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Abstract 
Squeezed quantum vacua seems to violate the averaged null energy conditions (ANEC’s), because 
they have a negative energy density. When treated as a perfect fluid, rapidly rotating Casimir 
plates will create vorticity in the vacuum bounded by them. The geometry resulting from an arbi-
trarily extended Casimir plates along their axis of rotation is similar to van Stockum spacetime. 
We observe closed timelike curves (CTC’s) forming in the exterior of the system resulting from 
frame dragging. The exterior geometry of this system is similar to Kerr geometry, but because of 
violation of ANEC, the Cauchy horizon lies outside the system unlike Kerr blackholes, giving more 
emphasis on whether spacetime is multiply connected at the microscopic level. 
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1. Introduction 
If we examined the compatibility of squeezed vacuum energy with the energy conditions imposed by general 
relativity we notice a clear violation of them by the squeezed vacuum [1]. Thus squeezed vacuum behaves like 
an exotic matter. It is tempting to link the violation of ANEC’s by squeezed vacua and their geometric back 
reaction. We can “stir” the squeezed vacuum by letting the Casimir plates (or general boundary condition) rotate 
[2]. This rotation should remove the pressure on the plates and create an effect analogous to vorticity in fluids. 
We calculated the geometry resulting from this system and the conditions that should be satisfied to create the 
closed timelike curves (CTC’s) near the system (Figure 1). This calculation ignores however the quantum 
vacuum in the exterior, it is conjectured that the exterior vacuum will prevent the formation of CTC’s [3]. In our 
calculation we demonstrate other possible effects that might save chronology in this setup. Nevertheless, this 
system is a good example of how quantum vacuum is needed to stabilise geometry. Finally, we proposed a 
method for maintenance of traversable wormholes using the rotating Casimir plates. 
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2. Vorticity of Squeezed Vacua 
Consider a scalar quantum field, φ . With boundary conditions created by Casimir plates separated by a dis- 
tance L on the x-axis. In an arbitrary curved spacetime, the expectation value of the normally-ordered stress- 
energy tensor is given by [4]: 

[ ]
2

4

π: : 1, 1, 1,3 .
90

T Diag
Lµν = − − −                              (1) 

This result comes from zeta regularisation of the expression: 
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since the boundary conditions are in x-axis we write π
x
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= . However, the expression above is independent of  

which coordinates we take into consideration, or even if we assumed that the plates are arbitrary oriented in the  

x − y plane, i.e. 
2 2
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+ = . Moreover, the value will not change even if we let the plates rotate around the  

z-axis with an angular speed ω , see Figure 1. What would change however is the polarisation of the squeezed 
vacuum. The direction in which the refractive index is more than unity and photons propagating between the  
 

 
Figure 1. A cross-section of the rotating Casimir plates, creating vacuum 
vorticity. The z-axis is the axis of symmetry. 
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plates will experience Scharnhorst effect. If we let ( )cos sinx yR t tω ω= ∂ + ∂Π  be the vector representing pola- 

risation of the squeezed vacuum. Where 
2
LR =  and ,x y∂ ∂  are vector fields in the x and y directions respec-  

tively. If we considered the time derivative of this polarisation vector we get: 

( ) ,rot= vΠ                                      (3) 

here v  is the tangential velocity vector. The expression (3), is the definition of vorticity vector of a fluid Ω . 
Light paths between the rotating plates would look like spirals in spacetime as shown in Figure 2. Now, we im-
pose yet another condition on the system to get a pressureless vacuum or vacuum dust. In order to do that the 
angular speed of the plates should be: 

2 .
L

ω =                                        (4) 

3. Background Geometry of Rotating Squeezed Vacuum 
An Ansatz corresponding to the Solution to the Einstein field equations for a pressuresless fluid (dust) with vor-
ticity is made by considering the van Stockum geometry expressed by the frame fields [5]: 
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The Killing vector fields are t∂ , z∂  and φ∂ . We can also write the line element—in cylindrical coor- 
dinates: 

