,t x v x v=    , it could be possible to extend 
to the whole extended phase-space a ( )6 1+  dimensional field theory machinery 
for studying plasmas. 

In the theory of gravitation, a similar symmetry between fields and masses is 
obtained because the required integration of the lagrangian density is only on a 
definite portion of space-time, thus the velocity doesn’t effectively matter. The 
gravitational force doesn’t depend on the velocity of masses even if gravitation 
determines the motion of masses, thus, also their velocities. In the lagrangian of 
a neutral massive body, there is not an interaction term like A v⋅ , depending on 
the velocity of the body. In general relativity theory, it is possible to think at a 
consistency between the gravitational field and the motion of masses. Indeed, 
what is said is that the space-time coincides with the gravitational field in the 
general relativity theory thanks to the Einstein’s equation. The mass trajectory, 
the curve in space occupied by the mass during time evolution, is a geodesic on 
the space-time manifold curved by the presence of masses: the mass can only 
follow its trajectory consistently with the underlying gravitational field. Is it 
possible to think at the charge trajectory in a similar fashion? Is it possible to say 
that the charge trajectory, the curve in phase-space occupied by the charge 
during time evolution, is the geodesic on the extended phase-space curved by the 
presence of charges? If yes then it should be possible to obtain an Einstein’s 
equation also for electromagnetism.  

The reason for reviewing some topics of the general relativity theory is that in 
the third part of the present work we will encounter an Hilbert-Einstein (HE) 
action, as done in the variational approach for deriving Einstein’s equation in 
general relativity but, this is done by considering a metric on the whole extended 
phase-space. It is proposed to substitute the term “something new” in (2) with a 
HE term when velocities are considered as dynamical variables. In this way, we 
are able to obtain the self-consistent solution of the problem of electrodynamics 
concerning plasmas in a general e.m. field. Moreover, having used an HE action 
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we will discover that our solutions are also valid in the presence of a 
gravitational field. If the correctness of such approach will be confirmed the 
result is very important because it could be said, from now on, that the 
gravitational field coincides with the extended phase-space and not only with the 
space-time. The important difference with the standard approach is that from 
giving a geometry to the extended phase-space it is possible to obtain gravitation 
with electromagnetism.  

Although an Einstein’s equation on the extended phase-space should be, 
somehow, analyzed, it will not been studied here. However, it will be analyzed 
what happens if the (non perturbative) guiding center description of motion is 
adopted. In such case, a similar mechanism to the one proposed by Kaluza and 
Klein (KK) a century ago [4] [5] is found. The advantage of using the present 
description is that, now, there is no need of looking for a compactification 
scheme as required in the original KK mechanism. Indeed, the extra-dimension 
that appears in the guiding center transformation is a physical and, in principle, 
measurable variable being the gyro-phase, the angle obtained when the velocity 
space is described in a sort of cylindrical transformation of velocities coordinates. 
Regardless of the equations that are really similar to the one seen in the KK 
mechanism, the new claim is in the interpretation of the extra dimension as a 
coordinate coming from the phase-space. Until now, all the compactification 
mechanisms have been shown to give problems, like the inconsistency of the 
scale of masses with observations. Instead, without a compactification at the 
Planck scale length and giving a physical meaning to the extra-coordinate, it 
seems that the KK mechanism can finally be accepted as a realistic explanation 
of the presence of gravitation and electromagnetism treated in a unified manner 
in classical physics. 

In Section II, the basic equations needed for introducing the non perturbative 
guiding center transformation [6] are considered, and they are extended to 
relativistic regimes. Within such approach it will be possible to analytically 
describe the motion of a charged (classical) particle in a general e.m. field. Some 
trivial solutions are shown in Section III. These are the guiding particle solution 
which is minimally coupled with the magnetic field and the gyrating particle 
solution that describes a closed orbit trajectory spinning around a fixed guiding 
center. In Section IV, the relativistic non perturbative guiding center description 
of single particle motion is described. Similar results are obtained in Section V, 
by adopting the same lagrangian formalism used for the magnetic force lines in 
[7].  

Finally, in Section VI, the particle dynamics are considered with different 
metric tensors: from a flat space-time geometry ( 4M ) to a curved extended 
phase-space (position, velocity and time) geometry. The novelty is that, instead 
of directly adding to the single particle lagrangian, a term for taking into account 
the presence of e.m. fields, we prefer to add a HE-like lagrangian. Thus, the 
metric tensor could be determined through the variation of the HE action in 
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extended phase-space. If the guiding center coordinates are employed, it will be 
possible to apply the KK mechanism [8] [9] with a geometry 3,1 1S×  for the 
extended phase space so that the solution for the metric tensor is exactly the one 
proposed by KK. 

The e.m. fluctuations are considered in Section VII and the analysis of 
solutions, which is the important issue studied in gyrokinetics, is considered 
here from a stochastic perspective. Thanks to such improvement on the 
gyrocenter transformation, if non relativistic energies are considered, it will be 
shown that the gyrocenter motion is fine described by the Schrödinger equation. 
The possibility of reconciling general relativity with quantum mechanics is 
resolved by the fact that they describe different quantities, the general relativity 
describes the guiding center, whereas quantum mechanics describe gyrocenters 
whose motion, with respect to guiding centers, is also due to electromagnetic 
fluctuations.  

The analysis is firstly done by adopting the Eulerian description of dynamical 
quantities. However, the final description of motion is done in the guiding 
center description. Even if the motion is independent on such choice, the 
privileged reference system here adopted is the guiding center one. In the 
appendix some details on the derivation of the KK mechanisms are reported 
following [10].  

2. Basic Equations  

A charged particle (charge e and mass m) that moves in a given e.m. field is 
classically described by the Lorentz’s force law:  

( )d ,
d v

ev E v B
t m
γ = + ×                         (4) 

for the speed of light set to 1. The relativistic factor is 1 21v vγ − = −  in the flat 
Minkowski spacetime. If s is the proper time or the world line coordinate, then 

1
v sγ − =  , where the dot is indicating the time derivative. In (4), v x=   is the 

velocity. To obtain the solutions of (4), we use the newtonian idea of a 
deterministic world. Following [6], supposing to know the exact solutions of the 
motion, in such a way that it is possible to fix the velocity, v, for each point of 
the space (traced by the particle), x, at each time, t: ( ),x v t x= . The former 
equation indicates the pathline in continuum mechanics [11]. The motion will 
also depend on other quantities, e.g. the initial energy 0ε , being v e mε γ= + Φ  
(Φ  is the electric potential), or the initial velocity, 0v . However, we treat such 
variables as constant parameters and, at the moment, they are not explicitly 
considered. The total derivative with respect to time is:  

2 2
1d .

d 2
v

v t v v t v v v
vv v v v v v v

t
γ

γ γ γ γ γ γ−= ∂ + ⋅∇ = ∂ + ∇ − ×∇×            (5) 

Introducing the e.m. potentials, Φ  and A, in (4) then the Equation (5) 
becomes  
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( ) ( ) ( )
2 2

1 .
2

v
t v v

vv eA m e m v e m B vγ
γ γ −  ∂ + + ∇ + ∇Φ = × +∇×        (6) 

From the identities 1 2 2 1 22 2v v v v vvγ γ γ γ γ− −∇ = ∇ = ∇ , it follows:  

( ) ( ) ( ).t v v vv eA m e m v v eA mγ γ γ∂ + +∇ + Φ = ×∇× +          (7) 

The latter equation can be suggestively read introducing the “canonical” e.m. 
fields ( ) ( )c tE m e m e pε= − ∇ − ∂  and ( )cB m e p= ∇× . In fact, cE  and cB  
are said “canonical” because of the potentials, ( )c m e εΦ =  and ( )cA m e p= , 
that are the energy and momentum, i.e. the canonical variables of time and 
position, respectively. Now, the Equation (6) is rewritten as  

0,c cE v B+ × =                            (8) 

which means that in the reference frame that moves with the particle, 
( ),x v t x= , the particle is seen always at rest. In fact, the resultant of forces 

vanishes in such co-moving frame. This is the free-fall reference frame for 
electromagnetism and something similar to the equivalence principle can also be 
stated here. The difference with the standard approach is that it has been 
adopted an eulerian description of motion instead of the lagrangian one. The 
main differences between the two approaches are soon analyzed.  

2.1. The Lagrangian and the Eulerian Description of Motion  

If the charge position at 0t =  is known: ( ) 00x t x= = , then the flow is 
represented by the map, tΦ , that determines the charge position at a later time:  

( ) ( )0 ,tx t x= Φ                            (9) 

being ( )0 0 0tx x== Φ . In continuum mechanics, the former equation is simply 
named the motion. Concerning the definition of Lagrangian vs Eulerian 
descriptions, we closely follow the textbook [11]. The Lagrangian velocity is 
defined to be ( )0,v v t x= , and it is referred to the charge 0x , that means the 
charge that initially was at 0x  (when 0t = ). The Eulerian velocity is defined to 
be ( ),v v t x= , that gives the velocity when the particle 0x  passes through x at 
time t. The same is true for any quantities, e.g. O can be expressed in Lagrangian 
description, then ( )0,O O t x=  and the particular charge 0x  is followed in its 
time evolution, otherwise, in eulerian description, ( ),O O t x= , and O refers to 
the charge 0x  when it passes through x at time t. The time derivative is often 
called the material derivative: 

0t t tx xO O O x O O v O= ∂ = ∂ + ⋅∇ = ∂ + ⋅∇

 , for the 
chain rule. What is important and heavily used in the present work is the fact 
that the computation of the acceleration, a v=  , at ( ),t x  can be done without 
solving the motion first. This only enables the knowledge of ( ),v v t x=  and not 
of ( )0tx x= Φ :  

.ta v v v= ∂ + ⋅∇                           (10) 

2.1.1. Note on Lagrangian Mechanics 
The non relativistic Lorentz’ force law is the same of Equation (4) with the 
substitution 1vγ = . It is quite simple to obtain such force from the 
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Euler-Lagrange (EL) equations:  

nr nr
d 0,
d xL L

t
∇ −∇ =


                     (11) 

where the non relatvistic lagrangian, ( )nr nr , ,L L t x x=  , is  

( ) ( ) ( ) ( ) ( )
2

nr , , , , .
2
xL t x x e m x A t x e m t x= + ⋅ − Φ


             (12) 

It is remarkable that the EL equations can be obtained from a variational 
principle, i.e. the Hamilton’s principle. If the action is defined to be  

out

in
nr nr d .

t

t
S L t= ∫                         (13) 

being outt  and int  two different instants of time, then it is possible to associate 
the EL equations with an extremal of the action. If all the trajectories are 
considered, from int  and outt , there are some of those trajectories for which 
the action is at an extremal. Let’s take a trajectory of motion, ( )x X t=  that 
passes in inX  at int  and in outX  at outt . Such trajectory is the so-called 
trajectory of motion because it is solution of ( )( )X e m E X B= + ×  . Starting 
from such trajectory it is possible to consider all the other trajectories that are 
parametrically written at each instant of time, t, as  

( ), ,x X t Xρ α= +                       (14) 

( ), , ,x X t Xρ α= +   

where ( )1 2 3, ,α α α α=  could vary on a three dimensional domain. It is useful 
to ask for the following property: if 2α  goes to zero, then also ρ  goes to zero 
and the considered trajectory collapses on the trajectory of motion, x goes to X 
(and x  goes to X ). With respect to the standard approach we are considering 
all the trajectories, not only the one starting from inX  at int  to outX  at outt . 
Such difference causes the following consequence. The variation of the action 
(with respect to the parametric space), nrSδ  is always given by  

outout

in in
nr nr nr nr

d d ,
d

tt
x xt t

S L L L t
t

δ ρ ρ = ⋅∇ − ∇ −∇ ⋅  ∫ 

            (15) 

but now the EL equations doesn’t ensure that nr 0Sδ =  because of the term 

nrxLρ ⋅∇


 which can be different from zero. The common practice is to consider 
0ρ =  at int t=  like at outt t= . However, this is not necessary. You can also 

consider all the trajectories with nr 0xLρ ⋅∇ =


 but ( )in 0tρ ≠  and ( )out 0tρ ≠ , 
and, again, the result is that the force law corresponds to the vanishing of the 
first variation of the action. In this case there are many (infinite) trajectories for 
which the EL equations (i.e. Lorentz’ force law) are satisfied, even if the 
coordinates ,X X  are always describing the unique trajectory that starts from 

inX  at int  to reach outX  at outt  when 2α  is zero. In such case, both the EL 
equations and the Hamilton’s principle are satisfied, even if 2 0α ≠ . The reason 
for noting such difference with respect to the standard approach is quite 
unimportant unless there is something, like an indetermination principle or 
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some non-locality properties, that doesn’t allow to exactly known where the 
particle is at int  and at outt . We will see in section VI that the present theory is 
non-local and the latter extended approach to the variational description is 
useful. Moreover, in section VII, it is shown that 2 0α ≠  almost always and the 
classical trajectory (with 2 0α = ) is ruled out by electromagnetic fluctuations.  

2.1.2. The Non Relativistic Case 
In (12), it is possible to substitute the potentials, that now are fields, i.e. 
functions of time and position, with other physically meaningful fields. For an 
arbitrary velocity field, ( ),V t x , it is possible to define ( ) ( )2, 2t x V e m= + Φ  
and ( ) ( ),P t x V e m A= + . Also ( ),t x=   and ( ),P P t x=  are fields. The 
Lagrangian becomes  

( )( ) ( )( ) ( )22
2

nr , 2 , .
2 2

x VxL x P V t x V t x P x
−

= + ⋅ − − − = + ⋅ −




       (16) 

The momentum, xp L≡ ∇


, is p x V P= − + . 
It is worth noticing that the arbitrariness of V is very important. Behind such 

arbitrariness there is the relativity principle. In fact, the presence of V can be 
seen as a particular choice of the reference frame in the space of velocities and, 
therefore, does not affect the dynamics. It is not important if the observer of an 
experiment moves with an arbitrary velocity V, the physics described by the 
experiment remains the same because the lagrangian has the same value, being a 
scalar. The property of the lagrangian of being a scalar is the relativity principle 
and it will be very useful in next sections.  

Now, it is easy to recognize two different descriptions of the same motion, the 
Lagrangian description, which is almost adopted, is when 0V =  and the 
Lorentz’s force law is recovered. Whilst, for ( ),x V t x= , the description is said 
Eulerian. 

Concerning the Euler-Lagrange (EL) equations, they are computed:  

( ) ( ) ( )d .
d tx V P x P x V V x V V
t

− = −∂ −∇ + ×∇× − − ×∇× − − ⋅∇        (17) 

Introducing the canonical e.m. fields ( ) c te m E P= −∂ −∇  and  
( ) ce m B P= ∇× , the former can be rewritten as  

( ) ( )( ) ( ) ( )d .
d c cx V e m E x B x V V x V V
t

− = + × − − ×∇× − − ⋅∇         (18) 

It is now evident that a solution of motion is when x V=  and V is solution 
of Equation (8):  

0,c cE V B+ × =                          (19) 

which seems, only apparently, an algebraic equation.  
In dynamical systems or continuum mechanics, given the eulerian velocity 

field ( ),V V t x= , i.e. the velocity of the charge when it passes at x at time t, the 
problem is to find the particle path, integrating the equation ( ),x V t x= . 
Differently, here the eulerian velocity is not given and we have to solve Equation 
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(8) to obtain the velocity field, eventually for trying to integrate the motion 
(which is not our first interest). We concisely refer to Equation (8) as the 
velocity law because it can be found for every e.m. fields and for every charge if 
the eulerian description is adopted. Moreover, with respect to an observer that 
moves with the Eulerian velocity ( ),V t x , from Equation (18), the electric field 
is c cE V B+ ×  which is null so that the charge is kept at rest. With respect to an 
observer co-moving with the laboratory, the e.m. fields can be measured to be E 
and B whilst the charge is seen to move following the Lorentz’s force law.  

