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ABSTRACT 

Recently we have studied the instant-form quantization (IFQ) and the light-front quantization (LFQ) of the conformally 
gauge-fixed Polyakov  brane action using the Hamiltonian and path integral formulations. The IFQ is studied in the 

equal world-sheet time framework on the hyperplanes defined by the world-sheet time  and the LFQ 
in the equal light-cone world-sheet time framework, on the hyperplanes of the light-front defined by the light-cone 

world-sheet time . The light-front theory is seen to be a constrained system in the sense of 

Dirac in contrast to the instant-form theory. However, owing to the gauge anomalous nature of these theories, both of 
these theories are seen to lack the usual string gauge symmetries defined by the world-sheet reparametrization 
invariance (WSRI) and the Weyl invariance (WI). In the present work we show that these theories when considered in 
the presence of background gauge fields such as the NSNS 2-form gauge field 

D1

constant  

  constant 

0

   

 ,B    or in the presence of  1U

 ,A

 

gauge field  ,C   and the constant scalar axion field  

0 costant  

, then they are seen to possess the usual string gauge 

symmetries (WSRI and WI). In fact, these background gauge fields are seen to behave as the Wess-Zumino or 
Stueckelberg fields and the terms containing these fields are seen to behave as Wess-Zumino or Stueckelberg terms for 
these theories. 
 
Keywords: Lagrangian and Hamiltonian Approach; Hamiltonian Quantization; Path Integral Quantization; Light-Front 

Quantization; Theory of Quantized Fields; Constrained Dynamics; D-Brane Actions; Polyakov Action; 
Strings and Branes; String Gauge Symmetry; Gauge Field Theories 

1. Introduction 

Study of D-brane actions is a domain of wider interest 
[1-20] in string theories. Polyakov D-brane action [1- 
8,12-20] does not involve any square root [1-11] and is in 
particular, simpler to study. Recently, we have studied 
the instant-form (IF) quantization (IFQ) of this action [12] 
for the D1 brane in the conformal gauge (CG), using the 

Hamiltonian [21] and path integral [22-25] formulations 
in the instant-form (IF) of dynamics (on the hyperplanes 
defined by the world-sheet (WS) time ) 
[26,27]. We have also studied its LFQ [13-20] using the 
light-front (LF) dynamics (on the hyperplanes of the LF 
defined by the light-cone (LC) WS time  

  constant      ) [26-33]. 
The LF theory [13-20] is seen to be a constrained 

system in the sense of Dirac [21], which is in contrast to 
the corresponding IF theory [12], where the theory 
remains unconstrained in the sense of Dirac [21]. The LF 
theory is seen to possess a set of twenty six second-class 

*Part of this work was presented by DSK as an Invited Talk at “Interna-
tional Conference on Light-Cone Physics LC2011: Applications of 
Light-Cone Coordinates to Highly Relativistic Systems”, held at the 
Southern Methodist University, Dallas, Texas, May 22-27, 2011. 
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hcontraints [13-20]. Further, the conformally gauge-fixed 
Polyakov D1 brane action (CGFPD1BA) describing a 
gauge-noninvariant (GNI) theory (being a gauge-fixed 
theory) is seen to describe a gauge-invariant (GI) theory 
in the presence of an antisymmetric NSNS 2-form gauge 
field  ,B  

B

 [13-20]. 
Recently we have shown [13-20] that this NSNS 

2-form gauge field behaves like a Wess-Zumino (WZ) 
field and the term involving this field behaves like a WZ 
term for the CGFPD1BA [13-20]. We have also studied 
the Hamiltonian and path integral formulations of the 
CGFPD1BA with and without a scalar dilaton field in the 
IF [12] as well as in the LF [13-18] dynamics. In both the 
above cases the theory is seen (as expected) to be gauge- 
noninvariant (GNI), possessing a set of second-class 
constraints in each case, owing to the conformal gauge- 
fixing [1-8,12-20] of the theory. 

The CGFPD1BA being GNI does not respect the usual 
string gauge symmetries defined by the world-sheet (WS) 
reparametrization invariance (WSRI) and the Weyl in-
variance (WI) [1-8,12-20]. However, in the presence of a 
constant 2-form gauge field   it is seen [13] to de-
scribe a gauge-inavriant (GI) theory [13-20] respecting 
the usual string gauge symmetries defined by the WSRI 
and the WI. 

The IF and the LF Hamiltonian and path integral for-
mulations of the CGFPD1BA have been studied by us in 
Refs. [12-18]. The IF and the LF Hamiltonian and path 
integral formulations of this theory in the presence of the 
constant 2-form gauge field B  have been studied by 
us in Ref. [13]. 

The question of the string gauge symmetries associ-
ated with the Polyakov D1 brane action in the presence 
of some other background fields such as the  1

 ,A
U  

gauge field  
 ,

 and the constant scalar axion 
field C  

 1U  ,A

 have been considered by us in Ref. [19]. 
In the present work, we study the CGFPD1BA in the 

presence of some other background fields such as the 
 gauge field  

 
 and the constant scalar 

axion field ,C  

B

 
In the next section we recap the basic essentials of the 

CGFPD1BA in IFQ as well as in th LF quantization 
(LFQ) [12-18]. In Section 3, we recap the basic essentials 
of this theory in the presence of the constant NSNS 
2-form gauge field   [13]. In Section 4, we study the 
IFQ [26,27] as well as the LFQ [26-33] of the 
CGFPD1BA in the presence of some other background 
fields such as the  gauge field 1U  ,A    and the 
constant scalar axion field  ,C    [19,20]. Finally the 
summary and discussion is given in Section 5. 

