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Abstract 
We study the controversy about the proper determination of the electromagnetic energy-flux field 
in anisotropic materials, which has been revived due to the relatively recent experiments on 
negative refraction in metamaterials. Rather than analyzing energy-balance arguments, we use a 
pragmatic approach inspired by geometrical optics, and compare the predictions on angles of 
refraction at a flat interface of two possible choices on the energy flux: ×E H  and ×E B 0µ . We 
carry out this comparison for a monochromatic Gaussian beam propagating in an anisotropic non- 
dissipative anisotropic metamaterial, in which the spatial localization of the electromagnetic field 
allows a more natural assignment of directions, in contrast to the usual study of plane waves. We 
compare our approach with the formalism of geometrical optics, which we generalize and analyze 
numerically the consequences of either choice. 
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1. Introduction 
The location of electromagnetic energy is an elusive subject that has been under discussion since the beginning 
of electrodynamics [1]. Even in the case of electrostatics, one can write at least two different expressions for the 
energy density of a fixed distribution of charges ([2], p. 21). In one of them, the energy density is proportional to 
the charge density itself, thus located wherever the charge density is different from zero; in the other one, it is 
proportional to the square of the electric field generated by the charge distribution, thus located in all space, both 
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inside and outside the volume occupied by the charge distribution. On the side of electrodynamics, the am- 
biguity is even greater. The energy-balance equation in vacuum involves the time derivative of energy density of 
the electromagnetic field, given in terms of the squares of the electric and magnetic fields and the divergence of 
the Poynting vector; this vector is defined as proportional to the cross product of the electric and magnetic field 
and it gives the magnitude and direction of the energy flux ([3], sec. 61). Since the balance equation for energy 
conservation requires only the divergence of the Poynting vector, this vector field is not uniquely defined and it 
is always possible to add to it an arbitrary vector field with zero divergence. Furthermore, it is also possible to 
redefine both the Poynting vector and the expression for the energy density, in such a way as to fulfill correctly 
the balance equation [4]-[10] ([11], ch. 27.5). This freedom leads to an unsurmountable ambiguity about the 
location of electromagnetic energy and direction of the electromagnetic-energy flux. Nevertheless, it has been 
argued that the law of conservation of energy does not stand by itself, that there are also conservation laws for 
linear and angular momentum, and they have to be examined together. For example, in vacuum, the relationship 
between the Poynting vector (energy-flux field) and the electromagnetic linear-momentum density, together 
with the conservation of angular momentum, restricts the freedom of choice for the mathematical expression of 
the Poynting vector, and it has been even claimed that these restrictions remove the ambiguity altogether [12] 
[13]. 

The problem of the location of energy and the correct expression for the energy flux in the presence of 
materials acquires additional intricate subtleties related to the description of the energy-exchange mechanism 
between fields and matter [14] [15]. First, let us recall that the formulation of macroscopic electromagnetic 
phenomena is commonly achieved by the introduction, besides the macroscopic electric field E  and magnetic 
induction field B , of two other fields: the displacement field D  and the magnetic intensity H , or, equi- 
valently, the polarization and magnetization fields: P  and M . In relation to the physical interpretation of 
these fields, a problem arises about an issue that has been discussed for more than a century: how to establish if 
B  or H  represents the “real” magnetic field, that is, the one that comes after an averaging process of the 
magnetic field generated by the microscopic components of a given material. There are even carefully argued 
assertions by W. Thomson that the magnetic field inside the material is not even properly defined ([16] and 
references therein). The choice in this issue has definite consequences in the energy-balance equation—also 
known as Poynting’s theorem—when extended to the case where materials are present. As we will discuss 
briefly in Section 2, this is specially important if we want to separate the total energy density into a component 
stored in the fields and a component stored or dissipated within the material. 

Furthermore, in the more general case when the electromagnetic response is linear but not instantaneous, it 
necessarily depends on frequency and it is dissipative. In this case it is not possible to separate the energy 
density into material, field and absorption contributions. But even in low-dissipation frequency bands, the 
correct expression for the Poynting vector (energy flux) depends on the explicit form of the energy-balance 
equation. Also, in relation to the freedom of choice of Poynting’s vector and the restrictions imposed by other 
conservation laws: linear and angular momentum, one has to recall that unlike in vacuum, in the presence of 
material media the relation between Poyting’s vector and the linear-momentum density of the electromagnetic 
field is still controversial [17]. There have been at least two proposals for the correct mathematical expression 
for the linear-momentum density: one given originally by M. Abraham ( ×E H ) [18] and the other one given 
originally by H. Minkowski ( ×D B ) [19], being these two choices the source of a persisting debate about either 
their correctness or their physical interpretation ([20], and references therein). There are also more drastic claims 
assuring that the macroscopic electromagnetic field within a material is actually a non-physical quantity, and 
that real measurement devices do not really measure the energy flux given by the Poynting vector [21]. 

Here we will not analyze all different aspects of these longstanding and sometimes subtle questions. We will 
rather concentrate only in two different proposals for the mathematical expression of the Poynting vector S , 
whose choice has created controversy even in recent years [22]-[30]. One given by = ×S E H , which is the 
commonly used in literature and the one that appears in most textbooks and the other by 0µ= ×S E B , where 
we use SI units and 0µ  is the so-called magnetic permeability of vacuum. On the one hand, the first expression 
is proposed by arguing that with this choice the boundary conditions on E  and H  assure no accumulation of 
energy at any interface between two materials ([3], sec. 61). On the other hand, some authors state that a correct 
analysis of the energy-balance equation in materials should lead to an expression for the energy flux given, not 
by ×E H , but rather by 0µ×E B , and that the accumulation of energy at the interface causes no conceptual 
problem because in magnetic materials the source of energy dissipation at the interface are the induced surface 
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currents [22] [28] [31]. It is appropriate to recall that these proposals have been recently re-examined, due 
somewhat to the current work done around the phenomenon of negative refraction in metamaterials [32]-[38]. 

In this paper, rather than discussing the energetic balance in the material, we propose to look at the con- 
troversy from the perspective of geometrical optics in an extremely pragmatic approach, based on the fact that 
the energy flux is not only used to calculate energy balances, but also to quantify light intensity and its direction 
of propagation. To watch the refraction of a laser beam on a transparent prism is a very common and intuitive 
experience, in which one could very naturally speak about the “location” of the energy and the direction and 
“bending” of the energy flux. In contrast, in the idealized case of a plane wave the energy is on the average 
evenly distributed over all space, and it is therefore unlocalized, making it impossible to use such “intuitive” 
arguments as above. 

For the two fields H = ×S E H  and 0B µ= ×S E B  in discussion, however, a comparison in these terms is 
not illuminating in usual isotropic materials, since their directions coincide. But for anisotropic materials, their 
directions need not to coincide, and this effect can be particularly important in anisotropic metamaterials, that 
can exhibit negative refraction, in which this difference becomes critical. Although negative refraction can be 
obtained also in isotropic metamaterials, anisotropic metamaterials have an important advantage: the conditions 
for obtaining negative refraction in them are much less restrictive. 