( ) ( )2 22 2 2 2 2 2 2d d 2 d d 1 d d d ,rs t r t r e z rωω φ ω φ −= − − + − + +                     (6) 

with coordinate condition: 

2 2
2

.
2π

Reωωρ =                                       (7) 

But from (1) and (4), we first have 
2

4

π
90L

ρ = . We equate both expressions for the density and get the value 

angular speed in terms of L. Solution for ω  is given by [6]: 
 

 
Figure 2. The null geodesics within the rotating system. Light propagating 
between the rotating plates will make helical paths in spacetime. Moving in 
the polarised squeezed vacua with the lower refractive index. 
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where W is the Lambert W function. The product Rω  which corresponds to the tangential velocity of the plates, 
should be less than 1 or the solution is meaningless, otherwise we’ll allow the plates to rotate at a tangential ve-
locity greater than the speed of light. This leads to a conclusion that the solution proposed in (6) could be valid 
when the separation between the plates is comparable to the Compton wavelengths of relativistic elementary 
particles—like the electron—, at first glimpse. Now we use (4) to get an exact number for the acceptable separa-
tion between the plates 7.677L   Å. The result predicts separation within the quantum mechanical realm, not 
very extreme, where quantum gravity effects are assumed to be. 

4. Closed Timelike Curves near the Solution 
We focus now on the exterior of the system viz r R> . We examine the spacetime at 1r ω−= . The frames are 
dragged severely such that light cones become tangent to the const.t =  plane. As we move outward we see 
that the fames ˆ ˆ ˆ(0) (2) (3), ,e e e  in the light cone become more tilted forming closed timelike curves (CTC’s) around 
the system. We observe that the circular paths described above are not timelike geodesics. Thus, to enter them 
an observer must accelerate first. This is similar to the van Stockum solution. Thereby we can classify curves 
around this system in the following way as shown in Figure 3. 
 Closed Spacelike Curves 1r ω−< : Observers will just circle around the rotating system, no particle acce-

lerating from the exterior can ever enter this region. 
 Closed Null Curve (Cauchy Horizon) 1r ω−= : Only null rays can orbit around the system, it forms a ho-

rizon from particle accelerating from the outside. 
 Closed Timelike Curves 1r ω−> : particles from the interior can never escape to them, and particles from 

the outside need to accelerate rΩ  to maintain in these curves. However if a particle stopped accelerating 
while in these curves, a very strange thing happens, it might have multiple biographies! Note that the CTC’s 
lie before the Cauchy horizon with respect to an accelerating observer coming from infinity. 

 

 
Figure 3. An illustration showing the closed null curves (Cauchy Horizon) and CTC’s outside the 
rotating system. 



S. Al Saleh et al. 
 

 
308 

For the calculated separation between the plates the condition 1R ω−<  is indeed satisfied. Now turn to the 
quantum effects associated with those CTC’s, they cannot be ignored here as the whole system is rather micro-
scopic. Hawking and Ellis [3] [7] had argued that for a CTC to form, weak energy conditions (or more generally 
averaged null energy conditions ANEC [8]) must be violated. If we took our stress-energy tensor (1) and inte-
grated along a loop surrounding the rotating system γ  with respect to an affine parameter a, we get: 

: : d 0,T aµ ν
µνγ

ξ ξ <∫                                 (9) 

where d dx aµ µξ =  a one form reduced by our affine parameter. Equation (7) clearly meets the conjecture of 
Hawking and Ellis regarding energy conditions. This makes the solution physical, the value of vacuum density 
decreases you let the separation between the plates increase; unlike Tipler’s Cylinder [9]. The second conjecture 
made by Hawking is that such stress energy tensor cannot create CTC’s on a finite region of spacetime. That 
implies that the rotating plates mush be infinite in length, this does not appear in the requirement of this solution 
but for practical purposes, the separation between the plates is extremely small compared to their length—if we 
picked any length in the classical domain. However, we paid a large price for making CTC’s that seems to defy 
the Chronology Protection. That is the CTC’s are very small regions that only quantum particles can enter them, 
the gravitational effects of the rotating system is very small implying the CTC’s has only microscopic effects. 

