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ABSTRACT 

The cosmological constant problem is reanalyzed by imposing the limitation of the number of degrees of freedom 
(d.o.f.) due to entropy bounds directly in the calculation of the energy density of a field theory. It is shown that if a 
quantum field theory has to be consistent with gravity and holography, i.e. with an upper limit of storing information in 

a given area, the ultraviolet momentum cut-off is not the Planck mass, 1 4
pM , as naively expected, but M p UN

UN

 where 

 is the number of d.o.f. of the universe. The energy density evaluation turns out completely consistent with 

Bousso’s bound on the cosmological constant value. The scale 1 4M p UN

331.6 10
2

, that in the “fat graviton” theory corresponds 

to the graviton size, originates by a self-similar rearrangement of the elementary d.o.f. at different scales that can be 
seen as an infrared-ultraviolet connection. 
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1. Introduction 

In 1955, von Weizsaker [1] started a program to derive 
quantum theory by postulating a fundamental quantized 
binary alternative, called “ur”, and, many years later, 
Wheeler [2] suggested that information theory must play 
a relevant role in understanding the foundations of quan- 
tum mechanics, the “It for bit” proposal. 

On the other hand, it is now generally accepted that the 
picture of space-time as a locally flat Minkowsky mani- 
fold breaks down at distances of order of Planck scale, 

p  cm, and that, due to space-time uncer- 
tainty [3,4], an elementary area 
l

p pA l  should be con- 
sidered as a fundamental space-time cell. 

The previous ideas are the starting points of the main 
approaches to quantum gravity that consider quantum 
space-time to be discrete: loop quantum gravity [5,6] and 
string theory [7,8]. 

Moreover, by combining the assumptions of a quan-
tized fundamental (binary) degree of freedom (d.o.f.) and 
of an elementary area, pA , with Bekenstein’s result on 
black-hole entropy [9], the Holographic Principle emer- 
ges [10-18]: 

a) the number of possible states in a region of space is 
the same as that of a system of binary d.o.f. distributed 

on the causal horizon of the region; 
b) the number of d.o.f., N, of a region of space is 

bounded by the area, A, in unit of the elementary area 
 1cpA   : 

A
N                      (1) 

pA

Holography has a crucial role in the description of 
gravity as an emergent phenomenon of thermodynamical 
origin [19-22] and/or as an entropic force [23]. 

Moreover, following Banks’s proposal [18] that the 
cosmological constant,  , should be related to the num- 
ber of d.o.f. in the fundamental theory, it has been shown 
[12] that in any universe with a positive cosmological 
constant one obtains, by holographic entropy bounds, 
[10,12] an upper limit to the number of d.o.f. of the uni-
verse, , given by UN

4

3π
U

p

N
l




                   (2) 

i.e. 

4

3π
                   (3) 

p Ul N
 

The problem [25] is to understand how the result in 
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Equation (3) can be (re-)obtained from the point of view 
of a field theory where the naive estimate of the energy 
density, with 1p pM l  as ultraviolet cut-off, is given 
by 

 

3

3

d
8

2π

pM 4 2 2 4π 1 8π .p pl
k

k M         (4) 

A direct comparison between this equation and Equa- 
tion (3) clearly indicates that to reproduce the bound in 
Equation (3) one has to introduce a limitation of the 
number of d.o.f. in the quantum field estimate of the en- 
ergy density. Indeed, standard local field theories over- 
count available degrees of freedom because they fail to 
include the effect of gravitation [12] and the discrepancy 
is due to number of d.o.f. of the universe which, accord-
ing to the holographic principle, has an upper bound 
given by the number of elementary cells on a spherical 
causal horizon of area, UA , with radius equal to the 
inverse Hubble constant H   1 612.7 10 pH l  , that 
is 

122
2 2 2

1
10 .

p pl H l
 

L

3 4

U
U

A
N             (5) 

In the absence of a unified theory of gravity and quan- 
tum fields, in this letter a ,”crude”, new method is pro- 
posed to include in the calculation of the energy density 
of a field theory the limitation of the number of d.o.f. in 
agreement with the entropy bound. 

