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Abstract 
We have explored a model of vacuum self-organization based on dissipative 
dynamics and recurrent self-interactions. The initial state of the vacuum is 
assumed as self-interacting vacuum dust. The medium is dispersive and re-
sembles dark-energy vacuum as described by general relativity. Beside self- 
diffusion, vacuum dust endowed with self-attraction, resembling Newton’s 
gravity. We explored what would happen with this medium when the 
strength of self-gravitation progressively increases. We observed a cascade of 
phase transitions. First transition occurs when self-attraction reaches the 
point when it can balance self-diffusion. A vortex-cellular structure emerges. 
Vortexes operate as self-sustained oscillators and tend to synchronize their 
dynamics. They form a synchronized network that possesses a universal time 
scale and, after zooming out, its structure acquires a form of fiber-bundle 
structure of electromagnetic field. With increasing self-gravitation strength, 
the system experiences another phase transition. The fiber-bundle structure 
becomes resembling that of weak nuclear field. Vacuum cells acquire spi-
norial dynamics. Electric charges emerge. When synchronized, the weakly in-
teracting cells create lepton-like molecules. Oscillating charges in spinorial 
cells give a birth to current loops, which magnetic moment linked to the par-
ticle spin. During the next phase transition, the cell dynamics experiences 
another topological transformation, which is accompanied by creation of 
three color charges. The acquired fiber-bundle structure form resembles that 
of strong nuclear field. Synchronized strongly interacting vacuum cells create 
quark-like particles that carry color charges. We associate their complex syn-
chronization patterns with particle flavors. We also explored statistical dis-
tributions of vacuum cells as functions of self-gravitation strength. We found 
that the distribution spectrum is essentially discrete, and the vacuum cells 
group around the states that we call super-attractive. Discrete cell distribution 
implies charge quantization. Synchronization transforms initial Boltzmann- 
like distribution into quantum-like distributions. During phase transitions, 
cell distributions experience transformations that can be encoded in the 
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chemical potentials of the corresponding states. We found that chemical po-
tentials apparently relate to the coupling constants and mixing angles and 
amplitudes in the standard model. 
 

Keywords 
Elementary Particles, Standard Model, Quantized Charges, Quark Mixing,  
Self-Organization, Nonlinear Dynamics 

 

1. Introduction 

Before presenting the model, let me attract the reader’s attention to a few obser-
vations made by the author and other researchers [1] [2] [3] [4]. 

1.1. Is Electron a Composite Particle? 

Let us consider a thought experiment. An initially neutral vacuum volume expe-
riences spontaneous polarization in a form of two charged clouds carrying 
charges q+  and q− . Let us assume that the clouds interact with each other by 
pure electrostatic forces. In Figure 1, the clouds are represented by capacitor C . 
After a while the clouds recombine and dissipate (radiate) the accumulated 
energy in the vacuum. The latter plays the role of a matched load with imped-
ance 0 0 377η µ ε= ≈ Ω , where 0µ  is the vacuum permeability and 0ε  is 
the vacuum permittivity. 
 

 
Figure 1. Cloud discharge circuit diagram. Charged clouds are represented by capacitor 
C  and the surrounding vacuum is represented by matched load η . 
 

Electrostatic energy stored in the clouds before discharge is 
2

.
2e
qU
C

=                             (1.1) 

The corresponding relaxation time-constant is 

,e Cτ η=                              (1.2) 

and the product e eU τ  is C-independent and thus is independent of the cloud 
geometry 

+
+
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2

.
2e e

qU η
τ =                           (1.3) 

If charged clouds represent a virtual electron-positron pair, 191.6 10 Cq e −= ≈ ×  
(electron charge) and product (1.3) is a physical constant with dimensions of ac-
tion [energy × time] 

2

.
2e e e

eU η
τ= =                         (1.4) 

We use subscript e  to distinguish e  from the Planck constant   which 
has the same physical dimensions. 

In quantum mechanics, the pair’s lifetime (dissipation time) τ  depends on 
their energy E  as 

.Eτ≈                              (1.5) 

If the total pair’s energy is due to the electrostatic forces, the two constants   
and e  would be of the same order ( ~e  ). However, they differ roughly by a 
factor of twenty! This is because the electrostatic forces contribute only a small 
part to the total particle energy. 

More important is the fact that the ratio e   is a constant, and it is not only 
a physical constant but also a special number. With a good accuracy, it is 

221.81 ,F
e

δ≈ ≈




                        (1.6) 

where 4.6692Fδ =   is the Feigenbaum delta, a universal scaling factor de-
scribing complex transformations in dynamical systems belonging to a large un-
iversality class carrying the same name. The Feigenbaum universality was dis-
covered decades ago [5] [6] [7] [8]. It has been observed both in theoretical 
models and experimentally in a number of different systems [9]-[14], but, so far, 
not in particle physics.  

In addition to electromagnetic, electrons/positrons interact via weak nuclear 
forces. Their relative “strength” is provided by ratio of two physical constants 

wα α  ( 1 29wα ≈  [15] [16] is the weak coupling constant and 1 137α ≈  [15] 
[16] is the electromagnetic coupling constant better known as the fine-structure 
constant). Curiously (and we believe not by accident) the ratio can also be ex-
pressed via the Feigenbaum delta 

4.32 .w
F

α
δ

α
≈ ≈                         (1.7) 

Weak nuclear forces operate at very short distances only. It is unlikely that the 
two separated charged particles interact via these forces. It is more plausible to 
assume that the weak forces act inside the particles, i.e. that electron is a compo-
site particle, and the weak forces keep its parts together. 

1.2. Coupling Constants as Ordered Set of Numbers 

Our encounters with the Feigenbaum constant are not completed. Another physi-
cal constant, the electroweak mixing angle Wθ  known as the Weinberg angle 
can also be expressed via Fδ . The angle is linked to the inverse wα α  ratio as  
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2 1sin .W F
w

α
θ δ

α
−= ≈                         (1.8) 

The fine structure constant has been the subject of numerous speculations and 
its origin remains an unsolved puzzle. It is defined as [16] 

2

0

.
4π

e
c

α
ε

=


                           (1.9) 

Using this definition and (1.6) one can find that [1] [3] [4] 

( )
2 121 2π .

4π 2π
e

F
e η

α δ
−

= = ≈


 

                 (1.10) 

From (1.7) and (1.9), the weak coupling constant is 

( ) 112π .w Fα δ
−

≈                         (1.11) 

If one extends this progression toward the strong coupling constant sα , (s)he 
finds that 

( ) ( )
1 102π 2π 0.16,s Fα δ
− −≈ = ≈                   (1.12) 

that is in the range of low-energy values recommend by the Particle Data Group 
[16]. 

Thus we observe that the coupling constants of strong, weak, and electro-
magnetic interactions can be expressed as three consecutive powers of the Fei-
genbaum delta (up to a multiplier 2π ): 

3

1 ,
2πj j

F

α
δ −≈                         (1.13) 

where 1,2 and 3j =  respectively.  

1.3. Quark Mixing Amplitudes and Hidden  
Symmetry of CKM-Matrix 

Yet another example of quantum numbers that can be approximated by powers 
of Fδ  is a set of the quark mixing amplitudes ijV , where i  and j  denote 
different quark flavors. The ijV  value set is shown below as a 3 3×  Cabibbo- 
Kobayashi-Maskawa (CKM) matrix [17]  

0.974 0.225 0.004
0.225 0.973 0.041
0.009 0.041 0.999

ud us ub

CKM cd cs cb

td ts tb

V V V
V V V V

V V V

   
   = ≈   
     

      (1.14) 

CKM-matrix elements can also be approximated as ( )1 p

Fδ
− , 1,2 or 3p = .  

The approximate CKMV ′ -matrix is 

( ) ( )

( ) ( )

( ) ( )

2 6 1 3

2 41 2

4 63 2

1

1

1

0.977 0.214 0.009
0.214 0.976 0.046 .
0.009 0.046 0.999

F F F F

CKM F F F F

F F F F

V

δ δ δ δ

δ δ δ δ

δ δ δ δ

− − − −

− −− −

− −− −

 − − 
 

′ = − − 
 
 − −
 
 
 ≈  
  

(1.15) 
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The expressions under the square roots have form that preserves raw/column 
unitarity. In future discussion, due to the smallness of 2

Fδ
− , 4

Fδ
− , and 6

Fδ
− , we 

neglect their inputs in diagonal elements, and set the latter equal to 1 as shown 
in (1.16): 

1 3

1 2

3 2

1
1 .

1

F F

CKM F F

F F

V
δ δ

δ δ
δ δ

− −

− −

− −

 
 ′ =  
 
 

                  (1.16) 

CKMV ′ -matrix elements constitute an interesting pattern. First, the matrix pos-
sesses a diagonal symmetry. Second, each row/column comprises two out of 
three powers ( )1 p

Fδ
− , 1,2 or 3p = , and each time the missed power is a differ-

ent one. Third, CKMV ′ -matrix elements represent a subset of a 4 4×  matrix 
where all powers are present: 

1 2 3
1

1 3 23 2
2

2 3 1
0

3 2 1

1
1

,
1

1

F F F

F F Fp
F

p F F F

F F F

δ δ δ
δ δ δ

δ
δ δ δ
δ δ δ

− − −

− − − −
−

− − −
=

− − −

 
 

         
  

∑              (1.17) 

In (1.17), missing elements fill the third row and third column. The term in 
parentheses in front of the matrix restores the raw/column unitarity. 

We see that coupling constants and quark mixing amplitudes can be approx-
imated as ordered sets of powers of the Feigenbaum delta. Could this be just a 
curious coincidence? We believe it is not. 

1.4. Why Self-Organization? 

The standard model does not explain why the coupling constants and mixing 
angles are constants and why they possess the values which we observe in expe-
riment. Therefore, the possibility of expressing all of them through a single 
number, even approximately, is appealing, and more because this number is a 
universal constant. Why has Fδ  not found a place in the standard model of 
particle interactions?  

A possible explanation is that the two belong to the different frameworks. The 
dynamical systems with a shared feature of transition to chaotic dynamics 
through cascades of period-doubling bifurcations with the Feigenbaum delta 

4.669Fδ ≈  as the scaling factor belong to dissipative framework. In contrast, 
the standard model belongs to the Hamiltonian systems essentially based on the 
conservation principles. 

Although, the theory predicts that cascades of period-doubling bifurcations 
can also occur in some nonintegrable conservative systems [12] [14] [18] [19] 
[20] [21] [22], this has not been confirmed in experiment. Moreover, in this case 
the scaling factor 8.721Hδ ≈  essentially differs from 4.669Fδ ≈ , observed in 
dissipative systems.  

Conservation in Hamiltonian systems is at odds with emergence. Strict time 
translation symmetry implies that there should neither be a big bang nor “small 
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bangs/crunches” linked to the births/deaths of elementary particles. Conserva-
tion rather preserves status quo. 

In contrast, if a dissipative system is far from thermodynamic equilibrium, it 
may exhibit an entire gamut of emergent phenomena [23] [24] [25] [26] [27]. 
Dissipative frameworks is more appropriate for studying emergent phenomena. 