2. Conformally Gauge-Fixed Polyakov D1 
Brane Action (CGFPD1BA): A Recap 

The Polyakov D1 brane action in a d-dimensional curved 

background 

2dS

 is defined by [1-8,12-20]: 

                                  (1a) 

2

T
hh G


                         (1b)   



 det ,h h G X X 
                    (1c) 

 diag 1, 1, , 1                     (1d)    

   , 0,1, ., 2,3, , 1 , , 01i i d IFQ          (1e) 

   , , , ., 2,3, , 1 , , ,i i d IFQ            (1f) 

 ,Here     are the two parameters describing 
the worldsheet (WS). The overdots and primes would 
denote the derivatives with respect to   and  .  is 
the string tension. 

T
G  is the induced metric on the WS 

and  ,X   

h

 are the maps of the WS into the d - 
dimensional Minkowski space and describe the strings 
evolution in space-time [1-8,12-20]. 

Here   are the auxiliary fields (which turn out to 
be proportional to the metric tensor   of the two- 
dimensional surface swept out by the string). One can 
think of  as the action describing d-massless scalar 
fields 

S
X   in two-dimensions moving on a curved 

background h
Also because the metric components 

. 
h  are varied 

in the above equation, the 2-dimensional gravitational 
field h  is treated not as a given background field, but 
rather as an adjustable quantity coupled to the scalar 
fields. 

The above action has three local gauge symmetries 
given by the 2-dimensional (2D) WSRI and WI as fol-
lows: 

X X X X       
                    (2a) 

 X X  
    

h h h h   

                       (2b) 

    


h h h h

                   (2c) 

      
                    (2d)  

       , , exp 2 , ,h h               (2e) 

where the WSRI is defined for the two parameters 
 ,     ; and the WI and is specified by a func-

tion  ,   

1

. In the following we would, however, 
work in the so-called orthonormal gauge where one sets 



h

. 
Also for the CGFPD1BA one makes use of the fact 

that the 2D metric   is also specified by three inde-
pendent functions as it is a symmetric  metric. One 
can therefore use these gauge symmetries of the theory to 

2 2
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choose h  to be of a particular form in the IFQ (on the 
hyperplanes defined by ) as follows: 0

: ,h

constantx t 

 :h 
  

h 


  



1 0

0 1




                (3) 

In the IFQ we take 

 

1 0

0 1


 

                (4a) 

h 


                   (4b) 

with 

 deth     1h                  (5) 

In LFQ we use the Light-Cone (LC) variables defined 
by: 

   0 1 2X

constant 

: ; :X X             (6) 

In the LFQ (on the hyperplanes defined by  
) we take: x

0 1 2

1 2 0

 
  

0 2

2 0

 
    

:h                 (7a) 

:h                   (7b) 

with 

 
1

t
2

h h   

S

2dN N

de                   (8) 

The action  in the CG (in IFQ as well as in LFQ) 
finally becomes: reads [1-8,12-20]: 

S                            (9a) 

2
N T

X X 
   

 0,1, 0,1, , 2,3, , 25i i IFQ    

 ,3, , 25 LFQ

   
 

                 (9b) 

       (9c) 

,  , , ,  ; 2i i             (9d) 

This is the CGFPD1BA. In the IFQ it reads: 

2d ,
T

S L X X X X 
1 1 1 2                   (10a) 

   22T
X X

     
1 2

                     (10b) 

,  ,  ,  
X X

X X
 

 
     

        
 

      (10c) 

The IFQ of this action has been studied by us recently 
[12] and we recap it here very briefly. The canonical 
momenta conjugate to X   obtained from the above 
action are: 

 
1:P T X
X







  
 

             (11) 

Here the velocities 
1X P
T




 

   are expressible.  

Canonical Hamiltonian density for the above theory is: 

 22
1 1

1
;

2 2
c T

P X P X
T


 

           
   (12) 

The quantization of the system is trivial. The nonvan-
ishing equal WS-time (EWST) commutation relations 
(CR’s) for this theory are obtained as: 

     , , ,X P i 
                 (13) 

 where    

2 2d dS

 is the one-dimensional Dirac distribu-
tion function. 

It is obvious from the above considerations that the 
above theory is unconstrained in the sense of Dirac [21]. 
It may be important to emphasize here that an uncon- 
strained system like the above theory is a gauge-nonin-
variant theory and it is some what akin to a gauge-fixed 
gauge-invariant theory which makes it a gauge-nonin- 
variant system. In the presence of a scalar dilaton field 
the theory of course, becomes a constrained system in the 
sense of Dirac as shown in our earlier work [12]. For 
further details of the IFQ of this theory we refer to our 
earleir work of Ref. [12]. 

