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Abstract 
High-temperature and pressure boundaries of the liquid and gas states have not been defined 
thermodynamically. Standard liquid-state physics texts use either critical isotherms or isobars as 
ad hoc boundaries in phase diagrams. Here we report that percolation transition loci can define 
liquid and gas states, extending from super-critical temperatures or pressures to “ideal gas” states. 
Using computational methodology described previously we present results for the thermody-
namic states at which clusters of excluded volume (VE) and pockets of available volume (VA), for a 
spherical molecule diameter σ, percolate the whole volume (V = VE + VA) of the ideal gas. The mo-
lecular-reduced temperature (T)/pressure(p) ratios ( BT k T p 3∗ = σ ) for the percolation transi-

tions are PET ∗  = 1.495 ± 0.015 and PAT ∗  = 1.100 ± 0.015. Further MD computations of percolation 
loci, for the Widom-Rowlinson (W-R) model of a partially miscible binary liquid (A-B), show the 
connection between the ideal gas percolation transitions and the 1st-order phase-separation tran-
sition. A phase diagram for the penetrable cohesive sphere (PCS) model of a one-component liq-
uid-gas is then obtained by analytic transcription of the W-R model thermodynamic properties. 
The PCS percolation loci extend from a critical coexistence of gas plus liquid to the low-density 
limit ideal gas. Extended percolation loci for argon, determined from literature equation-of-state 
measurements exhibit similar phenomena. When percolation loci define phase bounds, the liquid 
phase spans the whole density range, whereas the gas phase is confined by its percolation boun-
dary within an area of low T and p on the density surface. This is contrary to a general perception 
and opens a debate on the definitions of gaseous and liquid states.  
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1. Introduction 
Almost 40 years ago, in their classic review on the status of liquid state theory [1], Barker and Henderson began 
with the words “Liquids exist in a relatively small part of the enormous range of temperatures and pressures ex-
isting in the universe”. The tiny liquid area, in the T-p projection of Gibbs density surface, was defined within 
either a critical isotherm, or isobar, and a triple point. Above a critical temperature (or pressure) and below the 
triple-point, the liquid state did not exist. Not everyone agreed with these ad hoc bounds, however. For example, 
recent research on percolation transition loci on Gibbs thermodynamic surfaces [2] shows that J. D. Bernal may 
have been closer to the truth. Besides noting that the liquid state, albeit metastable, should extend down to abso-
lute zero using random close packing as a starting point, Bernal also argued that the liquid state should extend to 
supercritical temperatures and pressures, where it is bounded from the gas phase by a “hypercritical” line of 
discontinuity.  

Here, we report results for ideal gas properties, which, alongside real experimental p-V-T properties of a typ-
ical real fluid (argon), comprise compelling evidence that the liquid state is not bounded, by either the critical 
isotherm or isobar. Liquid and gas phases are terminated by percolation loci along any isotherm. Moreover, we 
find that percolation loci extend all the way from critical coexistence to low density states with ideal gas proper-
ties.  

The equation-of-state of a real gas with finite molecular size (diameter σ) behaving ideally within a low-den- 
sity limit, is simply 

* *p ρ=                                        (1) 

where p* is a molecular-reduced pressure (pσ3/kBT), T is temperature (K), kB is Boltzmann’s constant, ρ* is a re-
duced density (ρ* = Nσd/Ld), where Ld is length (L, d = 1), area (A, d = 2) or volume (V, d = 3). Equation (1) has 
an abiding role in the description of thermodynamic properties of real molecular fluids. Pressure is everywhere 
continuous; second and all higher derivatives of p(ρ) are zero. Because of this simplicity, all state functions are 
exactly known for any d. Equation (1) is a universal scaling law that spans the dimensions.  

Within the ideal gas limit of obedience to Equation (1), real fluids with finite size, i.e. σ > 0, however, exhibit 
various properties that cannot scale with d, linear transport coefficients, for example. Percolation transitions, not 
unrelated to the transport coefficients, are also strongly dimension dependent in form, and are known to deter-
mine thermodynamic phase changes in model lattice gases [3]. Percolation transitions of the available volume 
(VA) and excluded volume (VE) for the insertion of one more molecule of a finite diameter are properties relating 
to Gibbs energies that effect phase transitions.  

For hard-core fluids,  

A EV V V= +                                      (2) 

then, the ensemble averages AV  and EV  equate with chemical potential (μi) of species i 

( )logi B e Ak T V Vµ = −                                (3) 

Equation (3), with Equation (2), defines AV  and EV  for real fluids. 
For the ideal gas, percolation of VE is defined as a density above, or temperature below which, the overlapping 

exclusion spheres of radius σ/2 from a point in a uniformly random distribution of N points, form clusters that 
can span the whole of V. VA comprises a distribution in configuration space of accessible pockets in which there 
are no ideal gas point molecules within one sphere diameter anywhere in the pocket. The percolation transition 
for VA is the density above, or temperature below which, the empty pockets coalesce to span the system. For 
temperatures above percolation, VA comprises a network of connecting pathways to the whole system accessible 
to a diffusing sphere in the static ideal gas equilibrium configuration.  