In this paper we propose a new model that describes emergence of quantum 
phenomena and elementary particles. We adopt a conjecture that Fδ  is rele-
vant to particle physics. We assume that the “primordial soup” where particles 
emerge and decay is a dissipative self-organized medium which we call vacuum.   

One of the requirements for a dissipative system to be self-organized is that 
the system should be far from thermodynamic equilibrium. Numerous experi-
ments witness that the vacuum is such a medium. It is permeated by numerous 
energy flows, at all levels, from quantum fluctuations to running galaxies.   

Although this is not an exact parallel, Bénard flows (a network of vortices in 
nonequilibrium fluid) [28] may serve as a visual addition to the proposed model. 
This is supported by experiments where Bénard cells exhibit period-doubling 
bifurcations and the Feigenbaum universality [29] [30] [31] [32] [33]. Bénard 
cells are vortices that in essence can be described as self-sustained oscillators and 
tend to synchronize their dynamics, a phenomenon playing a principal role in 
the proposed model.   

As any imitation, our model captures the most essential features only. We be-
lieve that by pursuing this approach, we may enrich our knowledge of the ele-
mentary particles and quantum fields. 

2. Cellular Dynamics 
2.1. From Vacuum Dust to Vacuum Cells 

A simple example of spatial self-organization producing a quantized pattern is a 
randomly distributed iron filings placed between electromagnet poles. After field 
is turned on, the particles form a discrete field-line pattern. It happens under ac-
tion of recurrent positive-feedback loops: small deviations from the uniform fil-
ings distribution create spots of excessive magnetic field; these spots attract more 
particles; the additional particles increase the local magnetic field; and so on. 
The filings redistribution ends when friction balances positive-feedback forces. 
The stronger is the external magnetic field the narrower are the field lines. The 
original symmetry breaks spontaneously. The locations of the field lines are ar-
bitrary and depend on the initial filings fluctuations. Formation of the discrete 
field-line pattern is a phase transition. It can be seen as a “competition” among 
spatial positions for accumulating maximal number of particles, and the “fortu-
nate” spots that initially have more particles are the winners. This competition 
resembles the Darwinian competition among the species.  

More complex media can produce spatial-temporal patterns [34] [35] [36] [37] 
[38]. Bénard cells [28] emerging in heated liquids are among those. 

In this paper, we assume that elementary particles emerge in vacuum as 
products of its self-organization. We assume that vacuum consists of ever mov-
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ing vacuum dust. The medium is active. The dust particles attract each other. 
Self-attraction is nonlinear, i.e. the denser is the dust, the stronger is self-attraction. 
Self-attraction competes with self-diffusion. They represent respectively a posi-
tive and negative feedbacks. Stable dynamical patterns emerge when self-attraction 
is balanced by self-diffusion. 

The vacuum dust is in a permanent motion. The state space comprises infini-
tively many different modes. Luckily, the system is dissipative, which means that 
the modes fade out and, generally speaking, with different rates. Therefore, for 
many applications, it is sufficient to consider only a few principal modes with 
slowest dissipation rates [9] [11] [12]. 

We assume that most relevant modes represent vortices, local circular flows. If 
vortex life is long enough to perform at least several rotations, we call it a va-
cuum cell, or just cell. Dust migration connects vortices and forces them to syn-
chronize in a manner of synchronization between self-sustained oscillators [39] 
[40] [41] [42] [43]. 

We also focus on intracellular radial flows. We associate them with generic 
charges. We assign positive sign to convergent flows, negative sign to divergent 
flows, and zero to pure circular flows (Figure 2). Later in the paper, depending 
on cell topology, we categorize generic charges as electric charges and color 
charges. 
 

 
Figure 2. Charge polarity assignment (directions of radial flows are opposite to the direc-
tions of field lines adopted in electrodynamics). 
 

We define p  as a probability that, in a given cell at a given time, the effective 
radial flow is converging. Using this convention, a cell is positively charged if 

0.5p > , it is negatively charged if 0.5p < , and it is neutral if 0.5p = . Positive 
feedback (self-attraction) increases probability p  with time. Negative feedback 
(self-diffusion) decreases probability p  with time. 

We assume that cell evolution under combined positive- and negative-feed- 
back can be effectively represented by a one-dimensional discrete iterated map 

( )1 1 .n n np Ap p+ = −                     (2.1) 

where term np  represents positive feedback, term ( )1 np−  represents negative 
feedback, and parameter 1A >  is a measure of the medium amplification. 

Discrete points np  represent continuously evolving trajectories sampled 
stroboscopically at cross-sections with Poincaré plane (Figure 3). Fixed points 
p∞  represent single-loop (Figure 3(b)) or multi-loop (Figure 3(c)) attractors 

and respectively are single-valued or multiple-valued.  
Dissipative evolution trajectories in the state space represent spirals (Figure 

3(a)). The “stroboscopic” samplings are taken at time instants nt , when the tra-
jectory is crossing the selected Poincaré plane. 
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Figure 3. (a) Stroboscopic sampling of evolution trajectories; (b) single-loop attractor 
provides single-valued fixed point; (c) double-loop attractor provides double-valued fixed 
point. 
 

Map (2.1) is known as logistic map [13] [14]. It obviously does not cover the 
complex turbulent picture of the medium in all nuances, but we assume that it is 
sufficient for the task. We justify this simplification by the following reasoning: 
a) Map (2.1) describes dissipative dynamics  
b) It accounts for the competition between positive and negative feedback in a 

simple form 
c) It represents a wide class of theoretically explored and experimentally ob-

served dynamical systems with the Feigembaum universality 
d) It encompasses period-doubling bifurcations with the scaling factor 4.669Fδ =  . 
e) Unlike one-dimensional continuous-time differential equations, it is flexible 

enough to describe topologically complex trajectories (like those shown in 
Figure 3(c)). 
We define generic cellular charge χ  as 

2 1.pχ = −                          (2.2) 

Its domain [ ]1,1χ ∈ −  is inherited from probability [ ]0,1p∈  and is not 
typical for charges ( ( ),q∈ −∞ +∞ ). We could rescale χ  by using an appropri-
ate map or equation, such as this one 

1 .
ln

q
χ

=
                           (2.3) 

However, since in this paper we are looking only for the roots of charge quan-
tization, its domain size is irrelevant. Therefore, we remain with χ  without 
further makeovers.   

For mostly aesthetic reasons, we replace amplification parameter A  with 
control parameter B  

1
2
AB = −                           (2.4) 

with the corresponding changes in the domain size [ ] [ ]1,4 0.5,1A B∈ → ∈ − .  

𝑃

𝑃

Attractors

Fixed Point

a)

b)

c)
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The lower end, 0.5B = − , is a critical point. Below this point, 0.5B < −  
( 1A < ), the medium loses amplification, feedback is pure negative, balance of 
forces is broken, and self-organization fails.  

Initially, we study cell dynamics at different but fixed B-values. Later, we in-
troduce a mechanism of vacuum self-regulation when the medium controls 
B-values by itself. 

With the above introduced variables, the charge evolution is described by the 
iterated map 

( )1 , ,n n Bχ χ+ =                        (2.5) 

where 

( ) ( ) 2, 1B B Bχ χ= − +                    (2.6) 

is iteration function. 
In any dynamical system time plays most important role. Time is meaningless 

without clocks. However, self-organized vacuum cells are in essence self-sus- 
tained oscillators and can be used to clock the local time by themselves. As time 
unit, it is natural to use iteration intervals 1n nt t+= −t  between any two con-
secutive crossings of a charge trajectory with one of the Poincaré planes selected 
for this goal. If different cells operate asynchronously, each of them clocks their 
local time with its own pace. When the cells synchronize, interval t  acquires a 
global character and may serve as a time-standard for the entire synchronized 
network. 

2.2. Bifurcation Diagram. Zones of Stability. Special Points 

Quadratic maps (including logistic map) are well explored (see, for example [5]- 
[14]). For most researchers, they are particularly interesting as a paradigm of 
systems evolving toward chaotic dynamics. Ironically, we are more interested in 
the patterns of asymptotic stability, when a system asymptotically converges to 
some dynamically stable state.  

Asymptotic stability varies with B. Continuous B-intervals where cell possess 
asymptotic stability we call zones of stability or just zones. On bifurcation dia-
gram (Figure 4) which depicts fixed charge values χ∞  vs. B , they are desig- 
nated as Zj , where j  is the zone number. The diagram name came from bi-
furcations, the points where cell dynamics experience deep changes including 
changes in the attractor topology. We designate left and right bifurcations at the 
ends of each zone of stability respectfully as BjL  and BjR . Bifurcations are 
points of unstable equilibrium. At bifurcations, number of attractor loops 
(number of branches in the diagram) doubles. Within each zone, the system is 
asymptotically stable. When B  reaches the Feigenbaum point, 0.786FB ≈ , the 
system becomes chaotic.  

In this paper we explore only the first three zones, 1Z  through 3Z , shown 
in Figure 4. We associate them respectfully with electromagnetic, weak, and 
strong nuclear interactions. 
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Figure 4. Bifurcation diagram depicts fixed charges χ∞  as function on parameter B . 
Zones Zj  are marked by horizontal brackets, bifurcations BjL  and BjR  by black 
vertical dashed lines, superattractors Sj  by red vertical dashed lines. Small color circles 
depict superattractor charges. 
 

Later, we also explore interval ( )1, 0.5B∈ − − , which we call “the dark zone” 
and designate as 0Z , where vacuum self-organization fails.  

In 1Z , there is only one branch on the bifurcation diagram, which means 
that the cell attractors represent single loops, and fixed charges χ∞  are single- 
valued. In the higher zones, the number of branches doubles with each bifurca-
tion, i.e. the attractors possess several loops, and fixed charges are multi-valued; 

, , 0,1, , 1w jwχ∞ = −  , where j  is the winding number (or number of the 
attractor loops). For example, attractor in Figure 3(b) has 1= , and attractor 
in Figure 3(c) has 2= .  

In zone Zj , the winding number is 
12 .j

j
−=                           (2.7) 

Full cell rotation period j  comprises all different attractor loops and is 
,j j j= t                          (2.8) 

where jt  is the iteration time interval in zone Zj .   
For multi-loop attractor cells with 2j ≥  we reserve a special name. We call 

them spinorial cells [44]. They play a special role in toy-leptons and toy-quarks 
(we call them q-arcs) building blocks. 

Superattractors are points of the highest asymptotic stability. We designate 
them as Sj . In 1Z , the superattractor is located exactly at the zone center. In 
all other zones, superattractors are slightly shifted from the centers. In 0Z , the 
superattractor is located at the zone edge. We call intervals between superattrac-
tors Sj  and left BjL  or right BjR  bifurcations semi-zones and designate 
them as ZjL  and ZjR . 

Small circles at superattractors in Figure 4 depict superattractor charges. Zero 
charges are shown by white circles, and nonzero charges are shown by color cir-
cles (purple in 2Z , and red, green, and blue in 3Z ).  