Another interpretation of the same equation, is the following. Suppose to 
realize, in a laboratory, the electric field, cE , and the magnetic field, cB , and to 
be able to move the charge in X at t in such a way that its velocity is described by 
( ),V t X . Then, the Lorentz’ force on the particle vanishes, being 0c cE V B+ × = . 

Without a force on the charge, it is possible to consider the charge velocity 
preserved as in an inertial reference frame. The problem is that the velocity is 
not constant and the trajectory is not straight as for a global inertial reference 
frame. This is exactly what occurs if the reference frame is considered inertial 
only locally as it happens when an equivalence principle is considered.  

It is worth noticing that there is an interesting similarity between such 
equations of motion and the ideal Ohm’s law encountered in magneto-hydro 
dynamics (MHD). In MHD, the ideal Ohm’s law is below written: 

0pE V B+ × = , being pV  the plasma eulerian velocity. Thus, even if the context 
is different, the solutions are similarly classified (see also [12] for the true 
relativistic Ohm’s law).  

If 0cB ≠ , it is possible to rewrite 0c cE V B+ × =  as  

2 ,c c
b

c

E BV V b
B
×

= +                          (20) 

where b is the unit vector in the direction of the canonical magnetic field, 

c cB B b= , and 2
c c cE B B×  is the E B× -like drift velocity. In plasma physics, 

it is interesting to study the case corresponding to the gyro-kinetic ordering that 
neglects the E B× -like drift. 

Last but not least, in the Eulerian description the lagrangian in (16) 
corresponds to the Poicaré-Cartan form, which linearly depends on the velocity:  

( ) ( ), , .L P t x x t x= ⋅ −                       (21) 

2.1.3. The Relativistic Case 
When relativistic energies are considered it is important to give a covariant 
description. In this section the spacetime is considered Minkowskian (flat 
geometry) with signature ( )diag 1, 1, 1, 1αβη = − − − . Let’s start from the scalar 
Lagrangian:  

( )( )21 1 ,L e m A u u= − + ⋅ −Φ +                   (22) 

being 21 vu γ+ = . We indicate with the prime the derivative with respect to 
the world line coordinate, s, so that u x′=  is the relativistic velocity. The 
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lagrangian (22) is the sum of two effects, the free single particle lagrangian is 

free 1L = −  while the lagrangian expressing the interaction between matter and the 
e.m. field is ( )( )2

ime 1L e m A u u= ⋅ −Φ + . Adopting the summation convention 
and for 1u uα α =  with 0,1,2,3α = , the lagrangian can be re-written in the 
familiar form  

( ) ,L u u eA mα
α α= − +                        (23) 

being 0A = Φ  the electric potential. Explicitly, we have assumed that the 
contravariant velocity is ( ),v vu vα γ γ= , while the covariant velocity is obtained 
from the product u uβ

α αβη= , that gives ( ),v vu vα γ γ= − . 
From 1 1 2 2u uα α= + , an equivalent lagrangian can be written:  

1 .
2 2

u u eL u A
m

α
αα

α= − − −                       (24) 

It is worth to note that such lagrangian is very similar to the non relativistic 
one, ( )( )2

nr 2L v e m v A= + ⋅ −Φ ; if u v→  then the difference is only due to 
the energy at rest, which is absent in nrL . 

Now, for an arbitrary four co-variant velocity field, ( )U U xβ
α α=  it is possible 

to define a co-vector field, ( ) ( )P P x U e m Aβ
α α α α= = + . The Lagrangian 

becomes  

( ) 1 .
2 2

u uL u P U
α

αα
α α= − − − −                    (25) 

The four co-momentum are  

.Lp u P U
uα α α αα

∂
= − = + −

∂
                    (26) 

The EL equations are simply  

( )d ,
d

p u P U
s

β
α α β β= ∂ −                      (27) 

that, finally, can be written as:  

( ) ( )d .
d

u U u P P u U
s

β β
α α α β β α α β− = ∂ − ∂ − ∂               (28) 

As before, if 0Uα =  the equations of motion give the covariant Lorentz’s 
force law, and a Lagrangian description is preferable. However, if ( )u U xβ

α α= , 
then the description is Eulerian. In the Eulerian description, the Eulerian four 
velocity satisfy the Equation (8) because 1u uα α =  and 0u uβ

α β∂ = . The 
velocity law can be written in co-variant form as  

0,uβ
αβω =                            (29) 

being P Pαβ α β β αω = ∂ − ∂ , known as the Lagrange tensor. 
The canonical Maxwell tensor, cF αβ  is proportional to the Lagrange tensor, 

αβω :  

( ) .ce m F P Pαβ αβ α β β αω≡ = ∂ − ∂                  (30) 

Thus, Equation (8) is found when 1,2,3α = ; whilst, if 0α =  then  
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( ) 0,v tv Pγ ⋅ −∇ − ∂ =                      (31) 

which means that cE  is transversal to v, so that it doesn’t contribute to the 
energy variation (for this reason, in [6], cE  was indicated as tE ).  

Even if we have already obtained the covariant equations, it is instructive to 
derive the same Equation (29) directly from the most simple lagrangian: 

( )L u p xα β
α= − , which is the same of (23) but now the covariant momentum, 

( )p p xβ
α α= , is only function of the spacetime coordinates and it doesn’t 

depend on the (relativistic) velocity (its one-form is the Poincaré-Cartan form). 
For such lagrangian, the four momentum is  

( )p x L
u

β
α α

∂
≡ −

∂
                       (32) 

and the EL equations are:  

,u p u pβ β
β α α β∂ = ∂                        (33) 

being p u pβ
α β α′ = ∂ . The former is exactly the Equation (29).  

3. Solutions of the Velocity Law  

There are some simple solutions of the Equation (29). The trivial solution, 
0αβω = , results to be very important. Another simple solution is k uγ δ

αβ αβγδω =  , 
where αβγδ  is the Levi-Civita symbol ( 0123 1= ) and k γ  is the wave number 
four-vector. Also this solution is trivial because the Levi-Civita symbol is totally 
anti-symmetric, so that 0u k uβ γ δ

αβγδ =  due to the symmetry β δ↔ . 
From Equation (20) it is possible to classify the solutions of the velocity law 

depending on 1) 0cB =  and 0cE = , 2) 0cB ≠  and 0cE =  and 3) 0cB ≠  and 
0cE ≠ . They are called, gyrating particle solution, guiding particle solution in 

gyrokinetics ordering and guiding particle solution in MHD ordering, respectively.  

3.1. Relativistic Guiding Particle Solution 

Let’s start with the analysis of the following solution: k uγ δ
αβ αβγδω =   and 

consider the case 0 1k λ=  and 0k = . Now, 0uδ
αβ δαβω λ=  . Thus, only the 

spatial components survive:  

with , , 1, 2,3.
k

ij ijk
u i j kω
λ

= =                    (34) 

Multiplying for ijl  both sides of the latter equation, and using the equivalence 
2ijl l

ijk kδ=  , then  

,
2

l ijl
ijl

ij i j
u pω
λ
= = ∂


                         (35) 

which is the l  component of the fundamental equation:  

,u e B u
mλ

= +∇×                           (36) 

as in the non-relativistic case [6].  
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The latter equation is said fundamental because its solution gives the answer 
for many problems encountered in plasma physics and/or electrodynamics. At 
first, if λ →∞  then ( )B m e u= − ∇×  and the velocity becomes strictly 
related to the vector potential: the problem is to find a vector potential from a 
given magnetic field. This kind of solution will be called the gyrating particle 
solution. Secondly, if ( ) 0e m →  then u uλ= ∇× , which is recognized as the 
force free equation [13] [14] that denotes the Beltrami field [15]. In [6], 
Equation (36) is treated as the non-homegeneus version of the force free 
equation. Finally, the guiding particle solution is obtained when the vorticity, 

u∇× , is small: ~ 0u∇× . In this case, the velocity is mostly parallel to the 
magnetic field ( )~u e m Bλ , and the vorticity gives the drift velocity [6]: 

Dv uλ= ∇× . In [16], the same equation is part of a system of equations where 
the Equation (36) is coupled with another similar equation that describes the 
magnetic field. Such system of equations is used for describing interesting 
diamagnetic structures in plasmas. 

Nevertheless, written in the latter form, something unusual appears. In fact, 
the Hamilton-Jacobi solutions, that are classical solutions, are obtained setting 
p S= ∇ , where S is the principal Hamilton function1. In our case, p is not a 

gradient of a function, otherwise its curl should vanish. We have already defined 
the canonical magnetic field exactly as the curl of ( )m e p . This means that 
classical solutions have 0cB =  and so, we are inspecting non classical solutions 
with 0cB ≠ . 

Together with (36), there is also the condition 0 0iω = , which means:  

0,t p ε∂ +∇ =                            (37) 

as it should in the gyrokinetic-like ordering ( 0cE = ). Such equation, already 
studied in [6], is particularly important when ~u eB mλ . In this case it is better 
to indicate u with U and refer to it as the guiding particle relativistic velocity. 
The reason is that it describes the motion of a particle, with null magnetic 
moment that proceeds mostly parallel to the magnetic field with a drift velocity 

Uλ∇× . For a generic magnetic field, it is possible to obtain a perturbative 
solution ordered in power of λ  so that the 0th order approximation is  

( )0 .eU B
m
λ=                            (38) 

The leading order approximation is  

( ) ( )1 0 .eU B U
m

λ λ= + ∇×                      (39) 

If ( )m e u Bλ =


, then the former is the familiar guiding center (relativistic) 
velocity (for null magnetic moment) at leading order:  

( )
( ) ( ) ( )

1
0 0 ,

u
U u b u b

e m B
= + ∇×

 

                  (40) 

 

 

1In the present case S W tε= − , where W is the Hamilton’s characteristic function and S W∇ = ∇ . 
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with ( )0B B b= . In [6], an exact solution of (36) is obtained when the magnetic 
field is axisymmetric as it happens in many interesting circumstances. In such 
case, a common representation of B is  

,pB Fψ φ φ= ∇ ×∇ + ∇                        (41) 

where φ  is the toroidal angle, pψ  is the poloidal magnetic flux surface and 
F/R is the toroidal component of the magnetic field ( e Rφφ∇ =  with eφ , the 
unit vector in the toroidal direction, and R the radial distance from the axis). 
The guiding particle velocity solution of (36) in an axisymmetric magnetic field 
like (41) is [6]  

( )p
e eU
m mφ φλ φ ψ φ= ∇ ×∇ + − ∇                   (42) 

with the guiding particle toroidal momentum, φ  (in magnetic flux unit), 
satisfying the following equation:  

2
2 0,R

R
φ

φ

λ
λ

∇
∇ ⋅ + =


                        (43) 

if p Fλ ψ= − . The latter equation, that can be written as an eigenvalue 
equation for the Shafranov operator, was already obtained but wrongly written 
in [6] (see [17] for details).  

3.2. Velocity Law Solutions in MHD-Like Orderings  

Previously, we have analyzed the following solution of the velocity law: 
k uγ δ

αβ αβγδω =  , with k γ  the time-like four-vector: 0 1k λ=  and 0k = . We 
have noticed that from this choice it follows that 0cE = , which is said the 
gyro-kinetic-like ordering. Now we want to consider the case where k γ  is the 
space-like four vector ( )0, k . In such case, 0

0
i i i j

i i ijk u k u k uδ
αβ αβ δ αβ αβω = = +   . 

The component of αβω  are  

( )0 0
i j

k kij kk u k uω = = ×                       (44) 

and  
0

0 .i
kj kji k uω =                             (45) 

That can be written in vectorial form as  

( )c vE m e k vγ= ×                          (46) 

and  

( ) ,c vB m e kγ=                           (47) 

being ( ) ce mαβ αβω =  . In such case it is the wave number, and not v, that is 
parallel to cB . The solution for v is the same of (20) but contrary to before the 
particles don’t follow trajectories close to the magnetic field lines because of the 
presence of the electric field cE . This is what happens in the MHD-like 
ordering. Thus, we can easily distinguish the MHD-like from the gyrokinetic 
ordering giving to kσ  the character of a space-like or time-like four-vector, 
respectively. The same conclusion can also be done if the ideal Ohm’s law is 
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considered instead of the velocity law of Equation (8).  

3.3. Gyrating Particle Solution  

The trivial solution of (29) is 0αβω = . In such case the canonical fields are null: 
0cαβ = , or 0c cE B= = .  

If 0cB = , then ( ) 0e m B u+∇× = . Now, it is possible to choose a very 
particular vector potential: ( )A m e u g= − +∇ , being g a gauge function. 
Moreover, the function g is also seen to be proportional to the principal 
Hamilton’s function, S, which is an action. Indeed, the canonical momentum is 

( ) ( )p u e m A e m g= + = ∇ . If ( )g m e S= , then p S= ∇  and we have just set 
the initial condition for finding the classical solution in the Hamilton-Jacobi 
method. This is also consistent with 0cE = , that means that  

( ) ( )0 0tu e m e m g∇ + ∇Φ + ∂ ∇ = . If ( ) ( )0
tu e m e m gε = + Φ = − ∂ , then we 

found the other Hamilton-Jacobi equation: 0t Sε + ∂ = , being ( )S e m g= .  

3.3.1. Zitterbewegung 
The gyrating particle solution is the most important solution. The reason will 
only be clear in Section VII, but it is possible to notice some interesting 
properties also here if the gauge function is settled to ( )2g m e µγ=  (such 
choice will soon be defined as the guiding center gauge function). The 
four-vector co-momentum is ( )p m eα αµ γ= − ∂ . Explicitly, ( )p m e µ γ= ∇  
and ( ) tm eε µ γ= − ∂ . 