2. Percolation Transitions 

For an ideal gas the exclusion sphere diameter defines * 3 *1BT k T pσ ρ= = . Experimental coexistence data 
on binary liquid phase diagrams is generally obtained at constant pressure (1 atm.) and presented with tempera-
ture (T) the dependent variable as a function of mole fraction (XB), hence at this stage, with binary liquids in 
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mind, we choose T* as the state variable. (note: for an ideal gas * * * *1 1T p V ρ= = = ) We designate the per-

colation transition reduced temperatures as PET ∗  and PAT ∗  respectively. Relationships between dimensionality 
and percolation transitions can be summarized: 

d = 1 no percolation 
d = 2 PE and PA coincide PE PAT T∗ ∗=  and PE PAρ ρ∗ ∗=   

d = 3 there is an inequality PE PAT T∗ ∗>  and PE PAρ ρ∗ ∗<   
There is a fundamental difference between 2 and 3 dimensions. For d = 2, there are two regions, “gas-like” 

PET T∗ ∗>  and “liquid-like” PET T∗ ∗< , whereas for d = 3 there are three regions, gas-like T* > TPA, liquid-like T* 

< TPA and a mesophase, PA PET T T∗ ∗ ∗> > . In the mesophase, both the pockets of availability and clusters of ex-
clusion sites percolate the system. The mesophase is both gas-like and liquid-like. 

PE both for d = 2 and 3 has been investigated by a number of authors for the present and related systems 
[4]-[11] Rough estimates of PE for d = 2 and 3 ideal gases can be gleaned from Figure 3 and Figure 4 of the 
paper by Bug et al. [4]. Extrapolating their data points, when their attraction parameter ε = 0, to zero density one 
obtains for d = 2 ΦPE ~ 1.2 and for d = 3 ΦPE ~ 0.35, where Φ is the excluded volume fraction (=πρσ3/6). Heyes 
and coworkers [5]-[8] report related investigations of PE for various models by MC and MD simulations. From 
an interpolation to zero density of the hard-sphere fluid variable-exclusion shell percolation threshold Heyes et 
al. [7] obtain ΦPE = 0.346 (d = 3). The most accurate values for both the d = 2 (PE and PA) percolation transi-
tion are probably those of Ziff and coworkers: the values for ρ* are 1.275 (d = 2) and 0.653 (d = 3). An extensive 
study of ideal-gas PE transitions for exclusion squares, cubes, and other geometric shapes has also been reported 
[11]. 

Educational insight, and estimates of /PE PAρ∗  for d = 2 can easily be obtained pictorially in just a few minutes 
using an EXCEL spreadsheet. Figure 1 shows a typical configuration, 2000 random numbers from a uniform 
distribution 0 - 1, i.e. an ideal gas (N = 1000) in the vicinity of the percolation transition. Disc diameters do not 
vary when the square area is expanded or contracted on the display. Fixing the diameter at 5 mm, percolation  
occurs at L ~ 14.0 cm hence / 1.28PE PAρ∗ =  or / 0.77PE PAT ∗ = , i.e. in close proximity to reference [9]. Computa-
tion of PA for the ideal gas d = 3 has not previously been reported. 

There are no reports of PA (d = 3) having been previously investigated or determined for the ideal gas, al-
though the transition density PAρ∗  is known to be 0.537 ± 0.05 for the hard-sphere fluid [12]. Here, we use the 
same methods, and criteria for percolation, as described previously for the hard-sphere fluid. Both PET ∗  and 

PAT ∗  have been computed for a range of finite size systems; the results are summarized in Figure 2. Thermody-
namic limiting values (N  ∞) are obtained from the linear trendlines. 

Every configuration either has a percolating cluster or it does not. Clearly, for small finite systems, there will 
be configurations that percolate, and some that do not, in the vicinity of PE. The percolation threshold in the 
computations of Heyes et al. [5]-[8] was defined when 50% of configurations have a percolating cluster, with 
details described by Seaton et al. [13]. Here, we define PE using an ensemble average definition of a percolation  

 

       
(a)                                 (b)                                 (c) 

Figure 1. Excluded and accessible areas (black and white respectively) for a configuration of a two-dimensional ideal gas: (a) 
“gas-like” density below the percolation transition (b) close to the percolation transition and (c) “liquid-like” density above 
the percolation transition.                                                                                      
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(a)                                            (b) 

Figure 2. (a) Ideal gas PE transition ( PET ∗ ) from the mean cluster size distribution saddle-point method [12] 

for a range of finite systems: (b) Ideal gas PA transition ( PAT ∗ ) from zero-diffusivity limit method [12].        
 