B-values for special points on the bifurcation diagram are listed in Table 1. 

1

-1

0

0.9-0.5 0 0.5

𝜒∞

𝐵

𝑆1

𝑆2

𝐵1𝐿

𝐵1𝑅 ≡ 𝐵2𝐿

𝐵2𝑅 ≡ 𝐵3𝐿

𝐵3𝑅

𝑍1 𝑍2 𝑍3

𝑆3
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Table 1. B-values for special points in zones 1Z  through 3Z . 

Special Points 
B  values in different zones 

1Z  2Z  3Z  

Superattractors, Sj  0 0.6180339887… 0.7492808496… 

Left Bifurcations, BjL  −0.5 0.5 0.7247448713… 

Right Bifurcations, BjR  0.5 0.7247448713… 0.7720451797… 

Winding Number, j  1 2 4 

 
With each bifurcation, zone size ( )BjR BjL−  decreases approximately as 

geometric progression . 

( ) ( ) 11 1
,j

B j R B j L
BjR BjL

δ −+ − +
=

−
                (2.9) 

where scaling factor jδ  quickly converges to the Feigenbaum delta  
4.669j Fδ δ→∞ → = 

 

2.3. Cellular Evolution in Z1. Uncertainty Intervals 

1Z  cells are the simplest in the model and possess single-loop attractors. In this 
section, we explore how the charge asymptotic stability depends on a fixed pa-
rameter B  in 1Z . We will study cell evolution toward the attractors for dif-
ferent B  values.  

We assume that cells evolution may start from any initial charge value 0χ  
between 1 and −1. A few examples of trajectories nχ  are shown in Figure 5. All 
trajectories converge toward their fixed points. Trajectories with different para-
meters B  are represented by different colors. They converge to different fixed 
points. However, all trajectories belonging to the same B-value converge to the 
same fixed point ( )Bχ∞ . 

At the beginning of the cell evolution, the trajectories converging to one at-
tractor entangle with trajectories converging to a different attractor. The attrac-
tors can be resolved only after some elapsing time. The longer is the elapsing 
time, the better is the attractor resolution. 
 

 
Figure 5. Charge evolution trajectories nχ  for three parameters B  (shown in three 
colors). 

Iteration step, 
1 10 100

0.5

0.1

0.3
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The entanglement and asymptotic behavior of charge trajectories have a qua-
litative analog in quantum mechanics in a form of the time-energy uncertainty 
relation—the longer a system is located at some state the better the state energy 
(fixed point) can be discriminated. This comparison implies that quantum-me- 
chanical eigenstates possess asymptotic stability thus quantum-mechanical sys-
tems are in essence dissipative, which is in agreement with the dissipative cha-
racter of the wave-function collapses. 

To quantitatively compare asymptotic stabilities of different attractors, we 
need to have a measure of the asymptotic stability. First, we define a charge un-
certainty interval nχ∆  for a given trajectory as 

,n nχ χ χ∞∆ = −                    (2.10) 

where n  is the iteration step number after beginning of the cell evolution. Then 
we define parameter λ  as a dimensionless slope of nχ∆  trajectory depicted in 
logarithmic scale 

d ln .
dt

χλ ∆
= t                      (2.11) 

After a few iteration steps (see Figure 6), the slopes exponentially converge to 
their fixed values  

1
1ln ln ln .n

n n n
n

χ
λ λ λ χ χ

χ
+

∞ +
∆

= ≈ = ∆ − ∆ =
∆

         (2.12) 

From Figure 6, one can see that the slopes depend only on parameter B . 
 

 
Figure 6. Evolution of uncertainty intervals nχ∆  (in logarithmic scale) for trajectories 
shown in Figure 5. 
 

Slope λ  plays the role of the Lyapunov exponent. It is a measure of the cell 
asymptotic stability. Within the zone, it is always negative 0λ < , approaches its 
minimum λ → −∞  at the super attractor, and reaches its maximum 0λ =  at 
the zone edges (bifurcations).   
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2.4. Spinorial Cells 

We define spinorial cells as those with attractors having more than one loop 
( 1> ). 

They serve as particle building blocks. We encounter two types of spinorial 
cells, d-cells ( d  from double-loop attractor) with winding number 2 2=  
(Figure 3(c)), and q-cells ( q  from quadruple-loop attractor) with 3 4= .  

D-cells live in zone 2Z . An example of Z2-cell charge evolution trajectory is 
shown in Figure 7 by green seesaw line. In the limit n →∞ , d-cell oscillates 
between two fixed values of the double-valued fixed points. We can split the 
single-step trajectory on two double-step trajectories, each with its own single- 
valued fixed point. The odd-step trajectory 2 1nχ +  is shown by the black dotted 
line. It converges toward fixed value ,oddχ∞ . The even-step trajectory 2nχ  is 
shown by the red dotted line. It converges toward ,evenχ∞ .  

For double-step trajectories we can explore the cell asymptotic stability in the 
same way as we did it for 1Z  cells. 
 

 
Figure 7. Example of 𝑑𝑑-cell charge evolution. 

 
For each double-step trajectory, we define a charge uncertainty interval as 

2 2 1 ,

2 1 2 ,

.
n n even

n n odd

χ χ χ

χ χ χ

+ ∞

+ ∞

∆ = −

∆ = −

                  (2.13) 

Remarkably, both uncertainty intervals 2 1nχ +∆  and 2nχ∆  exponentially de-
cay with the same rates (Figure 8), i.e. with the same slopes 
 

 
Figure 8. Example of evolution of 𝑑𝑑-cell uncertainty interval. 

Iteration step
0 10 20

0

1

-1

Odd steps

Even steps

0 200 400

10-4

10-8

100

10-12

Even steps

Odd steps

Iteration step



V. A. Manasson 
 

1343 

.odd evenλ λ λ= =                       (2.14) 

Double-step evolution trajectories are described by twice-iterated functions 
( )2 ,even Bχ  and ( )2 ,odd Bχ  sampled at alternating time instants 

( ) ( )( )
( ) ( )( )
( ) ( )0 1 0

2 , ,

2 , ,

1,1 ,

even even

odd odd

B B

B B

χ χ

χ χ

χ χ χ

 =
 =


∈ − =

  

  



              (2.15) 

Q-cells live in zone 3Z . Their attractors have four loops, and their fixed 
points are four-valued. An example of Z3-cell charge evolution trajectory is 
shown in Figure 9 by green seesaw line. It rotates around four dotted lines 
(shown in black, red, green, and blue) each depicting a four-step trajectory, 

,wχ∞ , where 0,1,2,3w =  is the step number within a single period. The color 
states are ordered. The colors always come in the same sequence: ∙∙∙ → black → 
red → green → blue → black→ ∙∙∙. Due to the time irreversibility this order cannot 
be inverted. This order and irreversibility are crucial in discussion of quark (or 
more correctly, q-arc) mixing angles. 
 

 
Figure 9. Example of q-cell charge evolution. 

 
Four-step charge uncertainty intervals ,n wχ∆  are defined as 

, , , , 0,1, 2,3,n w n w w wχ χ χ∞∆ = − =                (2.16) 

Their typical evolution is shown in Figure 10. As in the previous case, all of 
them have the same slopes wλ λ= . 

Four-step iteration functions ,3n w  are four-times iterated the original func-
tion n  sampled at different time instants 

( )( ) ( )( )( )( )
( ) ( )

, , ,

0,0 0, 0, 1

3 2 2 , ,

1,1 ,

n w n w n w

w w

B Bχ χ

χ χ χ −

 = =

 ∈ − =

      


       (2.17) 

As in the previous case, initial charge 0,0χ  of the first trajectory can be cho-
sen arbitrarily, while the initial charges of the other trajectories 0,wχ  are images 
of 0,0χ  after the corresponding number of iterations. 

Iteration step
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Figure 10. Example of evolution of q-cell uncertainty interval. 

 
The multi-step trajectories have single-valued fixed points and are more suit-

able for analysis. Examples of ( )1 χ , ( )2 χ  and ( )3 χ , for a randomly se-
lected B-values from each of 1Z , 2Z , and 3Z  zones, are shown in Figure 11. 
 

 
Figure 11. Examples of ( )1 χ , ( )2 χ  and ( )3 χ  for randomly selected B  values. 

 
In each semi-zone, asymptotic stability depends on how far the function local 

extrema located from the super attractor in B-space. We define the distance be-
tween the cell attractor ( B ) and the superattractor Sj  as 

.B B Sj∆ = −                         (2.18) 

Because different semi-zones have different sizes, to compare asymptotic sta-
bility in different zones, we use reduced distance β , which we define as 

for

for

B ZjL
BjL Sj

B ZjR
BjR Sj

β

∆
 −=  ∆
 −

                   (2.19) 

where the denominator is the size of the corresponding semi-zone, j  is the 
zone number, Sj  is superattractor, BjL  is the left bifurcation, and BjR  is the 
right bifurcation. The reduced distance domain is the same in all zones  

[ ]1,1β ∈ − . For all superattractors 0β = , and for bifurcations 1β = ± . 
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Before comparing asymptotic stabilities in different zones, we also need to 
bring them to the same time scale. We assume, that after cells become synchro-
nized, they all have the same period   

, 1, 2, .j j= =                       (2.20) 

Correspondingly, their iteration intervals in zones Zj  are 

.j
j

=



t                          (2.21) 

With these assumptions, we extend definition of parameter λ  given by (2.11) 
for all zones Zj  as 

d ln .
dt

χλ ∆
=                         (2.22) 

After a few iteration steps (see Figure 10) the trajectories almost reach their 
fixed points and the slopes can be determined as 

ln ln ln .j

j

n
n n

n

χ
λ χ χ

χ
+

+

∆
≈ ∆ − ∆ =

∆


                (2.23) 

Simulated dependences ( )λ β  in six semi-zones, from 1Z L  through 
3Z R , are shown in Figure 12 by different symbols. All six are similar to each 

other and can be approximated as a logarithmic function (red solid curve) 

ln .λ β=                           (2.24) 

 

 

Figure 12. Calculated functions ( )λ β  for six semi-zones ( 1Z L  through 3Z R ) are 

represented by different symbols. Solid red line depicts function ln β . 

2.5. Energy and Chemical Potentials 

We define cell energy as 
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λ
=


                           (2.25) 

  has physical dimensions of frequency. It inherits many features of para-
meter λ . For example, we can use it as a measure of cell asymptotic stability. 
Excluding bifurcations, where 0= , it is always negative and takes the most 
negative values at the superattractors. It is customary to associate negative ener-
gies with the bound states. In our case, a vacuum cell is bound by the dust self- 
attraction forces.   

