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ABSTRACT 

The Helium-4 nucleus is more similar to the Hydrogen atom of atomic physics. In the case of hydrogen atom, there are 
many energy levels which were experimentally seen and theoretically explained using non-relativistic quantum me- 
chanics. In this note, we use a central potential to derive the energy levels of Helium-4 nucleus. The ground state and 
the first few energy levels agree pretty well with experiment. The same potential can be used with nuclei like Oxy-
gen-17 and many more nuclei. 
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1. Introduction and Formulation of the 
Problem 

The Deuteron nucleus has no excited states. The ground 
state energy of the Deuteron is experimentally found to 
be −2.225 MeV and the measured radius of this nucleus 
is 2.1 F. This is the distance between the center of mass 
and either of the nucleon in the Deuteron nucleus [1]. 
There are no known solutions of the Schrödinger equa-
tion of this nucleus with Yukawa potential. 

Are there any central potentials with which we can 
solve the Schrödinger equation for many nuclei such that 
their ground state wave functions and excited states can 
be obtained? This question led us to a central potential 
which is closely related to the gravitational potential en- 
ergy. 

There is no reason or experimental support to believe 
that the universal constant of gravitation G is same for all 
values of interacting masses. For interacting masses of 
the order of nucleon masses G may not retain its univer-
sality. This led us to the following expression for the 
gravitational potential energy of two particles whose 
masses are  and , 1m 2m
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where in place of the usual constant of universal constant 
G we have a modulating factor. 

The constant g2 is a dimensionless real number whereas 
M  has dimensions of mass. We believe that the expo- 

nential goes to zero when the interacting masses are large 
and the Universal law of Gravitation is restored. It is the 
parameter M0 that causes the Universal Law of Gravita- 
tion restored. An approximation to Equation (1.1) is giv- 
en by, 
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where “r” is the distance between the interacting parti- 
cles. Simplifying Equation (1.2), we have, 
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The above potential energy is obtained from the gravi- 
tational potential energy. It may be called “the morphed 
gravitational potential energy”. There are two constants 
g2 and M  which we will obtain below. 

2. Deuteron 

The Deuteron is a bound system of a neutron and a pro- 
ton with an orbital angular momentum of zero. The total 
spin of the two nucleons is one. The deuteron nucleus has 
no excited states. The experimentally measured ground 
state energy of the Deuteron nucleus is −2.225 MeV and 
its orbital angular quantum number . There is no 
stable diproton. It is also known that the nuclear potential 
depends on the spin orientation [2] of the nucleons inside 
a nucleus. If the nuclear force is independent of their spin 
orientation then the singlet (total spin = 0) state and the 
triplet state (total spin = 1) will have the same energy. 

0

Copyright © 2013 SciRes.                                                                                 JMP 



C. C. RAJU 460 

     But this is not observed. This means that the singlet ten- 
sor potential is weaker than the triplet potential. We con- 
sider an extreme situation wherein the singlet potential of 
the diproton is quite negligible. In that event the total 
potential energy operating for a diproton nucleus is, 
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where, the first term is the morphed gravitational poten- 
tial energy and the second term is the Coulomb potential  

energy between the two protons. Here 2 1

137
e 

2

 is the  

fine structure constant. If, 0
2

pM m  and 2 2g e , the 
total potential energy in the case of a diproton will be 
zero and there will be no stable diproton nucleus! But 
with these values for g2 and 2

0M  the theoretically com-
puted binding energy for the deuteron nucleus turns out 
to be quite small. Hence we chose the following values 
for these parameters which are quite close to the values 
mentioned above. 
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and, 

2
0 0.931826M   .       (2.3) 

There are a few important points to note about the above 
values of the parameters g2 and 0M .  
 The parameter g2 is the weak interaction constant of 

the electro-weak standard model [3] because it con- 
tains e2 and the Weinberg mixing parameter sin2θW = 
0.2254 as in the Standard model [4]. The other pa- 
rameter is nearly equal to the square of the proton 
mass and this is required to avoid a stable diproton 
nucleus. 

 The interaction parameter contains the square of mass 
in the numerator and also in the denominator; Be- 
cause of this reason the interaction constant of the 
morphed gravitational potential has the same dimen- 
sions as the electroweak constant. Hence it is renor- 
malizable. This is an important point in favor of the 
morphed gravitational potential. 