Such solution allows to compute the Lagrangian, whose value is:  
( ) ( ) ( )tL v p m e v m eε µ γ γ µγ= ⋅ − = ∂ + ⋅∇ =  . If γ  is the gyro-phase, the 

conjugate coordinate, µ , is the magnetic moment. Thus, the gyrophase comes 
to be proportional to the action. Such remark was already considered by Varma 
[18], who firstly recognizes the importance of identifying the gyrophase with the 
action in another context: path integral formulation of quantum mechanics for 
discovering quantum effects on macro-scale dynamics. In the present work, it is 
not possible to sufficiently stress why we should consider the gyrophase an 
action coordinate and it will be considered elsewhere together with the Varma’s 
idea. However, another surprising correspondence with quantum mechanics is 
here described. Concerning the non relativistic energy of the charge,  

( ) 2

.
2

p e m A e
m

ε
−  = + Φ                        (48) 

it can be re-written in an interesting way once the phase function, zbw
ie γψ −= , is 

considered. Here, zbw stands for Zitterbewegung [19] [20] [21] [22]. From the 
derivatives of the phase function  

zbw zbw zbw zbwand .t ti iψ ψ γ ψ ψ γ∇ = − ∇ ∂ = − ∂               (49) 

Thus, the momentum and the energy can be written as  

( ) zbw zbw ,p i m e µψ ψ= ∇                       (50) 

( ) zbw zbw ,ti m eε µψ ψ= − ∂                       (51) 
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where zbwψ   indicates the complex conjugate of zbwψ , which, in this case, it is 
also the inverse: 1

zbw zbwψ ψ −= . The energy is computed:  

( )

( ) ( )

( ) ( )

zbw zbw

zbw zbw

zbw zbw

1
2

,

ti m e
e i m e e m A
m

i m e e m A

µψ ψ

µψ ψ

µψ ψ

− ∂

 = Φ + ∇ − 

 ⋅ − ∇ − 







 

being p and ε  real quantities. The former expression is written as  

( )
( ) ( )

( ) ( )

zbw zbw

2

zbw zbw

zbw zbw

[ ]
2

.
2

ti m e

i m e e m Ae
m

i i m e e m A

µψ ψ

µ
ψ ψ

µψ ψ

− ∂

∇ −
= Φ +

 + ∇ ⋅ ∇ − 







 

The divergency term is v∇ ⋅  and it is null for an incompressible charge, 
neither created nor destroyed. A Schrödinger-like equation is obtained:  

( )
( ) ( ) 2

zbw zbw zbw .
2t

i m e e m A ei m e
m

µ
µ ψ ψ ψ

∇ −  − ∂ = + Φ       (52) 

The operator, of the former partial differential equation, is exactly the same of 
the Schrödinger equation if 0e < , as for an electron, and 2e mµ =  . From 
totally classical assumptions, the expression of the energy for a charged particle 
together with the constrain that 0v∇ ⋅ = , give rise to a wave equation. Thus, for 
a gyrating particle solution it is possible to describe a classical solution of motion 
through a Schrödinger equation applied to a phase function like zbwψ . It is 
interesting that there is a set of solutions where both the Schrödinger-like 
equation and the Lorentz’s force law are verified. What is important is that 
determinism is preserved by the fact that zbw 1ψ = , which means, in the Born 
interpretation of 2

zbwψ , that the probability of finding the particle in the state 
represented by zbwψ  is almost certain (only if you know the initial gyrophase). 

3.3.2. Magnetic Flux Linked to Closed Loops 
For the gyrating particle solutions, it is possible to take the following 
representation for the magnetic field: B γ= ∇Ψ×∇ , which is commonly called 
Clebsh representation. Ψ  and γ  are said Clebsh potentials. Topologically, it 
is possible to choose 1Sγ ∈ , in such a way that, in this case, it is considered the 
gyro-phase. The variable Ψ  is the magnetic flux linked to the closed loop 
traced by γ . ∇Ψ  is orthogonal to γ∇ , in such a way that B doesn’t depend 
on γ . The particle, that travels along the closed loop of curvilinear coordinate 
γ , always feels the same orthogonal magnetic force. This happens for the 
particular representation of the magnetic field, not because the magnetic field is 
straight and uniform. For this reason, such representation is also known as the 
straight field line representation. The motion of the gyrating particle is expressed 
by:  

( )x X ρ γ= +  
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( ) ( ) ,u U ν γ ν γ= + =  

where we have set 0U = , so that the guiding center, X, is fixed. The gyrating 
loop motion has been described in [6] setting  

,ν ρ= ×Ω                           (53) 

where Ω  is the relativistic angular frequency vector, that depends on the 
position of the particle. It is possible to choose a local tern of orthogonal unit 
vectors: 1e e bγ ρ⋅ × = , where eρρ ρ= , b γ ′Ω ⋅ =  and eγν ρ γ ′= . 

It is worth noticing that ρ  becomes a conserved quantity if (53) is allowed. 
In fact, the world line derivative of 2 2ρ  is 0ρ ρ ρ ρ′⋅ = ⋅ ×Ω = . Thus, ρ  
doesn’t depend on γ . However, ρ  depends on the magnetic flux linked to 
the closed orbit. In other words, distances are now measured in terms of Ψ . 
Moreover, also the time of one revolution depends on Ψ , so that it can be 
considered a good time-like coordinate.  

From (53), the closed trajectory lives on the surface of a sphere, 2S , of radius 
ρ . However, if other coordinates are used then the same particle is seen to 

move on a helicoidal trajectory. The circle 1S  is both the representation of the 
particle orbit, but also the description of the gyrating motion in the guiding 
center coordinates. What is important is that there is no difference from the 
point of sight of the particle. The particle moves in a circle, ignoring the rest of 
the world because it can only feel the effect of the Lorentz’ force with the same 
magnetic field intensity. If the charge is described in the guiding center reference 
frame, then the magnetic field is always orthogonal to its direction of motion. In 
a certain sense, it is similar to a massive body in a gravitational field: the massive 
body moves straight along the geodesic but the spacetime is curved due to the 
presence of a gravitational field and the body is seen from an observer, e.g. to fall 
versus another massive body. On the same footing, a charged particle moves 
circularly but the spacetime is measured in units of magnetic field and if such 
magnetic field is non uniform then the charge is seen from an observer with a 
relative relativistic velocity 0U− ≠ , e.g. to follow a helicoidal trajectory. In the 
forthcoming sections, the guiding center description of motion will be described, 
when both U and ρ are not vanishing, and it will be shown how the 
electromagnetism can be described within the formalism of general relativity.  

4. Guiding Center Description  

Here, another interesting and important description of motion is considered, 
with respect to the Eulerian and the Lagrangian descriptions: the guiding center 
description of motion which is neither Lagrangian nor Eulerian. Such possibility 
arises if the velocity of the charge is written as x V σ= + . Now, the motion is 
not Eulerian, because V x≠  , and it doesn’t express the velocity of the charge at 
a given time and position. V expresses the velocity field that is used as a system 
of reference for velocities measured by x Vσ = − . Such description is not 
Lagrangian, because 0V ≠ , now. However, if the vector field σ is defined on the 
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same domain of V, then re-naming V V σ= + , the description can be done in 
the Lagrangian or Eulerian way, as previously done. Instead, for the guiding 
center description we do something different, now σ depends on a new variable 
or parameter, 1Sγ ∈ , which it can be identified with the gyro-phase. In practice, 
γ  must live in a different domain from the one where the e.m. fields are defined 
and, thanks to Faraday, the e.m. field only varies on space-time. Such new 
variable is always part of the whole phase-space. The non perturbative guiding 
center transformation is the transformation from ( ), ,t x v  to ( ), , , ,t X γ µ ε , 
where µ  is the magnetic moment, that will be defined later on, whilst ε  is the 
energy of the charge. The transformation is implicitly written as  

( ), , ; ,x X t Xρ γ µ ε= +                     (54) 

( ) ( ), ; , , , ; , .v V t X t Xµ ε σ γ µ ε= +  

The latter relations are considered at each time, t, and express the trajectory of 
the charge through the guiding center coordinates ( ), , , ,t X γ µ ε . Comparing 
such relations with the parametrized trajectories in (14), it is straightforward to 
identify α  with ( ), ,α γ µ ε= . Specifically 1 2,α γ α µ= =  and 3α ε= . In 
(54), ρ  is the gyro-radius and X is the guiding center position. The guiding 
center velocity is X V= , if V is computed at X. 

The contra-variant guiding center coordinates are ( ), , , ,AZ t X γ µ ε= , with 
the index A from 0 to 6. The coordinates AZ  are contra-variant because they 
transform in the following way: if ( )A A BZ Z z=  then  

d d .
A

A B
B

ZZ z
z

∂
=
∂

                          (55) 

In the guiding center description of motion the single particle lagrangian 
doesn’t depend on γ , therefore, a reduction of the complexity of the problem is 
achieved: γ  is cyclic and the conjugate variable, that is the magnetic moment, 
µ , becomes an invariant of motion. The lagrangian in (12) is rewritten by 
separating the guiding center part:  

( ) ( ) ( )( ) ( ) ( )( )
2

nr , , ,
2

V
L t X V e m V A A e mρ ρ

σ
ρ σ σ δ δ

+
+ + = + + ⋅ + − Φ + Φ  

where ( ) ( ), ,A t x A t X Aρδ= +  and ( ) ( ), ,t x t X ρδΦ = Φ + Φ . Here, V is always 
solution of Equation (19) for ensuring that if 0µ →  then V describes the 
velocity of a particle. The lagrangian is written in such a way that it is divided in 
what surely doesn’t depend on γ , firsts three terms below, from what it should:  

( ) ( )

( )( ) ( )( )

2

nr

2
2

.
2

VL e m V A e m P

e m V A e m Aρ ρ ρ

σ

σ
δ δ σ δ

= + ⋅ − Φ + ⋅

+ ⋅ − Φ + + ⋅

 

It is advantageous denoting ( ) ( )2
nr0 2L V e m V A e m= + ⋅ − Φ , as the leading 

order lagrangian, with ( ) ( )nr1L P e m A Vσ ρ ρ= ⋅ + ⋅ ∇ ⋅ − ⋅∇Φ   , as the first 
order lagrangian, and the rest with nr2 nr nr0 nr1L L L L= − − . The reason is that the 
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equation of motions are obtained only if the first order lagrangian vanishes. This 
it can be easily seen if ρ  and σ  are considered small. In such case nr2L  can 
be ignored and ( ) ( ) ( )nr1 d dL e m A V P P tρ ρ = ⋅ ∇ ⋅ −∇Φ − + ⋅ 

 . The equation 
of motion are obtained when it is required that ( )( )nr1 d d 0L t Pρ− ⋅ = , if the 
identity ( )A V V A V A∇ ⋅ = ×∇× + ⋅∇  is used. This is equivalent to ask for the 
action to be at an extremal since, neglecting the small variation, ρ , of the 
trajectory, nr nr0L L= .  

4.1. The Guiding Center Gauge Function  

The single particle lagrangian is gauge independent and, for a gauge function g, 
then the transformation A A g→ −∇  and t gΦ→Φ + ∂  leaves the trajectories 
of motion unaltered. Indeed, together with the gauge transformation of e.m. 
potentials the lagrangian is shifted, ( )nr nrL L e m g→ −  , and the addition of a 
total time derivative doesn’t affect the EL equations of motion. However, it is 
common practice to use a gauge function that depends on space and time only. 
Here, we use a gauge function that depends on the guiding center coordinates. It 
is worth noticing that quantum mechanics forbids the dependency of e.m. 
potentials from the velocities by limiting the domain of the gauge function only 
to the whole space-time. Even though the redefinitions of e.m. potentials doesn’t 
affect the e.m. field (E and B), it is now possible to cancel or add some terms in 
the lagrangian that depend on all the variables of the whole phase space, like γ . 
The dependency of γ  in the single particle lagrangian can be manipulated 
through an efficient choice of the gauge [23]. Let’s try to express the single 
particle lagrangian in the guiding center coordinates, for , 0,1, 2,3, 4,6A B = : 

( ) ( )nr nr, , , , , , , ,A BL Z Z L t X Vγ µ ε γ ε=  

  . The simplest way to express the lagrangian 
in (56) in the guiding center coordinates, ( )nr nr ,A BL L Z Z=   , is setting 

( ),A Bg g Z Z=   and asking for the following relation  

( ) ( )( ) ( )( )
2

.
2

e m g P e m V A e m Aρ ρ ρ
σ

σ δ δ σ δ= − ⋅ − ⋅ − Φ − − ⋅       (56) 

Moreover, if 0gγ∂ =  then the lagrangian  

( ) ( ) ( )
2

nr 2
VL e m V A e m e m g= + ⋅ − Φ −

                 (57) 

doesn’t anymore depend on γ . 
However, the former relation denotes something really important, the 

equivalence of  

( ) ,p v P V e m gε⋅ − = ⋅ − −                      (58) 

being ( ) ( )2 2 ,v e m t xε = + Φ  and ( ) ( )2 2 ,V e m t X= + Φ . From the former 
relation it is clear the reason for indicating ( )e m g  as the (Lie) generating 
function for the guiding center transformation. In the non perturbative guiding 
center transformation it is chosen to set ( )e m gε = +   and the product p v⋅  
is conserved: P V p v⋅ = ⋅ . From the linear dependency of the energy on g , it 
seems that the energy of the particle should depends also on the chosen gauge. 
This is what it commonly happens because the energy is linearly dependent on 
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the electric potential which itself is gauge dependent. However, it could be nice if 
the energy becomes independent from the gauge function, g. This means that 

0g g∂ = . In fact, we have just seen that for asking γ  to be cyclic in the 
lagrangian, then 0gγ∂ = . Thus, a simple identification occurs: g γ∝ . Let’s 
introduce the magnetic moment as the constant useful for identifying the gauge 
function with the gyro-phase:  

( )2 ,g m e µγ=                         (59) 

then  

( ) .m eε µγ= +                         (60) 

At the same time, it is found from the transformation in (54) that  

( )
2

.
2

V e m ρ
σ

ε σ δ= + + ⋅ + Φ                  (61) 

Comparing the latter relations, the definition of the cyclotron (angular) 
frequency, cω γ=  , is:  

( )
( )

2 2
,c

V e m
m e

ρσ σ δ
ω

µ
+ ⋅ + Φ

=                  (62) 

and it doesn’t depend on γ , because γ  has been imposed to be cyclic for 
construction. It is quite easy to demonstrate that the magnetic moment is the 
constant of motion associated to the cyclic variable γ . In this way we have 
constructed a constant magnetic moment. Its constancy has not been explicitly 
derived but required for consistency from the following property: the gauge 
independency of electrodynamics.  

The gauge transformation is  

( ) ( )and tA A m e m eµ γ µ γ→ − ∇ Φ→Φ + ∂            (63) 

also for the relativistic case.  