Using (2.24) and (2.25), we obtain that energy depends on parameter β  as 

( ) 1 ln .β β=


                      (2.26) 

If we neglect the small differences between the left and right semi-zones, from 
(2.9) we obtain that  

12 .j
F Bβ δ −≈ ∆                         (2.27) 

From (2.26) and (2.27), we obtain that energy depends on B∆  in all zones as 

( ) ( ) ( )11, ln 2 .j
F j jB j B B B Sjδ µ µ−∆ ≈ ∆ = ∆ + = − +  


     (2.28) 

where ( ) ( ),1B B∆ ≡ ∆  , and jµ  is a parameter that we associate with chemi-
cal potential (internal cellular energy) in the corresponding zone and is defined 
as 

( )1 1 ln .j Fjµ δ= −


                    (2.29) 

Cellular energy   as function on parameter B  is shown in Figure 13. It 
has a form of three connected potential wells, each covering its own zone, and 
having deep minima at the superattractors. 
 

 
Figure 13. ( )B  in 1Z  through 3Z  (bottom) and bifurcation diagram (top). 
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The well shapes are almost identical. Z2-well and Z3-well can be obtained 
from Z1-well by horizontal and vertical translations (see (2.30)) as it is shown in 
Figure 14. Vertical shifts are equal to the chemical potential differences in the 
corresponding zones. 

1
1

j

S Sj
Z Zj

µ
→→ =  → + 

                  (2.30) 

 

 
Figure 14. Directly calculated Z2-well (blue) and Z3-well (red), and translated copies of 
Z1-well (black) according to (2.30). 

2.6. Partition Function. Vacuum Self-Regulation.  
Discrete State Spectrum 

In this section we introduce a vacuum self-regulation mechanism. It controls cell 
distribution among the attractors.  

We assume that during their evolution, charge trajectories converging to a 
given attractor do not disappear. They squeeze together during cell evolution, 
and their density ρ  increases with elapsing time in inverse proportion to the 
uncertainty intervals  

( ) ( )
0, ,
,

t
t
ρ

ρ
χ

=
∆




                      (2.31) 

where 0ρ  is initial trajectory density, and uncertainty intervals ( ),tχ∆   after 
a few iteration steps can be described as 

( ) ( ), exp .t tχ∆ ∝                       (2.32) 

Being an open system, a vacuum cell, under influences of random external 
forces, occasionally jumps from one trajectory to another. We define vacuum 
temperature θ  as average frequency of these jumps 

1 ,
tθ

θ =                           (2.33) 
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where tθ  is the average dwell time at a single trajectory. 
We assume also that a jumping cell has equal probabilities to “land” onto any 

trajectory.  
With the above assumptions, the probability w  to find a cell near attractor 

with energy   is proportional to the average trajectory density ( ),tρ   

( ) ( ) ( ), , exp .w t t tρ∝ ∝ −                   (2.34) 

By combining (2.33) and (2.34), and replacing t tθ→ , we obtain that in zone 
1Z  at temperature θ , partition function is 

( ) 0, exp ,w Cθ
θ

 = − 
 


                    (2.35) 

where 0C  is a normalization constant. Using (2.28) and (2.29), we can extent 
(2.35) to the other zones  

( ) 0, exp ,j
jw C

µ
θ

θ
+ 

= − 
 


                 (2.36) 

where j  is the zone number, and jµ  is the corresponding chemical potential.  
Distribution (2.36) is the equation of vacuum self-regulation. It provides the 

probability to find a cell near the corresponding attractor (energy). Its form re-
markably resembles that of the Boltzmann factor. The major difference is that 
the latter normally provides distribution of free particles (positive energies), 
while partition function (2.36) controls distribution of bounded cells (negative 
energies).  

Partition function (2.36) can be rewritten for cell distribution in B-space. 
Three examples of ( )w B  are shown in Figure 15 for three different tempera-
tures (dwell times tθ ). The curves are normalized as 

( ) ( )
( )

1

1

max

,
,

,

t B
w t B

t B
θ

θ

θ

χ

χ

−

−

∆
=
 ∆ 

                (2.37) 

At very high temperatures, when cell dwell time at a single trajectory decreas-
es down to the length of the iteration interval ~tθ t , the distributions acquires 
form of a continuous spectrum (blue and green curves in Figure 15). At lower 
temperatures, dwell time tθ  t  is large enough for a cell to make a few rota-
tions before it jumps to another trajectory, the partition function acquires the 
shape of the Dirac δ-function (red curve), and the cell distribution spectrum be-
comes essentially discrete.  

At normal temperatures, the vast majority of cells are located at the superat-
tractors, and the superattractor characteristics acquire rank of physical con-
stants. They are not absolute but may deviate from the superattractor values un-
der action of external forces and temperature, i.e. these constants are “running”. 
(Recall the running coupling constants in the standard model, like electron 
charge). 
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Figure 15. Normalized cell distributions among attractors (B) at temperatures  

1 1; 0.25θ − −= t t , and 10.125 −t . 

2.7. Chemical Potentials and Electroweak Mixing Angles  

Let us return to very high temperatures, when cellular jumps among the trajec-
tories become so frequent, that cells do not have enough time to complete even a 
single rotation. At these temperatures, cells lose their cellular features and dis-
solve in the background dust. The critical temperature of the cellular “melting” 
is 

1~ ,cθ 
                          (2.38) 

where   is the cell rotation period.  
If “melted” vacuum cools down to the temperatures below critical, cθ , cellular 

formation starts again. Vacuum can produce cells of different types that belong 
to different zones of stability. The number of cells of each type depends on the 
corresponding chemical potential jµ . 

Let us illustrate this on a simple example, when the resulting cell mixture con-
sists only of two types of cells, Z1-cells and Z2-cells. According to our associa-
tions with the standard model, these cells represent respectfully electromagnetic 
interactions and weak nuclear interactions. We want to estimate their relative 
input, i.e. ratio 2 1Z Zw w , where 1Zw  and 2Zw  are probabilities to find respec-
tively Z1-cells and Z2-cells. In a two-component mixture, the total probability is 

1 2 1.Z Zw w+ =                         (2.39) 

We can replace 1Zw  and 2Zw  with trigonometric functions of a single pa-
rameter, angle γ , which we call a mixing angle 

2 2

2
1

2
2

cos sin 1

cos

sin
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Z

w

w

γ γ

γ

γ

 + =


=
 =

                     (2.40) 

Let us assume that at the melting point the temperature is fixed and is cθ . 
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Then, using (2.29) and (2.36), one can find that the 2 1Z Zw w  is also fixed and is 

12 1 2

1

exp 0.214,Z
F

Z c

w
w

µ µ
δ

θ
− −

= = ≈ 
 

                (2.41) 

Here 1 0µ = , 2
1 ln Fµ δ=


, and Fδ  is the Feigenbaum delta.  

Using (2.40) and (2.41), one can find that the mixing angle γ  is also fixed 
and is 

2

1

atan 24.8 .Z

Z

w
w

γ
 

= ≈  
 

                     (2.42) 

Recall, that in the standard model, there exists a fixed number 28.7Wθ ≈  , 
which value is close to γ , which also calls “mixing angle” (the Weinberg mixing 
angle or electroweak mixing angle), because it provides the relative input of 
electromagnetic (B0-boson) and weak (W0-boson) components in their mixture 
that calls photon. 

The Weinberg mixing angle is an empirical constant. It is connected to the 
electromagnetic and weak interaction coupling constants α  and wα  via Equa-
tion (recall (1.8)) 

2 1sin .W F
w

α
θ δ

α
−= ≈                        (1.8) 

By comparing (1.8) and (2.41), one can deduce that the coupling constants 
can be expressed via cellular chemical potentials 

2 1 2

1

exp .Z

w Z c

w
w

µ µα
α θ

 −
≈ =  

 
                   (2.43) 

This remarkable result suggests that the standard model coupling constants 
are thermodynamical characteristics of the corresponding fields.  

Extending the model to three-component mixture is straightforward. Adding 
Z3-cells associated with the strong nuclear interactions, and including the strong 
coupling constant sα  in (2.43) gives us the proportion 

231 2
3 2 1: : : : exp : exp : exp 1: : ,w s Z Z Z F F

c c c

w w w µµ µ
α α α δ δ

θ θ θ
     

≈ = ≈     
     

 (2.44) 

that is in agreement with(1.13)! 

2.8. Anti-Cells  

Charge conjugation is the only component of CPT-symmetry, which has an 
analog in the proposed model.  

If in a given cell we invert directions of all radial flows, we obtain a compli-
mentary charged cell. In the standard model, anti-particles can be represented as 
particles evolving backward in time. This possibility is inherited from Hamilto-
nian framework where time reversibility is one of the fundamental symmetries. 
In dissipative framework where the proposed model belongs to, we cannot revert 
time direction. This would convert all attractors into repellers and instead of 
asymptotic stability we obtain chaos. To invert intracellular flow directions 
without reversing time direction, we will use specific features of the even itera-
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tion function. To describe anti-cells, we will replace the original iteration func-
tion with its negative copy 

( ) ( ), , .B Bχ χ− ≡ −                    (2.45) 

The inverted map (2.45) evolves in the same time direction. It possesses all 
features of the original map (2.5). One can find exactly the same special points at 
the same places, the same parameter values for , ,λ β   and jµ , the same rela-
tions among them, the same levels of the asymptotic stability, the same probabil-
ity distributions, etc. The only difference is that all intracellular flows are re-
verted and all charges have the opposite polarities. 

The combined cell/anti-cell iteration function is  

( ) 21 ,B B χ±  = ± − +                   (2.46) 

where sign “+” stands for cells, and “–” for anti-cells. 
The combined cell/anti-cell bifurcation diagram is shown in Figure 16. It 

comprises the original diagram that depicts fixed charge values for cells (shown 
in black) and the inverted diagram that depicts fixed charge values for anti-cells 
(shown in red). 
 

 
Figure 16. Combined cell/anti-cell bifurcation diagram. 

2.9. Discrete Cell Distribution Implies Quantized Charges 

In section 2.6, we found that, for not extremely hot vacuum, cell distribution 
among the attractors is practically discrete. Almost all the cells are located near 
the superattractors, and superattractor characteristics become physical con-
stants. The superattractor charges are among these special numbers. The charg- 
ed superattractor states are shown on the bifurcation diagram in Figure 17 by 
small color circles. Each charged state has its counterpart (the anti-state with the 
opposite charge polarity). Beside the charged superattractor states there exist 
neutral superattractor states. They are shown by white circles. 
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Figure 17. Quantized charges of the proposed model are shown by color circles. 
 

In zone 1Z , which we associate with electromagnetic field, the only superat-
tractor state is neutral, 1, 0Sχ ∞ = , and this is in agreement with electrically neu-
tral photons.  

In zone 2Z , which we associate with weak nuclear field, there exist one neu-
tral superattractor state and two complimentary charged states (purple circles). 
The charged states are in agreement with weak charge spectrum. Recall that in 
weak interactions, there exist neutral mediators, 0W  boson, and charged me-
diators, W ±  bosons, carrying charges e± . 

In zone 3Z , which we associate with strong nuclear field, there exist one 
neutral state and three pairs of complimentary charged states shown by red, 
green, and blue circles. The charged states are in agreement with the color 
charge spectrum carried by gluons, and we can associate red, green, and blue 
superattractor charges with color charges of chromodynamics. 3Z  neutral state 
has no analog in the standard model, but it does play an important role in ex-
planation of flavor mixing amplitudes. 