2. Holographic Bound in Quantum Field 
Energy Density 

An interesting attempt in understanding the value of the 
cosmological constant in particle physics has been done 
[26] by considering the energy—not the energy density— 
of a quantized field in a box of size . The energy is 
(volume * energy density) and therefore it is of order 

pL M

L

. By assuming that the lagrangian of the theory 
describes all state of the system excluding those for 
which it has already collapsed to a black-hole, a relation 
between the infrared cut-off, , and the ultraviolet 
cut-off, pM , arises in such a way that the cosmological 
constant turns out 

  2

pl L


 

 L

                  (6) 

which gives ( within an order of magnitude) the observed 
value of  if one identifies  with the Hubble con-
stant ( see ref. [26] for details). 

However [27], since 21 L
 

 and in the standard cos-  

mological model, in a dominated matter era, 
3

L R t

 R t

2
 

(  is the scale factor), then  3

0

1 R t   which cor-  

responds to an equation of state with  (w  w p   

where  is the pressure and p   the energy density of 
the system) rather than the value  required for 
the dark energy by the analysis of cosmological data [28- 
31]. 

1w 

Let us rather consider the evaluation of the energy 
density of a quantum field by imposing the holographic 
entropy bound, valid for any physical system. 

In general, if one covers an area A  by elementary 
cells of area pA , the number of the d.o.f. in the consid- 
ered area is A pA . 

For a generic scale related to a momentum , k
1l kk   and k p , the previous limit on the number 

of d.o.f of the cell of area  is 
l l

2
kl

2
k

k

l
N                   (7) 

pA

therefore 

1

p k

k
l N



2 2
k k p Ul N l N

                (8) 

Now let us assume that 

               (9) 

which is a non trivial point, that will be discussed in the 
next section, since it is a condition among different 
scales and different numbers of d.o.f. in cells with very 
different sizes. By previous equation one has 

.k p UN kl N              (10) 

and by Equation (8) 

1 4

1

p U

k
l N

                 (11) 

which implies that the ultraviolet cut-off to take correctly 
into account the holographic entropy bound is  1 41 p Ul N  
and not 1 pl

 

 as naively expected. 
Therefore the energy density of a “free” field theory 

turns out 

 1 4 3
1

3 2 4

d 1

8π2π

p Ul N

p U

k
k

l N
  

 

      (12) 

in agreement with the entropic bound obtained by 
Bousso [12] and with the experimental value of the cos-  

43 42.6 10 eV  

0pl 

 [28-31]. The  mological constant 

previous ultraviolet cut-off is a direct consequence of 
gravitation. It disappears for  and, as we shall 
discuss later, in a consistent calculation of the energy 
density for interacting fields, it should be interpreted as 
the typical momentum scale in the loop expansion of the 
gravitational effective action when standard model parti-
cles couple with external graviton legs. 
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3. Scaling Behavior of Fundamental Degrees 
of Freedom 

Let us now analyze the meaning of the crucial assump- 
tion in Equation (9) and let us initially consider a geo- 
metrical argument by using, for semplicity, squares 
rather than spherical surfarces. The covering of a square 
of area 2A L  with elementary squares is an old mathe- 
matical problem [32]. The minimum number   of ele-
mentary squares, of area , needed to cover a large 
square of side length  is given by [33] 

2r
L

      11 2 7

2
1 log

L
O L r L r

r
      

U

2

     (13) 

where the positive second term in bracket is the “extra 
space”. Therefore, in our case if one covers the entire 
horizon of the universe, A , with elementary cells of 
area  one has 2

kl
2

k k Ul A                   (14) 

where k  is the corresponding minimum number of 
cells to cover the horizon. 

Equation (9) is equivalent to assume that at any scale 

k  the number of d.o.f. k  ( in the cell of area kl ) 
rearranges in such a way to be larger than or equal to to 
the minimum number of cell 

l N 2

k  to cover the whole area, 
i.e. 