The CGFPD1BA in the LFQ reads [12-18]: 

                                (14a) 

        
2 2

i i

T

X X X X X X   
     

    
          



, , , , 2,3, , 25i i

(14b) 

      

,P P 
iP

,

                    (14c) 

The canonical momenta  and  canonically 
conjugate respectively to X  i and X X , obtained 
from the above LF action are: 

   2:
2

T
P X

X






   
 



 

           (15a) 

 2:
2

T
P X

X






   
 



 

           (15b) 

 2:
2

i
i i

T
P X

X





   
 


           (15c) 

Above equations however, imply that the theory pos-
sesses 26 primary constraints: 

1 0
2

T
P X  


     
 

            (16a) 
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2 P   0
2

T
X 


   
 

              (16b) 

0,
2

i
i i

T
P X 

     
 

2,3, , 25.i  

 2 2
c iP X

    

2
c

,u v iw

     (16c) 

Canonical Hamiltonian density for the above theory is: 

   
0

iP X P X   
     


  (17) 

After including the above 26 primary constraints of the 
theory in the canonical Hamiltonian density  with 
the help of Lagrange multiplier fields  and , the 
total Hamiltonian density  could be written as 2

T

2

2

T

i
i i

2 2
u P X v P X

T
w P X

 
 



              
     



,u v w

2 2 dT T

T T  

    (18) 

We treat  and i  as dynamical. The Hamiltons 
equations obtained from the total Hamiltonian  

H   

S

, are the equations of motion of the the-  

ory that preserve the constraints of the theory in the 
course of time. Demanding that these primary constraints 
of the theory be preserved in the course of time one does 
not get any secondary constraints. The theory is thus seen 
to possess only 26 above constraints. Further, the matrix 
of the Poisson brackets of the above constraints is seen to 
be nonsingular, implying that the set of these constraints 
is second-class and consequently the theory is GNI 
[12-18]. The theory indeed does not possess the usual 
local string gauge symmetries defined by the WSRI and 
the WI [12-18]. 

This action is thus seen to lack the local gauge sym-
metries. This is in contrast to the fact that the original 
action  had the local gauge symmetries and was 
therefore GI. The theory defined by the action NS , on 
the other hand describes a GNI theory. This is not sur-
prising at all because the theory defined by NS  is after-
all (conformally) a gauge-fixed theory and consequently 
it is not expected to be GI anyway. 

Infact, the IF theory defined by NS  is seen to be un-
constrained [12] whereas the LF theory is seen to possess 
a set of 26 second-class constraints [12-18]. In both the 
cases theory does not respect the usual local string gauge 
symmetries defined by WSRI and WI [12-18]. 

3. CGFPD1BA in the Presence of a 2-Form 
Gauge Field B

B

: A Recap 

We now consider this CGFPD1BA in the presence of a 
constant background antisymmetric 2-form NSNS gauge 
field 

2dI I
B BS

 studied earlier by Schmidhuber, de Alwis and 

Sato, Tseytlin and Abou Zeid and Hull and others de-
fined by [1-8]. This theory has been studied by us earlier 
in Ref. [13]. This theory is defined by the action [1-8,13]: 

                              (19a) 

I C B
B                                 (19b) 

2
C N T

X X 
              

           (19c) 

2
B T

B
                          (19d)   



 2 0 1
1 , constant,

1 0
 

 
        

0
: ,

0

B
B X X B B

B
 

    
 

      

    (19e) 

       (19f) 

 01 10B B B IFQ                        (19g) 

 B B B LFQ   

 , 0,1, 0,1,  , 2,3, , 25i i IFQ     

 , , , , ,  , 2,3, , 25i i LFQ         

B

                    (19h) 

      (19i) 

    (19j) 

It is important to recollect here that the 2-form gauge 
field   is a scalar field in the target-space whereas it 
is a constant anti-symmetric tensor field in the world- 
sheet space. The above action is seen to be GI in the IFQ 
as well as in the LFQ [13]. It is seen to possess only one 
constraint in IFQ and a set of 27 constraints in LFQ. The 
nature of constraints in both the cases is seen to be 
first-class implying that the theory is GI in both the cases 
[13]. In Ref. [13], we have studied the Hamiltonian and 
path integral formulations of this theory under appropri-
ate gauge-fixing. 

3.1. Instant-Form Quantization 

In the following, we study the IFQ of this above theory 
using the EWST framework of dynamics on the hyper-
planes defined by the WS-time  [26, 
27]. In the IFQ, the above action reads as: 

0 constant  

   22

3 3 3d d ,
2

T
S X X TB

              

 

 (20) 

Canonical momenta are 

 
3 3: , : 0BP TX

BX
 

 


         

 

P

     (21) 

  and BHere   are the canonical momenta con-
jugate respectively to X   and 01 10 . The 
above theory is thus seen to possess one primary con-
straint: 

 B B B  

1 0B   . Canonical Hamiltonian density of 
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this theory is: 

 3
c P X

      3B B              (22a) 

 2
X TB

   

 ,u

3

1

2 2
c T

P P
T







 
        (22b) 

After incorporating the primary constraint of the the-
ory in the canonical Hamiltonian density with the help of 
Lagrange multiplier field    (to be treated as dy-
namical) the total Hamiltonian density of the theory 
could be written as: 

 2

3

1

2 2
T

B

T
P P X

T






   TB u

     

p

  (23) 

Also, the momenta canonically conjugate to μ is de-
noted by  . 