One of the spinorial cell peculiarities is that their charged states are dynamical: 
if at one time instant, d-cell is at the neutral (white) state, the next instant, it is at 
the charged (purple) state. The charge pulsations can be leveled at some distance 
from the cells if we couple two d-cells and synchronize them out-of-phase. Then, 
when one of them is charged the other is neutral and vice versa. Another pecu-
liarity is that in q-cells the charge states rotate always in the same order: …→ 
neutral → red → green → blue → neutral →… 

Some important cellular quantum numbers we have encountered in the pre-
vious discussion are summarized in Table 2. 

3
1

0

-1
0 0.5-0.5



V. A. Manasson 
 

1353 

Table 2. Some important cellular quantum numbers. 

Zone Associated Field Topology Charges Chemical Potentials 

1Z  Electromagnetic 1 1=  None 1 0µ =  

2Z  Weak Nuclear 2 2=  e±  1
2 ln lnF c Fµ δ θ δ−= =  

3Z  Strong Nuclear 3 4=  ±red, green, blue 1
3 2 ln 2 lnF c Fµ δ θ δ−= =  

Cell formation probabilities (cell mixing numbers) 
2

3 2 1: : : : 1: :Z Z Z w s F Fw w w α α α δ δ≈ ≈  

Critical temperature of cell dissolution/formation 1~cθ
−  

3. Cellular Networks 

In Section 2, we studied individual vacuum cells. In this part, we explore their 
networks.  

3.1. Intercellular Dynamics. Synchronization between Two Cells 

Synchronization is a ubiquitous phenomenon in self-organized systems [39] [40] 
[41] [42]. Since Huygens’s discovery in 1665, synchronization was observed in a 
number of active dissipative systems: coupled mechanical clocks, chemical reac-
tions, electric and electronic circuits, animated cells, organs, and organisms, 
eco-systems, etc. Synchronization may happen between identical oscillators and 
between unlike devices, between couples and among components of a complex 
system, between oscillators producing near-sinusoidal waveforms and between 
chaos generators. 

Vacuum cells are open systems and may couple to each other via dust ex-
changes as schematically shown in Figure 18. As self-sustained oscillators, they 
may synchronize. Synchronization is a dissipative process that occurs under re-
petition of delayed feedback loops. It is a phase transition that transforms inde-
pendent vacuum cells into coherent networks. After synchronization, most of 
cells operate with one unified frequency (small amount of cells oscillate at dif-
ferent but commensurate frequencies). An important feature of synchronization 
is its universality: synchronized oscillators may differ among themselves by con-
struction, geometry, topology, etc. This means that to synchronize, vacuum cells 
are not required to be identical. Below, we explore consequences of cell synchro-
nization. 
 

 
Figure 18. Cell coupling via flow exchanges. 
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We start with a simple system comprising two coupled phase oscillators, 
which prior to synchronization operated with different natural frequencies 1ω  
and 2ω . Each oscillator imposes a periodical force onto the other oscillator. In a 
simplest case, the forces are sinusoidal. The strength of the force at each time in-
stant depends on the current phase difference between the oscillators, 2 1ψ ϕ ϕ= − . 
To describe phase dynamics, we use the Adler equation [39]: 

d sin ,
d

K
t
ψ

δω ψ= − +                      (3.1) 

where 2 1δω ω ω= −  is initial frequency difference, and K  is a coupling pa-
rameter. We adapt this equation to discrete-time dynamics and transform it to 
the form 

1 sin ,n n nKψ ψ δω ψ+ − = − +t t                (3.2) 

where nψ  is the phase difference immediately after 𝑛𝑛-th iteration step, and 

1n nt t+= −t  is the iteration time interval. To simplify notations, we set 1=t , 
and obtain iterated map 

1 sin .n n nKψ ψ δω ψ+ = − +                  (3.3) 

If the oscillators have different natural frequencies and there is no coupling 
between them, the phase difference ψ  grows without limitation. When coupl-
ing is strong enough, the phase difference ψ  may converge to a fixed point 
ψ ψ∞→ . The phenomenon is known as phase entrainment or phase locking.   

Map (3.3) possesses asymptotic stability nψ ψ∞→  if initial frequency difference 
Kδω <  (Figure 19 central part). Otherwise, the map is diverging nψ →∞ . 

 

 
Figure 19. Phase differences nψ  for map (3.3) after n  iteration steps. 

 
A few examples of converging nψ  trajectories are shown in Figure 20. Inde-

pendent on initial phase difference 0ψ , the trajectories converge to fixed values, 
which depends on the initial frequency difference ( )ψ δω∞ . Trajectories be-
longing to different δω  are shown in different colors.  

Phase-difference (ψ ) dynamics are similar to charge ( χ ) dynamics, which we 
studied in Section 2. At the beginning of evolution, nψ  trajectories belonging to 
different δω  entangle and are resolved only after some elapsing time. The 
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uncertainty intervals n nψ ψ ψ∞∆ = −  shrink with time exponentially (Figure 21). 
Their slopes λ  depend on the initial frequency difference δω  and coupling 
K . The highest convergence rate occurs at superattractor 0δω = . If δω  is 
fixed, the highest convergence rate occurs when 1K = . 
 

 
Figure 20. Examples of phase difference nψ  evolution. Trajectories with different δω
-values are shown by different colors. 
 

 
Figure 21. Examples of uncertainty interval nψ∆  evolution. 

 
After synchronization, both oscillators operate at the same frequency. The 

frequency difference is always zero and δω  does not provide much informa-
tion about oscillators. This function is “delegated” to a new order parameter, 
fixed points ψ∞  

Sync
δω ψ∞⇒                           (3.4) 

We define energy ′  similarly to how we define it for a single cell (Equation 
(2.25)), but instead of the cell period we use frequency ω  which is established 
after synchronization 

.λω′ ≡                           (3.5) 

Function ( )ψ′  has form of a potential well (Figure 22). The well depth de-
pends on coupling K . For stronger couplings, the well deepens and its walls 
gradually acquire logarithmic shape (Figure 22(left)). For small couplings, the 
well bottom is smooth and its shape more resembles cosine function (Figure 
22(right)). 
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Figure 22. ( )ψ′  for 0.3 1K = ÷  (left) and 0.1K =  (right). 

 
To compare shapes of ( )ψ′  and ( )B  wells, we need to bring their ar-

guments to the same scale. We do this with a help of normalized distance to the 
attractor β , which in this case we define as 

.π
2

ψ
β =                           (3.6) 

Wells ( )B  and ( ), 1Kβ′ =  with reduced arguments are shown side by 
side in Figure 23. The calculated points (rhombs) fall on red curves describing 
logarithmic functions ln β−  and 2ln β−  respectively. The data suggest that 
for all β-values 

( ) ( )2β β′ =                        (3.7) 

This equality suggests that the energy (thus the asymptotic stability) of two 
strongly coupled and synchronized cells is equal to the doubled energy of a sin-
gle cell, which is in accord with energy extensivity. 
 

  
Figure 23. Single cell potential well ( )β  (left) and potential well for strongly coupled 

and synchronized couple ( )β′  (right). 

 
Synchronization process we considered above describes operation of self- 

sustained oscillators with periodical waveforms and can be applied to the circu-
lar cellular flows. Beside circular, cells possess a periodic radial flows. In fact, 
both types of flows involve the same dust particles, and being nonlinear, tend to 
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synchronize. For example, converging evolution functions nχ  in Figure 3.1 
have oscillating components with period 2 t . 

To illustrate how radial flows may synchronize, we can employ Wick’s rota-
tion, t it→− . This transformation converts real exponents ( )exp t  of con-
verging evolutions into imaginary exponents ( )exp i tω  of periodical processes  

( ) ( )exp exp .
t it

t i t
ω

ω
=−
→−
⇒


                      (3.8) 

Here to avoid confusion, we use two different parameters for imaginary time 
and real time, ω = − .  

The synchronization schema is shown in Figure 24. 
 

 
Figure 24. Illustration of synchronization schema under Wick’s rotation. 

 
If in the real-time state-space, two cells have close energies 1 2~  , in the 

imaginary-time state-space, they have close frequencies, 1 1ω→ , 2 2ω→ , 

1 2~ω ω . Then they synchronize 1 12 2ω ω ω→ ←  at frequency 12ω , which in 
the real-time state-space corresponds to the energy 12 12ω →  . In summary, we 
obtain that cells synchronize their energies 1 12 2→ ←   .  

Not all synchronized cells may have the same frequency. Small amount of 
them that are at some distance from the superattractors, may synchronize at 
commensurate frequencies 2 1n mω ω′ ′= , where n  and m  are integers [41]. It is 
important that even in this case, the cells are subjects to the phase entrainment 
and their phase differences can be used as network characteristic (order para-
meter). For simplicity, in the following discussions we assume that all cells syn-
chronize at a single frequency.  

A special case is synchronization of spinorial cells. The spinorial cell full pe-
riod is 2π j  and their phase differences can be as big as 

2π for 2 cells
6π for 3 cells

Z
Z

δψ
ψ

δψ
+

=  +
                    (3.9) 

where π 2δψ <  is a small deviation from integer number of 2π . This hap-
pen when the synchronized cells are located at different attractor loops (Figure 
25). We define two principally different synchronization modes: in-phase syn-
chronization, π 2ψ δψ= < , and out-of-phase synchronization,  

2π , 1,2,3w wψ δψ= + = .  
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Figure 25. Out-of-phase synchronized d-cells (left) and q-cells (right). Black points show 
cell locations at their attractors at some time instant. 
 

At normal temperatures, most of the cells are located near the superattractors, 
operate at close frequencies, and 0δψ → . 

3.2. Emergence of Global Symmetries. Phase Difference as  
Order Parameter 

Before being synchronized, cells rotate each with its own pace and count their 
local time independently. After synchronization, they form coherent networks. 
They clock time with the same rate. Synchronization is a phase transition that 
produces a major symmetry: global time scale. 

This symmetry provides a basis for unification of scales of other physical pa-
rameters. The list includes energy  , temperature θ , asymptotic stability λ , 
critical temperature of cell dissociation/formation cθ , and chemical potentials 
µ , which were defined as derivatives of time intervals.  

In coupled cell networks, phase entrainment creates a new order parameter– 
phase difference ψ  between the cells. If we zoom out a synchronized cellular 
network, its granular (cellular) structure smoothes out, and the network acquires 
features of fiber bundle (Figure 26), where the base space is physical space and 
the cellular dynamics are elevated to the fibers. 
 

 
Figure 26. Zoomed-out synchronized cellular network resembles fiber bundle. 

 
Due to the phase entrainment, the fibers are inherently connected, and the 

local phase difference ψ  between cells (now between fibers) acquires function 
of a field variable. 