Having all this in mind, we tackle the problem by constructing a “ray” of light in order to see how does it 
refract at an interface between vacuum and an anisotropic metamaterial. One can find different definitions of ray 
in geometrical optics, for example, one, as a line in the direction of the gradient of the eikonal [3] [39], another, 
simply as a continuous line along the direction of the energy flow [40], and still another one that defines ray 
merely as a beam [41]. Here we will adopt a rather intuitive picture of a ray by regarding it as a very narrow 
beam. Then we use continuum electrodynamics to calculate the spatial location of the reflected and refracted 
beams, together with the energy flow according to the two proposals in question. Then we compare—among 
other things—their directions with the direction of the beam. 

The structure of the paper is as follows: in Section 2 we compare, for each energy-flux proposal, possible 
interpretations of the energy-balance equations and the terms involved in them; then in Section 3 we present a 
brief introduction of the electromagnetic properties of anisotropic uniaxial metamaterials with emphasis on the 
refraction of plane waves at a flat interface; we later state in Section 4 some basic properties of 2D mono- 
chromatic electromagnetic fields, on which we build our analysis, and make a comparison with the formalism of 
geometrical optics, which we extend in Section 5. In Section 5.1 we particularize the results and concepts of 
these two previous sections to a Gaussian beam; we study some its main characteristics, and sketch how to 
calculate its refraction, to finally display and analyze the corresponding results of the numerical simulations. 
Section 6 is devoted to our conclusions.  

2. Poynting’s Theorem  
In this section we present briefly the energy-balance equations for the two energy-flux proposals to establish the 
differences in interpretation of the terms appearing in them. We start with the macroscopic Maxwell’s equations 
and regard the presence of the material as given by the charge and current densities induced by an external 
electromagnetic field produced by external sources. Maxwell’s equations, in SI units, can be then written as  

0 ext indρ ρ∇ ⋅ = +E                                      (1) 

0∇ ⋅ =B                                          (2) 

t
∂

∇× = −
∂
BE                                        (3) 

0
0

ext ind tµ
∂

∇× = + +
∂

B EJ J                                   (4) 

where extρ  and extJ  are the charge and current densities that are sources of the external field that excites the 
material, while indρ  and indJ  denote the macroscopic averages of the charge and current densities that are 
induced within the material. Here E  denotes the macroscopic electric field while B  denotes the macroscopic 
magnetic field obtained as the macroscopic average of the microscopic magnetic field. Let us recall that 
regrettably B  is also called magnetic induction. Then we divide indJ  into two terms,  
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ind P M t
∂

= + = +∇×
∂
PJ J J M                                  (5) 

where 1) PJ  denotes the induced conduction (“free”) plus polarization current densities and 2) MJ  denotes a 
divergence-free current density that behaves as the source of magnetization. Here P  and M  are the usual 
polarization and magnetization material fields. Induced-charge conservation is also assumed, that is,  

0ind
ind t

ρ∂
∇ ⋅ + =

∂
J                                       (6) 

By substituting Equation (5) into Ampère-Maxwell’s law (4) and using the induced charge conservation (6), 
one can write Equations (1) and (4) as  

extρ∇ ⋅ =D                                          (7) 

ext t
∂

∇× = +
∂
DH J                                       (8) 

which together with Equations (2) and (3) form the complete set of the four macroscopic Maxwell’s equations. 
Here  

0= +D E P                                          (9) 

is called the displacement field, while  

0µ
= −

BH M                                        (10) 

is called the magnetic intensity or simply the H field. 
If one now calculates ( )∇ ⋅ ×E H  and uses the macroscopic Maxwell’s equations together with the defini- 

tions of D  and H , as given by Equations (9) and (10), one can write  

( )
2

2
0

0

1 ,
2 ext

BE
t t tµ
∂ ∂ ∂ ∇ ⋅ × + + = − ⋅ − ⋅ − ⋅ ∂ ∂ ∂ 

P BE H E J E M                  (11) 

that takes the mathematical form of a conservation law for the energy, and one can interpret ×E H  as an 
energy flux and ( ) 2 2

0 01 2 E B µ+  as the energy density stored in the electromagnetic field. Notice that we 
write the expression of the energy density in terms of E  and B , because we regard then as the fundamental 
“bare” fields. Nevertheless, since in our calculations below we deal with time averages of monochromatic fields 
in lossless materials, this choice will have no consequences in the final result. Here ext⋅E J  denotes the power 
supplied by the external current, while the last term in the right hand side should correspond to the temporal rate 
of change of the electric and magnetic energy density either stored or dissipated within the material. It is appro-
priate to point out that in the presence of dissipation the stored energy density within a material is not a well-de- 
fined concept since it cannot be written as a time derivative ([3], sec. 61). 

Following the same procedure as above, one can also write the following equation: 

 
2

2
0

0 0

1 .
2 ext

BE
t tµ µ

   ∂ ∂ ∇ ⋅ × + + = − ⋅ − ⋅ + ∇×     ∂ ∂    

B PE E J E M                 (12) 

In this expression one identifies 0µ×E B  as the energy flux, and although the last term in the right hand side 
can be written as ind− ⋅E J , and it could be naturally identified as the power dissipated by the induced currents, 
such identification contradicts the one given in Equation (11). Furthermore, the difference between ×E H  and 

0µ×E B  is − ×E M , and let us recall that 2c− ×E M  has been identified in certain circumstances, as a 
“hidden” momentum, that is, a mechanical momentum conveyed by and within the magnetic material. Here c 
denotes the speed of light. 

We will not discuss further the physical interpretation of the terms that appear in the energy-conservation 
laws given in Equations (11) and (12); we now rather construct the conceptual and mathematical framework to 
analyze the energy transport in the refraction of a beam of light at the interface between vacuum and an 
anisotropic metamaterial. The advantage of dealing with anisotropic metamaterials rather than with crystals, is 
that in crystals the anisotropy of the electromagnetic response is fixed by the crystalline structure and cannot be 
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changed, while in metamaterials this degree of anisotropy, as well as the signs of the response, can be tailored 
through the fabrication process.  

3. Uniaxial Metamaterials  
As discussed above, we will be dealing with anisotropic uniaxial metamaterials. These are characterized by 
electric and magnetic response tensors   and µ , respectively. We will assume that they have a common 
anisotropy axis (the z-axis) thus they are simultaneously diagonalizable, with components xx yy= = �   , 

zz ⊥=  , and analogously with the components of µ . We also assume that we will be working on a frequency 
band in which the material is transparent, that is, at frequencies where all the components of these response 
tensors can be regarded as real (i.e., negligible absorption). Furthermore, the premise that we are dealing with 
metamaterials allows us to choose not only over a wide spread of values for the tensorial components, but also 
their sign. 