The Hamiltons equations obtained from the total Ham-  

iltonian: 3 3 dT TH    are the equations of motion that  

preserve the constraints of the theory in the course of 
time. Demanding that the primary constraint of the the-
ory be preserved in the course of time one does not get 
any further constraints. The theory is thus seen to posses 
the only one above constraint. 

The Poission bracket of the constraint of the theory 
with itself is seen to be zero implying that the constraint 
is first-class and that the theory is GI. It is indeed seen to 
posses three local gauge symmetries given by the 2D 
WSRI and the WI defined by: 

X X X X     

 X X  
    

h h    

h h h h

                   (24a) 

                     (24b) 

h h                    (24c) 

        
       

B B B B

      (24d) 

     


 

B 

 , exp 2h h

                 (24e) 

B 
                           (24f) 

                      (24g) 

It is important to recollect here that the 2-form gauge 
field B  is a scalar field in the target-space whereas it 
is a constant anti-symmetric tensor field in the world- 
sheet space (and consequently we have 0B 

0B  

0

). 
Thus the theory is seen to be GI in IFQ as well as in 

LFQ. It is therefore gauge-nonanomalous possessing the 
three local gauge symmetries defined by the 2D WSRI 
and the WI. The theory could therefore be quantized un-
der appropriate gauge-fixing. 

Hamiltonian and path integral formulations of this 
theory could be studied under appropriate gauge-fixing 
e.g., under the gauge: . Corresponding to this 

choice of gauge the total set of constraints of the theory 
under which the quantization of the theory could e.g., be 
studied becomes: 1 B    0B     and 2 . 
The matrix of the Poisson brackets of these constraints is 
seen to be nonsingular implying that the corresponding 
set of constraints is second-class. Following the Dirac 
quantization procedure in the Hamiltonian formulation, 
the nonvanishing EWST CR’s of the theory under the 
above gauge are obtained as: 

       , , ,   X P i                   (25) 

3.2. Light-Front Quantization 

In LFQ, using the ELCWST framework of dynamics on 
the hyperplanes defined by the LC WS-time  

  constant     

4 4d dS

, the action of the theory reads: 

                              (26a) 

     

  
4 2

i i

T
X X X X

X X TB

    
   

 

           
    



, , P P  iP
, , B X X

 (26b) 

Canonical momenta B , and  conjugate 
respectively to  

i , and X  are: 

 
4: 0B B


 
 


 

                        (27a) 

 4:
2

T
P X

X

 





   
 



 

              (27b) 

 4:
2

T
P X

X

 





   
 



 

              (27c) 

 4: , 2,3, , 25
2

i
i i

T
P X i

X







    
 



1 0B

   (27d) 

Above equations however, imply that the theory pos-
sesses the following 27 primary constraints: 

                           (28a)    

 2 0
2

T
P X

  


      
               (28b) 

 3 0
2

T
P X

  


      
               (28c) 

  0, 2,3, , 25
2

i
i i

T
P X i

 
       



4

 

     (28d) 

Canonical Hamiltonian density corresponding to  is 

 
   

4

4

c
B

i
i

B P X

P X P X

 
 

 
 

    
     




          (29a) 
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 4
c TB 

4
c

 , ,u   

v

              (29b) 

After including the primary constraints of the theory in 
the canonical Hamiltonian density  with the help of 
Lagrange multiplier fields     , ,s   

 ,     and i  , w     (which we treat as dyna- 
mical), the total Hamiltonian density of the theory could 
be written as: 

4 2 1
T c s u 2 3 i iv w                   (30a) 

 

 

 

4

2

2

T
B

i
i i

TB s u P

T
v P X

T
w P X





 





     

        

         


2

T
X

 


       




4 4 dT T

    (30b) 

Hamiltons equations obtained from the total Hamilto-  

nian H   

0B

 are the equations of motion that  

preserve the constraints of the theory in the course of 
time. The matrix of the Poisson brackets of these above 
constraints is seen to be singular implying that the corre-
sponding set of constraints is first-class and that the cor-
responding theory is GI [13]. 

The above theory is indeed seen to possess three local 
gauge symmetries given by the 2D WSRI and the WI [13] 
and the theory could be quantized under appropriate 
guage-fixing. To study the Hamiltonian and path integral 
formulations of the theory under gauge-fixing, we could 
e.g., choose the gauge:   

1 0B

. corresponding to this 
gauge choice the total set of 28 constraints of the theory 
becomes [13]: 

   

2 1 0B

                            (31a) 

                               (31b) 

  0
T

X3 2 2
P

   
 


   

              (31c) 

  0
T

P X4 3 2

   


                     (31d) 

  0, 2,3, , 25i
i i i

T
P X i

2

  
        

0B

 
    (31e) 

The matrix of the Poisson brackets of the above 28 
constraints is seen to be nonsingular implying that the 
corresponding set of constraints is second-class. Now 
following the Dirac quantization procedure in the Ham-
iltonian formulation, the nonvanishing ELCWST CR’s of 
the theory under the gauge-fixing     are ob-
tained as [13]: 

 , , ,
2i

i
X P X P X Pi                      (32a) 

 , ,
2

i i i
X X X X

T
 


           

 

      (32b) 

 , ,
4i i

iT
P P P P

    


      

 1

      (32c) 

For further details of the Hamiltonian and path integral 
formulations of the above theory, we refer to our earlier 
work [13]. 