density [12]; i.e. PEρ∗  is the saddle-point density above which the cluster size probability distribution P(n) is 

bimodal. This is the normalized probability of a site belonging to a cluster of size n. Above PET ∗ , P(n) is a mo-

notonic gas-like distribution, for all PE below PET ∗  it is bimodal. Plotting the saddle-point definition of 

( )PET N∗  against 1/N1/3 (Figure 2(a)) gives a linear trendline that interpolates to the result  

( ) 1.495 0.01PET N∗ → ∞ = ±  ( 0.668PEρ∗ = ).  
Our method for determining PAT ∗  is essentially that described previously for hard spheres [12], except that it 

is easier for the ideal gas. Here we use N-V-T MD for non-additive binary spheres that can simulate the Widom- 
Rowlinson (W-R) model fluid [14] [15]. This belongs to the general class of symmetric binary non-additive 
hard-sphere fluid mixtures defined by collision diameters 

( )1AA BB ABσ σ δ σ= = +  

where δ is a dimensionless non-additivity, that varies from −1, for the W-R penetrable-sphere model binary fluid, 
via zero for one-component hard spheres, to infinity. Positive δ relates to ionic liquids and ionic crystal struc-
tures when mole fraction XB = 0.5. 

The MD program solves equations of motion of a binary mixture NA + NB. The results for the PA values in 
Figure 2(b) are obtained by the mean-squared displacements of B average over many frozen random configura-
tions of ideal gas A. As the B particles do not interact with themselves, we average over all NB in the same MD 
simulation run. All the values in Figure 2(b) were obtained for equimolar systems. Plotting the point of zero dif- 
fusivity, Di(ρ, N)  0, against N (NA in MD run) gives a linear trendline with the result ( ) 1.100 0.01PAT N∗ → ∞ = ±  

( 0.908PAρ∗ = ). 

3. W-R Model Binary Liquid  
3.1. MD Simulation Results 
We have determined PET ∗  along isopleths of the binary W-R model fluid; T* is defined as T* = 1/p* and p* = 
pσ3/kBT. MD simulations have some advantages over Grand Canonical Monte Carlo [15] (GCMC). Not least is 
the direct extraction of transport properties for determination of PAT ∗  loci. These are obtainable by “freezing” 
component A whilst allowing B to diffuse. The cluster distributions that determine PET ∗  also yield accurate 
values for coexisting XB by integrating the solute cluster probability distribution P(n) which decreases monoton-
ically, from a maximum at n = 1, to zero for clusters of B in solution of A, or vice-verser. Accurate MD pres-
sures are calculated from A-B collision frequencies. 

What is the effect on the percolation transitions of increasing the mole fraction of B from the ideal gas limit 
(XB = 0)? For the isopleth at XB = 0.1, and for N = 10,000, the reduced pressures at which the two transitions oc-
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cur, i.e. PEp∗  and PAp∗  are 0.715 and 0.923 respectively. We find, up to XB = 0.1 and beyond, both percolation 
pressures increase with XB, PE more so than PA, roughly according to 

( ) ( )~ 0 1PE B PE Bp pρ ρ∗ ∗ ∗ ∗ +   

( ) ( )~ 0 1 2PA B PA Bp pρ ρ∗ ∗ ∗ ∗ +   

where B BXρ ρ∗ ∗= . The percolation transition pressures increase with Bρ
∗  because, as B are added at constant 

T, the system expands with both VA and VE increasing, but VE increases more than VA; adding B causes A-sites to 
cluster more, whilst creating more spherical B-pockets. The pressures of percolation transitions for finite XB ap-
pear to be coincident with higher-order discontinuities (Figure 3) in the supercritical region. Weak thermody-
namic discontinuities have been both predicted theoretically for real systems [16], and reportedly seen experi-
mentally [17]. Changes in pressure slopes are evident from the MD excess pressures defined relative to the ideal 
gas. 

* *
 exp p ρ∗ = −                                       (4) 

Figure 3(a) shows the isopleth XB = 0.1 has four distinct regions. At high density, in the two-phase region, the 
MD pressures averaged over 100 million A-B collisions still show fairly large uncertainties. The maximum 
pressure along any isopleth coincides with the first-order mixing-demixing transition. This reflects the thermo- 
dynamic equilibrium condition of minimal Gibbs energy (G) (since 1d dTG pρ−= ) for equilibrium on either side  
of the transition. At the mole fraction XB = 0.1 in the mesophase region pressure increases linearly with density. 
In the one-phase region, the MD data is sufficient to observe that the percolation loci appear to be associated  

 

 
(a) 

 
(b) 

Figure 3. Excess pressures of the Widom-Rowlinson binary fluid mixture: (a) along the 
isopleth XB = 0.1 (N = 10,000); (b) along the equimolarisopleth XB = 0.5 (N = 8000).        
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with changes in slope that could reflect higher-order thermodynamic phase transitions, but presently not suffi-
ciently accurate to establish the order or strength of discontinuities. 