We will now introduce notation and summarize some of the properties that we will use in this paper; their 
derivation can be found, for example, in [42]. First we recall that an uniaxial metamaterial sustains two elec- 
tromagnetic plane-wave modes, which we will call e and m, and refer to them generically as γ . Each mode is 
characterized by a given frequency ω  and a corresponding wavevector k . In the m -mode, the electric field 
E  es orthogonal to k  while in the e-mode the H  field is orthogonal to k . We will also refer generically 
to the diagonal components of either µ  or   as γ �  and γ ⊥ , when referring to the m or to the e mode, 
respectively; and in terms of these we define the anisotropy factor aγ γ γ ⊥= � , that is, ma µ µ⊥= �  and 

ea ⊥= �  . The anisotropy factor quantifies the degree of anisotropy of the response; its deviation from unity 
gives us an idea of how anisotropic the response of the medium is. 

The dispersion relations of these modes can be put in terms of 0 0n ε µ ε µ=� � � , the magnitude of the 
wavevector of γ  mode, kγ , and the wavenumber in vacuum 0k cω= . Assuming the wavevector lies in the 
xz plane, these can be written as  

( )2 2 2 2
0 1 .xk k n a kγ γ= + −�                                (13) 

Note that n�  would be the index of refraction of the system in the absence of anisotropy ( 1aγ = ). 
Finally, it is important to say that, in this medium, the field H = ×S E H  is not, in general, parallel to k  

for a monochromatic plane wave. Let us call Fγ  the amplitude of the H  field for eγ =  and the amplitude 
of the electric field for mγ = , and the subscripts i, r and t will denote the incident, reflected and transmitted 
fields, respectively. Then, the field HS  is, in average,  

2

, 0, ,
2

x zF k kγ
γ γ ω γ γ⊥

 
× =   

 
E H

�

                             (14) 

so both vectors will only be parallel when there is no anisotropy of the corresponding mode ( 1aγ = ).  

Refraction of Plane Waves  
Let us consider a plane interface between vacuum and the uniaxial metamaterial, set this interface perpendicular 
to the optical axis of the metamaterial and fix the z-axis along this direction. Then assume that a plane wave, 
with its wavevector in the xz plane, impinges from vacuum into the metamaterial. One can immediately see that 
if the incident wave is p-polarized ( H  perpendicular to k ) only the e mode is excited, while if it is s-polarized 
( E  perpendicular to k ) only the m mode is excited; while k  remains in the xz plane, and thus, there are 
separate “refraction laws” for HS  and k . 

Now we look at the reflection and transmission of plane waves in the presence of uniaxial metamaterials, 
defined as 

t i
t F Fγ γ γ=  and 

r i
r F Fγ γ γ= ; 0γ  as 0µ  for eγ =  (p-polarization) and 0 0γ =   for mγ =  

(s-polarization); and using boundary conditions at the interface, we can write  

2
1

1
,

1

t

r

γ
γ

γ
γ

γ

δ

δ
δ

=
+

−
=

+

                                       (15) 
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where 0 t iz zk kγδ γ γ= � . 
In terms of these definitions and basic concepts, we now summarize some interesting features of the refraction 

of plane waves on uniaxial metamaterials. A derivation of all these results can be found in [42]  
1) The angle γΘ  formed by k  and ˆze , in terms of the incidence angle iθ , is  

( ) ( )
( ) ( )2 2

sin
sin

1 sin
i

in a
γ

γ

θ

θ
Θ =

+ −�

                               (16) 

2) The angle γθ  formed by HS  and ˆze , again in terms of the incidence angle iθ , is given by  

( ) ( )
( ) ( )2 2

sin
sin ,

1 sin
i

in a a
γ

γ γ

γ θ
θ

γ θ
⊥=

+ −� �

                            (17) 

and we call this the refraction angle.  
3) The refraction of γk  is towards the interface if 0γ <�  and away the interface if 0γ >� . The projection 

of Hγ
S  over γk  also has the sign of γ � .  

4) The sign of refraction is determined by the sign of γ ⊥ .  
5) The refraction angle, as a function of the incidence angle, is an increasing function if 2 0n >�  and 

decreasing if 2 0n <� .  
6) Whenever 2a nγ ≥ � , there exists a critical angle (equal for γθ  and γΘ ), given by ( )arcsin rn a� . 

7) The critical angle has an inverse behavior in the case 2 0n <� , in the sense that, for angles lower than the 
critical, there is no propagating wave transmitted, but for all angles higher that the critical, there is propagating 
transmission. 

8) There exist critical angles for both polarizations. 
9) There is low variation of the refraction angle for 0aγ � . 
10) In the particular case when 2a nγ = � , the reflectance is constant for all angles. 
Note especially, on relation with negative refraction, some less restrictive features of these materials due to 

their anisotropy, for example, the sign of the projection of S  over k  is no longer tied to the sign of the re-
fraction angle, since it is determined by only one parameter; also, there can be propagating transmitted waves 
even if the “refractive index” is purely imaginary. 

With respect to point 3, it is important to note that this refraction problem has a mathematical ambiguity aris-
ing from the fact that the dispersion relation (13) is quadratic, and thus two possibilities for zk  are admitted 
(while xk  is fixed by boundary conditions). This is solved by noting that, independently of the physical inter-
pretation of the field HS , the continuity of the parallel components of E  and H  lead to the continuity of its 
normal (z) component across the interface. Besides, since ˆH ze⋅S  is, by construction, positive on the incidence 
medium, it has to be positive on the refraction medium, which together with Equation (14), tells us that zk  and 
γ �  should have the same sign. Here ˆze  is a unit vector along the z axis. 

4. 2D Monochromatic Fields 
In this work we will be dealing, for simplicity, with the refraction of monochromatic two-dimensional beams, 
that nevertheless keep most of the physics behind the phenomenon of refraction of actual three-dimensional 
beams. We consider first an arbitrary two-dimensional monochromatic electric field, defined as a superposition 
of plane waves in the xz plane, 

( ) ( ) ( ), re e d ,x zi k x k z t
x xx z k kω∞ + −

−∞
 =   ∫E A                            (18) 

where re denotes real part. In a given medium, this will be a solution to Maxwell's equations if zk  as a function 
of xk  is given by the dispersion relation of the electromagnetic waves in this medium. For example, for an 
isotropic medium with refractive index n, this relation is: 2 2 2 2

0x zk k k n+ = . As it can be seen, this field does not 
depend on the y coordinate implying translational invariance along this direction. A plot of the magnitude of this 
field in the xz plane will mimic a projection of a three-dimensional monochromatic field. 

We can view this superposition as a series of plane waves traveling along different directions and with 
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different amplitudes, these determined by the function ( )xkA . In general, this superposition includes not only 
propagating waves, but also inhomogeneous waves, that is, plane waves with a complex wavevector i′ ′′= +k k k  
whose amplitudes decay along ′′k  and propagate with its planes of constant phase perpendicular to ′k . 

