
Journal of Modern Physics, 2013, 4, 486-494 
http://dx.doi.org/10.4236/jmp.2013.44069 Published Online April 2013 (http://www.scirp.org/journal/jmp) 

Scaling Symmetry and Integrable  
Spherical Hydrostatics 

Sidney Bludman1, Dallas C. Kennedy2 
1Departamento de Astronomía, Universidad de Chile, Santiago, Chile 

2Natick, USA 
Email: sbludman@das.uchile.cl, dalet@stanfordalumni.org 

 
Received October 17, 2012; revised December 10, 2012; accepted December 25, 2012 

 
Copyright © 2013 Sidney Bludman, Dallas C. Kennedy. This is an open access article distributed under the Creative Commons At-
tribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited. 

ABSTRACT 

Any symmetry reduces a second-order differential equation to a first integral: variational symmetries of the action (ex-
emplified by central field dynamics) lead to conservation laws, but symmetries of only the equations of motion (exem-
plified by scale-invariant hydrostatics) yield first-order non-conservation laws between invariants. We obtain these non- 
conservation laws by extending Noether’s Theorem to non-variational symmetries and present an innovative variational 
formulation of spherical adiabatic hydrostatics. For the scale-invariant case, this novel synthesis of group theory, hydro-
statics, and astrophysics allows us to recover all the known properties of polytropes and define a core radius, inside 
which polytropes of index n share a common core mass density structure, and outside of which their envelopes differ. 
The Emden solutions (regular solutions of the Lane-Emden equation) are obtained, along with useful approximations. 
An appendix discusses the n = 3 polytrope in order to emphasize how the same mechanical structure allows different 
thermal structures in relativistic degenerate white dwarfs and zero age main sequence stars. 
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1. Symmetries of Differential Equations and 
Reduction of Order 

Noether’s Theorem relates every variational symmetry, a 
symmetry of an action or similar integral, to a conserva- 
tion law, a first integral of the equations of motion [1]. 
By an extension of Noether’s Theorem, non-variational 
symmetries—symmetries of the equations of motion which 
are not in general variational symmetries—also lead to 
first integrals, which are not conservation laws of the 
usual divergence form, as discussed in a previous article 
[2]. There it was shown that a Lagrangian  , ,t q q

 , , dS t q q
i i  

and action i i , with degrees of freedom 

i , can be transformed under an infinitesimal point tran- 
sformation :  
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in terms of the total derivative of the Noether charge, 
:G t i ip       and the variational deriva- 

tive  : d di i iq q t        

   

. For transformations 

that leave initial and final states unchanged, the variation 
in action is   

d
d ,

d

f

if i ii
S G f G i t q t

t t
               


 

  

(2) 

 if the term in d dt t

,q t

 is integrated by parts. If the 
system evolution obeys an action principle, that this va- 
riation vanish for independent variations i 

0

 that 
vanish at initial and final times, the system obeys the 
Euler-Lagrange equations i  and d dt t   

0i 

, 
the rate of change of the Hamiltonian in non-conserva- 
tive systems. On-shell, where ,  

   d
f

if i
S t G f G i              (3) 

 d
: d d

d

G
t t

t
        .          (4) 

This is Noether’s equation, giving the evolution of a 
symmetry generator or Noether charge, in terms of the 
Lagrangian transformation that it generates. It expresses 
the Euler-Lagrange equations of motion as the diver-
gence of the Noether charge. This divergence vanishes 
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for a variational symmetry, but not for any other symme- 
try transformation. 

Noether’s Equation (4) could have been derived direct- 
ly from the definition of the Noether charge. But using 
the action principle makes manifest the connection be- 
tween Noether’s equation and the Euler-Lagrange equa- 
tions. We use the action principle and this connection to 
reformulate the theory of hydrostatic barotropic spheres, 
which is integrable if they are scale symmetric, even 
where this scale symmetry is not a symmetry of the ac- 
tion (Section 2). The first integrals implied by any sym- 
metry of the equations of motion, while generally not va- 
nishing-divergence conservation laws, are still useful dy- 
namical or structural first-order relationships. 