4.2. The Relativistic Guiding Center Transformation  

The relativistic transformation is implicitly written as  

( ), , ; ,x X t Xρ γ µ ε= +                     (64) 

( ) ( ), ; , , , ; , ,u U t X t Xµ ε ν γ µ ε= +  

being u x′= , U X ′=  and ν ρ′= . The relativistic lagrangian is:  

( ) 1, .
2 2

u u eL u A t x
m

α
αα

α= − − −                  (65) 

Once 0
vu γ=  has been considered, it is convenient to introduce 0U  and 

0ν . The guiding center velocity is not the velocity of a charge, so that 1U Uα α ≠  
if 0αν ≠ . Indeed, it is possible to ask for 0α

αν ν = . In such case αν  is a 
light-like four-vector, as for a photon. Such correspondence is stressed writing 
U wα α αη= − , with 0α

αη η = , as for ν , and 1w wα
α = , as for a charge. Now, it 

is possible to re-write the guiding center four-velocity transformation, 
u Uα α αν= + , in the following way:  

 

DOI: 10.4236/jmp.2018.94048 719 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2018.94048


C. Di Troia 
 

.u wα α α αη ν+ = +                           (66) 

The advantage is that it is possible to obtain the correspondence with the 
conservation of energy and momentum in the Compton-like scattering 
( e eγ γ− −+ → + ). It is worth noticing that the role of the guiding center is 
equivalent to the virtual particle in particle physics, now. From such 
correspondence it is possible to easily obtain the relation between 0ν  and 0η  
like for the frequencies involved in the Compton scattering: if 0 0 cosη ν η ν θ⋅ =  
and ( )1,0,0,0wα = , then  

( )
0

0
0 ,

1 1 cos
ν

η
ν θ

=
+ −

                         (67) 

and  

( )
0

0 0 0
0

1 cos ,
1 1 cos

U w ν θ
η

ν θ
−

= − =
+ −

                   (68) 

being 0ν ν= ±  and, from 0 0
vU ν γ+ = ,  

( )0 0

1
cos 1 .v

v

γ
θ

ν γ ν
−

= −
−

                       (69) 

The gauge function, g, should be chosen in such a way that the equivalence in 
(58) is replaced by  

( ) .L p u P U e m gα α
α α ′= − = − −                    (70) 

Thus, after a gauge transformation, the product u pα
α  is not an invariant 

anymore. Here, it is possible to anticipate what it will be crucial in the KK model: 
if you assign the values 0z t= , z X= , 4z γ=  and ( )0 0 0w P U e m= = + Φ , 

( )w P U e m A= = +  and ( )4w m e µ= , then  

, for 0,1,2,3,4.a
aL w z a′= − =                   (71) 

which is a scalar product in a space-time of five dimensions. Moreover, if you 
require that 5 6 0w w= =  and 5z µ= , 6z ε= , then you can also write  

, for 0,1,2,3,4,6.A
AL w z A′= − =                 (72) 

The latter is what is called the phase-space lagrangian from which it is possible 
to find the Hamilton’s equations. It is better to denote with a tilde the guiding 
center phase-space lagrangian: ( ),A BL L z z′=  , for , 0,1, 2,3, 4,6A B = . As said 
in [7], the reason for the vanishing of 5w  and 6w  is due to the fact that ε  is 
the conjugate coordinate of t and (m/e)μ is the conjugate coordinate of γ . 

Now, the lagrangian is invariant at a glance with respect to general 
non-canonical phase-space coordinates transformations, that include also the 
gauge transformations. 

5. Non-Canonical Lagrangian for the Guiding Center  
Description  

Following the work of Cary and Littlejohn [7], it is possible to find a lagrangian 
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derivation of the former guiding center description. The point here is to describe 
the hamiltonian mechanics using non-canonical variables on the extended phase 
space (position, velocity and time, hereafter). We start with simple static case 
with time independent fields. The (Maupertius) principle of least action states 
that:  

( )out

in

dd 0.
d

s

s

xW s p x
s

δ δ= ⋅ =∫                    (73) 

with ( ) ( ) ( ) ( )p x u x e m A x= +  and ( ) 0p x xδ⋅ =  at the end points. The EL 
equations are  

( )d 0,
d
x p x
s
×∇× =                        (74) 

which means that the velocity u is parallel to ( )p x∇×  or  

( ) ,u p xλ= ∇×                         (75) 

re-obtaining the fundamental Equation (36).  
The lagrangian ( )p x u⋅  is missing something. Now, we explicitly consider 

the time and the variation of the time dependent action:  

( ) ( )out

in

d dd , , 0.
d d

s

s

x tS s p t x t x
s s

δ δ ε = ⋅ − =  ∫              (76) 

The variation can be computed as  

( ) ( )

( ) ( )

( ) ( )

out

in

out

in

out

in

d dd , ,
d d
d dd , ,
d d

d dd , , .
d d

s

s

s
ts

s

s

x tS s x p t x t x
s s
x ts t p t x t x
s s

x ts p t x t x
s s

δ δ ε

δ ε

δ δ ε

 = ⋅∇ ⋅ −  
 + ∂ ⋅ −  

 + ⋅ −  

∫

∫

∫

 

In the present notation, xδ ρ=  and 0tδ ρ= . In covariant notation, such 
variation is  

( ) ( ) outout

in in
d .

ss

s s
S s u p p pα β α

β α α β αδ ρ ρ= ∂ − ∂ +∫             (77) 

The extremals of the action, 0Sδ = , for all the trajectories with 0pα
αρ =  

(at least at ins  and outs ), are found if  

( ) 0,u p pβ
β α α β∂ − ∂ =                       (78) 

which is (29).  
Up to now, we have referred to the guiding particle as the particle satisfying 

(29), or (78), with null magnetic moment (and minimally coupled with the 
magnetic field). The same Equations (29), or (78), is considered as the equation 
describing the guiding center velocity if the particle has a non vanishing 
magnetic moment. In such case we use capital letters e.g. for describing the 
position X, the velocity V X=   and the four-momentum ( ),P Pα = − , of the 
guiding center. 

We can add or subtract to the lagrangian a total world line derivative without 
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changing the equation of motion and preserving the scalar value of the 
Lagrangian. We subtract to 0L P U U= ⋅ −  the total derivative of the following 
gauge function:  

( )2 ,g m e µγ=                          (79) 

being µ  the constant magnetic moment and γ  the gyro-phase. 
The new lagrangian is ( ) ( )0 0L P U U e m g P U U m e µγ′ ′= ⋅ − − = ⋅ − −   . 

With respect to the lagrangian 0L P U U= ⋅ − , L  is known as (minus) the 
Routhian, which is defined through the Legendre transformation of L with 
respect to the cyclic coordinate γ :  

( ) .L m e Lµγ ′− ≡ −                        (80) 

The properties of L  are to combine the EL and the Hamilton’s equations 
together for describing the motion:  

d 0.
d U XL L
s
∇ −∇ =                         (81) 

and  

( ) ( ), ,e m L L m eµ γγ µ′ ′∂ = ∂ = −                 (82) 

respectively. The use of the Legendre transformation for the cyclic variable has 
been used for describing the motion with the coordinates ,γ µ  instead of 

,γ γ ′ . Being γ  cyclic, 0µ′ =  in (82). 

5.1. Non Canonical Hamilton’s Equations of Motion  

The present and the next paragraphs are quite technical, but it is important to 
describe what concerns the dimensional reduction of a system. Historically, the 
dimensional reduction was a technique used to attack a complicated problem by 
progressively reducing it in order to reach a resolvable system. In gyro-kinetic 
the dynamic of the particle is separated from the fast gyro-motion reducing the 
analysis to the dynamic of the guiding center (if fluctuations are turned off). In 
the KK mechanism [8] [9], the same particle dynamic, now extended to consider 
also the presence of a gravitational field, is reduced from a five-dimensional to a 
four-dimensional space-time, leaving the 5th dimension unobservable. Thus, the 
Routhian reduction scheme [24] is a method implemented to describe a 
mechanical system where the reduction is made to suppress an angle coordinate 
after a smart change of variables. We will see how all these reduction schemes 
can be seen as different approaches for disregarding the gyro-phase from the 
equations of motion. However, in the present section we want to show why it is 
possible to reduce the dimensionality of a system by cutting out a coordinate 
from the description of motion. 

The idea, originally proposed by [7] even if applied only at the perturbative 
approach, was to properly use non canonical coordinates in Hamiltonian 
mechanics for simplifying a problem. Starting from requiring that the 
Lagrangian is a scalar, it is written as the scalar product between coordinates and 
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momenta. The coordinates for describing the motion can be changed together 
with the conjugate momenta but by taking care that such transformation must 
not change the scalar value of the Lagrangian, which means that a relativity 
principle holds. As for example, the 1-form associated to the guiding center 
lagrangian is  

( )d d d d .L s P X m e tµ γ= − −

                     (83) 

For such system the motion is described by the variables ( ), ,az t X γ= , with 
index a from 0 to 4, so that the world line coordinate, s , is function of az : 

( )as s z=  . Moreover, the conjugate momenta, aw , are easily introduced 
consistently with the lagrangian in (83): ( )( ), ,aw P m e µ= − . Now,  

, for 0,1,2,3,4.a
aL w z a′= − =                    (84) 

However, following the analysis done in [7], it is more convenient to extend 
the description of motion to the whole extended phase space. The reason is that 
for charge motion the most useful coordinates appear like a mixture between 
positions and velocities, as for the canonical four-momentum. It is useful to 
consider the lagrangian in (83) as the reduced lagrangian of the entire lagrangian 
that operates on the extended phase space, L̂ . Now the indexes, A,B, ···, go from 
0 to 6 and the generalized coordinate is ( ), , , ,Az t X γ ε µ=  which includes also 
the independent coordinates ε  and µ . It is worth noticing that we are 
adopting non-canonical coordinates. Here, we will refer to ( ), , , ,Az t X γ ε µ=  
as the guiding center coordinates. As before, it is possible to associate a set of 
conjugate momenta to such variables. The new co-momenta are  

( )( ), , ,0,0Aw P m e µ= − , as similarly chosen in [7] for a different problem. 
However, it is worth noticing that ( )B

A Aw w z=  is function of the 
non-canonical coordinates so that ( )ˆ ˆ AL L z= . Thus, the lagrangian can be 
written as  

ˆ ˆd d , for 0,1,2,3,4,5,6.A
AL s w z A= − =                 (85) 

The scalar character of the lagrangians, (84) like (85), is always preserved and 
it is possible to change coordinates from A Az Z→  and A Aw W→  leaving 
unaltered the Poincaré-Cartan form: ( ) ( )d dB A B A

A Aw z z W Z Z− = − . This means 
that the principle of relativity is generalized to the extended phase space: a 
change of coordinates of the extended phase space preserves the physics. 

The EL equation for (85) are  

d 0,
ˆd

B

AB
z
s

ω =                             (86) 

with  

.AB A B B Aw wω = ∂ − ∂                          (87) 

Multiplying Equation (86) for ˆd ds t , it is found what it can be called the 
velocity law (compare (29) with (86)) in 7 dimensions (or 5 dimensions if the 
motion is described through ε  and µ , if 0ε µ′ ′= = ). It is worth noticing 
that a canonical Maxwell tensor in 7 dimensions is proportional to ABω . The 
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generalized angular frequency tensor, ABω , is known as the Lagrange tensor. 
The Lagrange tensor is expressed by the Lagrange’s brackets:  

,A B C C C C
A C B B C A A C B B C A ABz z w z w z w wδ δ ω  ≡ ∂ ∂ − ∂ ∂ = ∂ − ∂ =        (88) 

where ,A Bz z    are the Lagrange brackets. 
It is convenient to normalize 0 1z =  in (86), which means choosing 0z t= . 

Three properties of motion must be reminded: 1) ( )det 0ABω = , from (86), 2) 
the gauge invariance of motion if A A Aw w g→ +∂ , from (87), and 3) in (86) the 
case 0A =  is redundant due to the antisymmetry of ABω . 

Equation (86) can be arranged to  
6

0
1

0,B
A AB

B
zω ω

=

+ =∑                          (89) 

with  

0 0 .A A t A A t Aw w wω = ∂ − ∂ = ∂ − ∂                   (90) 

For obtaining the Hamilton’s equations of motion it occurs introducing the 
antisymmetric Poisson tensor, ABJ , with the property that  

6

1
, if 0 and 0AC A

CB B
C

J A Bω δ
=

= − ≠ ≠∑                (91) 

Now, the expression in (89), with Equation (90), becomes  

( )
6

1
if 0.A AC

C t C
C

z J w A
=

= ∂ − ∂ ≠∑                  (92) 

The latter are the Hamilton’s equations of motion for non-canonical 
coordinates and it can be reduced to  

{ }, .A A A
tz z z= + ∂                         (93) 

if canonical coordinates are employed, being { },A Bz z  the Poisson brackets. 
Within the guiding center description, when guiding center coordinates, 

( ), , , ,Az t X γ µ ε=  and ( )( ), , ,0,0Aw P m e µ= − , are used, the Lagrange 
tensor is:  

( ) 0
0 0 0

0 0
0 0 0

e m F c P P
m e

P m e
P

αβ µ α ε α

µ β

ε β

−∂ −∂
−

∂
∂

                (94) 

The equations of motion, from (86), are  

( ) 0
0 0 0

0
0 0

0 0 0

ce m F P P V
m e

P m e
P

β
αβ µ α ε α

µ β

ε β

γ
µ
ε

−∂ −∂
−

=
∂
∂







             (95) 

Explicitly, the system of equations of motion is:  

( ) 0ce m F V P Pβ
αβ µ α ε αµ ε− ∂ − ∂ =                 (96) 
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( ) 0m e µ− =                             (97) 

( ) 0V P m eβ
µ β γ∂ + =                          (98) 

0,V Pβ
ε β∂ =                             (99) 

where the Equation (99) is redundant for the antisymmetry of cF αβ  in 
Equation (96). If also 0ε =  then  

0c cE V B+ × =                           (100) 

0µ =                                (101) 

( ) ( )01V P m e Vµ γ⋅ ∂ = −                      (102) 

0 ,V P Vε⋅ ∂ =                             (103) 

If 0 1V =  then 0V Pµ⋅ ∂ =  and 1V Pε⋅ ∂ = . 
It is worth noticing that all the lagrange brackets involving γ  and µ  are 

null, [ ],µ γ  apart, which is equal to m e . This is the reason that allows 
reducing the particle motion ignoring the gyro-phase coordinate, γ , which is 
said cyclic.  

5.2. Leading Order Non-Relativistic Guiding Center  
Transformation  

In the perturbative approach of the guiding center transformation a completely 
different procedure is often used. Moreover, the perturbative approximation is 
treated with the highly technical Lie-transformation method without solving 
some ambiguities. For such reason it is often hard to overcome the leading order 
approximation. However, in the present work, we do not consider a comparison 
between the two distinct methods, the perturbative and the non-perturbative 
one. Here, we need only the first order approximation for explaining why µ  is 
the magnetic moment and γ  is the gyrophase.  

The guiding center lagrangian used in the perturbative approach is the leading 
order approximation of gcL , which is the lagrangian in (21) associated to the 
Poincaré-Cartan one-form:  

( )nr .gcL L e m g P X= + = ⋅ −                      (104) 

Explicitly,  

( ) ,gcL p x m eε µγ= ⋅ − +                        (105) 

being ( )2g m e µγ= , the guiding center gauge function in (79). Setting 
( )m eε µγ= +  , as in (60), then  

( ) .gcL P X m eε µγ= ⋅ − +

                       (106) 

The orderings, which are commonly employed, are the ones that allow to 
consider the particle close to the magnetic field line, in such way that field lines 
deviate only linearly from being straight and uniform (this is quite a rough 
approximation but almost always used). Within such orderings, the charges are 
gyrating circularly around the guiding center. Once the tern of unit vectors, 

( )1 2 0 1e e b⋅ × = , are defined with ( )0b B B⋅ =  parallel to the magnetic field, the 
 

DOI: 10.4236/jmp.2018.94048 725 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2018.94048


C. Di Troia 
 

guiding center is considered mostly moving in the parallel direction of the 
magnetic field in such a way that P is substituted with ( ) ( ) ( )0 ,P v b e m A t X≈ +



. 
The gyro radius can be written as  

( ) ( )1 20 cos sin ,La e eρ ρ γ γ≈ = −                    (107) 

with the constant Larmor radius, Lρ . It is worth noticing that γ  is the angle in 
the cylindrical representation of the velocity space. If ( )e m Bγ = , which is the 
important cyclotron frequency, then  

( ) ( ) ( ) ( )1 20 0sin cos .Lv a e e e m a Bρ γ γ γ⊥ ≈ = − + = ×          (108) 

Commonly the electric potential is neglected and the energy of the charge is 
the only kinetic energy:  

2 2.vε =                            (109) 

Moreover, the problem is often considered static: ( )A A X=  with 0t A∂ = . 
The single particle lagrangian,  

( ) ( )0 ,L v b v e m A x ε⊥
 = + + ⋅ − 

                   (110) 

is approximated by  

( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )( )0 0 0 0 0 ,L v b a X a e m A e m a A X a ε ≈ + ⋅ + + + ⋅∇ ⋅ + − 

 

    

which is regrouped and simplified to  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0

2
0 0 0 0 .

