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ABSTRACT 

We show how the metric of a five-dimensional hyperspace-time can be used to model the quantum nature of electro-
magnetic interactions. The space-time neighborhood of the point where such an interaction takes place bends according 
to the curl and the derivative of the local electromagnetic four-potential, both calculated in the direction of the latter. In 
this geometric setting, the presence of a non-gravitational field is needed to induce the discretization of any gravita-
tional field. We also exploit two variants of the classical Kaluza-Klein five-dimensional theory to obtain coupled gener-
alizations of Einstein’s and Maxwell’s equations. The first variant involves an unspecified scalar field that may be re-
lated to the inflaton. The equations of the second variant show a direct interdependency of gravitation and electromag-
netism that would emerge or be activated through the production of electromagnetic waves. 
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1. Introduction 

In Kaluza’s [1] and Klein’s [2] original formulations, the 
mathematical modeling of gravitation through general 
relativity is based on the space-time section of the metric 
of a five-dimensional hyperspace-time, and that of elec-
tromagnetism uses the first four components of its fifth 
line, or column. The fact that the equations of electro-
magnetism are invariant under the gauge group U(1) im-
plies that the fifth dimension must have a cyclic character. 
The usual interpretation of this is that the fifth dimension 
winds upon itself according to a circle, whose radius is 
very small in order to explain why this dimension is un-
observable. These fifth dimension characteristics were 
postulated by Kaluza and Klein and taken up by almost 
all their followers. In practice, the smallness of the fifth 
dimension radius of curvature means that the hyper-
space-time metric is independent of this dimension. 

With the above properties assumed to apply to the fifth 
dimension, Kaluza and Klein were able to obtain a for-
mal unification of gravitation and electromagnetism. 
However, this unification is unsatisfactory because it 
does not show how gravitational and electromagnetic 
fields interact. A deeper unification of gravitation and 
electromagnetism requires a revision of the postulate 

applying to the geometric structure of the fifth dimension. 
As it is, the postulate concerns only local symmetries 
of the group U(1) used to characterize the continuous 
functions describing classical electromagnetism. A more 
complete geometric modeling of electromagnetism must 
also allow expressing the discontinuity of certain func-
tions associated with an electrically charged particle, 
such as its energy when it is involved in an interaction. 
To model this discontinuous variation, we shall postulate 
that the geometric structure of the fifth dimension has a 
global symmetry making it multiconnected [3-5]. The 
fifth dimension then decomposes into equal length inter-
vals, each topologically equivalent to the circle S1. This 
multiconnectivity generates a structure with a discrete 
group of symmetry G over the fifth dimension. The 
group G establishes an order into the set of these inter-
vals and renders homologous points of the fifth dimen-
sion. The multiconnectivity of the fifth dimension re-
duces its metric measure to that of only one of its finite 
intervals. Thus it is no longer necessary for the fifth di-
mension to have a strong curvature to be unobservable. 
The flexibility to choose one of these intervals as the 
geometric framework necessary to describe the continu-
ous properties of electromagnetism is a degree of free-
dom similar to those of continuous gauges in standard 
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field theories: here it corresponds to a discontinuous gau- 
ge. 