Because it neglects all other structural features, scaling 
symmetry is the most general simplification that one can 
make for any dynamical system. For the radial scaling 
transformations we consider, r r 

2 ;
, the Lagrangian 

scales as some scalar density     
S

 and the ac-
tion scales as . The Noether charge gen-
erating the scale transformation evolves according to a 
non-conservation law 

1 2S   

 1 2   

 

d dG t , a first-order 
equation encapsulating all of the consequences of scaling 
symmetry [2]. From this first-order equation follow di-
rectly all the properties of index-n polytropes, as estab-
lished in classical works [3,4], modern textbooks [5,6], 
and the recent, excellent treatments of Horedt and Liu 
[7,8]. 

Our secondary purpose is to present an original varia-
tional formulation of spherical hydrostatics and to extend 
Noether’s Theorem to non-variational scaling symmetry, 
which yields a scaling non-conservation law (Section 2). 
For spherical hydrostasis, we define a core radius, inside 
which all stars exhibit a common mass density structure. 
Outside this core, polytropes of different index n show 
different density structures as the outer boundary is felt 
(Section 3). Section 4 completes the integration of the 
Lane-Emden equation by quadratures and obtains useful 
approximations to the Emden function n  . 

An appendix reviews the thermodynamic properties of 
the physically important polytropes of index n = 3 [2,5,6]. 
What is original here is the explanation of the the differ-
ences between relativistic degenerate white dwarf stars 
and ideal gas stars on the zero-age main sequence (ZAMS), 
following from their different entropy structures. Our 
original approximations to  3   should prove useful 
in such stars. 

2. Scaling Symmetry and Integrability of 
Hydrostatic Spheres 

2.1. Variational Principle for Hydrostatic 
Spheres 

A non-rotating gaseous sphere in hydrostatic equilibrium 

obeys the equations of hydrostatic equilibrium and mass 
continuity  

2

2

d d ,

d d 4π ,

P r Gm r

m r r





 


              (5) 

where the pressure, mass density, and included mass 
 P r ,  r ,  m r

 

 depend on radius r. For dependent 
variables, we use the gravitational potential  

2 d
r

V r Gm r r 
 

 and the thermodynamic potential 
(specific enthalpy, ejection energy) 

 
0

d
P r

H r P   , 
so that (5) and its integrated form become  

   

d d d d ,

,

H r V r

GM
V r H r

R

 

  
            (6) 

expressing the conservation of the specific energy as the 
sum of gravitational and internal energies, in a star of 
mass M and radius R. The two first-order Equations (5) 
are equivalent to a second-order equation of hydrostatic 
equilibrium, Poisson’s Law in terms of the enthalpy 

 H r :  

 2
2

1 d d
4π 0,

d d

H
r G H

r rr
          (7)   

 

We assume a chemically homogeneous spherical 
structure, and thermal equilibrium in each mass shell, so 
that     r , P r , H r  are even functions of the ra- 
dius r. At the origin, spherical symmetry requires 
d d 0P r  and mass continuity requires, to order ,   2r

   
   

2

3 3
3 52 2 5

1 ,  

4π 3 4π
1 .

3 5 3

c

c

r Ar

r r
m r Ar r

 

 

 

      
 

  (8) 

The average mass density inside radius r is  

       3 53 2 5: 4π 3 cr m r r r   

0W

. 

In a previous paper [2], we showed that hydrostatic 
equilibrium (7) follows from the variational principle 
   minimizing the Gibbs free energy, the integral 
of the Lagrangian   :

 
0

: d , , ,
R

W r r H H   

 

            (9) 

 2 2, , 4π 8π d ,

: d d ,

r H H r H G P r

' r

     




dr

  (10) 

W is the sum of the gravitational and internal specific 
energies per radial shell . The canonical momentum 
and Hamiltonian,   

   

2

2 2 2

: ,

, , 2 4π ,

m H r H G

r H m Gm r r P H

     
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


     (11) 

are the included mass and energy per mass shell. The 

Copyright © 2013 SciRes.                                                                                 JMP 



S. BLUDMAN, D. C. KENNEDY 488 

canonical equations are  
2

2

,

4π .