5. Quantum Effects in the CTC’s 
Despite the apparent possibility for this system to defy causality, this solution is highly unstable. To illustrate 
this, we need to study quantum effects resulting in the CTC’s. Let a scalar field and a detector be coupled to that 
field. We shall calculate the transition amplitude for the detector’s excitation by observing particles created from 
the field φ . We start by assuming the field is massless and coupled to the detector via a weak monopole coupl-
ing. We care about the coupling term in their Lagrangian ( )ˆgm τ ψ  where g is small coupling constant and m̂  
is the time-dependent monopole operator. The detector has an energy states described by the associated Hilbert 
space detector . The field has an associated Fock space. We are interested in the transition amplitude from the 
initial state 0 ,0E  to the final state ,E Ψ  of the Hilbert space for the detector and the field detector feild⊗  . 
The transition amplitude shall refer to excitation of the detector energy state above initial ground state due to 
particle creation by the scalar field. Hence it is rather natural to assume the final state in the Fock space would 
be 1kΨ = . We write the first order perturbation term for the transition amplitude 0ˆ,1 ,0kK E fm Eφ= : 

0ˆd ,1 ,0kK if E fm Eτ φ
+∞

−∞
= − ∫                             (10) 

where τ  is the proper time of the detector. We may use Heisenberg equation to rewrite the operator ( )m̂ τ  as: 

( ) ˆ ˆˆ ˆ .iH iHm e meτ ττ −=                                   (11) 

Substituting (11) into (10) to get: 
( ) ( )( )0

0ˆ d 1 0 .i E Eif E m E e xτ
ωτ φ τ

+∞ − −

−∞
− ∫                        (12) 

To calculate the probability, we square the term and sum over the energies: 

( )2
0ˆ

E
P f E m E E= ∑                                (13) 

where ( )E  is the response function which is given by: 

( ) ( ) ( )0( ) d e .i E EE Gττ τ
+∞ − − ∆ +

−∞
= ∆ ∆∫                           (14) 

It could be interpreted as the Fourier transform of the two-point Wightman function for positive modes: 
( ) ( ) ( )G x xτ φ φ+ ′∆ = . The task now is to calculate the latter function, which depends on the path the detector 

follows as it is a function of the proper time. The Wightman function depends on the path the detector follows, 
since it is a CTC that implies that the proper time is described by a periodic function. That means that the 
Wightman function for positive frequency G+  could tern to negative frequency one G−  when the detector 
completes the cycle in the CTC meaning loss of Unitarity. If we considered the detector a fermion coupled with 
a charge to a field (like the electrodynamic interaction), the detector could be scattered by its past self. Hence the 
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Feynman diagram with two vertices can be written as: 

( ) ( )42 2π vertex1A Big p p pδ− − −                        (15a) 

( ) ( )42π vertex2.D Cig p p pδ− + −                        (15b) 

With identifying the points A with C and B with D. We get a “loop” diagram instead of tree. A question arises 
here about the Unitarity of such processes, and how can they affect the stability of the system. More detailed 
argument about QFT in CTCs are made in [6] showing Unitarity loss in further detail. As Figure 4 and Figure 5 
demonstrates how tree diagram turns into a loop diagram in CTC’s, since loop diagram appear a lot in self- 
energy terms of a particle. It is possible that they could be explained by multiple-connectedness of spacetime 
near their energy scale. The results from this paper seems to support that quantum mechanics implies a multiply- 
connected spacetime background. 

6. Traversable Wormholes Maintenance by Rotating Squeezed Vacuum 
Einstein-Rosen bridges does not allow matter/information to be transferred from one mouth to the other. The  
 

 
Figure 4. Second order fyenman diagram of a particle interacting with 
it’s past self. By identifying the points A with C and B with D. 