The vertical dashed lines in Figure 3 correspond to the percolation transition densities computed explicitly by 
the methods described in the text and referenced [5]: they coincide with changes in the slope of the excess pres-
sure. The MD results for XB = 0.5 show three regions; there is no PA, just the PE transition at the density 0.65. 
The change in the slope of  exp∗ , and hence also p*, is more pronounced. The rigidity function (dp/dρ)T is again 
constant in the mesophase, close to zero as evidenced by a very slight slope.  

3.2. Demixing Phase Transition 
In all previous investigations of the W-R fluid, the existence of a critical point  singularity at the UCST has in-
variable been assumed at the outset [14] [15]. The connection between percolation loci and phase transitions is 
now well-established. Equation (3) of this paper exactly relates VA or VE to chemical potentials, which determine 
equilibrium between phases. The essential new result here, is for the percolation of VA i.e. PAT ∗  in 3d (Figure 
2(b)) which ~35% greater than the already known PET ∗ . Between these transition temperatures both VE and VA 
percolate, hence the mesophase only exists in real 3d liquid-liquid or liquid gas fluids. This result for the ideal 
gas enables the connection between percolation loci and the demixing transition to be determined. 

As solute concentration (XB) increases in the W-R fluid, the two percolation temperatures become closer and 
then coincide. From thermodynamic considerations, this intersection triggers a first-order phase transition, with 
the two different phases having the same T, p and chemical potential. It is this fundamental property of percola-
tion in 3d that does not exist in 2d that vitiates the hypothetical concept of universality, and confirms the new 
science of criticality for both liquid-gas [2], and now also liquid-liquid coexistence.  

Along any isopleth, the pressure is a maximum at the two-phase boundary to comply with the thermodynamic 
requirement of minimum Gibbs energy as shown in Figure 3. However, we have also determined the coexis-
tence line directly from the results for the XB = 0.5 equimolar isopleth by a more accurate method than GEMC 
[15], by integrating the cluster distribution, obtained from all MD runs, up to the hiatus in 2-phase region. Fig-
ure 4 shows some plots of the cluster distributions and the integrated mole fractions. The distribution is bimodal 
in the mesophase and monomodal in the one-phase region. In the two-phase region it is bimodal with a hiatus. 

Reference [15] provides an estimate of the coexistence density and pressure for several XB well away from the 
critical coexisting compositions. For XB = 0.1, ρ* ~ 0.86. Because of the symmetry of the W-R model the mean 
of the two coexisting compositions at the upper critical consolute composition must be at XB = 0.5. Our results 
show that there is no “critical point”. Thus in Figure 3(b) the onset of the two-phase region is at the mean criti- 

 

 
(a)                                          (b) 

Figure 4. (a) Cluster size distributions for W-R binary fluid; (b) integrated mole fractions for state 
points in 4a showing how the coexistence mole fraction is obtained in the 2-phase region, e.g. at the 
density 0.8 (black points) XA = 0.214 ± 0.01.                                                    
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cal density; there is a flattish pressure vs. density mesophase up to the phase separation followed at higher den-
sities by a steady fall of pressure in the two-phase region. The vertical line is at ρ* ~ 0.75 is close to the pre-
viously estimated demixing density ρ*(T) = 0.749 of de Miguel et al. [15].  

The percolation loci on the T*-XB surface (Figure 5), to within the uncertainty of the data, decrease with XB an 
intersection occurs when T* = 1.00 ± 0.01 with the uncertainty estimated from the combined regressions. At this 
intersection the fluid phase separates as solutions of A in B and B in A have the same T, p, and μ of both species  
(chemical potential). Solving for XB when PE PAT T∗ ∗=  gives XB = 0.339 for the critical coexistence mole fraction.  
From the coexistence pressures, and direct computations of PA and PE, we are able to construct a phase diagram 
for the W-R binary fluid. The temperature loci of the percolation transitions fit the trendlines (dashed lines in 
Figure 5) 

1.495 0.750PE BT X∗ = −  

21.100 0.045 1.004PA B BT X X∗ = + −  

showing the connection between percolation and the demixing phase transition. Note the perfect symmetry 
about the isopleth XB = 0.5. 

The present results show a dividing line at cT ∗ , rather than an Ising-like singular critical point. The evidence 
for higher-order discontinuities at PE and PA loci may invalidate some mean-field theoretical approaches.  

The W-R binary fluid is essentially a simple model of partially miscible liquids, e.g. cyclohexane and metha-
nol. The high-density fluid states at low temperatures are immiscible ideal gases. Here we have an example of 
what could arguably be described as “liquid states” of the ideal gas. Within the respective uncertainties, the 
present results agree with de Miguel et al. [15]. Our phase diagram could just as easily be presented as p*, ρ* or 
V*, it would not change the science. We choose T* to identify directly with real binary-liquid experimental phase 
diagrams that exhibit a similar UCST (Figure 6). 