This five-dimensional hyperspace-time can be seen as 
a fibre bundle whose base is space-time and fibres are 
copies of the fifth dimension. Above each point of the 
trajectory of a charged particle in space-time, a finite 
interval of the fifth dimension must be chosen to describe 
the properties of the continuous symmetries related to a 
possible interaction with an exterior electromagnetic 
field. Without such a field, the particle is free and the 
finite interval can be arbitrarily chosen above each point 
of its trajectory: this choice determines a horizontal sec-
tion in the hyperspace-time fibre bundle. When the parti-
cle undergoes an electromagnetic interaction at a given 
point in space-time, the quantum effect on the particle 
generates a modification, over this point and with respect 
to the horizontal section, of the finite interval needed to 
describe the continuous properties related to the interac-
tion. Since neighborhoods of homologous points belong-
ing to different finite intervals have the same local ge-
ometry, the continuous properties of electromagnetism 
are invariant under changes of this interval. At the point 
of space-time where the interaction takes place, this 
change of interval implies a discontinuous variation of 
the hyperspace-time metric along the fifth dimension. 
Outside this point, the hyperspace-time metric stays in-
dependent of the fifth dimension, in accordance with the 
original Kaluza-Klein postulate. Our postulate thus dif-
fers from that of Kaluza and Klein only at the interaction 
point. Relying on this new postulate, the present paper 
first aims to show how the metric of a five-dimensional 
hyperspace-time can be used to unify gravitational and 
electromagnetic theories, and simultaneously explain 
qualitatively the quantum nature of electromagnetic in-
teractions. In its second part, we shall reconsider the field 
interaction aspect of the original Kaluza-Klein theory and 
obtain coupled generalizations of Einstein’s and Max-
well’s equations. 

In this paper, Latin indices are for space-time and run 
from 1 to 4. Greek letters are hyperspace-time indices 
and run from 1 to 5. The signatures of space-time and 
hyperspace-time metrics are respectively (−1,1,1,1) and 
(−1,1,1,1,1). A line over a space-time symbol will indi-
cate that we consider its hyperspace-time version. The 
electromagnetic tensor is defined by Fmn=An,m-Am,n where 
Am designates the covariant components of the electro-
magnetic four-potential. 

2. Hyperspace-Time Metric and Scalar 
Curvature 

In a completely geometric unified field theory, the 

hyperspace-time metric    should allow to describe 
all properties of fields. To express the fact that physics 
seems to depend only on space-time coordinates, Kaluza 
and Klein postulated that the components    are 
independent of x5. They also postulated that under the 
coordinate transformation x x    the new space-time 
coordinates mx   are independent of x5. Therefore, the 
original Kaluza-Klein postulate concerning the fifth di-
mension is 

,5 ,50, 0.mx    

Taking into account these equations, it is easily shown 
that the most general expression for such a metric is 
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where (gmn) is the space-time metric, Am is the electro-
magnetic four-potential and k is an arbitrary constant. 

To express mathematically the discrete nature of an 
electromagnetic interaction occurring at a point x0 of 
hyperspace-time, we assume that the mathematical me- 
chanism modeling the electromagnetic interaction is re-
lated only to the hyperspace-time metric components 
which are independent of the space-time metric. Inspired 
by the way how electrons change their orbit around a 
nucleus, we postulate that if    varies with respect 
to x5, then 
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where   designates the Dirac distribution. This new 
postulate will be said of discretization due to the fifth 
dimension. To simplify the presentation, we shall set 

55 k   until Section 5. It is then straightforward to de-
duce the hyperspace-time scalar curvature: 
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where R is the space-time scalar curvature. 

3. Field and Interaction Equations 

Let S denotes the action associated with Equation (3). 
We designate by g the determinant of the space-time me-
tric and by   the four-dimensional space of coordinates 
x2, x3, x4 and x5 between two given values of time x1. 
Then 
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By successively varying the space-time metric and the 

electromagnetic four-potential, the first term on the 
right-hand side of Equation (4) yields the Einstein and 
Maxwell equations deduced by Klein. Its second term is 
an expression of the electromagnetic interaction at x0. 
Bringing in the Lorenz gauge, Equation (4) becomes 
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The second term of the right-hand side of Equation (5) 
shows that the interaction can be described as a multiple 
of the sum of partial variations of the electromagnetic 
four-potential’s squared norm evaluated at x0 in the di-
rection of its largest variation. This expression can also 
be written 
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According to [5], the second term on the right hand 
side of Equation (5) corresponds to a point of space-time 
where a change of horizontal section occurs in the 
hyperspace-time fibre bundle. This change thus takes 
place optimally in the sense that it is carried out in the 
direction of a gradient. Moreover, Equation (6) shows 
that the way this change is realized involves the curl and 

the derivative of the electromagnetic four-potential, both 
calculated at x0 in the direction of this four-potential. 
Depending on the space-time curvature, and on the value 
of the electromagnetic four-potential in the neighborhood 
of x0, the change of horizontal section will thus occur 
more or less rapidly, and with a rotation more or less 
pronounced. These effects should emerge physically as 
contributions to the 4-momentum and angular momen-
tum of the particle subject to this interaction. 