Each fiber stems from its own cell and inherits the cell topology. Respectively, 
we can discriminate fibers with simple rotations from the spinorial fibers. Fiber 
bundle constructions emergent from 1Z , 2Z , or 3Z  cells, resemble respectively 

𝒲2 = 2

1st Cell 2nd Cell

𝜓 = 2𝜋

𝒲3 = 4

1st Cell 2nd Cell
𝜓 = 4𝜋
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electromagnetic, weak, or strong fields of the standard model.  
Spinorial cells can form diverse out-of-phase synchronization patterns, and 

toy particles (as we call them) constructed from the spinorial cells inherit sym-
metries of their synchronization patterns.  

Synchronized cellular networks comprise cells of different geometry and sizes. 
It does not concern with distances between the cells. The networks are not crys-
tal lattices and they do not provide space gauges. However, it is still possible to 
calibrate space intervals on a premise that we have had a universal time scale and, 
in addition, postulate that network excitations propagate through the network 
with a constant speed c . Borrowing this postulate from relativity, we can define 
a standard space interval   as 

,c=                            (3.10) 

where   is the standard time interval (cell rotation period).  
This definition obviously connects space and time scales, but it does not es-

tablish sameness between space and time. Time remains to be irreversible and 
space-independent.  
 -based time scale is not the only time scale that emerges in cellular net-

works. Later we will discuss dilated time resembling that of general relativity.  
There exists one more symmetry related to our approach that is worth men-

tioning. The important feature of iteration function (2.6) is that it has one and 
the only extremum. This feature is called unimodality. Because of this feature, 
the function belongs to the class of Feigenbaum universality. If one replaces this 
function with another function from this class, most of the emergent phenome-
na we encounter in this paper will be preserved. (S)he would find a similar bi-
furcation diagram, alike probability distributions, the same sets of discrete states, 
quantized charges, spinorial cells, the same values of chemical potentials, and so 
on. Even the charge conjugation symmetry can be recovered with a new function 
if it has a smooth extremum, which can be approximated by a quadratic parabo-
la, by properly selecting coordinate system and its origin.   

3.3. Quantum Distributions 

In Section 3.1, we considered synchronization phenomenon called phase en-
trainment. Each of coupled cells in the network forces the other cells to change 
their energies toward its own value. After iterative “negotiations” the cells come 
to a common trade-off value. If we have more than two cells in the network and 
some of them have been already synchronized, the synchronized cells have pro-
gressive advantage. This nonlinearity creates a positive feedback: the more cells 
in the network have been synchronized at a given energy, the higher is the 
probability to get another cell at the same energy. Like in the case with iron filing 
described above, synchronization spontaneously break the original, almost con-
tinuous, cell distribution and create a discrete spectrum (Figure 27). Cell syn-
chronization also alternates the Boltzmann-like cell distribution (2.36) that we 
encountered in the previous chapters. 
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Figure 27. Synchronization alternates cell distribution among the energies. 

 
To formalize the effect of phase entrainment, let us consider a group of cells 

some of which have been synchronized at states with energy  . Let the rest of 
the cells in this group have close but different energies. The synchronized cells 
force the latter to synchronize at the same energy. Let the initial probability to 
find a cell at state   is 𝑤𝑤 and the resulting probability is w+ . In simplest case, 
the probability to get a new cell at the same state is proportional to the number 
of cells at this state wκ+ + , where κ+  is the proportionality coefficient. The total 
number of the new cells is w wκ+ + , and the total number of all cells at state   
after adding the new cells is 

( )1 ,w w wκ+ + += +                      (3.11) 

Signs “+” in (3.11) indicates that the synchronization leads to phase-entrain- 
ment (which is not the only possibility). 

By solving Equation (3.11) for w+ , we obtain that  
1 ,

1
w

w
κ

+

+

=
−

                      (3.12) 

and after substitution of Boltzmann-like factor ( ),jw w θ=  , where ( ),jw θ  
is given by partition function (2.36), in (3.12), we obtain a new partition func-
tion 

( )
( )

1

,
1

0

, .
exp 1

j
j

w
C

κ
θ

µ
κ

θ

−
+

+
−

+

=
+ 

− 
 




          (3.13) 

Remarkably, Equation (3.13) has Bose-Einstein distribution form. It is ob-
tained without requirement of the identity of the participating cells! 

Phase entrainment is not the only synchronization scenario. At the opposite 
pole, synchronization may quench oscillations [40] [45] [46] [47] [48], the phe-
nomenon known also as amplitude death or oscillation cessation. Quenching 
scenario depends on the details of involved oscillators, their coupling mechan-
isms, and other conditions. Applying to vacuum cells, we assume that quenching 
destroys cells as self-organized entities and they just dissolve into the dust back-
ground. We assume that quenching is also affected by a positive feedback. However, 
this time the cells compete not with their rivals, but with the noisy background. 
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The more cells ceased to exist the stronger is the background forces destroying 
the remaining cells.  

To describe cell distribution under quenching scenario, we use equations sim-
ilar to (3.11) where we replace probability w+  with w− , coefficient κ+  with 
κ− , and sign “+” in parentheses with sign “−” to keep 0κ− > . After these re-
placements we obtain that 

( )1 .w w wκ− − −= −                      (3.14) 

Signs “−” in (3.14) indicates that the synchronization leads to the cell- 
quenching.  

By solving (3.14) for w− , we obtain that 

1 ,1w

w
κ

−

−

=
+

                       (3.15) 

and after substitution of ( ),jw w θ=   in (3.15), we obtain that cell distribution 
for quenching scenario is 

( )
( )

1

,
1

0

, .
exp 1

j
j

w
C

κ
θ

µ
κ

θ

−
−

−
−

−

=
+ 

+ 
 




           (3.16) 

Distribution (3.16) has Fermi-Dirac distribution form. 
We demonstrated that synchronization may transform the original distribu-

tion of independent cells into distributions typical for quantum-mechanical ob-
jects. Unlike quantum mechanics, where quantum statistics are intimately con-
nected to the strict identity of particles, dissipative cells synchronize and form 
quantum distributions even if they are not copies of each other. This is a big 
relief from the enormous constraint. This is the power of synchronization, the 
power of asymptotic stability. 

3.4. Synchronized Spinorial Cells as Particle Building Blocks  

In this paper, we consider three types of cells belonging to zones Z1, Z2 and Z3. 
Their attractors are shown in Figure 28. Each attractor loop has its own color in 
the correspondence with the accepted charge-color code shown in Figure 17. 

White loops represent quasi-neutral states/phases, purple loop represents 
±e-charged phases, and red, green, and blue loops represent color-charged 
phases. Color-charge phases are ordered. They create a cyclic semi-group. The 
order for cells (anti-cells) is always the same and unidirectional: … → neutral → 
red → green → blue → neutral →… . 
 

 
Figure 28. Attractor loop diagrams for Z1, Z2, and Z3 type cells. 

𝒲3 = 4𝒲2 = 2𝒲1 = 1
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With a few exceptions, we consider cellular networks comprising mostly of 
Z1-cells having single-loop attractors ( 1 1= ). When consider complexes of 2Z  
and 3Z  spinorial cells, which have more complex attractor topology 
( 2 32, 4= =  ), we assume that they are immersed in 1Z  network as topo-
logical defects. Two, or more, directly coupled spinorial cells constitute a toy 
particle. 

Each couple of synchronized cells carries a connecting link, that represent a 
special interest. We associate the connecting links with mediators of the corres-
ponding fields. In case of synchronized spinorial cells, the connecting links inhe-
rit spinorial features from their host-cells and we call them spinorial links. Un-
like regular links that occur between connected Z1-cells, the spinorial links are 
localized. They cannot travel across the network without their host-cells. Like 
extremely heavy W-bosons and confinement gluons, the spinorial links are 
doomed to be internal particle features.   

To synthesize a toy particle, we are equipped with only four types of building 
blocks: 2Z  spinorial cells and anti-cells, and 3Z  spinorial cells and anti-cells. 
Their combinations provide six different link types. This number is multiplied 
by the number of different spinorial-cell synchronization patterns (Figure 25). 
Different links may have different coupling strengths and carry different ener-
gies, that should diversify particle masses. However, these particle features are 
out of the scope of this paper. 

Examples of spinorial links are illustrated in Figures 29(a)-(c). Not all of the 
possible spinorial links have their analogs in the standard model. For example, a 
link between a neutral spinorial cell and a charged spinorial cell shown in Figure 
29(d), or a link between d-cell and q-cell. 
 

  

  
Figure 29. Spinorial cell links as localized bosons (shown by wavy lines): (a) charged 
weak boson; (b) neutral weak boson; (c) green-red gluon (d) white-red gluon. 
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Despite that the synchronized cell networks not necessary create a lattice, it is 
tempting to draw a parallel between the cell connecting links and solid-state 
phonons. In this respect, we would associate links between the in-phase syn-
chronized cells with acoustic phonons, and links between the out-of-phase syn-
chronized spinorial cells as optical phonons. Like their phonon counterparts, we 
expect that the “acoustic” links and “optical” links have different dispersions and 
different masses. 

While building the toy-particles from the spinorial cells, we avoid in-phase 
synchronization between directly connected spinorial cells (light “acoustic” links) 
assuming that they are not stable enough.  

Out-of-phase spinorial links carry at least one charge. Their charges rotate in 
synchrony with their host cells. Here is an example of “gluon”-link charge rota-
tion in time 

1st cell : neutral red green blue neutral→ → → → → →   

2nd cell : red green blue neutral red→ → → → → →   

neutral red green blue neutral
Gluon :

red green blue neutral red
         

→ → → → → →         
         

   

To avoid long phrases, we provide nicknames to the spinorial cells. They are 
listed in Table 3. 
 
Table 3. Nicknames for spinorial cells. 

Spinorial Cell or Couple Nicknames Comment 

Z2-cell d-on 
d-cell “d” stands for double loops 

Z2-anti-cell d’-on 

Z3-cell q-on 
q-cell “q” stands for quadruple loops 

linked q-on and q’-on 
“q-arc” co-sounds with “quark” 

Z3-anti-cell q’-on 

Z3-cell coupled to Z3-anti-cell q-arc 

 
In the paper, we use a number of illustrations/diagrams to better communi-

cate the ideas. In the following discussions we will use one more type of dia-
grams, circular time-diagrams that linked to the other type diagrams as it is 
shown in Figure 30.  

Upper line diagrams illustrates position on the bifurcation diagram (Figure 
30(a)) and temporal behavior of Z2-cells: waveform (Figure 30(b)), loop-dia- 
gram (Figure 30(d)), and circular-time diagram (Figure 30(c)). 

Bottom line diagrams illustrate Z3-cell dynamics. 
Each circular time-diagram represents one full period   of a single cell. At-

tractor loops are represented by colored sectors according to the used above 
charge-color code. The upper sector (twelve o’clock position) shows current 
charge (state). The diagrams rotate in time, always counterclockwise. The cell 
rims are black in contrast to the anti-cell rims, which are red. In addition, d-on 
and d’-on diagrams expose the cell charge polarity marked by “−” and “+” signs. 
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Figure 30. (a) Bifurcation diagrams; (b) Charge trajectories; (c) Circular time diagrams; 
d: Attractor loops. 
 

Examples of circular time diagrams of in-phase and out-of-phase synchronized 
spinorial couples are shown in Figure 31. The formers have alike sectors at 
identical positions. 
 