3.3. Experimental Evidence 
Many mixtures of dissimilar liquids, just as seen here for the W-R fluid, separate into two coexisting phases 
over a lower temperature range. On heating, compositions of the two phases become more and more similar and 
at a critical temperature there is a single phase. This is the UCST. At higher temperature there is just one liquid 
phase. It is possible to define various percolation thresholds for clusters of solute molecules in the single liquid 
phase by analogy with clusters of molecules in a gas phase. The present evidence suggest that they these perco-
lation loci that delimit the solution will give rise to a mesophase and a coexistence line the UCST [17]. 

 

 
Figure 5. Phase diagram of the Widom-Rowlinson binary fluid; PET ∗  and PAT ∗  lo-
ci blue and green respectively; percolation transitions of the ideal gas open circles 
at XB = 0; computed 2-phase coexistence state points are the red circles.              
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Figure 6. Typical experimental data points for the 2-phase coexistence of a par-
tially miscible liquid-liquid mixture showing a UCST at horizontal line within the 
uncertainty: data from [19] [19] The black dot is a hypothetical “critical point”.      

 
Experimental critical parameters for a range of partially miscible binary liquids are tabulated in Kaye and 

Laby [19]. The critical compositions are actually mean compositions of the maximum observable coexisting 
compositions, defined and obtained using the law of rectilinear diameters in the vicinity of Tc., usually in con-
junction with a cubic equation-of-state, or similar [19] [20]. This also applies to the critical densities of comput-
er models using Gibbs ensemble Monte Carlo methods [15], just as for liquid-gas coexistence in square-well 
model fluids [21]-[24]. Likewise, within the uncertainties of experimental measurements of liquid-liquid UCST 
(Figure 6), the coexistence envelopes at Tc are flat on top. The hypothetical “critical point” has been obtained 
using a priori hypothesis of existence, and is defined only by a numerical parameterization. 

The simulation results we present for the W-R mixture suggest that the phase diagram of real liquids will be 
determined by the intersection of percolation loci. These results for the W-R mixture should stimulate further 
laboratory experimental research into the percolation loci. The critical “point” in Figure 6 is defined only by a 
numerical parameterization using a theoretical functional form that presumes its existence. 

4. PCS Liquid-Gas Model  
Probably the simplest 3D model Hamiltonian of a molecular fluid, which is continuous in phase space, and ex-
hibits liquid-gas criticality and two-phase gas-liquid coexistence, is the penetrable cohesive sphere (PCS) fluid 
[14] [15]. The internal energy (U) is simply 

( )03 2B EU Nk T V v Nε= + −                            (5) 

where kB is Boltzmann’s constant and T is temperature (K); the angular brackets denote a configurational aver-
age. Equation (5) defines an attractive molecular energy (ε) complementary to the volume of overlapping clus-
ters, i.e. VE as defined above for an ideal gas, of a configuration of N penetrable spheres, and ν0 (=4πσ3/3) is the 
volume of a sphere. At low temperatures, this model exhibits the exact properties of an ideal gas in both the low- 
density (gas phase) and high-density (liquid-phase) limits. Here again, there is a liquid-like state with the prop-
erties of the ideal gas. Both W-R and PCS models, therefore raise a curious conundrum. Could a supercritical 
fluid with the properties of an ideal gas be described as “liquid”?  

Experimental thermodynamic liquid-gas coexistence phase diagrams [21] [23] have traditionally been ob-
tained along isotherms by measurements of coexistence pressures. Hence, we prefer to maintain the connection 
with experimental data of gas-liquid thermodynamic equilibrium measurements established over a period of 150 
years by plotting p(ρ)T isotherms (note the contrast with [15]). A more detailed analysis of the connection of 
percolation loci with experimental isotherms is recently published [18]. 

Every state of the PCS fluid corresponds to a transcribed state of the W-R binary model fluid. The equations 
for the transcription from the W-R binary percolation and coexistence pressures (Figure 7(a)) to the PCS 
one-component gas-liquid pressure can be derived, for example, from an analysis of the respective grand parti-
tion functions as described by de Miguel et al. [15]. The transcription equations we need here are 
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(a)                                                  (b) 

Figure 7. (a) Phase diagram of the W-R binary fluid in the pressure-density projection: PEp∗  and PAp∗  loci 
are dashed blue and green respectively; coexistence data points are red circles; (b) phase diagram of the PCS 
liquid-gas system obtained by transcription of W-R pressures in 7a.                                       

 

pressure [ ] [ ]( )3 *PCS W-R A o Bp p Z v k Tσ ε ε∗= −                      (6) 

density [ ] [ ]3PCS W-R Bpσ ρ∗=                             (7) 

where AZ ∗  is the thermodynamic activity of a component defined as lnZ* = μ/kBT and μ is Gibbs chemical po- 
tential relative to the ideal gas at the same T, p. Gibbs energy change, hence Z*, can be obtained by integrating 
the excess pressure loci at constant T, with respect to density. 

