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Abstract 
The Higgs-like boson H(126) discovered in 2012 is tentatively assigned to a newly found bound 
state of two charged gauge bosons W+W−. Starting from the scalar strong interaction hadron theory, 
a first principles’ theory, a nonlinear, soliton-like differential equation dependent upon the dis-
tance between the two W bosons is derived. This equation is solved on a computer. A new, nonlin-
ear confinement mechanism, not yet understood, binds the both bosons and gives a bound state 
mass EB = 155.8 GeV. This EB, derived at the quantum mechanical level, is estimated to reduce to EB 
= 110 GeV when quantized field effects are included via coarse approximations and replacement 
of the bare constants by renormalized ones. These developments lead to a revised status of the 
standard model. 

 
Keywords 
Bound State of W+W−, Scalar Strong Interaction, Soliton-Like Equation 

 
 

1. Introduction 
The Higgs-like boson H(126) with mass 125.7 GeV discovered in 2012 [1] and promoted to “a Higgs” in 2013 
has not been identified as the Standard Model (SM) Higgs boson, which is a point particle. In addition, the iso-
spin = 1/2 of SM Higgs necessary to generate gauge boson masses has not been established for H(126); no 
charged Higgs has been found. H(126) is therefore not accounted for.  

Since the H(126) mass is not too far from that of two charged gauge bosons W+ and W− or 2MW = 160.8 GeV, 
a bound state of W+W− will be considered. The spin and isospin of this state are both zero and no charged bound 
state is involved. Such composite type of approaches have been considered ([2], Status of Higgs Boson Physics) 
from models but not starting from any first principles’ theory. Here, such a bound state will be treated starting 
from the scalar strong interaction hadron theory (SSI) [3] at the quantum mechanics level.  
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In this theory, the gauge boson masses are naturally generated by pseudoscalar mesons ([3], §7.4.2) and Higgs 
is not needed. In Section 2, the equation of motion of the bound state is constructed from the equations of mo-
tion of gauge bosons in SSI. This equation is reduced in Section 3 to a nonlinear soliton-like radial differential 
equation which is solved in the linear limit. Estimate of the bound state mass is given. In Section 4, the fourth 
order nonlinear equation is transformed into a first order system together with boundary and continuity condi-
tions and is solved on a computer. In Section 5, effects due to quantized fields are estimated by replacing the 
bare constants used above by renormalized ones. In view of these developments, the status of SM will be con-
sidered in Section 6. 

2. Construction of Equation of Motion 
Consider a gauge boson A located at space time xI , its action reads ([3], 7.1.2), 
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where ( )A IW x±  denotes the charged gauge bosons and the superscript 0 its time component.  
The gauge boson action (1) has been combined with meson and lepton actions ([3], 7.1.8, 7.11-12) to treat weak 

decays of kaons and pions. The sum of these three actions is varied with respect to ( )A IW x−  in ([3], §7.4.2) to 

yield the equation of motion for ( )A IW x+  ([3], 7.4.7). The amplitude of this ( )A IW x+  is controlled by the in- 
homogeneus lepton source term on the right side of this equation and is therefore small; the nonlinear gWW term 
in (1) becomes of higher order and can be neglected. 

The lepton source term depends upon the time component ( )0
A IW x+  ([3], 7.4.11c) which vanishes in the ab-

sence of lepton source current ([3], 7.4.8a). This is the present case. Also, weak decay is very slow so that long 
before the leptons materialize, ( )0 0A IW x+ ≅ . Thus, only ([3], 7.4.8b) survives: 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )
22 2

A I A I A I A I A I A I W A II
W x g W x W x W x W x W x M W x+ + − − + + + − − = −     

         (2) 

where the nonlinear gWW term in (1) neglected in ([3], 7.4.8b) but present in ([3], 7.4.7b) has been inserted in 
form of the g2WWW terms in (2) using ([3], 7.4.2c). This is necessary because without the inhomogeneus lepton  
source term, the amplitude of ( )A IW x+  can be large so that g2 term in (2) cannot be neglected.  