L v b e m A X a e m A X

e m a A X e m a A a a

ε   ≈ + ⋅ − + ⋅ +  
+ ⋅ ∇ ⋅ + ⋅ ∇ ⋅ +



 





 

         (111) 

The  first terms in the above equation are independent on γ , the others should 
depend on γ  even if the latest terms should be very little. Now, it is possible [25] to 
find a gauge function, ( ) ( ) ( ) ( ) ( ) ( )0 0 0 2a e m A e m a A a= − ⋅ − ⋅ ∇ ⋅ , for expressing 
the lagrangian as  

( ) ( ) ( )
2

0 0 2 d d .L v b e m A X a tε ≈ + ⋅ + − + 



              (112) 

as shown in [23]. 
Finally, defining the magnetic moment as  

2

,
2
v
B

µ ⊥≈                            (113) 

then d dgcL L t= −   is  

( ) ( ) ( )0 ,gcL v b e m A X m e µγ ε ≈ + ⋅ + − 



               (114) 

which is the lagrangian obtained in (106) if ( ) ( ) ( )0 ,P v b e m A t X≈ +


. At the 
same ordering, being the energy quadratic, the guiding center energy is 

2 2v≈


  in such a way that the total energy is ( ) 2 2 .m e v Bε µγ µ= + ≈ +


   

5.3. General Comments  

The guiding center coordinates in the presence of a magnetic field, similarly to 
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the center of mass coordinates in a gravitational field, describe the origin of the 
reference frame where positions, velocities and time are efficiently measured, so 
that  

( )x X ρ γ= +  

( )u U ν γ= +  

( ).bt t τ γ= +  

It is worth noticing that the latter equation is often written in plasma physics 
as ( )slow fastt t t γ= + , so dividing what depends on slow variations from what 
depends on fast variations. In the present analysis bt  is considered as a 
reference time which it can also be used for obtaining the Abraham-Lorentz-Dirac 
force [26] [27]:  

( ) ( ) ( ).b bX t X t X tτ≈ +                       (115) 

It is worth to note that the guiding center transformation is simply a 
translational transformation on the extended phase space. All the coordinates 
are translated by a quantity depending on 1Sγ ∈ . This property allows the 
following new definition to emerge: the guiding center reference frame is the 
particular reference frame where the particle moves in a closed orbit with a 
periodic motion2. The efficiency of describing the general motion is only because 
the orbit is reduced to a closed loop parametrized by the angle γ . In order to 
reach such reference system we must subtract the relativistic guiding center 
velocity U from u and also shift the position of the particle to the guiding center 
position X. In the guiding center reference frame it is possible to observe that the 
particle is gyrating in a closed loop with the cyclotron frequency.  

If the manifold of the extended phase-space is not flat, then the above 
translations must be considered as if the quantities depending on γ  are parallel 
transported over the manifold.  

6. Kaluza-Klein Solution  

The coordinates Az  with 0,1,2,3,4,5,6A = , introduced in the previous 
section, belong to the extended phase space. As for general relativity, where a 
geometry is given to the space-time, in this section a geometry is given to the 
extended phase-space.  

We have seen that in the presence of e.m. fields, it is useful to describe the 
motion in guiding center coordinates, ( ), , , ,Az t X γ µ ε= . For accuracy, the 
guiding center transformation is the map,  , that allows to describe particles 
through the guiding center coordinates, ( ) ( ): , , , , , ,t x p t X γ µ ε→ . It is worth 
noticing that the vector X indicates the position of the guiding center, not of the 
particle. If 0µ ≠  then the particle is elsewhere from X. 

The KK mechanism was used in the past to explain the presence of gravitation 

 

 

2The same definition pertains also to the gyrocenter when e.m. fluctuations are taken into account, 
see section VII. 
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and electromagnetism thanks to the addition of, at least, a new coordinate of 
spacetime. The KK model can be obtained from a Hilbert-Einstein (HE) action 
extended to a space-time of five dimensions as reminded in the appendix. 
However, in the present approach, we adopt the same mechanism, in which the 
new dimension is a coordinate that belongs to the velocity space. In fact, the 5th 
dimension is identified with the gyro-phase coordinate, γ . As a consequence we 
are changing the paradigm of the general relativity theory that only takes into 
account the space-time geometry. Thus, if you want to describe gravity then you 
can only consider the geometry of space-time, whilst if you want to describe 
gravity plus electromagnetism you have to consider the geometry of the 
extended phase space. Mathematically, it is not so difficult to extend the general 
relativity formalism to five or more (seven) dimensions. However, the physical 
interpretation of an Einstein equation in extended phase space, is quite unusual 
to be exposed in the present work. What is proposed here is a minimal change of 
the KK model and the use of the relativistic guiding center transformation. In 
this section we leave the Minkowski metric for a pseudo-Riemannian one. 

Let’s start from the Poincaré-Cartan one-form in (84): ˆ ˆd d A
AL s w z= − , for 

0,1,2,3,4,5,6A = . The same one-form can be written as  
ˆ ˆ ˆd d ,B A

ABL s g w z= −                         (116) 

being L̂  a scalar quantity and where ˆ ABg  is the metric tensor with the 
property that ˆ B

A ABw g w≡ . Thus, Bw  are the contravariant momenta. Once 
the metric tensor is appeared, it is possible to apply a variational principle for 
finding it. For this reason, we consider a lagrangian density over the extended 
phase space where the single particle lagrangian is multiplied for the distribution 
of masses and, then, added to the HE lagrangian in extended dimensions. In the 
following lagrangian density,  

ˆ
ˆ ,ˆ16πma f L

G
= −

                         (117) 

mf  is the scalar distribution function of masses, for simplicity only one 
species is considered; Ĝ  and ̂  are the gravitational constant and the scalar 
curvature for the extended phase space, respectively. The scalar curvature is 
defined as usual:  

ˆ ˆˆ ,AB
ABg Ric=                          (118) 

again, ˆ ABRic  is the Ricci tensor in the extended phase space which is furnished 
of a Levi-Civita connection. The lagrangian, (117), is a lagrangian density over 
the extended phase-space and the action is computed from the integration of a  
over the extended phase space. If ĝ  indicates the square root of the absolute 
value of the determinant of the extended phase space metric, then the extended 
phase space volume element, d , can be written as:  

7ˆd d ,g z=                          (119) 

if the guiding center coordinates are used then 7 3d d d d d dz t X γ ε µ= . Explicitly, 
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the action is:  

d ,S a= ∫                            (120) 

which is a definite integration in a domain ∂  of the extended phase space. It 
is possible to separate in a  the effects of different contributions. A matter 
lagrangian distribution:  

,m ma f= −                            (121) 

a field lagrangian distribution:  

f

ˆ
,ˆ16π

a
G

= −

                          (122) 

and an interaction dynamics lagrangian distribution:  

( )id
ˆ1 ,ma f L= +

                        (123) 

The distribution of masses, mf  is taken as a scalar function: ( )A
m mf f z= 3. 

Within the guiding center description, mf  indicates the presence of a 
particle of mass m with guiding center coordinates ( ), , , ,t X γ µ ε . 

The particle described by mf  must be counted only once to obtain the total 
mass, M, of the system. The following equivalence chain of integrations is 
assumed for the matter action, mS :  

7 3ˆ ˆd d d d ,m m mS f g z g t X M sρ= − = − − = −∫ ∫ ∫            (124) 

where mρ  is the mass density and, above all, g−  is the square root of minus 
the determinant of the space-time metric. In fact, if you call J  the quantity 

ĝ g− , then:  

d d d .m mf Jρ γ ε µ= ∫                        (125) 

The density of masses is obtained from the integration of the distribution of 
masses in the velocity space. If you introduce unspecified velocities or momenta, 
 , with the only property that allows to write the latter velocity space volume 
element:  

3d d d d ,J γ ε µ=                         (126) 

then the former integral is written in the usual form:  
3d .m mfρ = ∫                           (127) 

Concerning the fields action, fS , we wish to have:  

7 3 3
f

ˆ
ˆ d d d d d ,ˆ 4 16π16π

F F RS g z g t X g t X
GG

αβ
αβ= − = − − − −∫ ∫ ∫

     (128) 

In order to obtain the latter result we will use the KK mechanism. However, 
before doing that, we are interested in studying the interaction dynamics action 

idS , that should be expressed by:  

( ) 7 3
id

ˆ ˆ1 d d d ,mS f L g z A J g t Xα
α= + = − −∫ ∫              (129) 

 

 

3We are implicitly imposing that matter cannot be created nor destroyed. 
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where Jα  is the charge four-current density which is a field depending on 
( ),t X . The former equation will be obtained in the forthcoming subsection. It is 
worth noticing that, if the above equations for ma , fa  and for ida , defined 
in (124), (128) and (129), respectively, are considered, once a  is integrated in 
the velocity space, then the following lagrangian density appears:  

.
4 16πm

F F RA J
G

αβ
αβα

αρ= − − − −                  (130) 

The latter is exactly the lagrangian density used for describing the presence of 
(e.m. interacting) matter as source of a gravitational field, which gives the 
Einstein equation, together with a charge four-current density as source of an 
e.m. field, which gives the Maxwell equations. 

6.1. The Misleading Symmetry 

In lagrangian mechanics the symmetries of a system are expressed by the 
invariance of the lagrangian under the considered transformations. In relativity, 
the conservation of the energy-momentum tensor, Tαβ , is fundamental. The 
conservation of Tαβ  is due to the symmetry of the lagrangian under the 
spacetime translation: X x Xα α α αρ→ = + . This is also true if we explicitly 
take, ( ),bX t Xα =  and ( ),αρ τ ρ= ; so that, x X ρ= +  and bt t τ= + . If the 
manifold is not flat the translation is expressed by the parallel transport.  

For our needs, the single particle lagrangian, vL p u εγ= ⋅ −  can be written 
with a null magnetic moment term: ( ) 0 0vL p u m eεγ µ ω= ⋅ − + , if 0 0µ = . 
Now, the guiding center transformation leaves unaltered the form of the 
lagrangian. In the non perturbative guiding center transformation, the 
momentum of the particle, p P→ , becomes the guiding center momentum 
computed at the guiding center X and at the time t, whereas the particle 
relativistic velocity, u U→ , becomes the relativistic guiding center velocity U. 
Moreover, the null magnetic moment 0µ µ→  becomes a positive magnetic 
moment so that the gyro-phase γ  becomes meaningful (because if 0µ =  then 
γ  is singular). The single particle lagrangian under such transformation is  

( ) ( )0
0 0

ˆ ,v vL p u p u m e L P U U m eεγ εγ µ ω µγ ′= ⋅ − = ⋅ − + → = ⋅ − +   (131) 

which is the guiding center Lagrangian, already seen in the former section.  
In the relativistic approach we haven’t yet considered a relation as 

( )m e µγ ε= −  , used for defining the frequency, γ . Such relation was used in 
the non relativistic case for obtaining p v P V⋅ = ⋅ . In the relativistic case, 
another relation is chosen that allows to write ( ) ( ) ˆ1 ,L e m u A t x Lα

α= − + =  
with  

( ) ( )ˆ 1 , ,L e m U A t Xα
α= − +                     (132) 

which is the same form of L. This means that ( ) ( ), ,u A t x U A t Xα α
α α=  is 

preserved. From ( )u p U P m eα α
α α µγ ′= + , it was immediately found that the 

required condition is reached if  
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( ) 1 .m e U Uα αµγ ′ = −                       (133) 

The latter relation is also more interesting if ( ) 4
4m e U Uµγ ′ = , where 

4 4U z γ′ ′= =  and 4U  is firstly defined as ( )4 4U w m e µ≡ = . In such way that  

1, for 0,1,2,3,4.a
aU U a= =                   (134) 

Moreover, if the relation ( )a a aw U e m A= +  is used, then 4 0A =  for 
consistency: there is not a 5th component of the e.m. potential. The symmetry that 
leaves invariant the form of ( ) ( ) ( ) ( )1 , 1 ,L e m u A t x e m U A t Xα α

α α= − + = − +  
is said misleading because there is no way, starting from the lagrangian (from 
dynamics), to distinguish particle’s coordinates from guiding center’s 
coordinates. The only chance for appreciating the difference is by measuring the 
dispersion relation: from kinematics, the particle has 1u uα α =  whilst the 
guiding center doesn’t, 1U Uα α ≠ . If we suppose to observe a helicoidal 
trajectory made by the motion of a charged particle in a given e.m. field, then 
such trajectory could be considered a solution of motion. However, it is possible 
to zoom on the trajectory, by increasing the sensibility of detectors, and discover 
that the simple helicoidal trajectory is made by another sub-helicoidal motion, as 
shown in the cartoon of Figure 1. At first sight the trajectory of the particle has 
been confused with the trajectory of the guiding center. 

Moreover, such misinterpretation can be iterated (with some constrains e.g. 
the velocity cannot overcome the speed of light), so that the sub-helicoidal 
motion can, once again, hide another subsub-helicoidal motion at a finer scale. 
Similarly to a fractal, when the magnetic field differs from being constant and 
uniform a family of solutions enriches the extended phase space of helicoidal 
trajectories made by other helicoidal trajectories. It is worth noticing that 
realistic magnetic fields are never constant and uniform and, moreover, any 
realistic detector doesn’t have infinite resolution. 

The approximation of considering the guiding center motion instead of the  
 

 
Figure 1. The same trajectory in space of a charged particle in an e.m. 
field observed with three different resolutions. At first sight each curve 
can be understood as the particle’s trajectory but it could also not be. 
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particle motion is said drift approximation and, if applied with criteria, it 
becomes the zero-th order approximation in all the gyro-kinetic codes used for 
studying magnetic confined plasmas for controlled fusion through a kinetic 
perspective. 