( ) ( )d logB id e Bk T p pµ ρ= −∫                            (8) 

For the one-component isomorphism of W-R fluid, pressure is the natural variable so the p* vs. ρ* representa-
tion along isotherms relates directly to experimental results and phase diagrams. We plot the values of the pres-
sure at coexistence vs. ρ* which we plot in Figure 7(b). Itshows that the simplest imaginable continuous Hamil-
tonian model to exhibit liquid-gas coexistence and a critical temperature has a coexistence line at the intersec-
tion percolation loci as observed for square-well and Lennard-Jones model fluids and many real fluids [24]-[28]. 
There is a liquid-gas critical dividing line between 2-phase coexistence and a supercritical mesophase. The liq-
uid state extends to an ideal gas zero density and pressure limit. This raises the question: could there exist a high 
temperature limit of the percolation transition loci in real fluids at very low density in the region of obedience to 
the ideal gas law?  

The evidence suggests this is indeed the case, provided we re-interpret the experimental thermodynamic 
properties of real fluids in the light of our knowledge of percolation transitions. For 80 important gases or liq-
uids, including the simplest real liquid argon, in the NIST “Thermophysical Properties of Fluid Systems” data 
bank [23], equation-of-state p-V-T data with 6-figure accuracies are obtainable. These p(ρ)T supercritical iso-
therms have been formulated, however, using a large number of parameters and an assumption of a supercritical 
continuity of liquid and gas. If there were to be no continuity of liquid and gas, there would need to exist three 
different equations-of-state to describe the gas and liquid phases, bounded by percolation loci, and the meso-
phase region in between. Present findings suggest theory-based equations-of-state with far fewer parameters, 
and with scientifically correct functional forms should eventually replace the NIST equations. Present observa-
tions indicate a virial expansion for the gas phase, perhaps a free-volume expansion for the liquid, and a linear 
combination for the mesophase. 

5. Real Fluids 
Although lacking a molecular-level definition, for any real fluid, for which an exact Hamiltonian is generally 
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unknown, the percolation loci can be defined and obtained phenomenologically along any thermodynamic equi-
librium isotherm by the rigidity inequalities [18]. In the case of real fluids with attractive potentials, the percola-
tion transition bounding the gas phase, i.e. the counterpart of PE for impenetrable spheres, has been designated 
PB, as it is a percolation of bonded clusters. 

Rigidity (ωT) is the work required to isothermally increase the density of a fluid; with dimensions of molar 
energy and is plotted for a range of isotherms for CO2 in Figure 8. The symmetry of the rigidity in both the sub-
critical and supercritical regions is the subject of a recent paper [18]. We note from Figure 8 that the percolation 
loci PB and PA appear to be converging at the Boyle rigidity in the case of CO2. 

The rigidity state function relates directly to the change in Gibbs energy (G) with density at constant T ac-
cording to 

( ) ( )d d d dT T Tw p Gρ ρ ρ= =                              (9) 

The following inequalities (10)-(12) are presently empirical, but do have a molecular-level explanation in 
terms of the number density fluctuations of gas and liquid respectively [18] 

gas PBρ ρ<  ( )d d 0Tω ρ <                           (10) 

meso PB PAρ ρ ρ> >  ( )d d 0Tω ρ =                         (11) 

liquid PAρ ρ>  ( )d d 0Tω ρ >                           (12) 

It is clear from Equation (9) that ω > 0, i.e. rigidity must always be positive: Gibbs energy cannot decrease 
with pressure when T is constant. By these definitions, moreover, not only can there be no “continuity” of gas 
and liquid, but the gas and liquid states are fundamentally different in their thermodynamic description. Rigidity 
is determined by number density fluctuations at the molecular level, which have different density dependencies 
in either phase. The gas phase comprises one large void with many small clusters, which determine fluctuations, 
whereas the liquid phase comprises one large cluster and with many vacant pockets, which determine density 
fluctuations. Since the properties of a hole or an occupied site are statistically equivalent, this give rise to a 
symmetry of supercritical properties between gas and liquid phases [18]. 