In (2), MW is the gauge boson mass ([3], 7.4.6b, 7.4.9) generated in SSI by virtual or real pions or kaons 
without any Higgs boson. In high energy p-p collisions, many W± bosons are produced close to each other. Con-
sider another negatively charged boson B at nearby xII, ( )B IIW x− . Its equation of motion can be obtained in an 
analogous way. The equivalent of (2) reads 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )
22 2

B II B II B II B II B II B II W B IIII
W x g W x W x W x W x W x M W x− − + + − − − − − = −     

      (3) 

The nonlinear g2 terms couple W+ and W− and provide a weak confinement of them below. 
To form a bound state, multiply together both sides of (2) and (3). This is entirely analogous to the formation 

of meson wave equations by multiplying together the left and right sides of the quark wave equations ([3], 2.1.1) 
and the antiquark wave equations ([3], 2.1.3). In both cases, the dynamic and interaction terms are on the left 
sides while the constant mass terms are on the right sides. Follow ([3], 2.2.1, 3.1.3a), generalize the product 
wave functions to a nonseparable bound state wave function  

( ) ( ) ( ) ( ) ( ),A I B II Am I Bm II I IIW x W x W x W x Y x x+ − + −= →                       (4) 

where m = 1, 2, 3 denotes the spatial axes. The product equation reads 
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( ) ( ) ( ) ( ) ( )24 2 4, , , , ,I II I II I II I II W I III II
Y x x g Y x x Y x x Y x x M Y x x + + =                      (5) 

Here, generalizations of off diagonal tensor elements ( ) ( )Am I Bn IIW x W x+ −  with m ≠ n have been dropped. This 
is analogous to leaving out the unseen diquarks of ([3], 2.2.2) in the product of the quark wave equations ([3], 
2.1.1) and the antiquark wave equations ([3], 2.1.3) to arrive at the meson wave equations ([3], 2.2.4). Further,  
generalizations of doubly charged elements ( ) ( )A I B IIW x W x± ±  are likewise left out. Also, the g2 terms have also 

been dropped because they contain ( )Am IW x±  type of factors not paired off to ( )Bn IIW x±  type of expressions  
and the final state contains no such unpaired gauge bosons. The corresponds to dropping the unpaired off quark 
wave functions to arrive at ([3], 2.2.4).   

3. Reduction of Equation of Motion and Linear Solution 
Following ([3], Sec 3.1), let 

( ) ( ) ( ) ( )2 , , , ,I II II I I II BX x x x x x Y x x Y X x Y X y x= + = − → →               (6) 

Here, ( )0 ,X X X Xµ= =  is the coordinate of the bound state Y. ( )0 ,x x x xµ= =  is the relative coordinate 
between the both gauge bosons and is an observable contrary to x in ([3], 3.1.3a, 3.1.5a) which is a hidden vari-
able because quarks are not observable.  

For this bound state at rest, YB is independent of X  so that ( )0
B BY Y X= . Following ([3], 3.1.9), let 

( ) ( ) ( )0
0expy x y x iw x= , where ω0 is the relative energy between the both gauge bosons and is put to 0, analo- 

gous to the null relative energy condition ([3], §3.5.2). Thus, y(x) = y(x). Further, consider only the lowest en-
ergy state with zero angular momentum so that ( ) ( ) ( )y x y x y r= =  where r is the distance between the both  
gauge bosons. It can now be shown that Y in (6) is real so that the both Y2

 expressions inside the brackets of (5) 
are equal. Analogous to ([3], 3.1.10b), let ( ) ( )0 0expB BY X iE X= −  where EB is the energy of the bound state. 
Now (5) can be reduced to 

( ) ( )
2

2 4 2 4 2
2

1 12 0,
4 B WE g y r M y r r

r rr
  ∂ ∂  + ∆ + − = ∆ =   ∂ ∂   

                  (7) 

The nonlinear self interaction g4 term is of the same order as that in the action for Higgs boson and in some 
soliton equations. Although this coupling g is small, the resulting amplitude of y(r) may not be [4]. The second 
order derivatives in these point particle examples differs from the fourth order derivatives in (7), which de-
scribes a composite particle. 