 
Figure 31. Examples of in-phase synchronized couples (left) and out-of-phase synchro-
nized couples (right). 
 

When building the toy particles, we use the following rules: 
 the stable spinorial links are links between out-of-phase synchronized couples; 
 d-cells/anti-cells are the only carriers of the electric charge ( e± ); 

 d-cells/anti-cells are also the only carriers of 
up

down

+ 
 
 

-and 
up

down

− 
 
 

-flavors; 

 q-arcs are the only carriers of color charges and ( )u d c s x y t b
-flavors. They are electrically neutral; 

 in-phase synchronized q-arc is a carrier of unstable x y -flavor and represents 
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an intermediate (unstable) state; 
 toy leptons consist of coupled d-cells; 
 toy hadrons consists of coupled d-cells and q-arcs. 

Flavor assignments illustrated by circular time diagrams are shown in Figure 
32. 
 

 
Figure 32. Flavor assignment diagram. Small arrows attached to 𝑑𝑑-cells represent links 
to q-arcs. 
 

To match the set of quark flavors of the standard model, we mix q-cells/anti- 

cells carrying ( )u d c s t b -flavors and d-cells/anti-cells carrying 
up

down

± 
 
 

-flavors and obtain the desired flavor set as direct (Cartesian) product  

( ) .
u c t upu d c s t b
d s b down

±  
= ×  

   
            (3.17) 

We avoid fractional electric charges by representing hadrons as toy lepton/q-arc 
mixtures. 

Full set of q-arc flavors ( )u d c s x y t b  with x y  placed properly 
between c s  and t b  forms a cyclic semi-group (Figure 33). Group generator 
g  produces unidirectional π 2 -rotation of one of the two coupled circular 
time diagrams. Each π 2 -diagram-rotation corresponds to cell transition from 
one attractor loop to the next one, or 2π -phase shift in the cell dynamics. The 
reverse rotations are prohibited because of time irreversibility. Instead, we rotate 
the complimentary diagram in the same direction. We use this symmetry (or an-
ti-symmetry) when discussing flavor mixing matrix. 
 

 
Figure 33. Q-arc flavors ( )u d c s x y t b  form a cyclic semi-group. 
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Beside different compositions and synchronization patterns, toy cells may 
possess different stereometry, architectures, and spinorial links. For example, 
cell permutations inside a particle may create a new particle(s).  

Anti-particles are obtained from the corresponding particles by replacing all 
cells with their inversed counterparts, while preserving the original geometry 
and synchronization patterns. 

4. Toy Particles 

We associate small groups of synchronized and directly linked spinorial cells 
with toy particles. Toy particles are immersed into Z1-cell “electromagnetic” 
network. There exist four types of the toy particle building blocks: d-on, d’-on, 
q-on, and q’-on. The diversity of toy particles comes not only from different 
compositions but also because of their diverse synchronization patterns and ar-
chitectures. Below, we consider a few examples of toy particles. They do not ex-
haust all possibilities but rather illustrate the power and capabilities of cellular 
dynamical networks.   

4.1. Toy Leptons Spin 

We build toy leptons exclusively from d-cells/anti-cells. Each directly coupled 
pair is synchronized out-of-phase. One possible arrangement of toy-leptons is 
shown by their circular time diagrams in Figure 34. 
 

 
Figure 34. Toy lepton family. Electric charge pattern mimics pattern of real particles. 

 
The charge pattern of toy leptons mimics the charge pattern of the standard 

model leptons. Like real leptons, the toy lepton family consists of three genera-
tions. Each generation has one positively charged particle, one negatively charged 
particle and one ( eν  and µν ) or two ( τν ) neutral particles (in Figure 34 only 
one τ-neutrino is shown).  

Toy electron e−  consists of two out-of-phase synchronized d-ons (Figure 34 
and Figure 35)). When one cell of the couple is in the charged phase, the other 
cell is electrically neutral, and vice versa. These charge oscillations create im-

𝑒 − 𝑒 +

µ − µ+

𝜈 𝜏𝜏− 𝜏+

𝜈 𝑒

𝜈 µ

1st Generation

2nd Generation

3rd Generation
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pression that the charge is moving in space from one cell to the other and back-
ward (see Figures 35). However, the charge “motions” in space are not real, and 
their apparent “speed” may exceed the speed of light without confronting the 
relativity principles. The surrounding cells response to the charge pulsations by 
inducting currents i . Currents cannot go directly through d-ons. Therefore, the 
currents spontaneously break symmetry and create current loops. The current 
directions and orientation are established randomly through their recurrent in-
teractions with d-ons. Their stability is fragile and their patterns can be easy al-
ternated by perturbations. However, at normal conditions, the current produc-
ing oscillating charge ( e− ) is rather a constant. The cell oscillation period (  ) 
is also a constant. Therefore, the induced current loops and the magnetic mo-
ments they create are also constants. We associate the phenomenon with the toy 
particle spin. It is obviously due to the spinorial features of d-ons (two-loop at-
tractors) and out-of-phase synchronization. 
 

 
Figure 35. Diagram explaining origin of toy particle spin. Pulsating charges of out-of- 
phase synchronized d-ons (two left diagrams) induct current loops and magnetic mo-
ments in the surrounding network (two right diagrams). Purple and white circles repre- 
sent d-ons in charged and neutral states respectively. Grey circles represent surrounding 
electromagnetic cells. 
 

Returning to Figure 28, toy positron, e+ , consists of two out-of-phase syn-
chronized d’-ons. A neutral couple of d-on and d’-on plays the role of the elec-
tron neutrino, eν .  

The second generation ( ,µ µ− +  and µν ) is constructed by adding one d-on 
and one d’-on to each particle of the first generation. The additions do not 
change the charge pattern, but rather increase the particle energy (mass) and, 
most likely, affects its stability (lifetime). 

The third generation ( ,τ τ− +  and τν ) is obtained the same way as the second 
generation, by adding two more complimentary charged d-cells to each particle 
of the second generation. Unlike two previous generations, the approach allows 
to obtain two different tau-neutrinos, τν  (only one is shown in Figure 34). 

4.2. Toy Hadrons 
We assemble toy hadrons as combinations of q-arcs and d-cells/anti-cells. Q- 
arcs provide ( )u d c s t b -flavors to hadrons, and d-cells/anti-cells provide 

up
down

± 
 
 

-flavors and electric charges. Direct product of ( )u d c s t b

𝑡 𝑡 + 𝒯/2

𝑖 𝑖up down
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-flavors and 
up

down

± 
 
 

-flavors provides a set of six flavors resembling those of 

the standard model quark flavors.  
Toy mesons consist of one q-arc couple and two d-cells/anti-cells. Coupled 

circular time-diagrams of a group of toy mesons comprising u d -flavored 
q-arcs are shown in the left column in Figure 36. The group consists of one po-
sitively charged particle carrying flavor ( ) ( )u u d up+ += × , one negatively 
charged particle carrying flavor ( ) ( )u u d up− −= × , and two neutral particles 
carrying two different flavors ( ) ( )d u d down= × . The latter differ by their ar-
chitectures: in one of them, d-on is connected to q’-on and d’-on is connected to 
q-on, in the other, d-on is connected to q-on and d’-on is connected to q’-on. 

A similar meson quartet comprising c s -flavored q-arcs is shown in the right 
column in Figure 36. 
 

 
Figure 36. Quartets of u d - and c s -flavored toy mesons have the same electric charge 

patterns as quartets of real K - and π η -mesons that constitute eight-way octet shown 
in the diagram at right. 
 

The two toy-meson quartets have the same charge pattern as octet of real par-
ticles shown in “eight-way” diagram at the right. 

In the same way we can assemble a meson quartet carrying t b -flavored 
q-arcs. 

We can significantly extend the toy meson family by adding other geometries, 
like “stars”, “open chains”, and “tetrahedrons” shown in Figure 37. 
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Figure 37. Different toy mesons as spinorial cell “molecules”. 

 
By adding one more q-arc to a toy meson we obtain a toy baryon. The baryons 

carry the same charge patterns but the number of different flavor combinations 
is significantly increased. Baryon flavors are direct products of  

( ) ( ) up
u d c s t b u d c s t b

down

± 
× × 

 
 

In Figure 38 we show an example of a toy baryon octet based on u d - and 
c s -flavored q-arcs. The baryons have octahedron geometry. To prevent the di-
agram obstruction, links between d-ons and q-ons are not shown. The octet 
consists of two positively charged particles, two negatively charged particles, and 
four neutral particles. The toy baryon octet has a charge pattern similar to that of 
the real baryon octet comprising ,u d  and s  quarks (Figure 38, the diagram 
at right). Two u d -flavored particles (left column) are associated with proton 
and neutron. 
 

 
Figure 38. Octet of u d - and c s -flavored toy baryons has the same electric charge 
pattern as octet of real baryons consisting of u-, d-, and s-quarks (“eight-way” diagram at 
right). 
 

An example of “chemical reaction” between toy particles is shown in Figure 39. 
It describes exchange of d-on and d’-on between toy baryon and toy lepton ac-
companied by 2π-phase shift. In reality, neutrino should be replaced with an-
ti-neutrino and moved to the right part of the equation. We write it in the pre-
sented form to simplify the picture. 
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Figure 39. Example of toy particle reaction mimicking neutron disintegration: 

en p eν + −+ = + . 

4.3. Q-Arc Quartet and Flavor Mixing Matrix 

The conventional six quark flavors constitute 3 3 CKM×  flavor mixing matrix, 
which we briefly discussed in Section 1.3. We have observed that the matrix ele-
ments ijV  can be approximated by the powers of the Feigenbaum delta 

, 0,1, 2,3p
F pδ − = . The approximate CKM’-matrix is shown in Figure 40(left). 

We also found that 3 3 CKM ′× -matrix can be expanded to more symmetric 
4 4×  matrix, which is shown in Figure 40(right). 
 

 

Figure 40. Approximate 3 3 CKM ′× -quark mixing matrix (left) and 4 4× -matrix 
q-arc mixing matrix that includes x y  flavor corresponding to in-phase synchronized 
q-arcs. 
 

Q-cells in q-arcs can synchronize in four different patterns. We associate these 
patterns with four q-arc flavors ( )u d c s x y t b . They are shown in the 
4 4× -matrix in the upper line and left column in the proper order. The matrix 
elements related to the “unstable” in-phase synchronized q-cells and carrying 
x y  flavor are shown in pink. Remarkably, the pink cells accommodate all the 

Feigenbaum delta powers missing in 3 3×  matrix. Moreover, 4 4×  matrix 
elements are ordered! Their orders are shown by black and red arrows in Figure 41. 
 

 
Figure 41. Matrix elements represent an ordered set of Feigenbaum delta powers. 
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Each arrow starts and ends at the same diagonal element. Moving from one 
matrix element to another along the arrow is accompanied by Fδ -times reduc-
tion of the corresponding mixing amplitude ijV . According to q-arc synchroni-
zation schema, each step along the arrow corresponds to 2π -rotation in q-cell 
dynamics, or in the other words, to a jump from one attractor loop to the next 
one (see Figure 42(central diagram)) or one-sector rotation of one of the two 
coupled circular diagrams (Figure 42(left and right diagrams)). 
 