Gm rm H

H m r 

  

  

  

   




          (12) 

Spherical geometry makes the system nonautonomous, 
so that 2r r r         vanishes only as- 
ymptotically, as the mass shells approach planarity. 

The equations of hydrostatic equilibrium (5) can be 
rewritten  

     
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in terms of the logarithmic derivatives  

 
   
     

: d log d log ,

: d log d

: d

u r m r

v r P

w r n r v r





 

 

log ,

log d log ,

r

r

 n r

     (14) 

and an index   
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: d log

1
1 : d lo
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d log ,

g d log ,

P

P

 
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

 
         (15) 

which depends on the local thermal structure. The mass 
density invariant w makes explicit the universal mass 
density structure of all stellar cores, which is not appar-
ent in the conventional pressure invariant v. 

2.2. Scaling Symmetry and Reduction to 
First-Order Equation between Scale 
Invariants 

Following the our results [2], a hydrostatic structure is 
completely integrable, if the structural Equations (5) are 
invariant under the infinitesimal scaling transformation  

 
 
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1 ,

where  : 2 1

n
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r r n

H H
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generated by the Noether charge, for constant n,  
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The Lagrangian (10) then transforms as a scalar den- 
sity of weight n 

  121 2 ,nS S 

n

   

122 ,n           (18) 

so that only for the  polytrope 5  1 2 

 

n  is the 
action invariant and scaling a symmetry of the action. 

Both structural Equations (13) are autonomous, if and 
only if n is constant, so that,   1 1 n

K r P r , with 

the same constant K (related to the entropy) at each ra-
dius. When this is so1, 

 
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d d log 3 ,

d d log 1
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In this section, we consider only the first equality in 
(20)   

 
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between scale invariants, which encapsulates all the ef- 
fects of scale invariance. We consider only simple poly- 
tropes with finite central density  , so that the regular- 
ity condition (8) requires that all  be tangent to   nw u

 5
3

3
u  at the origin. Such Emden polytropes are the 

regular solutions  nw u

 

 of the first-order Equation (19), 

for which  5
3

3nw u u  3 for u . 

In terms of the dimensional constant, dimensional ra- 
dius, and the central enthalpy and pressure   

 
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the second-order equation of hydrostatic equilibrium (7), 
takes the dimensionless form of the Lane-Emden equa- 
tion  

2 2dd
0.

d d
nn
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  
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 

  
 

 

           (23) 

In terms of the dimensionless enthalpy n cH H   , 
the dimensional included mass, mass density, average 
included mass density, and specific gravitational force 
are  

   
   

     
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r
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 
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    (24) 


where prime designates the derivative ' : d d . The 

1These characteristic equations are equivalent to a predator/prey equa-
tion in population dynamics [12,13]. With time t replacing-log r, they 
are Lotka-Volterra equations, modified by additional spontaneous 
growth terms −u2, 2

nw n  on the right side. The uw cross-terms lead to 

growth of the predator w at the expense of the prey u, so that a popula-
tion that is exclusively prey initially (u = 3, w = 0) is ultimately de-
voured u  0. For the weakest predator/prey interaction (n = 5), the 
predator takes an infinite time to reach the finite value w5  5. For 
stronger predator/prey interaction (n < 5), the predator grows infinitely 

 in finite time. nw 
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scale invariants are   

   1 1
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The Noether charge   
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evolves radially according to  

 
2 2 1
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2d 5
1 2 .(27) 

This non-conservation law expresses the radial evolu- 
tion of energy density per mass shell, from entirely inter- 
nal  1 1n

n n    at the center, to entirely gravitational 

 2 2n

 w u

 at the stellar surface. 