Recalling now that the magnetic, displacement, and H  fields linked to the electric field ( )i
0re e tω⋅ − =  

k rE E   

of a plane wave of wavevector k  and frequency ω , can be written as  

( )

( )

( )

i
0

i
0

i1
0

re e

re e

re e ,

t

t

t

ω

ω

ω

ω

µ
ω

⋅ −

⋅ −

⋅ −−

 = ×  
 = ⋅ 
 = ⋅ ×  

k r

k r

k r

kB E

D E

kH E

                                (19) 

it is immediate to write the corresponding monochromatic fields associated to the electric field given in 
Equation (18), as  

( ) ( )

( ) ( )

( ) ( )

i

i

i1

re e d

re e d

re e d .

x z

x z

x z

k x k z t
x x

k x k z t
x x

k x k z t
x x

k k

k k

k k

ω

ω

ω

ω

µ
ω

∞ + −

−∞

∞ + −

−∞

∞ + −−

−∞

 = ×  
 = ⋅  
 = ⋅ ×  

∫

∫

∫

kB A

D A

kH A

                           (20) 

For s-polarization, the amplitudes ( )xkA  in (18) can be written as ( ) ( ) ˆx e x yk A k e=A . It is then convenient 
to define  

( ) ( ) ( )i, e d ,x zk x k z
e x xx z A k kα

∞ +

−∞
≡ ∫                                (21) 

thus in terms of α  the electric field in (18) becomes  

( ) ( ) i ˆ, re e .t
yt eωα − =  E r r                                  (22) 

Note that if we denote x xα α≡ ∂ ∂ , z zα α≡ ∂ ∂ , then  

( ) ( )ie d i ,x zk x k z
e x x x xA k k k α

∞ +

−∞
= −∫                               (23) 

and the same is valid for zα  replacing xk  with zk  in the integrand. Now, since ( ), 0,x zk k=k  and 
( )ˆ , 0,y z xe k k× = −k  one can write, for s-polarization, the magnetic, displacement, and H  fields in Equation 

(20) in a most convenient and succinct way:  

( ) i

i

i

re i , 0, e

ˆre e

ire ,0, e .

t
z x

t
y

txz

e

ω

ω

ω

α α ω

α

αα
ω µ µ

−

−

−

⊥

 = − − 
 =  
  −−

=       

B

D

H

�

�

                              (24) 

For p polarization, one can write an expression for the H  field, analogous to the one for the electric field in 
Equation (18), as  

( ) ( ) i ˆ, re e ,t
yt eωβ − =  H r r                                (25) 

where  

( ) ( ) ( )i, e d ,x zk x k z
m x xx z A k kβ

∞ +

−∞
≡ ∫                              (26) 

with the following corresponding expressions for the displacement, electric and magnetic fields,  
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( ) i

i

i

re i , 0, e

ire ,0, e

ˆre e .

t
z x

txz

t
ye

ω

ω

ω

β β ω

ββ
ω

µ β

−

−

⊥

−

 = − − 
  −−

=       
 =  

D

E

B

�

�

 
                                   (27) 

It is important to note that the linear superposition of plane waves, as the one given in Equation (18) can be  

also written as ( )i ire e e dt
x xk kω ∞− ⋅

−∞
 
  ∫ k rA , where the exponent ie tω−  has been pulled out of the integral leaving  

a factor that is a function only of position. Since in the calculation of the energy densities and energy flux we 
will be dealing with bilinear products of the form ( ) ( )i ire e re et tf gω ω− −      r r  it is convenient to introduce 
time averages of these bilinear quantities, because the measuring devices cannot simply follow time variations 
of the order of 2π ω . Since the factor multiplying ie tω−  is only a function of the position, we will frequently 
deal with products of this type. If we denote with a ' the real part of a complex numbers and with '' its imaginary 
part, the product above is written as ( ) ( )( ) ( ) ( )( )cos sin cos sintf tf tg tgω ω ω ω′ ′′ ′ ′′+ +r r r r . Now, if one takes 
the time average over periods much longer than 2π ω  one gets,  

( ) ( ) ( ) ( )i i *1re e re e re ,
2

t tf g f gω ω− −     =     r r r r                            (28) 

where we have used ...  to indicate time average and the * denotes complex conjugate. 
For example, using Equations (22) and (28), the time average of 2E  for s-polarization is  

22 *1 1re .
2 2

E αα α = ⋅ = = E E                                 (29) 

Also, from Equations (22) and (24) one can easily calculate BS , and its time average by using again equation 
(28). One gets, for s-polarization,  

( )* *

0 0

1 1re i , 0, im .
2 2B x zα α α α α
µ ω µ ω

   = − = ∇   S                          (30) 

Note that this result is general and does not depend on the constitutive relations. On the other hand, for HS  
we do not have any such general expression, but we can calculate one for the special case of anisotropic 
metamaterials; using Equations (22) and (24), one gets, again for s-polarization,  

*1 im ,0, ,
2

x z
H

α α
α

ω µ µ⊥

  
=       

S
�

                                  (31) 

which clearly differs in direction from BS . 
Finally, regarding to the energetic consequences of the choice of energy flux, note that, taking the divergence 

of BS  and calling xxα  to the second partial derivatives of α , we get  

( )

* * * *

0

*

0

1 im
2

1 im .
2

B x x xx z z zz

xx zz

α α α α α α α α
µ ω

α α α
µ ω

 ∇ ⋅ = + + + 

 = + 

S
                         (32) 

Since ( ) ( )2 2 ie dxx zz x x z xA k k k kα α
∞ ⋅

−∞
+ = − +∫ k r , in isotropic media with real refractive index n, this quantity  

has the value 2 2
0k n α−  and, therefore, the divergence will be zero. But in a medium with a different dispersion 

relation-for instance, an anisotropic one-this will be nonzero. Since we don’t have a general expression in terms 
of α  for HS , it is not possible to calculate its divergence in an arbitrary case, but it is possible to do it in the 
special case of the anisotropic metamaterials, for which we get, with analogous calculations in s-polarization,  

*1 im
2

xx zz
H

α αα
ω µ µ⊥

  
∇ ⋅ = +      

S
�

                              (33) 
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which, in view of the dispersion relation (13), and following the same reasoning as before with BS , is identi- 
cally zero in mediums where 2n�  is real. Thus, in the cases of isotropic and anisotropic media for an s-polarized 
monochromatic field, we have that H∇ ⋅ S  does not predict any local loss or gain of energy within the material, 
while B∇ ⋅ S  does predict it in the anisotropic metamaterial. 

5. Geometrical Optics and Light Beams  
As we already mentioned in the introduction and in the section concerning the refraction of plane waves, the 
energy-flux vector (Poynting’s vector) is used, besides the calculation of electromagnetic-energy transport, in 
determining the “detectable” direction of refraction of plane waves, over the direction given by the angle of 
refraction of the wavevector. Although in many cases they do coincide, their difference in direction is specially 
critical in the phenomenon of negative refraction. In our pragmatic approach we will look at the refraction of 
rays—defined as narrow beams—and then calculate the two expressions for the energy flux: 0µ×E B  and 

×E H , and compare their direction with the actual direction of the beam. 
The first question is how to define the location of the beam in order to visualize it. The first idea could be 

perhaps to identify it with the transmitted energy flux and visualize it by plotting the transmittance, which is 
what one usually associates as the measurable quantity in optics experiments. The problem with such definition 
is that the value of the transmittance depends on the definition of the energy flux, which would lead us to a 
circular argument. Also, let us recall that the transmittance is proportional to the energy flux perpendicular to the 
interface, as if the detection of the transmitted power would be accomplished only along the perpendicular 
direction and not along the direction of the beam. Thus, we choose to look instead at the energy density, which 
in the absence of dissipation is proportional to 2E , and then take the direction of the beam as the direction of 
the energy flux. 