4. CGFPD1BA in the Presence of a Scalar 
Axion Field C and an U(1) Gauge Field Aμ 

In this section, we study the IFQ and LFQ of the 
CGFPD1BA in the presence of a U  gauge field 

  ,A A     and a constant scalar axion field  
  ,C C  

 1

 [19,20]. We find that the CGFPD1BA 
describing a GNI theory (being a gauge-fixed theory) is 
seen to describe a GI theory when considered in the 
presence of above background fields. 

 ,AWe also find that the U  gauge field  
 ,

 
and the constant scalar axion field C    are both 
seen to behave like the Wess-Zumino (WZ) fields [19,20] 
and the term involving these fields in the action is seen to 
behave like a WZ term for the CGFPD1BA [13,19,20]. 
Here the field A  is a scalar field in the target space 
and a vector field in the WS space and the axion field C 
is a constant scalar field in both the target space as well 
as in the WS space [19,20]. 

We find that the resulting theory obtained in the above 
manner describes a GI system respecting the usual string 
gauge symmetries defined by the 2D WSRI and the WI. 
It is seen that the axion field  and the C 1U  gauge 
field A , in the resulting theory behave like the WZ 
fields and the term involving these fields behaves like a 
WZ term for the CGFPD1BA [19]. 

The situation in the present case is seen to be exactly 
analogous to a theory where one considers the CGFPD- 
1BA in the presence of a 2-form gauge field B  as 
studied by us in our earlier work [13], where the field 
B  behaves like a WZ field and the term involving this 
field behaves like a WZ term for the CGFPD1BA [13]. 

The CGFPD1BA in the presence of a constant back-
ground scalar axion field  and an U  gauge field C  1
A  is defined by [1-8,19,20]: 

2dI I
A AS                          (33a) 

 I C A
A    

 

                      (33b) 

 
2

C N T
X X 

       
 

        (33c) 

 
2

A T
C F

   
 

               (33d) 

 21  , constant                  (33e) 
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 0 1
,

1 0
F A A
      

 01


 

   
        (33f) 

01f F F IFQ

 

                       (33g) 

f F F LFQ

 , 0,1, , 2,3, , 25i i IFQ   

 2,3, , 25 LFQ

0 constant  

 

, 0,1 

                    (33h) 

      (33i) 

, , , , , ,i i             (33j) 

4.1. Instant-Form Quantization 

In this section, we study the IF Hamiltonian and path 
integral quantization of the above theory using the 
EWST framework, on the hyperplanes defined by the 
WS-time . The IF action reads: 

    22
,

T
X X TCf

        
 5 5d dS   5 2

 (34) 

Overdots and primes denote derivatives with respect to 
  and   respectively. The canonical momenta ob-
tained are: 

 
5:P TX 

     


X  

 

            (35a) 

5:c C


 

 


0




 

                   (35b) 

0  5

0

: 0
A




 


   

                   (35c) 

1 5

1

:E TC
A


  
 


1 
, ,

              (35d) 

where  and c  are the canonical 
momenta conjugate respectively to 0 1

0, ,P E  
X A A

1 

 2 0E TC   

3 0c   

   
   

0
5 0

1 5c

P X A

E A C


  

 

   
     

  and C . 
The theory is thus seen to possess three primary con-
straints: 

0 0                     (36a) 

              (36b) 

                     (36c) 

Canonical Hamiltonian density corresponding to above 
Lagrangian density is: 

c
         (37a) 

 2

5 02 2

T
X TCA

     

    , , ,u v

1c P P
T




 

    and  

   (37b) 

After incorporating the primary constraints of the the-
ory in the canonical Hamiltonian density with the help of 

Lagrange multiplier fields 
 ,w  

5 5 1 2 3
T c u u w

 (treated as dynamical) the total Hamiltonian 
density of the theory becomes: 

            (38a)         

 

 

2

5 0

0

1

2 2
T

c

T
P P X TCA

T

u E TC v w







     


    




,u vp p wp

5 5 dT TH

    (38b) 

Momenta canonically conjugate to u, v and w are de- 
noted respectively by and . Hamiltons equa-  

tions obtained from the total Hamiltonian   , 

for the closed string with periodic boundary conditions 
(BC’s) e.g., are: 

 

5

5

1
,

T

T

H
X P

P T

H
P T X

X

 




 








        

    


                 (39a) 

 5 5
0,

T T

C
C

H H
C w T A v

C 
          
 

  (39b) 

05 5
0 0

0

, 0
T TH H

A u
A 

 
      


          (39c) 

5 5
1

1

, 0
T TH H

A v E
E A 

 
     

 
           (39d) 

05 50,
T T

u
u

H H
u p

p u 
 

      
 

          (39e) 

 5 50,
T T

v
v

H H
v p E TC

p v 
 

      
 

    (39f) 

5 50,
T T

w C
w

H H
w p

p w 
 

      
 

,

         (39g) 

These are the equations of motion of the theory that 
preserve the constraints of the theory in the course of 
time. Demanding that the primary constraints of the the-
ory be preserved in the course of time one does not get 
any further constraints. The theory is thus seen to posses 
only three constraint 1 2   and . 3

Matrix of the Poission brackets of these constraints is 
seen to be singular implying that the constraints form a 
set of first-class constraints and that the theory is GI (and 
consequently gauge-nonanomalous). It is indeed seen to 
posses three local gauge symmetries given by the 2D 
WSRI and the WI defined by: 