Figure 1 shows the first integrals n  for n = 0, 1, 
2, 3, 4, 5. For n = 5, scaling is a variational symmetry so 
that (26) reduces to a conservation law for the Noether 
charge   
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5 5
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For the Emden solution, 5  is finite at the stellar 
boundary , the constant vanishes, and  0

   5 5

5
5 3

3
v u  

5n  v

w u  everywhere. 

For , n  diverges at the stellar radius 1 , but 

0n n 
0u

, a finite constant characterizing each Emden 
function. At the boundary  , our density invariant 

 diverges as  unw
11

0

nn
nn   u , and   
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3n

2

1
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0 1
n

n n    

0 n

.             (29) 

Table 1 lists these constants  , along with the 
global mass density ratios  c n  and the ensuing 
dimensional radius-mass relation  

R 

   1 1 31 4π
nn n nM 0 nn K G R     

 

  . Together with 
the well-known [3,5,6] third, fourth and fifth columns, all 
of this table follows directly from the regular solutions of 
the first-order Equation (21). In addition, the sixth and 
seventh columns express mass concentration in an origin- 
nal way. 

3. Increasing Polytropic Index and Mass 
Concentration 

Emden functions are the normalized regular solutions of 
the Lane-Emden Equation (23) for which the mass den- 
sity is finite at the origin, so that  0 1, 0 0   n n . 
Each Emden function of index n is characterized by its 
first zero   0 1n n  , at dimensionless boundary radius 

1n . As an alternative measure of core concentration, we 
define the core radius core   : 2coreu  implicitly by  , 
where gravitational and pressure gradient forces are 
maximal. This core radius, where  and the mass 
density has fallen to 

2nw 
coren nc 0.4  

1n 
 for all polytropes 

, is marked by red dots in Figures 1-3. The sixth 
and seventh columns in Table 1 list dimensionless values 
for the fractional core radius cornr Re core 1n   and 
fractional included mass corenm . Within the core 

, the internal energy dominates over the gravita-
tional energy, so that for ,  

M
2u 

1n 

     

 

5

2
core

5
3 ,

3

1 6, for 2, ,

n

n n

w u w u u
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  

   
     (30) 

consistent with the universal density structure (8) all stars 
enjoy near their center. 

For n = 0, the mass is uniformly distributed, and the 
entire star is core.  

As 0 < n < 5 increases, the radial distribution concen- 
trates, and the envelope outside the core grows. With  

 
Table 1. Scaling exponents, core parameters, surface parameters, and mass-radius relations for polytropes of increasing mass 
concentration. Columns 3 - 5 are well-known [3,5,6]. Columns 6 - 7 present a new measure of core concentration. 

Radius-Mass Relation    n  
n  1n  cn nR R  0 n  core core 1n nr R   corenm M 3 1

0

n n

nR M    

0 −2 2.449 1 0.333 1 1 R M ; mass uniformly distributed1 3

  3.142 3.290 ... 0.66 0.60 1 R  independent of M 

1.5 4 3.654 5.991 132.4 0.55 0.51 1 3R M 

  R  

 

2 2 4.353 11.403 10.50 0.41 0.41  

3 1 6.897 54.183 2.018 0.24 0.31 M independent of R 

4 2/3 14.972 622.408 0.729 0.13 0.24  

4.5 4/7 31.836 6189.47 0.394 0.08 0.22  

5 1/2   0 0 0.19  for any M; mass infinitely 
concentrated 
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d log mu d log r 3    

 Figure 1. Dilution of polytrope mass density as the boundary is approached 0u  . All solutions are tangent to the same 

density structure     5nw z w  5 3 3 u  at the center  3u  , but differ for u < 2 outside the core. Approaching the 

outer boundary  0nu  , the density  n r  falls rapidly, but  1n
n:n

nuv   approaches a constant 1
0

n
n
  so that  

  
11

0

nn
n n nw n u   diverges, for n < 5. 

 

 

Figure 2. Normalized mass density profiles as a function of fractional included mass m M


, for polytropes of mass concen- 

tration increasing with n. The red dots mark the core radii, at which the densities stay near  crcore 0.4 

 0n   n

, for all n ≥ 1. 