It is worth noticing that there is another interpretation where many 
trajectories are described by the same motion of a representative guiding center. 
The latter interpretation is possible because we have considered all the 
trajectories with free initial and final conditions in the variational approach in 
Section II. In fact, if we impose with (almost) certainty the initial and the final 
values of the particle’s coordinates then there is only (almost) a unique solution 
of motion, whilst for an initial and final uncertainty, there is the possibility to 
have many trajectories that differs by the value of the magnetic moment and by 
the initial value of the gyrophase. Thus, the question is: “what are the trajectories 
that minimize the action and are also well represented by the Lorentz’s force 
law?”, instead of being “what is the trajectory that minimizes the action and is 
solution of the Lorentz’s force law?”. Those trajectories are indistinguishable and 
can be resolved only after a measurement, like for the collapse of a quantum 
state into a physical eigenstate in quantum mechanics. Indeed, the only way for 
distinguishing a guiding center from a particle is from the misleading condition 
in (134) that pertains to kinematics, being expressed by the Lorentz violation, 

1U Uα α ≠ . The dynamics is still preserved by the same lagrangian. 
Thanks to the misleading condition, Equation (134), it is very easy to show 

that the action idS  takes the desired form (129) when the guiding center 
coordinates are used. In fact, ( )ˆ 1L e m A Uα

α= − +  and  

( ) 7 3
id

ˆ ˆ1 d d d .m m
eS f L g z A U g t X
m

α
αρ= + = − −∫ ∫          (135) 

If ( ) mJ e m Uα αρ= , being  
3d ,m mU f Uα αρ = ∫                         (136) 

then the former is exactly the relation in (129). 
We have just seen that the guiding center transformation, which is a particular 

local translation in the extended phase space, is a symmetry because it leaves the 
same lagrangian form. In analogy to what happens for the local translation in 
spacetime, the conserved quantity for the present symmetry should be called the 
extended energy-momentum tensor ÂBT , which is obtained from the variation 
of id

ˆ
m ma a f L+ =   with respect to the metric tensor variation, ˆ ABgδ :  

( ) ( )id id
ˆ ˆ ˆ ˆ2 .AB AB
AB m AB mT g a a g a a gδ δ δ= − + + +               (137) 

Now, the Einstein tensor for the extended phase space is obtained from the 
variation of fa  with respcet to ˆ ABgδ :  

ˆ ˆ ˆ ˆ 2,AB AB ABG Ric Rg= −                      (138) 

and the Einstein equation can be written also for the extended phase space,  
ˆ ˆ ˆ8π .AB ABG GT=                          (139) 
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It is worth noticing that, if confirmed, we have just obtained gravitation and 
electromagnetism from a geometrical perspective. A similar equation holds in 
the Projective Unified Theories proposed by Schmutzer [28] since’ 80, where the 
extended energy-momentum tensor is replaced by an energy projector divided 
into a substrate energy-momentum tensor and a scalaric energy-momentum 
tensor.  

However, when extending the dimensionality from four to seven it is possible 
to take into account many possibilities. We will show that the abelian nature of 
the gauge theory comes suddenly from the choice of the 1Sγ ∈  gyro-phase as 
coordinate of the velocity space but, anyways, the gauge theory could become 
non abelian by choosing other variables with different groupal properties from 
the gyrophase. The possibility to definitely separate in the extended phase space 
what belongs to spacetime and what to velocity space must be reformulated. It 
seems that the space-time is simply defined as the domain of variation of the 
e.m. fields, in such a way that we need an e.m. field for defining space-time 
variables. Such route needs some care and it cannot be taken just now. We prefer 
to show the minimal five dimensional extension of gravitation explicitly using 
the guiding center coordinates. Such extension is sufficient to include 
electromagnetism. Moreover, the present description is facilitated by the work of 
KK, because most of the general relativity equations that we will soon encounter, 
have already been studied [29].  

6.2. The Minimal Five-Dimensional Theory 

Instead of deriving the metric tensor from a variational approach, it is possible 
to settle the metric tensor directly. This can be less elegant but easier to do 
mostly because it has already been done. The original KK mechanism needs an 
extension of the dimensionality of space-time by only one dimension. Only five 
dimensions occur to display electromagnetism and gravitation. However, we 
have formulated an extension to seven, not five, dimensions of general relativity. 
This is too general for the present scope, but we have seen that in the single 
particle one-form (83) there is only the variation of five coordinates: 

( ), ,az t X γ= , with a world line coordinate ( )as s z=  , for 0,1,2,3,4a = . In this 
subsection we re-formulate the lagrangian density, (117), in five dimensions and, 
after adopting the KK metric tensor, we prove the Equation (128), which is the 
last equation needed to get the wanted lagrangian density (130).  

The KK mechanism is used following the review articles [8] and [9]. Many 
books can be consulted for the computation of the Ricci tensor and Christoffel 
symbols, but a particularly interesting note inherited with the KK mechanism is 
[30]. If two (canonical) constants of motion coordinates are taken into account, 
then the description of the dynamic of a particle in the extended phase space can 
be reduced from seven to five dimensions. For the guiding center description of 
motion such coordinates are the energy, ε , and the magnetic moment, µ , and 
we can divide the extended phase space in slices of reduced phase space with 
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assigned ε  and µ . This is allowed because the co-momenta are 
( )( ), , ,0,0Aw P m e µ= − , where the zeros are just indicating the use of 

canonical coordinates in ( ), , , ,Az t X γ ε µ= . The one-form (85) is the same of 
(84) which lives in five dimensions. We have indicated with the hat a seven 
dimensional quantity, e.g ( )ˆ ,A BL z z′ , whilst with a tilde a five dimensional one, 
e.g. ( ),a bL z z′ . The lagrangian in (83), ( )0L P U U m e µγ ′= ⋅ − −  , is always 
the same but it is now written with the metric tensor abg :  

, for , 0,1, 2,3, 4.a b
abL g w z a b′= − =

                 (140) 

Also the lagrangian distribution, (117) can be considered into five dimensions:  

,
16πm

Ra f L
G

= −








                        (141) 

being R  the five dimensional scalar curvature, and G  the five dimensional 
gravitational constant. In practice, ˆˆR G R G= , as if we are considering flat the 
space described by the canonical coordinates ε  and µ . It is worth noticing 
that although in five dimensions, all the quantities can depend also on ε  and 
µ , e.g the distribution function mf  is always the distribution of masses in the 
whole extended phase space and it surely depends on ε  and/or µ  if it 
describes an equilibrium [31]. Even if the action is the same, now ĝ  should 
be decomposed into ĝ g J= 

  , where g  is the square root of the 
absolute value of the determinant of the metric tensor abg , and J  is the 
jacobian, not specified here, for measuring the density of states for assigned ε  
and µ . From (120) and (119), in guiding center coordinates, the action is  

3d d d d d .S a g J t X γ ε µ= ∫ 


                    (142) 

Finally, we use the following KK metric tensor:  
2 2 2

2 2 .ab

g A A A
g

A
αβ α β α

β

κ ϕ κϕ
κϕ ϕ
+

=                  (143) 

6.2.1. The Action for the Fields 
If the chosen signature is ( )diag 1, 1, 1, 1αβη = + − − −  then 2 0ϕ < . Differently 
from KK, setting 2 2 2

Gkκ ϕ = −  and ( )42 2 2
Gk m eϕ µ= −  (or ( )2e mκµ = ), the 

metric tensor becomes:  

( )
( ) ( )

22 2

2 42 2 2
.G G

ab
G G

g k A A k m e A
g

k m e A k m e
αβ α β α

β

µ

µ µ

− −
=
− −

              (144) 

being Gk  a constant that will be specified below. From (208), it is possible to 
obtain the contravariant momenta.  

( )( ) ( ) ( )22 ,
1 1 1

a ab
b

G

U
w g w

e m e m k L

α

µ
= =  + + 




          (145) 

in such a way that, from a
aL w U= − , it is obtained the constancy of L  in 

terms of important physical constants:  
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( )22

11 .
2 G

L
k m e

= − −                         (146) 

The latter metric tensor is used to compute the five dimensional scalar Ricci 
tensor (221): 2 2 4R R F Fαβ

αβκ ϕ= − . Now, the field action is  
2

3
f

1 d d d d d ,
416π
GkS t X g R F F J

G
αβ

αβ γ ε µ
 

= − + 
 

∫ 





          (147) 

where g  is ( )2
Gg g m e k µ= − . For obtaining the standard gravitational 

plus e.m. fields action, Gk  must be 2 16πGk G= , so that  

( )2 d d d .GG G m e k Jµ γ ε µ= ∫ 

                     (148) 

and  

3 3
f d d d d .

16π 4
F FRS g t X g t X

G

αβ
αβ= − − − −∫ ∫              (149) 

It is worth to note that the single particle interaction density lagrangian comes 
to be:  

22
fs

ime 2 2 .
32π32π

c

p

eL
m G

α λ
= − = −



                    (150) 

where 2
fs eα =  , c mλ =   and p G=  . 

In this way, we have obtained the lagrangian density in (130) from the five 
dimensional lagrangian (141). It is worth noticing that, even if the terms in the 
lagrangian density (130) are the desired ones, they are referring to fields on 
( ),t X  where X is the guiding center position and it doesn’t indicate the 
position of a particle. This is an effect of the misleading symmetry. The problem 
is that once we have integrated the lagrangian density, expressed in guiding 
center coordinates, on the velocity space, we have lost the possibility to know 
where the particles effectively are. This means that the present theory is non 
local. Fortunately, such non-locality helps for the consistency of electrodynamics, 
e.g. the problem of self-energy, or self-interaction, is promptly solved once a 
non-locality property is assumed. Moreover, we already know that, at some 
scale, an indetermination principle should be invoked. The relation between the 
misleading symmetry and the quantum non-locality property should be 
investigated. A simple guess is the following. In the Bhomian formulation [32] of 
quantum mechanics the two ingredients are: strange trajectories and non 
locality. We can easily prove that strange trajectories can be obtained from ad 
hoc e.m. field and that the property of non-locality has just been obtained. 
However, a more precise draft on the relation between the present derivation 
and quantum mechanics is described in the next section. 

6.2.2. Comments on the Novel KK Mechanism 
The KK mechanism was discarded as a possible true mechanism of Nature 
because it holds many problems. The standard doubts refer to the reason for 
applying the cylinder condition, which is at the origin for explaining 
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compactification. Another problem is the compactified scale length of the order 
of the Planck length, p . Such scale length is inconsistent with the observed 
masses of elementary particles. Other approaches without these two ingredients, 
compactification and cylinder condition, are commonly less considered. 
However, all the problems are inherited to explain why the fifth dimension is 
unobservable [8] [9]. In the present case, this is not a problem, because the fifth 
dimension is measurable, being a physical meaningful and observable (not 
compactified) variable. The KK mechanism can be extended to include more 
species, more than five dimensions, generalized to include the cosmological 
constant (see appendix A) and, most importantly, it is known to satisfy the Weyl 
transformation [8] [9]. For simplicity, we don’t examine these interesting 
extensions of the theory. Moreover, the present approach, that starts from the 
Lorentz’ force law, is completely Newtonian. Thus, another big problem, as it 
happens with general relativity, will be its re-formulation within the quantum 
mechanical rules. The procedure for obtaining a quantum mechanical 
description is even more difficult because we have explicitly used some issues 
that are not allowed in quantum mechanics, as the non-canonical hamiltonian 
description of motion and a gauge function which is not only defined over the 
space-time. Without an extension of the present theory to quantum mechanics it 
is not possible to accept the present theory. Similarly, for example, without a 
quantum reasoning it is not possible to deduce the scale of masses of the 
elementary particles. With respect to the latter remark an intriguing coincidence 
clearly appears. If an indetermination principle is applied the fact that we have 
considered the 5th dimension belonging to the velocity space should set the 
length scale of the extra dimension equal to the Compton length, not to the 
Planck length. Immediately, it is recognized that with the present, now 
compactified, KK mechanism, also the scale of masses assumes the correct value. 
With an indetermination principle, the extra-dimension scale length becomes 
important because it is not possible anymore to know, at the same time, both the 
position and the velocity of the particle. Within quantum mechanics, it becomes 
forbidden to observe a gyro-radius below of the order of the Compton length.  

The extension of the present theory to quantum mechanics will be described 
in another work which is in preparation. However, here it can be roughly shown 
how the present approach is not too much in conflict with quantum mechanics, 
thanks to the misleading symmetry and the instability of the guiding centers due 
to electromagnetic fluctuations.  

7. Stochastic Gyrocenter Transformation  

In this section we introduce quantum rules without following the orthodox way. 
The probabilistic concepts that pertain to the quantum world are shown to be 
consequences of e.m. fluctuations. Several studies concerning the relation of 
quantum mechanics and stochastic processes are described in books like [32] 
[33] [34] [35]. Others suggested lectures with many correspondences to the 
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present derivation are in [18] and [36]. However, the present description is novel 
because it is applied to the gyrocenter, instead of considering the particle 
motion, when the gyrating particle solution is considered in the presence of e.m. 
stochastic fluctuations, that has never been studied.  

7.1. The Stochastic Gyro-Center  

The e.m. fluctuations are commonly considered separately from the guiding 
center description. There is a simple reason for this, indeed in non relativistic 
regime, it is possible to separately take into account the time behavior of the e.m. 
fields. In plasma physics applied to laboratory plasmas this is almost the case, 
because the guiding center approach is used for describing particles motion in 
the background equilibrium e.m. fields ( )0 0,E B  that don’t explicitly depend on 
time. The effective e.m. fields will be affected by changes induced by a 
redistributions of charges in the plasma. Such changes are e.m. fluctuations and 
they are particularly difficult to model because they are caused by collectives 
phenomena. However, in plasma physics modeling, the current approach [3] is 
to give a spectral behavior to such fluctuations in such a way that after various 
efforts a dispersion relation is obtained. The dispersion relation is known as the 
generalized fishbone-like dispersion relation [37]. Differently, here we consider 
stochastic fluctuations of the e.m. field. Moreover, given the stochastic nature of 
the e.m. fluctuations, we are inducted to separately consider the guiding center 
from the gyro-center description. The single charged particle non relativistic 
Lagrangian is the same, but let us distinguish what is deterministic from what is 
stochastic:  

( ) ( ) ( ) ( ) ( )2
0 02 , ( , ) ,L x e m A t x x e m t x e m A x e mξ ξδ δ= + ⋅ − Φ + ⋅ − Φ    

where ( )0 0 0,A Aα = Φ  is the (deterministic) four-vector potential and 

( ),A Aα
ξ ξ ξδ δ δ= Φ  is the stochastic four-vector potential fluctuations. The e.m. 

fluctuating fields could be written as tE Aξ ξ ξδ δ δ= −∂ −∇ Φ  and B Aξ ξδ δ= ∇× , 
but some care should be considered when applying the stochastic differential 
calculus on such stochastic quantities. 