X X X X       
             (40a) 
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     
   

1 1 1

14 41 23

1

32

M M T M

T M

 X X  
    

h h   

h h

                    (40b) 

h h                   (40c) 

h h      
                (40d) 

A A A A  
                        (40e) 

A A   




                          (40f) 

C C C C   

C
    

 , exp 2h h

                     (40g) 

C                          (40h) 

      

     0
5 0 1

5

c

T

A E A c       
 

              (40i) 

The first order Lagrangian density of the theory is: 

 IO P X
  

     u v wp u p v p w       
(41a) 

 2

5

1

2 2
IO T

P P X TC
T







   f
   

0 0A

         (41b) 

The theory could be quantized under appropriate 
gauge-fixing. To study the Hamiltonian and path integral 
formulations of this theory under gauge-fixing, we could 
choose e.g., the gauge: 

  

0
1 1 0     

 2 2 0E TC     

3 3 0c

                     (42) 

Corresponding to this choice of gauge the total set of 
constraints of the theory under which the quantization of 
the theory could e.g., be studied becomes: 

                      (43a) 

               (43b) 

     

0 0

                      (43c) 

4 A   

  : ,

                       (43d) 

We now calculate the matrix 
PB

M    



  

of the Poisson brackets of the constraints i . The non-
vanishing elements of the matrix M


 are obtained as: 

  14 41TM TM 23 32M M T            (44) 

The matrix M  is seen to be nonsingular implying 
that the corresponding set of constraints is a set of sec-
ond-class constraints. The determinant of the matrix 
M  is given by: 

   
1 2

2det M T                  (45) 

and the nonvanishing elements of the inverse of the ma-
trix M  (i.e., the elements of the matrix  1M



 ) are 
obtained as: 

  

  



   

   
          (46a) 

     1
4 4, , dM M      
       1

0A

  (46b) 

Following the Dirac quantization procedure in the 
Hamiltonian formulation, the nonvanishing EWST CR’s 
of the theory under the gauge 0    (with the ar-
guments being suppressed) are obtained as: 

     , , ,X P i 
                  (47) 

In the path integral formulation, the transition to the 
quantum theory, is, however, made by writing the vac-
uum to vacuum transition amplitude called the generating 
functional  1 iZ J  of the theory under GFC  in the 
presence of external sources iJ  as follows: 

   

 

2
1

2

: d exp d

1

2 2

i
i iZ J i J

T
P P X TCf

T




 




   
    

 
     (48) 

where the phase space variables of the theory are 
 , , , , , ,i

0 1X A A C u v w   with the corresponding re-
spective canonical conjugate momenta:  

 0, , , , , ,i c u v wP E p p p    . 

The functional measure  d  of the generating 
functional  1 iJ  under the GFC   is obtained as: Z

      
      
    

     
 

2
0 1

0

0
0

d d d d

d d d d d d d

d d d d

0 0 0

0

c u v w

c

T X A A

C u v w P E

p p p

A

E TC





   

  



        
      

 

 

  (49) 

            
    

0 0A
The Hamiltonian and path integral quantization of the 

above theory under the GFC   

6 6d dS

 is now com-
plete. 

4.2. Light-Front Quantization 

In LFQ, the action of the theory reads: 

                               (50a) 

  

     
6 2

i i

T
X X

X X X X TCf

  
 

 
   

       
        


  (50b) 

In the following we study the LF Hamiltonian and path 
integral formulations of the above action. The canonical 
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momenta  and  conjugate re-
spectively to 

, , ,P   
, ,

,i c 
,i

P P
,X X X C A    and A

 

 are obtained 
as: 

6 0
A






 



 

                     (51a) 

6 TC
A



 


 

 
 

 
                (51b) 

6: 0
C




 


c                      (51c) 

   
2

T
P X

 
 6:

X 



 
 


          (51d) 

   
2

T
P X

 



 6:

X





 
 


          (51e) 

   : ,
2

iT
P X





 



1 0

6

2,3, , 25

i iX

i



 
 

 

            (51f) 

Above equations however, imply that the theory pos-
sesses 29 primary constraints: 

   

 2 0TC    

0

                        (52a) 

                 (52b) 

3 c                            (52c) 

  0
T

P X
  


      

4 2
           (52d) 

  0X 


  
5 2

T
P

               (52e) 

  0,i
i i

T
P X

 
      

   
  6

c i
i

c

P X P X

C

 
  



   

  

6
c

2

2,3, , 25i  

 6 P X  

             (52f) 

Canonical Hamiltonian density of this theory is: 

   A A   
     

 6
c TC A


    

  (53a) 

                       (53b) 

After including the above 29 primary constraints in the 
canonical Hamiltonian density   with the help of 
Lagrange multiplier fields  1 , ,v     2 , ,v   

 3 , ,v       5, , ,v

   

 4v       ,i
   and v   

6 6 1 1 2 2 3 3 4 5 i is s s u v w

  

(which we treat as dynamical), the total Hamiltonian 
density of the theory could be written as: 

T c               

   

(54a) 

   

 

6

1 2 3

2

2 2

T

i
i i

c

T
TC A u P X

T T
v P X w P X

s s TC s



 

  
 

 
 