For uniformly distributed mass , the polytrope is all core. As the mass concentration increases , the core 

shrinks to about 20% of the mass. 
 
increasing core concentration:  

For 1 < n < 3, the radius R decreases with mass M. 
Nonrelativistic degenerate stars have 3 2n 

5n   
.  

For n = 3, the radius R is independent of mass M. This 

astrophysically important case is discussed in Section 4 
and the Appendix.  

For n > 3, the radius R increases with mass M. As 
, the stellar radius increases  1 3 1 5n n n    ,  
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Figure 3. Normalized mass density profiles as function of fractional radius r/R. The density is uniform for n = 0, but is maxi- 
mally concentrated at finite radius for the n = 5 polytrope, which is unbounded  R   . The density at the core radius stays 

about  core cr 0.4  1n  , for any . 

 

the core radius shrinks core   10 3n , the fractional  

core radius  0.045 5r R n   core core 1n ,  

core 0.19nm M  , and 0 13 0n n  

R  

.  

For n = 5, the mass is infinitely concentrated toward 
the center, and the stellar radius  for any mass 
M . Scaling becomes a variational symmetry, so that the 
Noether charge 5  in (40) is constant with radius. For 
the regular solution this constant vanishes:   

G

   

core 5

1 23
5 5

10 3

3 1

nG

uv v u

2 6
5 5

5 5

1

2 6 2

0,

    
  

 

   

   
   



   (31) 

so that 3
5 51 3, 3v u     5 . Integrating then yields  

    1 221 3 ,


 

1

5 

 5 0

          (32) 

after normalizing to .  
For n > 5, the central density diverges, so that the total 

mass M is infinite.  

4. Regular Emden Solutions and Their 
Approximations 

In place of u, we now introduce an equivalent homology 
invariant : 3 d log d logz u rn    , where  

  3: 3 4πn m r r   is the average mass density inside 
radius r. In term of z, wn, the characteristic differential 
Equations (20) are  

  
d logd d log

g .
3

wz m
r

z




 

d lo
3 2

n

n nz w z z w n
 

   
 (33) 

Incorporating the boundary condition, the first of 
Equations (40) takes the form of a Volterra integral equa- 

tion [9]  

 
  

     
   

0

Pic

2
d

3

5 1 1 3 : ,

: 9 10 7 .

n

z n
n n

n

J

n n

n

z w n
w z z w

z w z

J z w z

J n n

 


 

     
  



    (34) 

The Picard approximation is defined by inserting the 
core values    5 3nw z z

0, 5n
 inside the preceding inte- 

gral. For  , this Picard approximation is every- 
where exact. For intermediate polytropic indices 0 < n < 
5, the Picard approximation breaks down approaching  

the boundary, where wn diverges as 
11

0

nn
n nw n u    

3n

, 

 . and is poorest for 
 After obtaining : d log d log r 

 

n nw z , either nu- 
merically or by Picard approximation, another integration 
gives [9]  

 
   

 

0

5 2

d
exp

3

1 3

z n
n cn

n

z w z
z

w z z z

z

 
    

     

 



 

    (35) 

 
   

 

1

0

5 2

Pic

d
exp

3

1 3 :

n

n n cn

z n

n

n

n

z

z w z

n w z z z

z

  



   
    

     

  



 

       (36) 

 

3 2

3

3 2

1 3
exp d

3 2

3

z

n

z
m z M z

zw z z

z

                   

   
 


 (37) 
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 

   

 

1

1 2

3

1 2

exp d
3

3
.