The gyrocenter description is easily obtained from the guiding center 
description, because the effects of fluctuations will be easily reflected on the 
guiding center transformations that become  

,X X ξ= +                             (151) 

where X  is the gyro-center position, X is the guiding center position and ξ  is 
the guiding center displacement. Similarly for the velocity,  

,V V Vξδ= +                            (152) 

where V  is the gyro-center velocity, V is the guiding center velocity and 
Vξδ ξ=   is the guiding center velocity displacement. Concerning stochastic 

processes, it is better to write the latter equation with the increments instead of 
the derivatives:  
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d d d .X V t ξ= +                         (153) 

Moreover, being V v σ= − , the gyro-center increment dX  is rewritten as  

( )d d d ,X v tσ ξ= − +                      (154) 

where the guiding center velocity, V, is the mean gyro-center velocity, and dξ  
at time t is independent of X  for a time before t. In stochastic differential 
calculus the limit d 0t →  should be considered with care and it is meaningful 
to define two kinds of derivatives. The forward derivative:  

( ) ( )
d 0

d
lim ,

dt

X t t X t
DX

t+→

+ −
=                  (155) 

and the backward derivative  

( ) ( )
d 0

d
lim ,

dt

X t X t t
D X

t−→

− −
=                 (156) 

Here, DX V=  and D X V=  . In such a way that they are coincident, 
V V=  , when X  is differentiable. Thus, the stochastic process should be 
characterized also by the backward increments that can be written as  

d d d ,X V t ξ= +                         (157) 

where dξ  at time t is independent of X  for a time after t. In general, 
V v σ= −  . Finally, the stochastic process ξ  is considered identical to ξ  and 
a simple Wiener process with  

d d 0,ξ ξ= =                         (158) 

and  

d d 2 d ,i j p ij tξ ξ ν δ=                       (159) 

with d iξ  and d jξ  specifying the cartesian components of the stochastic 
vectors dξ  and dξ , respectively. The constant pν  indicates the product of a 
length times a velocity and coincides with the diffusion coefficient of the 
stochastic process. It is worth noticing that the origin of such diffusive process is 
due to the e.m. fluctuations. The implicit reason for such fluctuations are the 
absorbed and/or emitted radiation by the charge, its motion becomes 
markovian, as for the brownian particle. If we can ruled out the radiation, then 
the behavior could be different, for instance 0pν = . However, here we will 
always consider the presence of an e.m. field and, at least, one charge. The 
dynamics of a charge cannot correctly be described if separated from the e.m. 
field, that implies 0pν ≠ .  

It is possible to associate two Fokker-Planck (FP) equations to the stochastic 
process. For a probability density function, f, the forward FP equation is:  

( ) ,t pf Vf fν∂ = −∇ ⋅ + ∆                      (160) 

or  

.t pf V f f V fν∂ + ⋅∇ = − ∇ ⋅ + ∆                   (161) 
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Similarly, the Fokker-Planck equation for the backward process is  

( ) ,t pf V f fν∂ = −∇ ⋅ − ∆                      (162) 

or  

.t pf V f f V fν∂ + ⋅∇ = − ∇ ⋅ + ∆                    (163) 

From the sum of the two Fokker-Planck equations,  

.
2t

V Vf f + ∂ = −∇ ⋅ 
 

                       (164) 

From subtracting the two FP equations,  

0.
2 pf fσ σ

ν
− ∇ ⋅ + ∆ = 

 
                     (165) 

From the latter, Nelson argued the following particular solution for 
2 Nuσ σ− = , where the osmotic velocity is  

N log ,pu fν= − ∇                         (166) 

as in [38] apart from the minus sign. Moreover, it is possible to define the 
Nelson’s current velocity:  

.N Nv V u= +                           (167) 

The current velocity is the gyro-center velocity when ξ  is replaced by Nu . 
Obviously, when fluctuations are neglected, the gyro-center velocity becomes the 
guiding center velocity.  

If the backward process is realized with N NV v u= + , then the continuity 
equation, from Equation (164), is  

( ) ,t Nf fv∂ = −∇ ⋅                         (168) 

This is the reason for appropriately calling the gyro-center velocity, Nv , as the 
current velocity.  

7.1.1. The Straight and Uniform Magnetic Field with Fluctuations 
In a straight and uniform magnetic field, we have seen that vσ ⊥= , which can 
be opportunely written as ( ) 2

1 2sin cosL c L ce eσ ρ ω γ γ ρ ω γ= − + = ∇ , if no 
fluctuations are considered. Here, γ  is always the gyro-phase, with 

Leγγ ρ∇ = , and ( )c e m Bω = . For such case without fluctuations, 0f∇ = , 
or 1f =  , ensuring determinism. Thus, by introducing fluctuations that modify 
the effective velocity of the charge, v, and the velocity σ. In such way that 

N Nv v u Vσ σ= + − = + . It is worth noticing that he velocity v is an effective 
velocity, which is very useful because both the true velocity and the true e.m. 
field acting on the charge are unknown. Fluctuations add a term, the osmotic 
velocity Nu , to σ that becomes:  

2log ,p cfσ ν ρ ω γ= − ∇ + ∇                     (169) 

where the Larmor radius is not anymore constant and it has been substituted 
with the gyroradius Lρ ρ→ . Thus, 2

N cv v ρ ω γ= + ∇ . The backward velocity, 
σ−   is obtained changing the direction of γ  (or the sign of the charge): 
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2logp cfσ ν ρ ω γ− = − ∇ − ∇ . In such a way that 22 cσ σ ρ ω γ+ = ∇ . Always in 
the straight and uniform equilibrium magnetic field case, by taking 

( )21 πf ρ∝ , that means that the probability for finding the particle is, roughly, 
inversely proportional to the area of the disc of radius ρ 4. Now, the divergency 
of ( ) 0f σ σ∇ ⋅ + =   , being γ  an angle so that 2 0γ∇ = . In such case the 
continuity equation reads  

( ) ,t f fv∂ = −∇ ⋅                          (170) 

being ( ) ( ) ( ) ( )2 2 .f V V fv f fvσ σ∇ ⋅ + = ∇ ⋅ −∇ ⋅ + = ∇ ⋅         The  
gyro-velocity,  

2
,p

ce eρ γ

ν
σ ρ ω

ρ
= +                       (171) 

is maintained perpendicular to the equilibrium magnetic field. The product 
2 pρ σ ν⋅ =  is constant, so that if the radius of the disc, ρ , increases (e.g. 

absoption of radiation) then the radial velocity decreases. Thanks to the gyrating 
part, the overall velocity, σ , increases. On the contrary, if ρ  decreases (e.g. 
emission of radiation), the gyrating part of σ  becomes negligible with respect 
to the radial velocity that explodes as ~ 1 ρ . Such remarks, even if obtained in 
a non relativistic treatment, allows to roughly deduce the order of magnitude of 
the constant pν  if a minimum value of ρ  and, correspondingly, a maximum 
velocity is conceived. Let’s indicate the minimum radius, corresponding to the 
diffusion length, with cλ , then a maximum velocity is obtained and indicated 
with 2 p cc ν λ≈ .  

The gyro-phase symmetry of the system is maintained so that the magnetic 
momentum is conserved, from Equation (62):  

( ) ( ) ( ) 22 2

2

2
,

2 2
pc

c c

e me m e m νσ ω ρ
µ

ω ρ ω
= = +               (172) 

where the contribution of fluctuations with respect to the standard magnetic 
momentum is evident from the appearance of the factor pν  in the second term 
on the right hand side. As for the gyrating velocity, also the magnetic moment is 
never vanishing in the presence of fluctuations. Finally, the energy per unit mass 
is  

22 2 2

2

2
2 2

pcv νω ρ
ε

ρ
= + +                       (173) 

with a zero field point energy per unit mass [39] written as ( )zfp 2 B cm eε µ ω= , 
and estimated to be, if 0v =



 and ( , 2c p ccρ λ ν λ= ≈ ):  
2 2

zpf .
2 2

c c
c

c

cλ ω
ε ω

ω
 

≈ + 
 

                    (174) 

Thus, ( )( ) ( )2 2 2 4B c c ce m cµ λ ω ω= + . Finally, the prestige is the following, if 

 

 

4Another, more general, choice is ( )1 2π 2 1n nf nρ− ∝ Γ + , which is the volume of a n-ball, 
with n∈ . 
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2 2 2
c c cλ ω =  then the minimum energy of the charge (times the mass) is 

2
zfpE mc≈ . The surprise is that instead of being the energy of the particle at rest, 

in the present case, it is the guiding center which is at rest. Above all, the energy 
2mc  has been obtained without a relativistic approach, but with a magnetic field 
( )( )cB m e c λ= . This is not the only surprise, indeed, if ( )2p mν =   (as in 

[38]) then ( )c mcλ =   is the Compton length (which means  
( )2 2B m c e=  ). Now,  

( ) ,mρ σ⋅ =                            (175) 

If you introduce x x eρ∆ = ∆ , with x ρ∆ ≥  and p p σ σ∆ = ∆  with 
p σ∆ ≥ , as representative estimators of the indetermination of the position 

and of the velocity, respectively, of the charge with respect to the gyro-center, 
then  

x p∆ ⋅∆ ≥                             (176) 

which is similar to the Heisenberg indetermination principle. The explanation, 
with respect to the Copenhagen interpretation, is quite different. The charge is 
moving with a newtonian deterministic motion, the gyro-center is moving with 
a stochastic motion and, due to such stochasticity, it is not allowed to know 
exactly the position and the velocity of the gyrocenter with respect to the charge 
and/or viceversa. Within the limit imposed by the indetermination principle the 
gyrocenter and the charge are undistinguishable entities. In the following, the 
appellation of elementary particle will be shown to be better suited for the 
stochastic gyro-center than for the charge.  

The zero field point energy (times the mass) becomes  

zfp ,cE ω≈                             (177) 

about twice w.r.t. the one obtained from a quantum oscillator, but what is 
exactly needed for obtaining the black-body spectrum from the Planck 
distribution. Moreover, with the latter z.f.p. energy, the energy of the charge, 

2E mε= , with respect to the energy of the guiding center, 2
1 2E mv=



, is: 

2 1 cE E ω− =  . The former is similar to the Bohr’s frequency relation, but it is a 
consequence of Equation (60) when ( )m e mµ =  . It is worth noticing that 
such results have been obtained without introducing quantum mechanics or 
special relativity issues. 

It is worth noticing that the non vanishing magnetic moment, due to the e.m. 
fluctuation is estimated to ( )2 2B e mµ =   which is the Bohr magneton. 
Moreover, asking for f to be inversely proportional to the disc with radius equal 
to the radial position of the charge, we are constructing a measure for 
determining the probability of finding the unknown position of the particle. Is it 
possible that such construction leave us close to the Born interpretation?  

7.1.2. The Closed Magnetic Field Line with Fluctuations 
An interesting behavior is seen if the canonical magnetic field line is closed. In 
the present paragraph we analyze the behavior of a charge when the canonical 
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magnetic field is closed into a circle with radius fsB c ca λ α λ=  . In the next 
paragraph, we will consider a system of an electron and an ion when the 
canonical magnetic field is closed into an invariant tori. It is worth to note that it 
is important to have, at least, ( )1 2

fs 10Oα− =  for closing the circle without 
changing too much the former considerations obtained with the straight 
magnetic field case. In fact, for a charge moving on a circle with a small radius, 

cλ , the magnetic field is still sufficiently straight and uniform even if the field 
line is closed in a circle of radius ( )210O  bigger than cλ . A charge moving 
circularly with a radius cλ  and velocity c cλ ω , gives rise to a magnetic field 
which is almost straight in the vicinity of the charge but that it closes in a circle 
when the effects of the charge are mostly reduced. If c ccω λ=  then the radius 
of the magnetic field line passing close to the center of the circle, and for which 
the motion of the charge is mostly the same as if it would straight, is fscλ α . 

Thus, let’s take b Bv V a θ→ =


 , where θ  is a poloidal angle. Now, the charge 
is moving with an orbit on the surface of a torus of radius Ba  and described by 
the two angles, γ  and θ . The orbit is closed e.g. if, given n∈  then 

cnθ ω= . The closure can also happen on other tori with a radius greater then 

Ba ; such tori where the orbit are closed loops are called invariant tori. It is worth 
noticing the appearance of a diophantine relation. Moreover, if both the velocity 
of the charge in the Larmor circle and of the guiding center in the poloidal circle 
is c, then fs 1 nα =  is the inverse of an integer. The former picture is an 
approximation because the effects occurring when the cylinder is closed onto a 
tori has not been properly taken into account.  

7.1.3. A Toroidal Magnetic Configuration 
A picture very close to the de Broglie’s model but with a reasoning applied to an 
invariant tori on a 3D space, instead to a simple closed string on a 2D surface, is 
suggested, here, once the system made by an electron with mass em , and an ion 
with mass Am  and charge Z e  is considered. Such analysis is done for 
considering a rough relation between the toroidal magnetic configuration, as 
seen in tokamaks, and some aspects of the Bohr atomic model. Only in the 
following section, a rigorous non relativistic atomic model can be addressed by 
deriving Schrödinger equation. However, a suggestive idea explaining some old 
disputes on the first appearances of quantum behaviors, is shown (without 
quantum mechanics). In the presence of an axisymmetric magnetic field, 
described by (41), the guiding center of the electron is given by Equation (42):  

( ) ,e p
e e

e eV
m mφ φλ φ ψ φ= ∇ ×∇ + − ∇                  (178) 

being p Fλ ψ= − . If pφ ψ λ= +   then the former velocity can be rewritten 
as  

( ).p
e

e

eV
m

φ
φ

ψ
φ φ

−
= ∇ ×∇ + ∇


 


                 (179) 

In parenthesis the magnetic field cB φ φ φ= ∇ ×∇ + ∇   is rewritten with the 
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Clebsh representation as:  

( )sf ,cB qφ φ θ= ∇ ×∇ −                      (180) 

where θ  is the generalized poloidal angle and  

sf
c

c

Bq
B

θ
φ

⋅∇
=

⋅∇
                          (181) 

is the safety factor. Now, φ  is the poloidal magnetic flux of cB . It is possible 
to introduce a flux radial coordinate, r, in such a way that 2rφ ∝ , which 
means that we are considering nested poloidal surfaces with circular cross 
sections. We also consider the presence of a positive charge, Z e , which is 
moving toroidally with the same toroidal component of the electron guiding 
center velocity, For describing the effective velocity of the electron, as for the 
ion, we should add to the guiding center velocity also the gyro-velocity, σ, with 
the osmotic velocity. However, we only wish to consider a particular case that 
reminds the old but always fascinating Bohr’s atom model. It is chosen a very 
strange (never seen in tokamaks) safety factor with the following dependency on 
r:  

sf sf, with 1.Bq r a q= ≥                      (182) 

Thus, when the canonical magnetic field lines are closed (the guiding center 
orbits are closed, too), the resonant magnetic flux surfaces, .resφ , are 
determined by the condition Br a n= ∈ , or:  

2 ,Br n a=                             (183) 

in such way that 4
.res nφ ∝ . 