.k kN 

2 2 2 ,U p UA l N

N N l

                  (15) 

Indeed, by previous Equations (14) and (15), one gets 

k k k kN l l             (16) 

which gives Equation (9). 
Note that since k  and U  are integers, if k  is a 

multiple of pl
N

 and one imposes the exact covering of 
the entire area (no “extra space”), the condition k k  
corresponds to a self-similar rearrangement of d.o.f at 
different scales. From this point of view, the consistency 
between the holographic entropy bound for the cosmo- 
logical constant and the estimate of the energy density 
requires a peculiar self-similar rearrangement of the ele- 
mentary d.o.f at different scales that can be seen as an 
infrared-ultraviolet connection. 

Let now discuss a different, more tradictional, ap-
proach to the meaning of the condition in Equation (11) 
which can be traslated, for example, in a gaussian type 
cut-off  2 2 1 2exp k l N p U  (of course an exponential cut- 
off works equally well). 

This implies that there is a typical scale in the field 
theory effectively coupled with gravity. In the “fat gra- 
viton” theory [34,35] this scale coincides with the effec-
tive size, gr , of the graviton and the local graviton cou-
pling with the standard model (SM) particles is strongly 
modified. Infact, the dominant contributions to the gra- 
vitational effective action come from purely SM loops, 

with graviton external legs, which contribute only for 
wavelengths 

l

gr . More precisely, with fat gravitons, 
massive SM (i.e. particle with mass 

l
1m lSM gr ) and 

hard light SM pieces of loop contributions to the gravita-
tional effective action may consistently [34] be sup- 
pressed while the soft light SM contribution are not, i.e. 
there is no robust contribution to the cosmological con- 
stant from momentum scale larger than 1 gr . However 
among the diagrams contributing to the cosmological 
constant there is one with no graviton external legs, cor- 
responding to the free energy density, and the graviton 
size is unable to suppress this contribution. As discussed 
in detail in ref. [34], the cosmological term in the loop 
expansion of the gravitational effective action is a self- 
interaction of the graviton field and, by invoking the 
general coordinate covariance, diagrams with soft gravi- 
ton external lines are related to the diagram with no 
graviton. From this point of view, a contribution to the 
cosmological constant such as 

l

 
2 2

3

3

d
exp

2π
grk lk

k              (17) 

has to be interpreted as a short-hand for contributions 
from diagrams with gravitons interactions. 

In this respect, the cut-off in Equation (11), although 
obtained by general consideration on entropy bounds, 
gives the typical momentum scale in the loop expansion 
of the gravitational effective action when SM particles 
couple with external graviton legs. 

The meaning of the graviton size comes by combining 
the two previous different points of view, i.e. by imposing 

1 4
gr p U . Indeed, by entropy bound, the number of 

fundamental d.o.f. in a single cell of area 
l l N

2
grl , grN , 

turns out to be 
2

1 2
2

gr
gr U

p

l
N N

l
  .               (18) 

On the other hand, the number of cell of size gr  one 
needs to cover the entire horizon is 

l
2

gr grA l   and it 
turns out 

2
1 2

2 2 1 2

p U
gr U

gr p U

l NA
N

l l N
              (19) 

By previous Equations (18) and (19), the crucial con- 
dition in Equation (15), i.e. gr grN  , can be satisfied 
only by imposing gr grN  , that is the size of the 
graviton is such that the number of cells of area 2

gr  one 
needs to cover the whole horizon is exactly equal to the 
number of fundamentl d.o.f. 

l

grN  per cell. 

4. Comments and Conclusions 

It is interesting to note that Equation (5) can be obtained 
from an analysis of the representations of direct product 
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of  groups, each group related with an elemen- 
tary binary system [30] and this clarifies the connection 
between the results in the previous sections and elemen- 
tary quantum binary degrees of freedom. 