 
Figure 42. Examples of one-step shift along the red arrow (left) and three-step shift along 
the black arrow (right), and the corresponding jumps between the attractor loops (cen-
ter). 
 

All q-arc synchronization patterns and flavor changes covered by 4 4×  ma-
trix are shown in Figure 43 by means of coupled circular time diagrams. 
 

  

 
Figure 43. 4 4×  q-arc flavor changing matrix represented by coupled circular time-di- 
agrams. Each diagram couple is marked by the corresponding row/column number and 
the flavor name. 
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Moving farther, we describe transitions from one attractor loop to another 
(Figures 42(center)) as “tunnel” jumps (Figure 44) between the two synchro-
nization states. The specificity of this “tunneling” is that it occurs not in the real 
space, but rather in the state-space. We can also say that this is tunneling in 
time. 
 

 
Figure 44. “Tunneling in time”. Diagram describes the same processes as shown in Fig-
ure 42. 
 

Using the analogy with the space tunneling, we estimate the probability ijW  
of loop-to-loop “tunnel” jumps. We replace tunnel distances with temporal in-
tervals 

Δ , 0,1,2,3,ijt p p= =t                     (4.1) 

where t  is time required for a cell to complete a single loop rotation, which is 
also the iteration time interval, p  is the number of steps along the arrows in 
Figure 41 diagram and also power in p

Fδ
− .  

We assume that the tunnel barrier height φ  is equal to the q-arc internal 
energy q , which is approximately doubled energy of a single q-cell or 32µ  

( 3
2 ln Fµ δ=


 is chemical potential in zone 3Z ) 

3
2 12 2 ln ln ,q F Fφ µ δ δ= ≈ = =
 t

              (4.2) 

where 4= t  is q-cell rotation period. 
Now, we use the tunnel exponent to estimate the loop-to-loop jump probabil-

ity which is 

( )exp Δij ijW tφ≈ −                       (4.3) 

After substitution of (4.1) and (4.2) into (4.3), we obtain that probabilities 
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ijW  are equal to the matrix elements ijV  

exp ln .p
ij F F ij

pW Vδ δ − ≈ − = ≈ 
 

t
t

               (4.4) 

Like all the phenomena we explore in this paper, q-arc flavor transformations 
are time irreversible. The direction of q-cell rotation is fixed and cannot be 
reversed, including the direction of the tunnel jumps. If we let cells to tunnel in 
both directions, the small forward three-step forward jumps probabilities, 3

Fδ
− , 

would be masked by much bigger one-step backward probabilities 1
Fδ
−  and the 

mixing matrix elements would have different values and the matrix itself would 
have quite different appearance. 

4.4. “Dark Matter”  

The list of electrically neutral toy particles we discussed in previous sections can 
be extended by adding other toy particles. Some examples are shown in Figure 45. 
The picture shows free q-arcs and based on them bigger complexes, and weakly 
and strongly interacting large cellular clusters. Being electrically neutral, they 
barely interact with electromagnetic field but carry energy (mass) and together 
with the previously considered neutral toy particles, can be associated with 
weakly and strongly interacting “dark” matter. 
 

 
Figure 45. Examples of strongly and weakly interacting electrically neutral spinorial-cell 
assemblies. 
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5. “Relativistic” Phenomena and the Dark Zone 
5.1. Time Dilation and Related Topics 

We have seen that cell rotation period   can be used as a natural time unit in 
synchronized cellular networks. However, we did not provide any clue how to 
use it in practice. The problem is that with the existing technology and arsenal of 
instruments, we cannot trace the dust particle trajectories and measure time in-
tervals linked to  . Any imaginary clock would consist of at least two cells, and 
the clock rate would depend on how quickly the cells can establish their mutual 
dynamics. Normally, the speed of intercellular interactions is slower than intra-
cellular relaxation, and is parametrized by parameters λ , β , or energy  . It 
is more convenient to have a measure of cell relaxation rate expressed as time 
intervals. We define cellular relaxation time τ  as  

1.τ −= −                            (5.1) 

We assume that the clock rate is limited by the cellular relaxation time, and 
use τ  as a time unit for a “practical” scale.  

Unlike the cell rotation period  , relaxation time τ  is not network inva-
riant. Different network regions may have different energies thus different 
τ-scale based clock rates. Using “practical” time unit τ , we can define “practical” 
distance unit x  as 

,x cτ=                            (5.2) 

where c  is the speed of light.  
By this definition, we connect space metric to the time metric. This connec-

tion is formal and does not established physical alikeness of space and time. A 
principal difference is that space is reversible while time is not. Formally, we can 
proceed even farther and convert Euclidian space-time into Minkowski’s space- 
time using Wick’s rotation, t it→− . In this case, definition (5.2) should be re-
placed with this one 

.x icτ= −                            (5.3) 

Formally, Wick’s rotation would transform dissipative processes, described by 
the real time exponents, into periodical processes, described by imaginary expo-
nents. i.e. the self-organized vacuum would be transformed into a conservation 
obeying medium, something resembling vacuum employed by the relativity 
theory or standard model of particle interactions. 

With or without Wick’s rotation, “practical” time gauged by τ  resembles di-
lated time in general relativity. Drawing a parallel between the proposed model 
and general relativity, one can find that the flat space-time happens at superat-
tractors, and the black holes emerge at bifurcations. Remarkably, the black hole 
emergence is accompanied by phase transitions from one type of fundamental 
interactions to another, starting from emergence of cellular structure (electro-
magnetic interactions) through emergence of weak, and strong fields. The initial 
state is lack of electromagnetic interactions and we call it “dark substance”. It 
locates in 0Z  or “the dark zone”. 
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5.2. The Dark Zone 

In this section we briefly explore interval 1 0.5B− < < − , which is located at the 
left of 1Z L  in the bifurcation diagram. This is vacuum state that gives birth to 
all fundamental interactions. We call it the dark zone. Another reason to give 
this name is that in 0Z , amplification parameter 1A < , and vacuum dust self- 
repelling is not balanced by its self-attraction. The vacuum dust progressively 
disperses when we approach the superattractor ( 1B →− ), i.e. behave like under 
action of the dark energy.  

The dark zone has some similarities with the other zones, but it also has a lot 
of differences. ( )tχ -trajectories converge to a fixed point (Figure 46(left)), and 
this is the only fixed point, 1χ∞ = − . The trajectories belonging to different B  
values always entangle with each other. They exponentially converge toward the 
only fixed point (Figure 46(right)). However, their slopes λ  are different for 
different B  values. Formally, we can define energy   relaxation time τ , and 
delayed “practical time scale” using the same definitions as we used for the other 
zones. 
 

  
Figure 46. Examples of evolution of radial flows χ  (left). Examples of evolution of un-
certainty intervals χ∆  in zone 0Z  (right). 
 

Using (2.19) we can define parameter β  to find out that functions ( )β  
and ( )τ β  are practically the same as in the other zones (Figure 47). 
 

 

Figure 47. ( )βn  and ( )τ β  in all semi-zones. Dark zone data are shown by blue cir-

cles. 
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The dark zone possess a strange stability. From the state-space point of view, 
this is a zone of asymptotic stability. Indeed, formally all trajectories asymptoti- 
cally converge toward the unique fixed point (which is also the superattractor). 
From the real physical space point of view, the vacuum dust unboundly disperse 
across the space. The closer the dust locates to the fixed point the stronger is the 
dispersion rate in space. In the dark zone, vacuum dust behaves like a chaotic 
system. The exponential expansion of the dust in space also resembles the 
Hubble law. 

6. Concluding Remarks 

In contrast to the existing tradition, we introduced a new dynamical model 
without any reference to Hamiltonian, Lagrangian, or variational principle. In 
the proposed model, the role of those is delegated to the iteration functions j , 
which comprise all what we need to describe the vacuum cells evolution. 

Curiously, in each zone, j  can be written in a form resembling Lagrangian 
as difference between two functions, j  and j  (see (6.1)). The former is 
independent of variable χ , represents external forces (through control para-
meter B ) and can be associated with the system potential energy. The other 
explicitly depends on 2χ , reflects the system reaction (through variable χ ), 
and can be associated with kinetic energy. 

j j j= −                             (6.1) 

where 

( )
( )
( ) ( )
( )( )
( ) ( )
( ) ( )
( )

2

2
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Newtonian, Lagrangian, Hamiltonian equations of motions in classical me-

chanics, Feynman’s pass integrals in quantum mechanics, Einstein-Hilbert gen-
eral relativity equations can be “derived” with use of variational principles. The 
final results allow us to determine classical trajectories or most probable quan-
tum states. Remarkably, we can formulate a “variational principle” for the va-
cuum cell dynamics. We have seen that the most probable locations for the va-
cuum cells in the state-space are super attractors. They always locate at the local 
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extrema of the corresponding iteration function that is graphically illustrated in 
Figure 48. The pictures show graphical solutions of equations for super attrac-
tors ( B Sj= ) in each of the three zones: 

( )2 ,

for cells
for anticells

j Sjχ χ∞ ∞
 = ±
+
−



                       (6.2) 

 

 
Figure 48. Equation (6.2) graphical solutions for B Sj= . 
 

Left parts of equations, j , are represented by blue curves, and right parts, 
χ∞± , are represented by black and red diagonals. All stable solutions can be 

found at j  local extrema 

0.j
χ

∂
=

∂
                           (6.3) 

They are shown by small circles, white—for neutral states, and colored—for 
charged states.  

Another conventional way to find location of stable states is to determine 
minimum of potential energy. Applying to the cell dynamics, we can use “poten-
tial functions” j  defined in (6.1) to find the locations of super attractors. 
However, instead of function minima, we are looking for their roots (see Figure 
49). 
 

 
Figure 49. Finding superattractors sjB  as roots of potential functions, 0j = . 
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However, square of the potential functions form “potential wells” with mini-
ma at the superattractors (Figure 50). 
 

 
Figure 50. 2j  form potential wells with superattractor states at their bottoms. 
 

When we are talking about particle interactions such as weak or strong nuc-
lear interactions, do we really believe that Nature is that intelligent that she in-
vented the Dirac or Yang-Mills equations? Can we consider the standard model, 
or super-gravity, or strings, which operate with highly developed math as fun-
damental laws that control the universe?  

Let us for a second assume that the toy particles are real, that we learned about 
their properties including explicit form of equations (6.1) from fancy experi-
ments without any clue that they can be obtained by using a simple iteration 
process. Would we call (6.1) the fundamental Nature equations? Perhaps. 

But we do know that the complexity and symmetries of the toy particles stem 
from dull iterations of a primitive function. We have observed quantum beha-
vior, complex structures, symmetries and physical constants emergent on pre-
mises of system openness, dissipation, randomness, and competition rather than 
according to some intelligent design, in a striking similarity to Darwin’s evolu-
tion. 
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