Putting g = 0, (7) is linearized and can be written in the form  

( ) ( ) ( )2 21( ) 0, 4
4 B Wy r E Mα α α+ − ±∆ + ∆ + = = ±                       (8) 

which reminds one of a particle moving in a three dimensional square well potential [5] and can be separated 
into 

( ) ( ) ( ) ( )
2 2

2 20, 0,r r r ry r
r r

α χ α χ χ+ + − −

   ∂ ∂
+ = + = =   ∂ ∂   

                (9) 

Assume at first α− < 0. Since α+ > 0,  

( ) ( ) ( ) ( )sin , expr B r r C rχ α χ α+ + − −= = −                    (10) 

where B and C are constants of dimension energy. The first of (10) satisfies the boundary condition y(r → 0) = 
finite but not y(r → ∞) = 0. The second of (10) satisfies the boundary condition y(r → ∞) = 0 but not y(r → 0) = 
finite. Analogous to the square well potential problem [5], χ+ and χ− in (10) are joined at some radius r = ri by  
requiring ( )( ) ( ) ( )( ) ( )r r r r r rχ χ χ χ+ + − −∂ ∂ = ∂ ∂  which leads to 
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( )tan irα α α+ + −= −                                 (11) 

that fixes ri. Inserting (10) into (8) gives EB = 2MW. With this value, the second of (8) does not lead to the as-
sumed α− < 0 but to α− = 0. Although this α− does give ( ) 1 0y r r→ ∞ ∝ → , this form of y(r) is not normaliz-
able. Thus no bound state can be formed from (7) without the nonlinear g4 term; Coulomb attraction is negligi-
ble here.  

To obtain an estimate of EB, it is noted that the dimension of W± is energy. The only energy scale associated 
with free W± is its mass MW. By (4) and (6), y(r) in (7) may be put to 2

WM  in a dimensional approximation. 
Further, the ∆ term in (7) will be neglected because the first of (10) holds for a small region r < ri and the second 
of (10) is not far from a constant because α− is not far from 0 according to the line following (11). For g2 = 
0.4175 ([3], 7.2.1b, 7.2.12), close to g2 = (0.652)2 = 0.425 [6], (7) leads to an estimate not far from 125.7 GeV; 

( )442 1 2 144.4 GeVB WE M g≈ − =                          (12) 

This relation leads via (8) to that the assumed α−<0 is satisfied. 

4. Numerical Solution 
Equation (7) has to be solved on a computer. Using the last of (9), (7) becomes 

( ) ( ) ( ) ( ) ( )
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               (13) 

which can be converted into a first order system like that done for baryons [3], 
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When r → 0, (14) and the first of (10) leads to  
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As r → ∞, the second of (10) satisfies (14) and the asymptotic solution is 

( ) ( ) 2 3
1 2 1 3 1 4 1exp , , , ,

r
w r w w w w w w

C
χ

β β β β β α−
∞ − ∞ − ∞ ∞ − ∞ ∞ − ∞ − −= = − = − = = − =       (16) 

Numerical integration of (14) starts from r = 0 with (15) forward (w+) and from r ≅ ∞ with (16) backward 
(w−). Both solutions meet at ri and are joined there. Since (13) is of fourth order, there are three continuity re-
quirements; corresponding to (11) are 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2 2 3 3 4 4

1 1 1 1 1 1

, ,i i i i i i

i i i i i i

w r w r w r w r w r w r
w r w r w r w r w r w r

+ − + − + −

+ − + − + −

= = =                    (17) 

These three conditions fix the three unknown parameters, the bound state energy EB, the bound state ampli-
tude B and the joint radius ri for a given g2. A Fortran 77 computer program has been written for (14)-(17) em-
ploying the Runge-Kutta integration subroutine “dverk” earlier used for the baryon wave functions ([3], Fig. 
11.1). The calculations are run on computers of the Dept. of Information Technology at Uppsala University. 

Dividing the left sides in (17) by their respective right sides gives 1 for each of the three conditions. The 
computed results will deviate from these three 1’s. Denote the greatest of these three deviations by ∆max. Let the 
amplitude 0 080.385 GeVWB b M b= = . 

The forward integration mostly starts at r = 10−6 GeV−1 but other powers have also been used to check consis-
tency. Because of (16), the backward integration must start from rather large r, here 0.5 GeV−1, but other values 
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< 1 have also been employed to check consistency. This upper limit r < 1 is related to the minimum integration 
step length of 2−10 ≈ 0.001 GeV−1 set by the “dverk” routine for this case. The parameter space 10 0.5 GeVir

−< < , 
00 10b< <  for g2 = 0.4175 and 100 156 GeVBE< <  has been scanned with rather fine meshes near the ap-

proximate solutions where ∆max reach minima. The results are  
2 1

0 max155.81 GeV  0.812,  0.03418 GeV ,  2.69%B iE g b r −= = = ∆ =，                   (18) 
Here, the first two parameters can be chosen to any degree of accuracy. But ri can be specified only up to an 

accuracy of the above integration step length ≈ 0.001 GeV−1 which is about ∆err ≈ 3% of ri in (18). This inaccu-
racy is expected to render the smallest ∆max values in (18) to be of the same magnitude, as is the case. For g2 = 
0.4175, b0 = 1.945and the wave function χ(r) is given by the full curve in Figure 1. 