Thus, only for some diophantine values of r the guiding centers are resonants. 
Here, the question is if the magnetic field that allows the guiding center of the 
electron to move on invariant tori can, or cannot, be generated by the same 
electron and ion that we are describing. It is not easy to answer but what it can 
be said is that if it is chosen the reference frame where the toroidal guiding 
center velocity of the electron is null, then we arrive at the simple description of 
an electron moving circularly around a positive ion. In such reference frame, the 
ion is fixed. Concerning the electron, its motion is due to the cylindrical 
symmetry of the system and to the electric field generated by the central positive 
ion. The balance of the electric field with the centripetal motion is  

2
2

2 ,e
Ze m r
r

θ=                            (184) 

which means  
2 2

3 3 3

1 .
e e B

Ze Ze
m r n m a

θ = =                       (185) 

The angular momentum, 2
eL m rφ θ=   is proportional to the number of 

poloidal cycles, n, that are necessary to close the orbit in the tori:  
2 .e BL n m Ze aφ =                          (186) 
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Finally, if ( )2 2
B ea m Ze=   is the Bohr's radius, then the angular momentum 

is quantized:  

,L nφ =                                (187) 

which is the Bohr-Sommerfield rule.  
Even if the former examples are somehow suggestives, the analysis is too 

rough and inappropriate for the delicateness of the problem. In the next section 
we abandon those simple cases for addressing a correspondence between 
stochastic gyrokinetic and quantum mechanics.  

7.2. Nelson Quantum Mechanics  

Finally, the acceleration of the gyro-center is considered as in [38]:  

.
2N

DD D Da X+
=                           (188) 

There are other possibilities on defining an acceleration but in this work they 
are not taken into account. Once the derivative is applied to DX V=  and 
D X V=  , we find the Nelson’s acceleration:  

2 ,N t N N N N N p Na v v v u u uν= ∂ + ⋅∇ − ⋅∇ + ∇                (189) 

It is worth noticing that N Nv a≠ , if fluctuations are considered. In other 
words, the trajectory of a particle is different if 1f ≠  and 0pν ≠ . The idea of 
Nelson was to associate such discrepancy, that depends on the presence of 
fluctuations, with the quantum mechanical formulation.  

In our case ( )( )N Na e m E v B= + ×  and, with the same procedure described 
in section II, it is possible to arrive at a modified velocity law equation:  

( ) ( )22 2 22 log log ,t N N N N p pp v p f fε ν ν∂ +∇ − ×∇× = ∇ ∇ + ∇∇  

being ( )N Np v e m A= +  and ( )2 / 2N Nv e mε = + Φ . However, a simple 
transversal electric field, ( ) ( )t t N pE m e p m e ε= − ∂ − ∇ , is obtained if  

( ) ( )( )22 2 2 22 2 log log ,p N p pv e m f fε ν ν= + Φ − ∇ − ∇         (190) 

then  

0,t N cE v B+ × =                         (191) 

similarly to the Lorentz’s force law case. It is worth noticing that the relation 
between pε  and the Bohm quantum potential [40],  

2 1 2 2 ,B p p N NQ f f u uν ν−= − ∇ = ∇ ⋅ −                 (192) 

is  
2 2 .p N N Bu Qε ε= + +  

Now, by considering the gyrating particle solution with 0cB = , it means that 

Np  is a gradient, which is written N Np S= ∇  and 0tE = . For simplicity, let’s 
take  

.p t NSε = −∂                          (193) 
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Nelson has shown in [38] that the continuity equation in (168) and the 
equation for the acceleration in (189) gives the Schrödinger equation once Na  
is substituted with the Newtonian force per unit mass: NF ma= , and 

( )N Nv S e m A= ∇ − . Nelson’s approach suffers from the Wallstrom criticism 
[41] that we easily overcome defining the complex function  

,if e γψ −=                           (194) 

where ( )2N pSγ ν=  is always the gyrophase, and being an angle it is 
multivalued as noticed by Wallstrom. It is worth noticing that the gyrating 
particle solution corresponds to the zitter-solution already described in section 
III (3.1). In fact, it has been recently noticed in [36] that the zittter-solution can 
overcome the Wallstrom criticism. From (194) they are easily obtained the 
relations:  

,
2

t t
tf iψ ψ ψ ψ
γ

∂ − ∂
∂ =

 

                    (195) 

,
2

f iψ ψ ψ ψ
γ

∇ − ∇
∇ =

 

                    (196) 

and  

logt t t tf f f ψ ψ ψ ψ∂ = ∂ = ∂ + ∂                  (197) 

log .f f f ψ ψ ψ ψ∇ =∇ = ∇ + ∇                  (198) 

Thus,  

N pu ψ ψ ψ ψ
ν

ψ ψ
∇ + ∇

= −
 

                    (199) 

and the stochastic gyrocenter velocity, ( )2N pv e m Aν γ= − ∇ − , is  

( ) .N pv i e m Aψ ψ ψ ψ
ν

ψ ψ
∇ − ∇

= + −
 

                (200) 

At the moment it doesn’t occur to specify that the potentials are computed in 
X , however it makes a certain difference.  

The Schrödinger Equation from Classical Physics and Stochasticity 
Even if Nelson was clear in his derivation, we follow a different approach, a 
constructive one, to reach the Schrödinger equation. It is here required that 

0N Nv u⋅ = , which means that the stochastic gyrocenter velocity is perpendicular 
to the osmotic velocity due to fluctuations. Such choice is a requirement on f. 
From the guiding center velocity, N NV v u= − , it follows that  

( ) ( )2 2 2
N N N N N NV v u v iu v iu= + = + ⋅ − . In terms of ψ  and ψ  , 2V  is below 

computed. Firstly  

( )2
,p

N N

i e m A
v iu

f
ν

ψ ψ
− ∇ −

− =                   (201) 

and  

( )2
.p

N N

i e m A
v iu

f
ν

ψ ψ
∇ −

+ =                    (202) 
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Thus, the guiding center velocity squared is  

( ) ( )

( ) ( )

2 1

21 1

2 2

2 2 .

p p

p N N p

V f i e m A i e m A

i f f v iu f i e m A

ν ψ ν ψ

ν ψ ν ψ

−

− −

   = ∇ − ⋅ − ∇ −   

 = ∇ ⋅ + + − ∇ − 




 

From the continuity Equation (170) and from the Bohm’s quantum potential 
(192), 2 2V  is rewritten as  

( ) 2
2

1 1
2

2 2
p

p t B

i e m AV i f f Q f
ν

ν ψ ψ− −
 − ∇ − = − ∂ − +         (203) 

Finally, it occurs only set all the pieces together, from (190):  

( )

( )
( )

2

2

1 1

2

2
,

2

p B

p
p t

V e m Q

i e m A
i f f f e m

ε

ν
ν ψ ψ− −

= + Φ +

 − ∇ − = − ∂ + + Φ
     (204) 

being Φ  computed at the gyrocenter position, X . Moreover, being 
2p p tε ν γ= − ∂ , the following equation is easily obtained:  

( )
( )

2

1 1
2

2 .
2

p
p t p t

i e m A
i f f f e m

ν
ν γ ν ψ ψ− −

 − ∇ − − ∂ + ∂ = + Φ  

If ( )2p mν =  , as already considered in the straight and uniform magnetic 
field case with fluctuations, then the Schrödinger equation is derived:  

( )
( )

2
2

2 .
2

p
p t

i e m A
i e m

ν
ν ψ ψ ψ

 − ∇ − ∂ = + Φ            (205) 

Finally, if we set the minimum allowed magnetic moment to  

( ) ,p Be mµ ν µ= − =                       (206) 

then the order of magnitude of the compactification scale in the KK mechanism 
is the Compton length, cλ , ensuring the correct mass scale for the elementary 
particles. Moreover, pν  is the diffusion coefficient in (159), in such a way that 
the Wiener process is recognized to be universal (as already noticed by Nelson). 

8. Conclusions 

The non-perturbative guiding center transformation has been extended to the 
relativistic energies. Within the relativistic regime, the same Equation (8) already 
seen in the non relativistic treatment [6], is re-obtained. This has been called the 
velocity law. Although the context is very different, the similarity with the ideal 
Ohm’s law has been shown and, some solutions of motion are studied in the 
light of the ideal Ohm’s law. The covariant formalism has been adopted to better 
describe the relativistic behavior. For this reason, a lagrangian approach is used 
for re-deriving the same Equation (8) in a covariant form. 

Some important solutions of the velocity law are considered in Section III. 
Here, the difference between the guiding particle solution in gyrokinetic-like 
ordering, in MHD-like ordering, and the gyrating particle solution, is shown. All 
these solutions are practically identical to the non-relativistic case, which have 
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been analyzed in detail in [6]. The guiding particle solution is the one described 
by the fundamental Equation (36); the guiding center can be described by the 
same equation but having the magnetic moment different from zero. The 
guiding center reference frame has been finally defined in a geometrical sense as 
the reference frame where the particle moves in a closed orbit with a periodic 
motion. The gyro-phase, γ , is the curvilinear coordinates along the closed loop 
trajectory and the magnetic moment is defined as the conjugate coordinate to 
γ . Thus, the dynamics have been described in the guiding center coordinates, 

( ), , , ,Az t X γ ε µ= , through the non-canonical hamiltonian mechanics 
developed by Cary and Littlejohn [7]. The Lagrange and Poisson tensors have 
been described for the non-perturbative guiding center transformation. The 
correspondence with the velocity law in seven dimensions is shown in (86). 
Moreover, a clear and known criterion to define when a dimensionality 
reduction is possible, is also reminded. 

Furthermore, a general relativity approach for describing electromagnetism 
using the relativistic guiding center transformation is suggested. It is shown that 
the formalism of non-canonical hamiltonian mechanics is what is needed to 
extend the presence of electromagnetic dynamics to the general relativity 
formalism. An Einstein’s Equation (139), for the extended phase space can be 
settled for describing both the interactions: elelctromagnetism plus gravitation. 
Moreover, it has been proved that, for the guiding center coordinates, the 
relevant dynamics are five dimensional as for the original KK mechanism. The 
lagrangian density (130), which is used for describing both gravitation and 
electromagnetism, has been obtained. The metric tensor has been explicitly 
written in (144). The gyro-phase coordinate, γ , is proposed to be the fifth KK 
coordinate. Thus, the extra-dimension is not an unobservable spacetime 
dimension but a measurable coordinate of the velocity space used for describing 
motion on the extended phase space. For this reason, the KK mechanism does’t 
need a compactification procedure, anymore. If 1Sγ ∈ , which is exactly 
obtained only for the non-perturbative guiding center transformation, an 
abelian gauge theory can be settled: electromagnetism is served on the 
gravitational banquet. The novelty of the present work relies on the fact that the 
geometry of the velocity space must be taken into account also for describing the 
same gravitational field acting on the particles. 

In the last section, some speculative possibilities are taken into account. Once 
electromagnetic fluctuations are considered, it is not allowed anymore to shrink 
the gyroradius to zero. From the guiding center transformation to the stochastic 
gyrocenter one, it occurs to radically change the velocity law, which means that 
the gyrocenter moves differently with respect to the guiding center. Using 
Nelson’s approach to quantum mechanics, answering to the Wallstrom’s 
criticism and giving a physical justification to the fluctuations required by 
Nelson’s approach, then it has been shown how to derive the Schrödinger 
Equation (205), with all its implications. 

Finally, considering the diffusion coefficient as proportional to the Planck 
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constant and inversely proportional to the inertial mass, it has been shown that 
the scale of length for the extra dimension is the Compton length, instead of the 
Planck length. This is correct also from another kind of consideration. Thus, if 
the extra dimension belongs to the velocity space, the Heisenberg indetermination 
principle which forbids the contemporary knowledge of position and of velocity 
of the particle, led to a different scale length limitation, which is caused by the 
incommensurability between velocities and positions instead of by the 
unobservability of the 5th dimension. Thus, the length scale for the new 
compactification scheme is fixed by the Compton length, ensuring the 
correspondence with the observed masses. 

What emerges from such picture is that some quantum effects can be also 
explained, and not only interpreted, by the old classical mechanics. Once the 
non perturbative guiding center and the stochastic gyrocenter transformations 
are applied to plasma physics then a field theory (on extended phase-space) 
approach can be, finally, well suited for solving nonlinearities. From the plasma 
lagrangian density in (2) where “something new” is substituted with the 
Hilbert-Einstein term on extended phase-space, the consequences and the 
differences with the standard formulation should be investigated. Once macro- 
and micro-behaviors will be described in a unified manner, then the multi-scale 
non-linear problem encountered in tokamak physics can be reformulated with 
new tools; also for this reason, the non-perturbative guiding center and the 
stochastic gyrocenter transformations have been proposed. 
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Appendix 
Christoffel and Ricci in 5D  
1.1.1. Christoffel Symbols 

From  

( )1 ,
2

a ae
bc c eb b ce e bcg g g gΓ = ∂ + ∂ − ∂

                      (207) 

with  

2 2 ,
1

ab g A
g

A A A

αβ α

β α
α

κ
κ κ ϕ

−
=
− +

                     (208) 

it is possible to compute all the components of the Christoffel symbol.  

( )
2 2

,
2

g A F A Fα α αη
βδ βδ δ βη β δη

κ ϕ
Γ = Γ + +                 (209) 

( )
3 2 3 2

4 ,
2 2 2 2

A A A F A A F A Aα α α
βδ α βδ δ αβ β αδ β δ δ β

κ κ ϕ κ ϕ κ
Γ = − Γ + + + ∂ + ∂  

2

4 ,
2

g Fα αη
β βη

κϕ
Γ =                          (210) 

and  
4

44 44 0.αΓ = Γ =                             (211) 

Last,  
2 2

4
4 ,

2
A Fδ

α δα
κ ϕ

Γ =                          (212) 

and  
4 4

4 44 0.αΓ = Γ =                             (213) 

1.1.2. Scalar Curvature in 5D 
From the components of Γ  the component 44R  of the Ricci tensor in 5D can 
be computed:  

4
44 4 4 444 4 4 4 4 ,a

aR R R R Rβ β
β β= = + =                        (214) 

with  
2 4

2
4 4

1
4 2

R F Fβ αβ α
β αβ α

κ ϕ
ϕ= − ∇ ∇                   (215) 

The other components are  
4

4 4 44 4 4
a

aR R R R Rβ β
α α α αβ αβ= = + =                        (216) 

with  
2

4 4 4.
2

R g F A Rβ δη β
αβ η αδ α β

κϕ
κ= ∇ +                    (217) 

Finally,  
4

4 4 ,a
aR R R R Rδ β

αβ α β α β αδβ αβ= = + =                        (218) 
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explicitly  

( )

( )

2 2
2

44 4 44

2
4 44 2

2 2
2

44

2 2 2 2

2
1

2

2

.
2 2

R R g F F A A R A R A R

A R A R

R g F F A A R

g A F g A F

δη
αβ αβ αδ βη α β α β β

β α α α β

δη
αβ αδ βη α β

δη δη
α η βδ β η αδ

κ ϕ
κ κ κ

κ κ ϕ
ϕ

κ ϕ
κ

κ ϕ κ ϕ

= − + + −

+ − − ∇ ∇

= − +

+ ∇ + ∇

   

 



 

Thus, the scalar curvature in 5D is  
2 2

2
2

1
4

R R F Fαβ α
αβ α

κ ϕ
ϕ

ϕ
= − − ∇ ∇                 (219) 

It is convenient to settle the following Klein-Gordon equation with the 
Laplace-Beltrami operator:  

( ) 2 0,α
α ϕ∇ ∇ + Λ =                        (220) 

being Λ  prop. to the cosmological constant. However, let’s consider the 
simplest case with 0Λ = . In such case,  

2 2

.
4

R R F Fαβ
αβ

κ ϕ
= −                       (221) 
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