 

             
                       


       





6 6 dT TH

(54b) 

The Hamiltons equations of motion of the theory that 
preserve the constraints of the theory in the course of 
time obtained from the total Hamiltonian: 

                   (55) 

e.g., for the closed strings with periodic BC’s are ob-
tained as: 

 6 6,
2

T TH H T
X u P v

P X

 
   

              
  (56a) 

 6 6,
2

T TH H T
X v P u

P X

 
   

              
 (56b) 

 6 6,
2

T T
i

i i ii
i

H H T
X w P w

P X


  

              
 (56c) 

6 60,
2

T T

u
u

H H T
u p P X

p u

 
  

              
(56d) 

6 60,
2

T T

v
v

H H T
v p P X

p v

 
  

              
(56e) 

6 60,
2i

i

T T
i

i w i
w i

H H T
w p P X

p w


  

              
(56f) 

 6 6
3 2,

T T

C
C

H H
C s T A s

C


  

 
         

 
(56g) 

6 6
2 , 0

T TH H
A s

A
 

  

 
      

 
          (56h) 

6 6
1, 0

T TH H
A s

A
 

  

 
      

 
           (56i) 

1

1

6 6
1

1

0,
T T

s
s

H H
s p

p s


 

 
      

 
           (56j) 

 2

2

6 6
2

2

0,
T T

s
s

H H
s p TC

p s


 

 
       

 
  (56k) 

3

3

6 6
3

3

0,
T T

s C
s

H H
s p

p s 

 
      

 
          (56l) 

Demanding that the primary constraints of the theory 
be preserved in the course of time one does not get any 
secondary constraints. The theory is thus seen to possess 
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only 29 constraints: 1 2 3 4 5, , , ,      and i . Further 
the matrix of the Poisson brackets of these 29 constraints 
among themselves is easily seen to be singular, implying 
that the set of these 29 constarints is first-class. This in 
turn implies that the theory is GI (and consequently 
gauge anomalous). The theory is indeed seen to possess 
three local gauge symmetries given by the 2D WSRI and 
the WI defined by Equation (40). The theory could now 
be quantized under appropriate guage-fixing. 

The first-order Lagrangian density of the theory is: 

   
   
   
   

1 2

6

1 2 3

i

IO
c

i
i

s s

u v

C P X

P X A

p s p s

p u p v p

 
 

 
 

 

 

     

    

    

    

  
 
 

 
3

6

s

T
w i

P X

A

p s

w

 


 








 



  

     (57a) 

 

  

6 2

2

IO TC s A

T
u X v X






 
 

  

   



  i
iw X

    

0A  

1 1 0     

  0TC  

3 3 0c

   (57b) 

To study the Hamiltonian and path integral formula-
tions of the theory under gauge-fixing, we could e.g., 
choose the gauge: 

                    (58) 

corresponding to this gauge choice, the total set of con-
straints of the theory under which the quantization of the 
theory could be studied becomes:  

                         (59a) 

2 2                    (59b) 

    

0A    

                         (59c) 

4                           (59d) 

  0
T

P X
   


      

5 4 2              (59e) 

  0
T

P X
   


       

6 5 2
             (59f) 

  0, 2,3, , 25iP X i
     

    PB
,    

R

2i i i

T   
 

  , :R    

   (59g) 

We now calculate the matrix  

 

of the Poisson brackets of these above 30 constraints. 
The nonvanishing elements of the matrix 

  56 65 , 2,3, , 25iiR R R T i       

   14 41 23 32TR TR R R T

 are 
obtained as: 

   (60a) 

           

R

 (60b) 

The matrix   is seen to be nonsingular implying 
that the corresponding set of these 30 constraints is sec-
ond-class. The determinant of the matrix R

 

 is given 
by 

     

1 2

132

det R

T T



      

 
 
      

     (61) 

  

R
Nonvanishing elements of the inverse of this matrix 

  1R (i.e. the elements of the matrix 




     
) are:  

 1 1 1

56 65

1
,

2
2,3, , 25

ii
R R R

T
i

 


      

 


    (62a) 

     
   

1 1 1

14 41 23

1

32

R R T R

T R   

  



   

   
           (62b) 

with 

     1
30 30, , dR R      
       1

0A 

   (63) 

Finally, following the Dirac quantization procedure in 
the Hamiltonian formulation, the nonvanishing ELCWST 
commutation relations of this theory under the gauge 
   (with the arguments being supproted again) 

are obtained as: 

   , , , 2i
iX P X P X P i                    

 

 (64a) 

 , , 2i iX X X X i T                     (64b) 

     , , 4i iP P P P iT    
              (64c) 

   , ,A T A C i                          (64d) 

In the path integral formulation, the transition to the 
quantum theory, is, however, made by writing the vac-
uum to vacuum transition amplitude called the generating 
functional  2Z iJ

i

 of the theory in the presence of ex-
ternal sources J  as follows: 

 

   

     

2

2: d exp d d

2

i

i
i

i
i

Z J

i J TC s A

T
u X v X w X

  



  


 
  

      
              

   (65) 

where the phase space variables of the theory are 
 , , , , , , , , , , ,i iC X X X A A v v v v v v     1 2 3 4 5 6  with the 

corresponding respective canonical conjugate momenta: 
 1

, , , , , , , , ,i vP P P p p p p p p   
2 3 4 5 6i C v v v v v . The fun- 

ctional measure  d  of the generating functional 
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 Z2 iJ