The existence of solution (18) shows that the gWW term in (1) which gives rise to the g4 term in (13) is re-
sponsible for a new nonlinear, intrinsic confinement mechanism at the quantum mechanical level. Because g4 is 
small, the confinement is weak, as is signified by that Eb≈150.8 GeV in (18) is just slightly smaller than 2MW = 
160.77 GeV. This confinement mechanism is implicit in the numerical treatment but not transparent and hence 
not understood presently. 

The corresponding gWW term in the QCD Lagrangian density ([4], 18.3) also gives rise to confinement of 
colored quarks which is a quantum field theory effect [7]. These both confinement mechanisms are basically 
different. The present bound state is a counterpart to the QCD glueball. 

5. Quantized Field Effects 
The predicted EB of ≈155.81 GeV is too high to account for the H(126). However, Figure 1 shows that the dis-
tances between the both gauge bosons are very small, far smaller than those at which the bare g and MW are de-
termined. At such distances, quantum field effects like vaccum polarization can no longer be neglected. Such 
effects are estimated below. 

Return to the gauge boson action (1) and the meson action ([3], 7.1.8) mentioned beneath (1). These corre-
spond to the QCD action formed from the QCD Lagrangian density ([4], 18.3). The SU(2) gluon part in this ac-
tion is the same as (1) if the gluons are replaced by the gauge bosons W±. Therefore, quantization of this gluon 
part in ([4], Ch. 18) can be taken over to apply to (1). The remaining quark related part in the QCD action differ 
from the meson action ([3], 7.1.8); the former has been quantized in ([4], Ch. 18) while the latter is nonlocal and 
cannot be quantized ([3], Table 14.1). These parts provide the charges that generate the gluons and gauge bosons 
W±, respectively, but do not affect their actions. 

The running coupling constant ([4], 18.155) adapted for SU(2) with no massless quarks reads 
122

2 2
111 log
12π

lL

l

gg l
Lg

−
  = +  

  
                              (19) 

 

 
Figure 1. Full curve: the bound state wave function χ(r) for g2 = 0.4175 case in (18). Dotted curve: the bound state wave 
function χ(r) for the Lf = 0.35 GeV−1 case in Table 1. The forward and backward integrations are joined at the dot marked 
points.                                                                                                 
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where L3 and l3 are two different normalization volumes corresponding to the both infrared cutoffs L and l in the 
logarithmically divergent integral ([4], 18.121) leading to (19). Let L = LR and g = gR, where R stands for “re-
normalized”. Choose l3 to be a large box 3

fL  in which the bare coupling constant g has been determined so that 
gl can be approximated by the bare g used above. In this case, (19) can be approximated to 

12
2 2

2
111 log , ,
12π

f
R R f

R

Lgg g L r L r
L

−
  

= + → >  
  

                    (20) 

In the bound state, the both gauge bosons are so close to each other that the normalization volume for their 
wave functions are greatly reduced. The effect is roughly taken into account by the approximation LR → r, the 
distance between the both gauge bosons, in (20). 

The distances in Figure 1 are not extremely small and the Fermi constant ([3], 7.4.29a) ∝ 2 2
Wg M  may be 

assumed to remain valid there so that the renormalized gauge boson mass MWR becomes 

WR W RM M g g=                                   (21) 

With MW = 80.385 GeV above, ([3], 7.4.29a) gives g2 = 0.426356. For this case, the calculations leading to 
(18) is repeated with the bare g and MW replaced by the renormalized gR(r) of (20) and MWR(r) of (21). Because r 
can be larger than Lf in the integration, the replacements are limited to Lf > r in (20). The results corresponding 
to (18) are shown in Table 1. 

As for (18), solutions may exist only for the ∆max = 2.71 and 2.23 < ∆err ≈ 3% cases with Lf = 0.3, 0.35, The 
wave function χ(r) for latter case is given by the dotted curve in Figure 1. Lf = 0.35 >> r for the dotted curve in  
Figure 1, as required and seems to be compatible with data.  