3

n

z

n

r z R

z
z

z w

z

z

 

      
 





1 1

3 2zz z

  
       

 R M 3n

   (38) 

All the scale dependance now appears in the integra- 
tion constants M and , which except for   
depends on M. Inserting the core values    5 3w z zn  
inside the integral, the Picard approximations   

     2
Pic 1 6 ,

nN

n nN N  


  : 5 3 5n n 

0, 5n

   (39) 

to the Emden functions are obtained and tabulated in the 
last column of Table 2. For polytropic indices  , 
this Picard form is exact. For intermediate polytropic 
indices , the Picard approximation remains a 
good approximation through order 

0 5n 
6 , but breaks down 

approaching the outer boundary. Unfortunately, the 
Picard approximation is poorest near , the astro- 
physically most important polytrope. Figure 4 compares 

three approximations to this most important Emden func- 
tion, shown in yellow, whose Taylor series expansion is   

   

3n 

 
 

2 4 6
3

8

10

1 6 40 19 5040

619 1088640

2743 39916800 .

    





   



 

2 4 6

8 10

1 0.1666667 0.025 0.0037698

0.0005686 0.00006872 ,

      (40) 

to this Taylor series expansion   

  

 

  

 

3core2.5 1.7 

    (41) 

shown in red, diverges badly for   

 

.  

  5 42
3Pic

2 4 6

1 2 15

1 6 40 13 3600

  

  


 

    
2 4 61 0.1666667 0.025 0.003611 ,      

3.9

  (42) 

 (43) 

shown in dashed green, converges and remains a good 
approximation over the bulk of the star, with ≤10% error 
out to   , more than twice the core radius and more 
than half-way out to the stellar boundary at 13 6.897 .  

 
 nPic   to emden functions Table 2. Taylor series and picard approximations  .  n

n Emden Function  n   and Taylor Series  : 5 3 5nN n   Picard Approximation  2

Pic : 1 6
nN

n nN  


   

0 21 6  –1 21 6  

1 2 4 6sin 1 6 120 5040          –5/2  5 22 2 4 61 15 1 6 120 10800          

n  2 4 61 6 120 8 5 15120n n n         5 3 5n      2 2 4 61 6 1 6 120 6 5 10800
nN

nN n n n   


      

5   1 221 3


  1/2   1 221 3


  

 

 

 Figure 5. The exact Emden function 3   (solid yellow) and its polynomial (red), Picard (green dashed) and Padé (heavy 

black dashed) approximations. Even in this worst case, the Picard approximation holds out to twice the core radius at 2ξ3core = 
3.3, before breaking down near the boundary. The Padé approximation is indistinguishable from the exact solution, vanishing 
t ξ1 = 6.921, very close to the true boundary at ξ13 = 6.897.  a 
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This approximation suffices in white dwarf and ZAMS 
stars, except for their outer envelopes, which are never 
polytropic and contain little mass. Because it satisfies the 
central boundary condition, but not the outer boundary 
condition, the Picard approximation underestimates 
    and overestimates     outside 3.9 . 
Padé rational approximation [10,11]:  

2 4

3Pad 2 4

2 4

1 108 11 45360

1 17 108 1008

1 0.166667 0.025

0.0005686 0.0000857

 
 

6

8 10

0.00376984

618 ,

  

  

6.921

 


 

   

 

  (44) 

shown in dashed heavy black, is a simpler and much bet- 
ter approximation. By construction, it agrees with the 
series expansion (40) through fourth order. In fact, this 
Padé approximation is almost exact out to its first zero at 

1  13, very close to the true outer boundary    
6.897.  

These simple analytic approximations to  3 

 

 sim- 
plify structural modeling of massive white dwarfs and 
ZAMS stars. 

5. Conclusions 

We have explored how a symmetry of the equations of 
motion, but not of the action, reduces a second-order dif- 
ferential equation to first-order, which can be integrated 
by quadrature. In scale-invariant hydrostatics, the sym- 
metry of the equations yields a first integral, which is a 
first-order equation between scale invariants, and yields 
directly all the familiar properties of polytropes. 

We observe that, like all stars, polytropes of index n 
share a common core density profile and defined a core 
radius outside of which their envelopes differ. The Em- 
den functions n  , solutions of the Lane-Emden 
equation that are regular at the origin, are finally obtain- 
ed, along with useful approximations. 