  

  

 is obtained as: 

    
 
     

 

1 2 3

2

1 2 3 4 5

d

d d d d

d d d d d d

d d d d

d d d d

0
2

 
2

i

i

v v v v

T T

C X X X

v v v v

P P P

p p p p

T
P X

T
P

     







 

  

 





   

           


           
            

       

  

4 5 6

13

6

d d

d

d

d d

c

v v

A A

v v

p p

 
 



 

      


  
      




  
   

0

0
2

0 0

i
i i

c

X

T
P X

TC

A



 

 





 



       
            
        

        

0 0 

i
2,3, , 25 

h

   (66) 

where  denotes the product of similar expressions 
for all . The LF Hamiltonian and path in-
tegral quantization of the above theory is now complete. 

i

5. Summary and Discussion 

The Polyakov D1 brane action in a d-dimensional 
courved background   defined by (Equation (1)) is 
GI and it possesses the well-known three local gauge 
symmetries given by the 2D WSRI and the WI defined 
by Equation (2). 

However, when we study this action under the con-
formal gauge-fixing defined by Equation (3) to obtain the 
CGFPD1BA defined by the action NS , we find that the 
CGFPD1BA given by NS  is no longer GI and it de-
scribes a gauge anomalous (and GNI) theory and it also 
does not possess the usual local gauge symmetries de-
fined by Equation (2) being a gauge-fixed theory. 
Hovever, this GNI theory when considered in the pres-
ence of a contant antisymmetric 2-form gauge field B  
is seen to become a GI theory possessing the three local 
gauge symmetries defined by the 2D WSRI and the WI 
defined by Equation (24). 

The 2-form gauge field B  in this case is seen to 
behave like a WZ field and the term involving this field 
is seen to behave like a WZ term for the CGFPD1BA 
which, in the absence of this term, is seen to possess a set 
of second-class constraints and consequently describe a 
GNI theory which does not respect the local gauge sym-
metries defined by the WSRI and WI given by Equation 
(2). 

In our earlier work (cf. Section 3) [13], we have stud- 
ied the IF and LF Hamiltonian and path integral formula- 

tions of this GI theory describing the CGFPD1BA in the 
presence of the constant antisymmetric 2-form gauge 
field have been studied under appropriate gauge choices 
in the abesence of BC’s. The BC’s could however be 
taken into account either by imposing them directly in 
the usual way for the open and closed strings separately 
in an appropriate manner or by considering them as the 
Dirac primary constraints [13-20,34] and study them 
accordingly. 

In the present work [20], we have studied the IF and 
LF Hamiltonian and path integral formulations of the 
CGFPD1BA in the presence of a constant scalar axion 
field  and an  1U  gauge field C A  (cf. Section 4). 
We find that the scalar axion field  and the C 1U  
gauge field A  are seen to behave like the WZ field and 
the term involving these fields is seen to behave like a 
WZ term for the CGFPD1BA, which in the absence of 
this term is seen to posess a set of second-class con-
straints and consequently describe a GNI theory which 
does not respect the local gauge symmetries defined by 
the WSRI and WI. 

The situation in the present case, as pointed out in the 
foregoing, is analogous to the theory where one con-
siderers the CGFPD1BA in the presence of the constant 
2-form gauge field B , where B  which is a scalar 
in the target space and an antisymmetric tensor in the WS 
space, behaves like a WZ field and the term involving 
this field behaves like a WZ term for the CGFPD1BA 
[13]. The later theory has been studied by the present 
authors in Ref. [13] to which we refer the reader for fur-
ther details [3]. 

The IF and FF Hamiltonian and path integral formula-
tions of the GI theory describing the CGFPD1BA in the 
presence of the constant scalar axion field  and the C
 1U  gauge field A  have been studied in this work 

under appropriate gauge choices in the abesence of BC’s 
[34]. The BC’s, however, could be taken into account in 
the usual manner either by imposing them directly in the 
usual way for the open and closed strings separately [1-8] 
or by considering them as the Dirac primary constraints, 
and study them accordingly [13-20,34]. 

In conclusion, the Polyakov D1 brane action in a 
d-dimensional courved background h  defined by  
is GI and it possesses the well-known three local string 
gauge symmetries. However, under conformal gauge- 
fixing, the CGFPD1BA is no longer GI as expected and 
it also does not possess the local string gauge symmetries 
being a gauge-fixed theory. Hovever, this GNI theory 
when considered in the presence of a contant background 
scalar axiom field  and an U  gauge field 

S

C  1 A  it 
is seen to become a GI theory possessing the three local 
string gauge symmetries. 

The scalar axion field  and the U  gauge field C  1
A  are seen to behave like the WZ fields and the term 
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 A

B

 involving these fields is seen to behave like a WZ 
term for the CGFPD1BA, which in the absence of this 
term is seen to posess a set of second-class constraints 
and consequently describes a GNI theory which does not 
respect the local string gauge symmetries. The situation 
in the present case is analogous to a theory where one 
considerers the CGFPD1BA in the presence of a constant 
2-form gauge field   which behaves like a WZ field 
and the term involving this field behaves like a WZ term 
for the CGFPD1BA. 
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