 2SU

There is another crucial aspect that has to be stressed. 
The final results in Equations (11) and (12) do not re- 
quire the saturation of the bounds in Equations (2) and 
(8)-(11): the cosmological constant and the number of 
d.o.f. turn out to have upper limits. If one applies the 
saturated limits, the cosmological constant would be 

 2
1 Ll 

N

p  with the wrong equation of state, as pre- 
viously discussed, and one could obtain inconsistent re- 
sults. Rather U  should be considered as the maximum 
number of d.o.f. of a causal horizon if one uses elemen- 
tary cells of size pl , but any other elementary cell size 
can be used in discussing the entropy bound, and the 
contribution of these d.o.f. to the energy momentum ten- 
sor is 4

p Ug l N 1w  

, ,x x

  corresponding to  in the 
equation of state. Equation (11) is based on holographic 
entropy bound and on the crucial condition in Equation 
(9) and its meaning is that, because of gravity, not all 
d.o.f. that a field theory apparently supplies can be used 
for consistently storing information. 

Another comment concerns the result that the effective 
ultraviolet cut-off depends on the number of degrees of 
freedom due to the infrared-ultraviolet connection. An 
example, not directly related with the proposed approach, 
comes from string theories which require a non-commu- 
tative space-time [37,38], that is, in the canonical formu-
lation, 

                    (20) 

where x  are the space-time coordinates and   are 
fixed quantities. 

In particular settings (see ref. [36-39]), one can intro- 
duce a unique parameter   to quantify the non com- 
mutative effects. In non-commutative scalar field theory, 
due to the infrared-ultraviolet connection, in the evalua- 
tion of the two-point function at momentum scale k, the 
effective ultraviolet cut-off, effM , is given by [37-40] 

 2 2
eff

2 2 21M M M p            (21) 

where M  is the ultraviolet cut-off of the commutative 
theory. By choosing pM M  and defining the number 
of degrees of freedom in the area   as 2

pN l  and 
in the area 2 21kl  k  as 2 2

k k pN l l , one gets 

 2 2
eff p

21 kM M N N 

k

           (22) 

which shows that the effective cut-off depends on the 
number of d.o.f. at the momentum scale  and at the 
non-commutativity scale. 

Finally, since the cosmological constant is directly re- 
lated to the zero point energy density, one could com- 
ment by using statements related to Casimir effect. In-

deed, in discussions of the cosmological constant, the 
Casimir effect is often invoked as decisive to rule out the 
possibility of an ultraviolet cut-off which gives result in 
accord with the experimental value. 

However, Casimir effects can be formulated and Ca- 
simir forces can be computed without reference to zero 
point energies [41]. They are relativistic, quantum forces 
between charges and currents. The Casimir force (per 
unit area) between parallel plates vanishes as  , the 
fine structure constant, goes to zero, and the standard re- 
sult, which appears to be independent of  , corresponds 
to the  

k

 limit. 
More generally, the physical role of the zero point en- 

ergy is still an open problem and recent claims that vac- 
uum fluctuactions of the electromagnetic field could be 
detected by experiments by Josephson junctions [42] 
have been definetely criticized in ref. [43,44]. 

In conclusion, if a quantum field theory has to be con-
sistent with gravity, i.e. with an upper limit of storing 
information in a given area, there is an ultraviolet cut-off 
in the field mode of momentum  given by Equation 
(11). The physical meaning of this cut-off in the fat 
graviton theory is the graviton size whereas in the ap-
proach proposed in this letter it originates by a self- 
similar behavior of the fundamental d.o.f.: the only 
“gravitating” modes are such that by covering the whole 
area of the system with the minimum number, k , of 
elementary cells of size 1l k

N
k , the number of d.o.f. 

per cell, k , has to be larger than or equal to k . In an 
effective field theory of SM particles interacting with 
gravitons, the cut-off 1 4M p UN  has to be interpreted as 
the typical momentum scale in the loop expansion of the 
gravitational effective action when SM particles couple 
with external graviton legs. It could be quite possible to 
have some physical effects at a scale 1 41 p U  and 
experiments on the possible modification of gravity are 
very close to study this range of distances (see for exam-
ple [45]). 

l N

The cosmological constant problem is far from to be 
solved [46,47] and it is deeply related with quantum 
gravity, however the obtained results clearly indicate a 
new kind of infrared-ultraviolet connection that is worth 
to be investigated. 
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