The Appendix reviews the astrophysically most impor- 
tant n = 3 polytrope, describing relativistic white dwarf 
stars and zero age main sequence stars. While reviewing 
these well-known applications [5,6], we stress how these 
same mechanical structures differ thermodynamically 
and the usefulness of our original (Section IV) approxi- 
mations to these Emden functions. 
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Appendix: Astrophysical Applications of the 
n = 3 Polytrope 

The  polytrope, which is realized in white dwarfs 
of maximum mass and in the Eddington standard model 
for ZAMS stars just starting hydrogen burning, is distin- 
guished by a unique 

3n 

-M R  relation: the mass  
   3 2

 πK G0 3πM 4  is independent of radius R, but 
depends on the constant 4 3:K P 

0W U  

. In these stars, the 
gravitational and internal energies cancel, making the 
total energy . Because these stars are in 
neutral mechanical equilibrium at any radius, they can 
expand or contract homologously. 

1.1. Relativistic Degenerate Stars: K Fixed by 
Fundamental Constants 

The most massive white dwarfs are supported by the 
degeneracy pressure of relativistic electrons, with num- 
ber density e e Hn m  , where Hm  is the atomic 
mass unit and the number of electrons per atom 

2e Z A   , because these white dwarfs are composed 
of pure He or 12 16C O  mixtures. Thus,  

  1 3 4 38 3 πWD H eK hc m 

WD

  depends only on funda- 

mental constants. This universal value of K  leads to 
the limiting Chandrasekhar mass  

 
 

2 2
Ch

2

π 8 15

1.456 2

M M

M

25.824e eM 





 

 


 

[5,6]. 

1.2. Zero-Age Main Sequence Stars: Mass and 
K M  Dependent on Specific Radiation 

Entropy 

In an ideal gas supported by both gas pressure  

gas :P T P     and radiation pressure  
 3: 1T P  4

radP a , the radiation/gas pressure ratio 
is   

3

: .
3

T arad

gas

1P

P

 
 

  



          (45) 

The specific radiation and ideal monatomic gas entro- 
pies are  

   
 

5 2

log ,
T r

r

 
  

  

3

rad gas

4
,

3

aT
S S r

 
 

   
 


   (46) 

so that the gas entropy gradient   

 gasd 5
1

d log 2 ad
ad

S

P  
     

               

 
   (47) 

depends on the difference between the adiabatic gradient 
2 5ad  and the star’s actual thermal gradient   

: d log d logT P 

 

, which depends on the radiation 
transport. 

Bound in a polytrope of order n, the ideal gas thermal 
gradient and gas entropy gradient are  

 
gasd 5

: 1 1 , 1
d log 2 1

S
n

P n
  

.          


  (48) 

For 3 2n 

0.4 150

, the thermal gradient is subadiabatic, the 
star’s entropy increases outwards, so that the star is sta-
ble against convection. 

MZAMS stars, with mass M M 
 S M

1 

  , have 
nearly constant radiation entropy rad , because 
radiation transport leaves the luminosity generated by 
interior nuclear burning everywhere proportional to the 
local transparency (inverse opacity) . Assuming 
constant  S M

3n
rad , we have Eddington’s standard model, 

an    polytrope with    rad 4 1S M     

 

 
and  

     1 344 3 3 1 ,K M P a           (49) 

 Mdepends only on  , which is itself determined by 
Eddington’s quartic equation [3,5,6]  

22

4

3 2

0 3
3 4 3

1
,

3 10 
: 18.3 .

π H

M

M

hc
M M

Gm

 




 
  
 

 
  

 






     (50) 

The luminosity   

 

     
Edd

344
Edd

1

0.003 ,

L L M

L M M M



 

   

  

    (51) 

depends on the Eddington luminosity Edd : 4π pL cGM   
through the photospheric opacity p

1

. This mass-lumi- 
nosity relation is confirmed in ZAMS stars: on the lower- 
mass ZAMS,   , ; on the upper-mass 
ZAMS, 

3L M
  22 1M M 


  L M,  [6]. 

 

Copyright © 2013 SciRes.                                                                                 JMP 