In the search of a criterion to determine how a monochromatic field refracts, one may require to define the 
direction of propagation of the field. At this respect, we derived the following result which we find interesting, 
and, to our knowledge, unnoticed yet. Let us start considering the simplest case of an isotropic, homogeneous, 
non-magnetic medium in which 0B µ= ×S E B  ( = ×E H ), and assume that the monochromatic field is s- 
polarized. Note that the average of this field given in (30) is proportional to *im α α α α α α  ′ ′′ ′′ ′∇ = ∇ − ∇  , and 
also that  

( )

*

2 2 2

im1arctan .
1

α αα α α α α
α αα α α

 ∇′′ ′ ′′ ′′ ′∇ − ∇   ∇ = = ′ ′′′ ′  +
                 (34) 

We recognize in ( )arctan α α′′ ′  the phase αφ  of the complex function ie αφα α= ; therefore, by com- 
bining Equations (34), (30) and (29), one can write  

2

0

.B

E
αφµ ω

= ∇S                                    (35) 

Since the electric field in Equation (22) can be also written as ( )iˆre e t
ye αφ ωα − =  E , we conclude that in a  

homogeneous, isotropic, non-magnetic medium, the time average of the field BS  of a monochromatic, 
s-polarized field, points in the direction of the maximum change of the phase of the electric field. This exact 
result establishes a connection between the propagation of an arbitrary monochromatic field (which can be, in 
particular, a localized one) and the formalism of geometrical optics, by generalizing the concept of eikonal to 
such field, in the sense of a function whose gradient yields the direction of the “ray”. Notice that the concept of 
eikonal is usually introduced when there is slow spatial variation of the amplitude function of the electric field 
([3], sec. 85), ([39], ch. 8), but here we impose no restriction on the spatial part. 

Going a little bit further, note that the dependence on the material in the expressions for the electric field E  
in Equation (22) and the magnetic field B  in Equation (24) comes only through the specific form of α , that 
requires the dispersion relation of the specific material in the performance of the integral in Equation (21). 
Therefore, Equation (35) is valid regardless the optical properties of the material, simply because its derivation 
is independent of the particular structure of α  (see Equations (30) and (34)). This means that in any material, 
the field 0µ×E B  of an arbitrary s-polarized monochromatic field, points in the direction of the gradient of 
phase of the corresponding electric field. 



C. Prieto-López, R. G. Barrera 
 

 
1528 

This same result does not hold for all materials while regarding the energy flux as given by H = ×S E H . For 
instance, for an uniaxial magnetic medium excited with s-polarized light, the average of HS  is given by (31) 
which differs markedly from the expression for the average of BS  given in Equation (30). But even if the 
material is isotropic but has magnetic absorption, BS  and HS  will also differ in direction: one can see 
this by replacing µ�  and µ⊥  in Equation (31) by iµ µ µ′ ′′= +  and recalling that 2*1 µ µ µ= ,  

* *
* *

2 2

im re1 im .
2 2

H

µ α α µ α α
µ α α

ω µ ω µ

   ′ ′′∇ + ∇    = ∇ = S                  (36) 

The real part of *α α∇  is α α α α′ ′ ′′ ′′∇ + ∇ , which can be expressed as ( ) 22 21 1
2 2

α α α′ ′′∇ + = ∇ , so one  

can write  
2 2

2

2
.

2
H

E Eαµ φ µ

ω µ

′ ′′∇ + ∇
=S                              (37) 

One can see that the first term in the right hand side points along the direction of the gradient of phase of the 
electric field as in the case of a homogeneous nonmagnetic material, but now, due to absorption, the field HS  
acquires a component in the direction of the maximum change of intensity. One can see this result as a 
generalization to arbitrary monochromatic fields in s-polarization, of the characteristics of propagation of 
inhomogeneous plane waves in absorbing media. In this latter case the inhomogeneous wave is proportional to 

( )exp i tω′ ′′⋅ − − ⋅  k r k r  where the planes of constant phase travel along ′k  while the planes of constant 
amplitude decay along ′′k . 

Nevertheless, the very general result that for any monochromatic electromagnetic field and for any material 
the direction of BS  coincides with the gradient of the phase of the electric field, makes 0µ×E B  a very 
tempting choice for the energy flux. Note that the result is true even for absorbing media. 

The analogous result for p polarized light might not be as obvious, but is also quite interesting. Using the 
expressions for the fields given in Equations (25) and (27) one can write,  

0

1im ,0,
2

1im ,0, .
2

x z
B

x z
H

µ β ββ
µ ω

β ββ
ω

∗
∗

⊥

∗

⊥

  
=       

  
=       

S

S

�

�

�

 

 

                          (38) 

Without magnetic absorption, both fields are parallel, even in anisotropic media. Moreover, none of them has 
the property of pointing in the direction of maximum change of the phase of H . The field that has this property 
for p-polarization is the field 0 ×D H :  

( )* 2

0 0 0

1 1im ,0,
2 2x z H ββ β β φ
ω

 
× = = ∇ 

 

D H
  

                   (39) 

where we have written ( )i ˆre e t
yeβφ ωβ − =   

H . These results may be in principle unexpected, but perhaps it can  

be mathematically clarified by the fact that Maxwell's equations in regions free of external sources together with 
the constitutive relations are invariant under the interchange of ↔D B  and ↔ −E H  and µ↔ − . One 
might think that this third field should be added to the other two options under consideration, however, in view 
of the equivalence of the 0µ×E B  in s-polarization and 0 ×D H  in p-polarization, we only need to take 
care of the two first-mentioned cases, fortunately. In the next subsection we adopt our definition of ray as a 
narrow Gaussian beam.  

Gaussian Beam  
We now use the results for 2D monochromatic fields to construct a localized beam. We start by regarding an 
s-polarized beam localized along the z-axis, and impose a boundary condition over the magnitude E of the 
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electric field at 0t = , that defines its shape. This boundary condition requests that in the plane 0z = , E has a 
Gaussian profile of width w, that is,  

( )
2

22
0, , 0 e .

x
wE x y E

−
=                                    (40) 

From Equation (22) we get that ( ) ( ) i, , 0 re e dxk x
x xE x y A k k

∞

−∞
 =   ∫ . This means that ( )xA k  can be iden-  

tified as the spatial Fourier transform of ( ), , 0E x y , and the condition of E being real only means that 
( ) ( )*

x xA k A k= − . Then  

( )
2 2 2

2 i 02 2
0

1 e e d e .
2π 2π

x
x

x w k
k xw

x
E wA k E x

− −∞

−∞
= =∫                          (41) 

Thus, the electric field in any point at any time is given by  

( )
2 2

i0 2ˆre e e d .
2π

x
x z

w k
k x k z t

y x
E w e kω−∞ + −

−∞

 
 =
  

∫E                            (42) 

This is a 2D Gaussian beam, confined in the x direction and extended along the z direction. Regarding its 
composition as a superposition of plane waves, note that the plane wave corresponding to wavevector ( )00,0, k  
has the dominant amplitude; we call this wave the main mode, and its corresponding vector the main wavevector. 
Now, given any other plain-wave component with wavevector ( ), 0,x zk k , there is a corresponding plane wave 
component with the same amplitude and opposite x component, and therefore a wavevector ( ), 0,x zk k− ; their 
sum always “points” in the direction of the main wavevector. This gives the z axis a special geometrical role of 
symmetry, and thus we find natural to call it the axis of the beam and to say that the beam is propagating in the z 
direction. Naturally, the profile of 2E  is also Gaussian, and in it this symmetry is traduced on an invariance 
under the change of z by z−  or x by x− . This also gives the point ( ) ( ), 0, 0x z =  a special geometrical 
location (exactly at the center of the beam’s waist), and we call it the center of the beam. 