Experimental argon isotherms [21]-[23] from the critical temperature (Tc = 151K) to 500K are plotted in Fig-
ure 9. All the isotherms below a temperature around 400K show that there is a flat meso region, i.e. (dω/dρ)T = 
0. In this narrow range, for each supercritical isotherm, to within the uncertainty of the original experimental 
data, the rigidity is constant. A value can be obtained by a linear fit over a finite density range with a linear tren-
dline regression between 0.999999 and 1.0 for all the supercritical isotherms in Figure 9. An accurate equation- 
of-state for the meso region is thus obtained 

( ) 0Tp meso pω ρ= +                                 (13) 

 

 
Figure 8. Supercritical isotherms of carbon dioxide: the rigidity is obtained from NIST ther-
mophysical tables with 4-figure accuracy [23]: loci of PB and PA that bound gas and liquid 
respectively are the dashed lines. The percolation loci appear to be converging at ρ = 0; the 
Boyle temperature for CO2 is 715K corresponding to a rigidity of 5.945 KJ/mol.              
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(a)                                               (b) 

Figure 9. Supercritical isotherms of fluid argon from NIST Thermophysical Property Tables [23]: loci 
of PB and PA are green and blue respectively (a) pressure isotherms; (b) rigidity isotherms.                

 
where ωT is the rigidity along any isotherm T(K) and p0 is a pressure constant. The percolation loci densities can 
be estimated by observing the differences p(gas) − p(meso), and p(liquid)–p(meso), both decrease quadratically 
with density, and interpolate to zero at the percolation loci densities ρPB and ρPA. 

The initial slope of the percolation loci in the pressure plot (Figure 9(a)) corresponds to an intercept temper-
ature obtained from percolation loci in Figure 9(b) at zero density, as ω(ρ → 0) = NkBT for an ideal gas. All 
molecular gases exhibit a characteristic temperature at which the second virial coefficient changes sign. This 
corresponds to a low-density limit of the percolation transition loci that may converge together at or below this 
temperature. The Boyle temperature of argon is 407 K [23] corresponding to a rigidity of 3.38 KJ/mol. 

6. What Defines “Liquid Phase”?  
6.1. Phase Diagram 
The results presented here for the percolation transition loci comparing both real and model fluids reaffirm pre-
vious observations [24]-[28] that there is no critical point singularity on Gibbs density surface for gas-liquid 
condensation. Rather, there is a coexistence boundary line at the critical temperature, above which there exists a 
mesohase between the percolation loci that bound the liquid and gas phases. From the present W-R results, we 
can further infer that partially miscible liquid-liquid mixtures will also show an upper critical consolute temper-
ature with a dividing line separating one- and two-phase regions. Above this critical divide, there will be a me-
sophase bounded by the percolation loci that may extend to the ideal dilute solution limits. Experimental studies 
of liquid-liquid UCST phenomena, however, are limited, being generally at ambient pressures and terminate at 
the boiling temperatures.  

Returning to the question about universality and dimensionality dependence of the description of criticality, 
we observe for d = 2, since PE = PA for all densities (or concentration XB), the phase behavior and criticality 
will be quite different; there can be no mesophase in 2-dimensions. We conjecture, therefore, that the percola-
tion locus intersects the equimolarisopleth with a critical singularity at XB = 0.5 for the d = 2 W-R model. 
Another consequence of the absence of a d = 2 mesophase would be no metastability beyond the first-order 
phase boundaries, and, unlike d = 3, no metastability and hence no spinodals within the subcritical bimodals. 
The existence of a mesophase is a property only of d = 3 systems. This difference in the description of liquid-gas 
criticality between 2 and 3 dimensions vitiates the hypothetical “universality” concept as applied to liquid-gas, 
and binary-liquid, criticality. 

The present results for various percolation loci suggest that all real atomic and molecular fluids will have a 
liquid state that is bounded only by a percolation transition at high temperature and its equilibrium freezing tran-
sition at low temperature along any isotherm. The boundary may be defined phenomenologically by inequality 
(12). The locus of this liquid-state boundary is seen to extend all the way from the liquid critical temperature and 
pressure, to an ideal gas at limiting low density. On the basis of these observations, it is the “gas phase”, i.e. de-
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fined by the inequality (10) that exists in a limited area of the universal T-p plane.  
We note, however, that there can be no zero of density/pressure for a real fluid, as they become logarithmic to 

high vacuum levels. The truly ideal gas cannot exist in reality; the sign of the second virial coefficient deter-
mines the designation “gas” or “liquid”, by the rigidity criterion and in this limit. The liquid area of existence 
extends to infinite pressure and temperature; whereas the gas phase extends to infinite vacuum, but only below a 
certain temperature. It appears the liquid phase will extend upwards in temperature, for all pressures to perhaps 
continuously become plasma (Figure 10). This is contrary to what is hitherto generally believed to be liquid 
state [1]. 

6.2. Ideal Gas Connection 
The symmetry similarity between gas and liquid opens the way to an alternative definition of liquid state, which 
is usually regarded just as the high density portion of the fluid phase below the critical temperature, i.e. defined 
ad hoc as being bound by the critical isotherm, or sometimes the critical isobar. Here we advocate a thermody-
namic definition. A “liquid” phase can be identified as the region at density higher than the available volume 
percolation transition. 