Observe that since 

  , ,55
then   .0,m mn nm n gg kA A A A m n      

The space-time metric, i.e. the gravitational field, thus 
varies discontinuously at x = x0 and depends on the value 
of the electromagnetic 4-vector at this point. If this 
four-potential is identically zero, the postulate of discre-
tization due to the fifth dimension then reduces to Klein’s 
original postulate and there is no discretization. The 
presence of a non-zero electromagnetic four-potential is 
thus necessary to induce the discretization of the gravita-
tional field. 

4. Quantization Due to Hyperspace-Time 

Let us now try to extend the mathematical mechanism 
modeling the electromagnetic interaction to all compo- 
nents of the hyperspace-time metric, i.e. to replace Equa-
tions (2) with 

,5 0 .x x               (7) 

A straightforward calculation shows that the hyper-
space-time scalar curvature then becomes: 

 

, ,
, ,

,5 ,5 ,
, , , ,

,
, , ,

1
2 2 2

4

1

1
2 3

mn ij l il j p i l
mn l p l l

i j i j i

ij p i j ij l ij p l
p l

i j i j i j i j

mn j p i il j li m j
p mn l ml

i j i j i j

k
R R F F g A g A A A A A

k

g A A A A g A g A
k

g A A A g A g A
k

,

pl

  

   

  

            
       
 
            

  

   

  

2

, , ,

2 2 2

, , , , , , ,

1 1
2 2

2

1 1
.

2

li m m l j ai bj m
lm ml m

i j a b i j

ij b m ij a b a i j
m

b i j a b i j a i j

g A F A A g g A A
k

g A A A g A A A A A
k

  

  

      
 

     
 

  

  

 

  

Open Access                                                                                            JMP 



D. LACHANCE, C. GAUTHIER 1611

 
This expression involves products of the Dirac distri-

bution, which is impossible within the framework of the 
theory [6]. The same observation applies even if the elec- 
tromagnetic four-potential is identically zero, because the 
hyperspace-time scalar curvature is then
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Therefore, the postulate based on Equations (7) does 
not allow deducing the equations of a discretized gravita-
tional field. 

5. Interaction through Unification 

Even if Klein was aware that 55  can be any differenti-
able scalar function of space-time coordinates, he chose 
to replace it with the proportionality constant k between 

5 5m m   and mA  in order to facilitate his calculations. 
However, this choice led him to the well known unsatis-
factory unification of gravitation and electromagnetism. 
Since Kaluza’s and Klein’s works, several hundred pa-
pers were written trying to improve this situation (see e.g. 
[7]). Many paths were explored but none have yielded a 
satisfactory unified field theory. We shall now reconsider 

the field interaction aspect of the original Kaluza-Klein 
theory by returning to the starting point of Klein’s de-
velopment, i.e. to the metric of Equation (1) and replace 

55  with a differentiable function α of the space-time 
coordinates. Following the approach of Hilbert to get the 
equations of general relativity and of Klein to obtain his 
formal geometric unification of gravitation and electro-
magnetism, we shall derive new unified fields equations 
from a variational principle based on the scalar curvature 
R  deduced from this modified expression of  . A 
straightforward calculation first yields 
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(8) 

The equations of motion in space-time are then ob-
tained by varying the action built up with Equation (8) 
separately with respect to the three sets of independent 
dynamical variables gmn, Am and  . Direct calculations 
give, respectively, 
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In this unified fields theory, the Equations (9), (10) 
and (11) correspond to three different laws of nature. If 
the function α is constant, then Equations (9) and (10) 
respectively reduce to the Einstein equations for a space- 
time with Tmn as energy-momentum tensor, and the 
Maxwell equations for a free space-time. Since Equation 
(11) results from the variations of α, this equation does 
not exist if α is a constant. 