We will be plotting 2E , which is given exclusively in terms of the function α  defined in Equation (45), so, 
from now on, we will abuse lightly from the notation and refer to the function α  as “the beam”. 

We are interested in the refraction of an incident beam from vacuum to an anisotropic metamaterial, but with 
an arbitrary angle of incidence iθ , We assume the interface is located at the plane 0z =  and then we write 
down the expression of the beam in Equation (42), in a rotated system of coordinates ( ), ,i ix y z  that we will 
call the incidence system, in which the i ix z  plane is rotated an angle iθ  with respect to the xz plane, leaving y 
invariant. Then  

( ) ( )
2 2

i0 2, e e d ,
2π

xi
x i z ii i

i

w k
k x k z

i i x
E wx z kα

−∞ +

−∞
= ∫                           (43) 

and the relationship between these two coordinate systems is given by  
cos sin
cos sin .

i i i

i i i

z z x
x x z

θ θ
θ θ

= +

= −
                                 (44) 

Replacing these rotated variables in Equation (43) we get the following expression for the incident beam on 
the ( ),x z  system,  

( ) ( ) ( )
2 2

i cos sin i cos sin0 2, e e e d ,
2π

xi
x i z i z i x ii i i i

i

w k
k k x k k z

i x
E wx z kθ θ θ θα

−∞ + −

−∞
= ∫                  (45) 

where the axis of the beam lies along the line tan ix z θ= . We can recognize xk  and zk  as the quantities in 
the exponent, that are in parenthesis multiplying x and z, respectively. So we can think of this Gaussian beam as 
a superposition of plane waves with wavevectors ( ),0,x zk k  (on the unrotated system)—where zk  and xk   

are related through the dispersion relation—and amplitudes given by 
2 2 2

e xi
w k−

 (given in the rotated system).  
Note that the center of the beam remains in the same position. 
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Given the incident field in Equation (45) and setting the location of the uniaxial metamaterial in 0z > , we 
now describe the computation of the electric field of the refracted and reflected beams. The axis of the incident 
beam subtends an angle iθ  with the z axis. We then refract the beam by refracting mode by mode, under- 
standing that by refraction of the mode we only mean using Maxwell’s equations to propagate the plane-wave 
mode towards the anisotropic metamaterial, without any consideration about the direction of energy flow. This 
means that a transmitted mode with wave vector k , obeys the dispersion relation in the metamaterial keeping 
its x component continuous at the interface. 

To this purpose, we follow the next steps to refract and reflect a given mode of the incident beam:  
1) For a given mode-characterized in the integral by 

ixk -calculate the corresponding zi
k  component using 

the dispersion relation in vacuum: 2 2
0i iz xk k k= − .  

2) From the resultant wave vector ( )( ),0,
i i ix z xk k k , obtain its component parallel to the interface 0z =  by  

rotating it as required in Equation (44).  
3) Calculate the z-component of this mode by using the dispersion relation in the corresponding medium 

(vacuum or metamaterial), and assigning  
a) a negative sign for the reflected mode.  
b) the sign of µ�  ( )( )sgn µ�  for the transmitted mode, as explained above.  

4) Multiply the amplitude of this mode by the transmission or reflection coefficient in Equation (15), as a 
function of the parallel (x-component) of the wavevector.  

To summarize this, we have, in terms of  

( )
( ) ( )
( ) ( )
( ) ( )

2 2
0

2 2
0

22 2
0

cos sin

,

θ θ

= −

= +

= −

= −�

i i i

i i i i

r i i

t i i

z x x

x x x i z x i

z x x x

z x x x

k k k k

k k k k k

k k k k k

k k k n k k

                                  (46) 

the expressions for the reflected and transmitted fields:  

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

2 2

2 2

i0 2

i sgn0 2

, e e d
2π

, e e d .
2π

xi
x x z xi r i

i i

xi
x x z xi t i

i i

w k
k k x k k z

r x x x

w k
k k x k k z

t x x x

E w
x z r k k k

E w
x z t k k k

µ

α

α

 −∞ − 
−∞

 −∞ + 
−∞

=

=

∫

∫ �

                     (47) 

It is worth to note that the reflected and transmitted beams are—due to the presence of the transmission and 
reflection amplitudes inside these integrals—not Gaussian beams any more. This makes them no longer have the 
symmetries of the incident beam. Thus, we need a criterion to define the direction of propagation of the 
transmitted and reflected beams. It seems plausible to define this direction tracing a circle of radius r from the 
center of the beam, and, for each r, look for the local maximum of 2α . The curve formed of all this points will 
serve for terms of this specific beam as the “geometrical ray”. Perhaps this will be more clear when we show the 
beam in the following subsection. 

It is convenient for both, calculations and analysis, to express the above relations regarding the composition 
of the beam in terms of dimensionless quantities. For this, we define 0w k w=�  which is a measure of the waist 
of the beam relative to the wavelength of the modes in vacuum; ( ) ( ) 0, ,x z x zk k k k k=� � , a dimensionless version 
of the wave vector, relative to the wavenumber in vacuum; ( ) ( ), ,x z x z w=� � , a measure of the position in units 
of the waist of the beam; and 02π Eα α=� , the dimensionless complex amplitude. 

In terms of these quantities, Equation (43) can be expressed equivalently as,  

( ) ( )2 2 2 i, e e d .x zxi
i

w k w k x k z
xx z kα

−∞ +

−∞
= ∫

� � �� � � � �� � �                                  (48) 

Naturally, there are analogous dimensionless quantities for the reflected and transmitted beams (47). In terms 
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of α�  and of the dimensionless version of the components of µ : 0µ µ µ=� ��  and 0µ µ µ⊥ ⊥=�  relative to 
vacuum, we also define  

( )
( )

im ,0,

im ,0, ,

h x z

b x z

α µ α µ

α α

⊥ =  
 =  

s

s

� � �

� �

� �� �

� �
                                 (49) 

which are dimensionless measures of the averages of HS  and BS , respectively. 
We will now take a look at the results of numerical simulations of the refraction of the Gaussian beam. These 

computations were obtained through a custom c program and plotted in gnuplot with a little help of bash. The 
source code can be freely downloaded from our page1. For the plotting, we present here some numerical results 
with effective-medium anisotropic parameters from actual metamaterial experimental reports [43] and [44]. 