For the second solution in Table 1, gR/g∼0.957 at ri. By (21) MWR is also smaller than MW by ∼4.3%. This re-
duction adds to that due to the g4 terms in (12-13) but both are too small to account for the lowering of Eb from 
155.81 in (18) to 110 GeV in Table 1. This large difference has to be due to that the inclusion of the running 
gR(r) and MWR(r) switches the radially excited mode (full curve) to the ground state mode (dotted curve) in Fig-
ure 1. Again, this switching mechanism is hidden behind the numerical integrations and is also not understood.  

Eb = 110 GeV is, however, too low and may be due to the coarse approximations made to obtain Table 1. One 
of them is the application of the (19) in which the logarithmic term comes from ([4], 18.121) 

( ) ( )
2

3 2
3 3

1 cos3 d π log
8π

k L
k

θ
δ −−

≅ → Λ∫                           (22) 

Here, 11 12 1Lg gδ = − , k the gauge boson momentum, θ the angle between this momentum and the third 
axis, Λ the ultraviolet cutoff. The right member of (22) is obtained assuming spherical symmetry in the integral. 
In the bound state case, there is a new axis of symmetry connecting the both gauge bosons and the appropriate 
symmetry is cylindrical. In this case, the integration in (22) cannot be carried out explicitly and numerical treat-
ment becomes very cumbersome. 

LHC results on composite Higgs boson are expected in 2016 [8]. These, if conclusive, will be of crucial im-
portance for SM, as will be considered below 

6. On the Status of the Standard Model 
In the electroweak sector, Higgs field is based upon the idea of spontaneous symmetry breaking which comes from 
solid state physics and superconductivity which has superconducting material with Cooper pairs as background. 
 
Table 1. Results of numerical solution of (14)-(17) with the bare g and MW  replaced by the renormalized gR(r) of (20) and 
MWR(r) of (21) for the g2 = 0.426356. EB, b0, and ri for each Lf are varied such that ∆max, the greatest deviation from the exact 
(17), reaches a minimum. Only the two underlined cases with ∆max < ∆err ≈ 3% have confined solutions.                      

Lf GeV−1 0.10 0.20 0.30 0.35 0.40 0.50 0.60 0.70 

∆max % 34 15.66 2.71 2.23 4.19 4.67 15.71 39.65 

ri GeV−1 0.03125 0.03223 same same same 0.0332 0.03125 0.02734 

b0 1.133 1.135 1.31 1.412 1.516 1.792 1.848 1.75 

Eb GeV 98.11 103.21 107.55 110.02 112.39 119.00 125.22 130.9 
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The SM-QCD vacuum has no known material background. The mechanisms in superconductivity can therefore 
not be taken over to apply to SM-QCD vacuum without further justification. Spontaneous symmetry breaking in 
the Higgs field in SM has been put in “by hand” and is therefore ad hoc. 

From a historical point of view, new physics come out of mathematics starting from some principle and is not 
found by putting known physical mechanism into the formalism ([3], Appendix G, Sec. 6, §5.5), as is done in 
the introduction of the Higgs boson. That no SM Higgs has been established is therefore not surprising theoreti-
cally. 

Without Higgs, SM cannot generate gauge boson mass and the main, electroweak sector of SM becomes 
without foundation. Here, SSI ([3], Ch. 7) steps in and fills part of the void left behind. 

The strong interaction sector is basically unaffected by the above development but remains unproductive in 
low energy predictions. In any known basic discipline, the starting point is a set of differential equations (New-
ton, Maxwell, Dirac,…) which contains all physics. Lagrangians are subsequently constructed from these dif-
ferential equations. Here, QCD starts from a Lagrangian containing unobservable wave function amplitudes of 
colored quarks and gluons. When converted to differential equations, these amplitudes cannot make contact with 
data. SSI [3] follows the historical path and starts with sets of equations of motion for mesons and baryons 
whose amplitudes are observables. It can in this way account for many basics low energy hadronic data (con-
finement, spectra,…) that QCD has failed to do so despite decades of effort. 

At high energies, the confinement potential in SSI becomes small in comparison and the quarks behave more 
like free particles and QCD applies ([3], Ch. 14). 
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