Considering a situation where the three laws describe 
by Equations (9)-(11) apply, we can substitute Equations 
(10) into Equation (11), and the resulting expression into 
Equations (9). The space-time where this situation occurs 

is then described by 
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Observe that if k = 0, or if the electromagnetic four- 
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potential is identically zero, then Equations (12) reduce to 
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Such an equation may be used to model a universe 
whose expansion is regulated by the scalar field α. 

6. Electromagnetic Energy Density 

In the preceding Section, the independence of the scalar 

field α with respect to the variables gmn and Am was as-
sumed to simplify the calculations. But such a scalar 
field is hard to find. We shall now consider an easily 
reachable scalar field by observing that it was arbitrary at 
the starting point of Klein’s development. If we allow it 
to depend on the variables gmn and Am, then we can use 
the electromagnetic energy density of space-time given 
by 11T  . For this scalar field, the equations of motion 
in space-time are found by varying the action determined 
by Equation (8) separately with respect to gmn and Am. 
Straightforward calculations yield, respectively, 
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where mn  and ˆ np  are the partial derivatives of   with respect to mng  and ;n pA  respectively. 
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One way to solve the system of Equations (13) and (14) 
is first to rewrite Equations (14) as four partial differen-
tial equations of order one for R. The common solution 
of these equations is an expression of R in terms of the 
electromagnetic four-potential and of an arbitrary scalar 
function of the space-time coordinates. By substituting 
this expression of R into Equations (13), we obtain equa-
tions for Rmn analogous to Equations (12), but with a 
more complex expression and an arbitrary function on its 
right-hand side. This arbitrary function here plays a role 
similar to that of α in Section 5. 

7. Conclusions 

In the first part of this paper, we have shown how the 
metric of a five-dimensional hyperspace-time can be used 
to model the quantum nature of electromagnetic interac-
tions. In this framework, the neighborhood of the point 
where an interaction takes place bends according to the 
curl and the derivative of the local electromagnetic 
four-potential, both calculated in the direction of the lat-
ter. We have also seen that a non-gravitational field is 
required to induce the discretization of any gravitational 
field. 

In its second part, we have reconsidered the field in-
teraction aspect of the original Klein’s unifying scheme 
which led to two independent laws of nature. With the 
method of Section 5, we have obtained a system of three 
coupled groups of equations for gmn, Am and α. These 
groups of equations correspond to three different laws of 
nature. Due to the coupling between the groups of equa-
tions, these laws are not independent: each one will de-
pend on gmn, Am and α. Observe that this unifying scheme 
calls in a scalar function acting at a middle scale and 
which must not be of gravitational nor of electromagnetic 
origin. It is hard to find such a scalar field; at very large 
scale it could be identified with the field describing the 
inflationary phase in the early universe. 

Envisaging the possibility of controlling the unspeci-
fied scalar field of Section 5, we have replaced it in Sec-

tion 6 with the space-time local density of electromag-
netic energy. Other choices are possible. This has led us 
to a system of two groups of equations corresponding to 
two interdependent laws of nature. If we consider Equa-
tions (13) and (14) as generalizations of Einstein’s equa-
tions in the presence of an electromagnetic field and of 
Maxwell’s equations, respectively, these groups of equa-
tions show that it would be possible to influence the 
gravitational field in a region of space-time by locally 
changing the electromagnetic field. Reciprocally, a varia-
tion of the gravitational field would cause a variation of 
the electromagnetic field. Since any variation of the elec-
tromagnetic field generates electromagnetic waves, the 
two above predictions could be tested through phenom-
ena involving a large and sudden emission of electro-
magnetic waves. 
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