On examination of the loci of two percolation transition densities in real gases at high dilution, we note that 
these lines do not have any thermodynamic signature in the equilibrium properties of the ideal gas. The “ideal 
gas” is a fictitious concept that cannot exist in reality. In any real gas, the density cannot go to zero. It is loga-
rithmic; for all real gases behaving ideally, thermodynamic properties everywhere depend upon a distance scale. 
In the W-R binary-liquid and PCS fluid it is the penetrable sphere diameter. For real gases, the percolation tran-
sitions are present in the low-density region of obedience to the ideal gas law, i.e. when p ~ ρkT and extend to 
the Boyle temperature. Thus, in the low-density limit, the boundary between gas and “liquid” phases according 
the criteria of Equations (10)-(12) becomes the sign of the second virial coefficient (b2), as defined in the expan-
sion of pressure in powers of density along any isotherm 

( ) ( ) ( )( )1
21 n

B np k T b T b Tρ ρ ρ −= + + + +                         (13) 

In the gas region of the phase diagram b2(T) is negative, whereas in a region of a liquid phase it is positive; at 
the Boyle temperature b2 is zero. 

A definition of liquid state based on the existence of percolation lines has implication for the thermodynamics 
of the system for the following reason. When the two supercritical percolation lines that bound the existence of 
liquid and gas phases intersect on the Gibbs density surface the respective phases have the same temperature and 
pressure but different densities, and therefore also the same Gibbs chemical potential, and hence coexist at a 
first-order phase transition. These new results for the percolation transitions of an ideal gas and loci for model 
fluids, are valuable contributions to the literature as they lead to an alternative more plausible interpretation of 
the phase behavior of the W-R model binary liquid and the one-component liquid gas fluid. The possible alter-
native operative description of “liquid” phase is a corollary of these findings. 

 

 
Figure 10. Phase diagram for argon showing the percolation loci that bound the 
liquid and gas states and mesophase: the tiny shaded area is generally referred to as 
“liquid”: the red circle is the critical point on the p-T projection [1].                 
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7. Conclusions  
In Section 2 we have presented a new result for the penetrable sphere available volume percolation transition 
temperature ( PAT ∗ ) of an ideal gas and found that 1.36PA PET T∗ ∗ = . We conclude that the d = 3 ideal gas has three  
regions liquid-like, gas-like, and a meso-region wherein both VE and VA percolate. The connection to the coexis-
tence envelope of a W-R fluid is the ultimate compelling evidence for the absence of any van der Waals singu-
larity on the density surface of liquid-gas equilibrium or on composition surface of the partially miscible binary 
liquid at the critical temperature or pressure. 

In Section 3 we have reported the direct determination of both percolation loci PAT ∗  and PET ∗  along several  
isopleths of the W-R fluid. We find that both percolation loci decrease with composition XB (or XA) and, around 
T* ~ 1, and intersect with two phases then having the same temperature, pressure and minimal chemical potential 
at the known critical temperature. It is wholly consistent with previous results for the intersection of percolation 
loci in the p-T plane at the critical temperatures for model square-well fluids [23], Lennard-Jones fluids [24], 
and real fluids including argon [26] [26] and water [27]. To suggest that percolation transitions are unrelated to 
thermodynamic properties would imply that the intersection of percolation loci at pc-Tc, in all these systems, 
would have to be a series of incredible coincidences. This is quite implausible. 

The phase behavior (Section 4) for the model penetrable sphere fluid obtained by transcription of the W-R 
fluid properties, therefore, is further compelling evidence that there is no critical point on Gibbs density surface 
for liquid-gas equilibria. This simple model liquid-gas Hamiltonian shows a critical dividing line between a 
maximum coexisting gas density and a minimum coexisting liquid density, above which exists a supercritical 
mesophase. 

We have also shown that the thermodynamic state function rigidity, (dp/dρ)T, can define a distinction between 
gas and liquid. For any one-phase system rigidity is everywhere positive; in any two-phase region ω = 0. Rigid-
ity decreases with density for a gas and increases with density for a liquid. For temperatures above critical coex-
istence the rigidity has a constant value in the mesophase that separates the percolation loci, which bound the 
limits of existence of liquid and gas phases in the supercritical region. 

We have compared the results for the ideal gas percolation ratios with the high-temperature, low pressure and 
density, limits of argon. The results from the modern NIST thermophysical property tables [23] indicate that the 
supercritical mesophase, at least in the case of simple fluids, extends all the way to a dilute gas behaving ideally. 
This reopens the debate “What is liquid?” [1]. 

Finally, we have presented results that show there cannot be “universality” in the description of criticality 
between 2- and 3-dimensional systems. The mesophase is a fundamental property of complementary excluded 
and available volume percolation loci only in 3d, which does not exist in 2d. Hence, there can be a critical point 
singularity on the density surface of 2d fluids, whereas it is a critical dividing line for real 3d liquid-gas thermo-
dynamic systems.  
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