The first material is a laminate metamaterial (LM) made up of a succession of sheets of silver and silica. We 
took the effective properties at 400 nm of the seven-layered version. This material does not respond mag- 
netically but has an electrical anisotropic permittivity. Its parallel component for this wavelength is 03= −�   
while the orthogonal component is 017⊥ = −  . We ignored the imaginary components of the tensor in agree- 
ment with the main assumptions presented above. The results should be presented for p-polarization, but, in 
order to make a more straight comparison with the second material described below, we switch to s polarization 
and interchange   for µ . 

The second metamaterial is a split ring resonator (SRR). SRR’s were the first constructed metamaterials in 
which negative refraction was observed. In order to obtain an isotropic response they were built by placing equal 
resonators on the cells of a cubic lattice. This SSR omitted the isotropization process, placing the resonators in 
parallel sheets, thus obtaining an uniaxal anisotropic metamaterial. At a microwave frequency of 1.8 GHz the 
effective properties (again, ignoring the imaginary part) are 0µ µ=�  and 02.1µ µ⊥ = , while at 2.0 GHz we 
have 0µ µ=�  and 0µ µ⊥ = − . Note that for both, the SRR and the LM we have 1n =� . 

Some points to take into account when looking at the results of the simulations are:  
1) Due to the dimensionless representation we are using, the units of length in the plots are the width of the 

beam. Therefore, a same plot with larger larger units of length is equivalent to a thinner beam and vice-versa. In 
all the figures presented here, we use a parameter 0 300= =�w k w . This means that the actual beam waist 
depends on the beam frequency; for example, for yellow light with a wavelength of 600 nm  in vacuum, the 
waist would be of approximately 28 µm, a really slim beam. Of course, we suppose that assume the beam is 
sufficiently wide with respect to the metamaterial components so as to retain the validity of the effective- 
medium theory and—of course—macroscopic electrodynamics.  

2) The fields bs  and hs  are scaled differently. The use of large values of µ��  implies very different sizes 
of hs  and bs , which makes it difficult to visualize them, so, for each given plot, they are rescaled in a way 
such that their maximum sizes are equal.  

First of all and in order to clarify the idea we have been discussing about the refraction of a light beam, we 
show in Figure 1 the plot of a beam seen from “far away”. This is the picture of a beam impinging from vacuum 
at an angle 5π 16iθ =  over an isotropic material with the refractive index of diamond (2.4). We can see the 
incident, reflected and transmitted beams. And, as we said, the concentration of the field in this beam allows a 
natural definition of a direction.  

The symmetry of the beam described in the preceding section makes us expect that in some approximation the 
propagation of the beam is represented by the propagation of the main mode. Thus, we also indicate the 
direction of bs  and hs  for the main mode; since for a plane wave this directions are constant, we plot lines in 
such directions passing through the center of the beam. 

We present the results for the refraction of the beam at a vacuum-LM interface in Figure 2 and Figure 4; and 
at a vacuum-SRR interface in Figure 5 and Figure 6. The plots include the energy-density patterns, the field 
lines of hs  and bs  and the directions of these two fields for the main mode. For the same setup as in Figure 2 
we display in Figure 3 the divergence of bs  given by Equation (32); we omitted to show the divergence of hs  
since, as proved before, it is identically zero, and decided not to include the divergence corresponding to the 
other figures since they turn out to be very similar to Figure 4.  

There are some features of these results that we would like to remark:  
1) Unlike Figure 1, all the figures show an interference pattern between the incident and the reflected beam.  

 

 

1http://www.fisica.unam.mx/personales/rbarrera/gaussian-beam. 

http://www.fisica.unam.mx/personales/rbarrera/gaussian-beam
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Figure 1. Gaussian beam refraction and reflection from vacuum into 
diamond, when viewed from far away.                                           

 

 
Figure 2. Refraction of the Gaussian beam from vacuum towards the LM 
for 0 400 nmλ =  and 4π 16iθ = . We plot a measure of the energy 
density (in the color map), the bs  and hs  fields (as vector fields), and 
the direction of the hs  and bs  for the main mode of the beam (as lines).                                                

 
A stationary field is established by this interference, just as it happens in the interference between incident and 
reflected plane waves on an interface, case in which the interference term is a function exclusively of z. This 
characteristic is somewhat preserved in the beam although it is highly localized (these plots are just windows of 
10 10×  widths of the beam).  

2) Away from the interference zone, the direction of both hs  and bs  fields does not vary appreciably . In 
particular in the transmitted beam, both fields seem to preserve their direction over all the plotted region. In the 
interference zone they bend continuously from the direction of incidence to the direction of reflection. When  
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Figure 3. Divergence of bs  for the Gaussian beam of Figure 2.                                                

 

 
Figure 4. Refraction of the Gaussian beam from vacuum towards the LM for 

0 400 nmλ =  and 6π 16iθ = . We plot a measure of the energy density (in the 
color map), the bs  and hs  fields (as vector fields), and the direction of the 

hs  and bs  for the main mode of the beam (as lines).                                                
 
viewed from far away, we would only notice an abrupt change in direction from the incidence to the refraction 
angle.  

3) As expected, both hs  and bs  coincide in direction in vacuum. Their size is numerically the same, but, as 
explained before, we used a different scale for the magnitude of each field.  

4) The “rays” of main
hs  and main

bs  are—with the exception of the interference zone—parallel to the hs  and 
bs  fields, respectively. If there is any deviation, it cannot be appreciated by only looking at the figure.  
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5) In all the simulations that we displayed, the line traced by the local maxima of 2α�  described before 
coincided—without noticeable difference—with the line corresponding to main

hs .  
6) The magnitude of both bs  and hs  is larger on the more “intense” parts of the beam, and decreases when 

getting away from it.  
7) In Figure 2 and Figure 4 the transmitted beam seems more intense than the incident beam. 
And last, perhaps the most important observations:  
8) For all cases, bs  has a small but quantifiable divergence along the transmitted beam. In all cases, it is 

negative in some regions and positive in others . A plot of this is displayed in Figure 3. This means that if bs  is 
interpreted as an energy flux, there is energy flowing out in some regions of the beam, and energy flowing in in 
other regions of the beam , which requires a justification in physical terms.  

9) Some of the basic refraction properties of the propagation of plane waves in uniaxial metamaterials re- 
ferred in Section 3 are preserved in the case of the beam: a) Negative refraction is obtained when µ⊥�  is nega- 
tive, as in Figure 2, Figure 4 and Figure 6. b) The projection of hs  over bs  (the analogous of the projection 
of S  over k  for a plane wave) has the sign of µ�� —positive only for Figure 5—and is not tied to the sign of 
refraction.  

10) In the metamaterial, the field bs  is not parallel with hs  in any of the cases presented here. And while 
hs  follows the direction of the beam (whether in visual terms, or more quantitatively in terms of the line of 

maxima), bs  clearly and distinctively does not point in the direction of the beam. It can even point in directions 
towards the interface, as in Figure 2, Figure 4 and Figure 6. 