The Schrödinger equation for the deuteron is given by, 
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where,  is given by Equation (1.3) with pm m  
and . The reduced mass 2 nm m   is given by, 

p n

p n

m m

m m
 



 V r

.              (2.5) 

Since  is a central potential, from the methods 
of quantum mechanics, it just follows that [5,6], 

.         (2.6) 

As in the case of the Hydrogenatom, the quantum 
numbers, n,  and m have their values, 
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The radial function is given by, 
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These results are obtained by a simple transcription of 
the Hydrogenatom calculations. The energy of the deu- 
teron is given by, 
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The normalization constant A in Equation (2.8) is 
given by, 
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Using the above results we can now estimate the 
ground state energy, ground state wave function and the 
radius of the Deuteron nucleus.  
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here a0 is the distance between the two nucleons. The 
radius of the Deuteron is the distance of either of the nu- 
cleon from the center of mass. The center of mass lies 
halfway between the line joining the two nucleons be- 
cause the two nucleons have almost equal mass. We can- 
not avoid the excited states of the deuteron nucleus 
however small these may be. 

3. The Helium-4 Nucleus 

The Helium-4 nucleus is a strongly bound system of two 
neutrons and two protons. It used to be known as an  - 
particle. In fact using this  -particle itself the very ex- 
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istence of a nucleus was inferred. Our morphed potential 
energy can be put to test using the estimated energy lev- 
els for this nucleus. A rough picture of this nucleus is 
like this. Any one nucleon experiences a total morphed 
gravitational potential due to the remaining three nucle- 
ons. This outer nucleon must be a proton because two 
protons of this nucleus cannot be together because of 
their Coulomb repulsion. This rough picture indicates 
that, 
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where the second term is due to the Coulomb repulsion, 
and the first term is the morphed gravitational potential 
energy. We will now apply the methods of quantum me-
chanics in an effort to obtain a theoretical description of 
Helium-4 nucleus or alpha-particle. 

The Schrödinger equation with the above potential is 
given by 
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where the reduced mass is now given by, 
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The central potential V r  enables us to find a closed 
solution for this nucleus. As in the case of the H-atom the 
radial function is given by, 
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In Equations (3.4) and (3.5), n is the principal quantum 
number as in Equation (2.7). The energy Eigen values for 
the Helium nucleus are given by,  
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The normalization constant A in Equation (3.4) is giv- 
en by, 
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For the Helium nucleus the ground state orbital angu- 
lar momentum quantum number is zero. Hence the 
ground state wave function of the Helium-4 nucleus is 
given by, 
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The ground state energy of Helium-4 nucleus is given 
by, 
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This value should be compared with the binding en- 
ergy of this nucleus which is about 28.3 MeV; we ob- 
tained this value through ordinary quantum mechanics 
and by using masses and the charge as shown above. In 
general the principal energy levels of the tightly bound 
Helium-4 nucleus are given by, 
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The possible energies for this nucleus are listed below: 
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These energy levels are obtained ignoring the tensor 
forces. These energy levels can be put to test to find out 
the viability of the morphed gravitational potential. Our 
efforts to find the principal energy levels were not very 
successful. In reference [7], only we could obtain the 
measured energy spectrum and this contains only two 
energy levels. The energy diagram is arranged by setting 
the ground state energy zero, this amount to adding 
+28.5176 MeV to all the energies above. Our results 
agree pretty well with the two principal levels given in 
Ref [7]. The general wave function for the Helium-4 nu- 
cleus for any orbital angular momentum is given by, 

     , , ,n mr R r Y       .        (3.13) 

The wave function given here for the ground state of 
the Helium-4 nucleus can be used in alpha-decay or in 
reactions involving the alpha particle. 

4. Conclusion 

In this note we assumed that the universal constant G is 
not universal for all values of the interacting masses. 
Motivated by this idea we changed G and used an ap- 
proximated constant for interacting nucleons. When this 
potential is applied along with the methods of ordinary 
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quantum mechanics the estimated results are all in agree- 
ment with experiment. This very procedure can be appli- 
ed to such nuclei Oxygen-17, F-17 and many more nuclei. 
The constant 0M  is not universal. It is an adjustable 
parameter. The functional dependence of this parameter 
on the product of the interacting masses is unclear as of 
now. But the idea cannot be dismissed just like that. But 
certainly for larger masses the exponential in Equation 
(1.1) goes to zero. 
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