 

 
Figure 5. The tree diagrame becomes a loop diagram for a particle in a 
CTC. This Loop is a result of previous identification. And questions 
unitarity od the S matrix in CTC’s. 
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ANEC permits them from doing so, as the bridges are not stable and pinch off at the speed of light. When using 
exotic matter, or stress-energy tensor that violates ANEC like in (9), singularities and horizons are prevented in 
this case. Such that when passing through one of the wormholes’ mouth, there must be null geodesics with tan-
gent vectors xiµ  satisfying (9), this can be achieved by the stress-energy of the squeezed vacuum. An example 
of a static, spherically-symmetric wormhole is given by the line element [8]: 

2 2 2 2 2
2d d d d ,s e t lχ= − + + Ω                                 (16) 

where l is the proper radial distance from the wormhole’s mouth, i.e. 0l =  at the mouth. Moreover, χ  is a 
function of l, that is everywhere finite (no isolated horizon condition), and approximated at a distance far away  

from the mouth by 2M
l

χ −
 . The violation of the ANEC is by the condition [10]: 

( ) 2d .l e χϖ ρ−∫                                       (17) 

where ϖ  is the tension and ρ  is the “exotic” matter density. The rotating Casimir plates provide such energy 
conditions with the rotation (centrifugal force) canceling out the pressure and balancing the plates. From (1) we 
have ρ  as above, and 3ϖ ρ= − . Thus, rotating Casimir vacuum can be used to support this wormhole. In or-
der to this, we place the rotating plates 2l χ= ± , such that the mouth is at the axis of symmetry of the rotating 
plates. Outside the plates, as we discussed earlier, Kerr geometry is produced satisfying the conditions for ω  
that produces CTC’s at the exterior, in order for the system to satisfy Einstein field equations.  

7. Discussion 
This paper aims to shine the light on the possibility of violating NAEC by quantum field theory and create exot-
ic geometries from them. The setup above showed that we could be able to make quantum time machines by 
squeezed vacuum. This created problems with the quantum field theory itself regarding Unitarity. Calculations 
by [6] showed that Unitarity is lost in periodic proper time functions in the correlation function in CTC’s. We 
could explore this problem further by entangling two particles one in the CTC and the other is away from it. Af-
ter a while the entanglement would be destroyed as the first particle goes back to the time before it was entan-
gled with the latter. In our rotating plates, we propose that this problem could be resolved by conjecturing that  

the system pays for the lost energy/information, as it required energy give approximately by 2 31 d
2

E xω ρ≈ ∫ . If  

we considered rotating charged Casimir plates we notice that the condition (4) would be modified, and we have 
less rotating velocity to maintain dust solution, as a result will have a larger Cauchy horizon. The exterior geo-
metry would be similar to the Kerr-Neuman geometry. We notice a pattern or an analogy between blackholes 
geometry and the one of squeezed vacua. Because of the violation of energy conditions by the squeezed vacua, 
the Cauchy horizon (CH) lies outside the system unlike blackholes who have the CH inside of them. Since 
CTC’s could be made from boundary conditions on quantum vacuum, this raises a question about whether 
CTC’s could form by quantum fluctuations, and the quantum foam is filled with them? In other words, quantum 
spacetime is multiply-connected. 

8. Conclusion 
Squeezed vacuum violating ANEC could be used to create quantum time machines by creating microscopic 
CTC’s and also maintaining traversable wormholes when forcing the boundary conditions (Casimir plates) to 
rotate at sufficient angular velocity to remove the pressure made by the squeezed vacuum and create vorticity 
defined by the polarisation of the refractive index between the plates. Vorticity of the squeezed vacuum could be 
understood by plotting the light trajectory inside the rotating plates that are found to be making spirals in space-
time. The squeezed vacuum has characteristics similar to van-Stockum dust and an advantage above it by vi-
olating ANEC that allow CTC’s to form outside the system and a disadvantage of only making CTC’s at the mi-
croscale. This solution resulting from semi-classical general relativity, but also appears to violate Unitarity; in 
the future we aim to investigate in detail the quantum effects appearing in such CTC’s and whether they could 
allow this solution to be stable or not. From fundamental point of view, this solution could demonstrate that the 
quantum spacetime is multiply connected, and unitarity is saved if we give up the notion of locality (in space- 
time). 
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