This results reveal that for this beam the main wave represents an astonishingly good approximation to the 
beam in geometrical terms. In general, it is important to remark that such agreement is by no means obvious, 
since the energy and energy flux are not linear quantities; in fact, it does not happen in other less symmetrical 
beams, which we do not treat here for the sake of brevity. 

The point labeled 6 about bs  and hs  having a larger magnitude within the beam is important, since in 
optics the intensity is defined as the magnitude of the energy flux. It could be thought that the choice of plotting  

21
2ui α= �  was in some way biased and that another choice would have lead to different results about the  

 

 
Figure 5. Refraction of the Gaussian beam from vacuum towards the SRR for 

0 1.8 GHzω =  and 4π 16iθ = . We plot a measure of the energy density (in the color 
map), the bs  and hs  fields (as vector fields), and the direction of the hs  and bs  
for the main mode of the beam (as lines).                                                
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Figure 6. Refraction of the Gaussian beam from vacuum towards the SRR for 

0 2.0 GHzω =  and 2π 16iθ = . We plot a measure of the energy density (in the color 
map), the bs  and hs  fields (as vector fields), and the direction of the hs  and bs  
for the main mode of the beam (as lines).                                                

 
direction of bs . But actually this is not the case, and we wish to quantify and elaborate briefly on this. 

Let us define b bi = s  and h hi = s . An important question is, taken this as intensities, how would the 
beam profile vary from the one obtained with the mean energy density ui ? It should be clear that the quotient 

b si i  is exactly 1 on vacuum; on the other side, within the metamaterial we calculated it numerically for the 
same setups presented in Figure 2, Figures 4-6; it is practically constant, with a slow variation in the x  
direction. For example, for the SRR and parameter values as in Figure 6, this ratio is about 1.2. The slow spatial 
variation in this proportion can be understood in terms of Equation (49), which allows us to write  

( ) ( )
( )

2 * 2 2 * 2

2 *

2 2 2 2

im im

im1 1 1 .

b b

s x z

z

b

i i
i

i

α α µ α α µ

α α

µ µ µ

⊥

⊥ ⊥

=
+

  
 = + −     

�

�

                           (50) 

Written in this way, we can recognize the term ( )2 * 2im z biα α  as the square cosine of the angle formed 
between bs  and the z axis. As we observed in point 6b of the list above, this directions do not seem to vary 
along space. All this tells us that the beam profiles (the “shapes”) predicted by si  and bi  are essentially the 
same, that they only vary in the prediction of the intensity of the transmitted beam. 

On the other hand, note, from Equation (35) that the essential difference between ui  and bi  (or hi , in view 
of the former conclusion) is the magnitude of the gradient of the phase of the electric field αφ∇  (which is 
clearly not constant). In Figure 7 we can see the quotient u hi i . This is essentially the magnitude of the 
gradient of phase, and, as it can be seen, except in the interference zone, it seems “constant”. The quotes here are 
because the value of that constant is one in the vacuum side and a different one on the metamaterial side.  

The numerical analysis of these two quantities h bi i  and u hi i  show two important things: first, that the 
profile given by ui , bi  and si  are essentially the same (and thus there is no bias with respect to this two fields 
in the choice of plotting 2E ); and second, that there is a difference with respect to the predictions of the 
intensities of the transmitted beams, which manifest in the abrupt change of h bi i  when passing from vacuum 
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to the metamaterial. This last observation is expected, since, for the polarization we are analyzing, 2E  is 
continuous, while H  is not. The effect of this discontinuity is—at least for the cases we analyze—desirable 
from the point of view of experience, because, as Figure 8 and Figure 9 show, the profiles of hi  no longer 
have a more intense transmitted beam than the incident one, as it does happen in the corresponding Figure 2 and 
Figure 4.  

 

 

Figure 7. Proportion between 2α�  and hs  for the SRR at 2 GHz and an 

incidence angle of 4π 16iθ = . This plot corresponds to the same parameters 
as Figure 5.                                                                     

 

 
Figure 8. Magnitude of hs  for the same parameters of Figure 2.                       
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Figure 9. Magnitude of hs  for the same parameters of Figure 4.                          

 
The discussion of the intensity predictions of the two choices of the Poynting vector also leads to an intere- 

sting question: Since we define intensity as proportional to the energy density, one could ask if there exists a 
device capable of responding to this quantity. Consider an idealized “intensity detector” consisting of a small 
plane screen, whose detection result is the integration of the intensity over such surface. Center this detector in a 
point along the axis of the Gaussian beam. First, put the screen aligned with the axis and take a measure with 
this device. Afterwards, put the screen in the orthogonal position (remember this is a 2D beam) and take a 
second measure. Since in the first case the axis coincides with the line of maxima of intensity, the measure is 
necessarily greater than in the second. But our experience with detectors tells us this is not the case; in fact, it is 
exactly opposite. This is important because, since bi  and hi  produce the same intensity profiles, one could 
think that there is no practical difference if the flux comes from one or the other, because it is the profile what 
we measure. But if we accept that the detector in some way reacts to the energy flux (as a vector quantity) 
through the surface integral of its projection over the screen's normal, the maximum value would be obtained, 
with hs , when the screen is orthogonal to the axis, while for bs  it would be obtained in different directions, as 
it can be seen in Figure 2, Figures 4-6. With this assumption, to measure the intensity at a given point one has 
to either know the direction of flow a priori, or rotate the detector (with normal n̂ ) in all possible directions, 
obtaining a measure of n̂⋅s  for each direction; when this quantity is the greatest of all ( n̂⋅s , with n̂  parallel 
to s ), one gets the intensity and the direction of the energy flow in that point. 

It is also important to stress that the results we show here make evident that in general the ray directions in the 
formalism of geometrical optics and the notion of a ray as an idealized narrow beam (characterized by its 
intensity) are not equivalent.  

6. Conclusions  
We discussed the choice between two possible expressions for the Poynting vector: 1) 0B µ= ×S E B  and 2) 

H = ×S E H , in order to discriminate which of them truly represents the direction of energy flow within 
anisotropic media. We construct a 2D monochromatic beam and calculate how this beam refracts at an interface 
between vacuum and an uniaxial anisotropic metamaterial, at frequency bands in which dissipation is negligible 
and with optical parameters unrestricted with respect to sign. The results obtained make us conclude that:  

1) For any monochromatic 2D field and in any medium (even absorbing ones) there is a “ray” formalism 
which extends the eikonal formalism. The directions of those “rays” are given, in s polarization, by 0µ×E B , 
and in p polarization by 0×D H  .  
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2) The directions of the rays, defined in this work as idealized narrow beams, coincide within the simulations 
presented here with the Poynting vector if we define it as ×E H  rather than 0µ×E B . Thus:  

a) The “ray” formalism described in conclusion 1 (and therefore the eikonal formalism) is not equivalent to 
the “intuitive” notion of light ray given by idealized narrow beams.  

b) Following the geometrical criterion proposed here, the field ×E H  is more suitable as a definition of the 
energy flux compared to 0µ×E B .  

c) The definition of light ray as an idealized narrow beam and the results obtained here allow us to associate 
the light rays with the field lines of the ×E H  vector.  
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