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ABSTRACT 

The N-representability conditions on the reduced second-order reduced density matrix (2-RDM), impose restrictions not 
only in the context of reduced density matrix theory (RDMT), but also on functionals advanced in one-matrix theory 
such as natural orbital functional theory (NOFT), and on functionals depending on the one-electron density such as 
those of density functional theory (DFT). We review some aspects of the applications of these N-representability condi- 
tions in these theories and present some conclusions. 
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1. Introduction 

Due to the fact that the Hamiltonian for a many-electron 
system contains at most two-particle interactions, the 
energy can be written solely as a functional of the re- 
duced second-order density matrix, 2-RDM. However, 
minimization of the energy expression without imposing 
conditions on this 2-RDM leads to values of the energy 
below the exact ground-state value. This was denoted by 
Coleman as the 2-matrix N-representability problem. It 
emerges because constraints on the 2-matrix are neces- 
sary in order to guarantee that it comes from an N-ma- 
trix, or equivalently, from an N-particle wave function. 

There has been a long history of how Density Matrix 
Functional Theory, DMFT, has slowly evolved in the last 
almost five decades and how little by little, N-represent- 
ability conditions for density matrices, in particular for 
the 2-RDM have been discovered. This efforts, of course, 
have been followed by the development of practical com- 
putational schemes leading to algorithms whose levels of 
efficiency are nowadays competitive with those of the 
usual quantum chemistry programs. In fact, the present 
situation of DMFT looks highly promising not only in 
view of this computational progress but mainly because 
of the recent discovery of complete N-representability  

conditions for the 2-RDM (for some recent reviews, see 
[1,2]). 

An important issue having to do with RDMT (ex- 
pressed in terms of the 2-RDM) is that the N-represent- 
abily conditions on the energy functional are the same as 
those on the 2-RDM. This comes about because the ener- 
gy is the trace of a known two-particle operator and an 
unknown 2-RDM (see Equation (8)). However, when the 
energy is expressed in terms of the reduced first-order 
density matrix, 1-RDM, the energy functional has to be 
reconstructed in terms of the parameters that enter into 
the difinition of 1-RDM, namely, the occupation num-  

bers   1i i
n




 and the natural-spin orbitals   

1i i
r




. 

Although the -representability conditions on ensem- 
ble representable 1-RDM are known, the functional re- 

constructed in terms of 

N

 in  i r and   must obey 

the N-representability conditions of the 2-RDM. In other 
words, it is through this reconstruction of the 2-RDM in 
terms of the 1-RDM that the functionals in NOFT are 
generated. Thus, the reconstructed 2-RDM entering in 
these functionals must satisfy the same N-representabi- 
lity conditions as the unreconstructed 2-RDM. 

When the energy is represented as a functional of the 
one-particle density, again, although the N-represent- 
ability conditions on the one-particle density are known,  *Corresponding author. 
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the energy as a functional of the one-particle density 
must be obtained by a reconstruction of the 2-RDM in 
terms of the one-particle density. Thus, in density func- 
tional theory, DFT, there arises a functional N-represent- 
alility problem, namely, the requirement that the 2-RDM 
reconstructed in terms of the one particle density satisfy 
the same N-representabilty conditions as those imposed 
on the unreconstructed 2-RDM. Of course, these condi- 
tions in turn impose restrictions on the energy expres- 
sed as a functional of just the one-particle density. 

The present article aims at putting in perspective the 
functional N-representability problem as related to the 
RDMT, NOFT and DFT approaches. In Section II, we 
briefly review RDMT with respect to the discovery of N- 
representability conditions for the 2-RDM. In Section III, 
we review advances in NOFT, placing special attention 
to approaches that incorporate as a basic ingredient the 
2-RDM N-representability conditions for the construc- 
tion of the energy functionals. In Section IV, we examine 
how the N-representability conditions on the 2-RDM are 
implicit in the definition of the universal functional ge- 
nerated through constrained variation. We also comment 
on the application of these conditions in the development 
of DFT functionals. Finally we review works in DFT 
where the problem of N-reresentability of the functio- 
nals has been brought into focus. Finally, in Section V, 
we present some conclusions. 

2. N-Representability in RDM Theory 

Let us start by quoting Dirac’s statement of 1929 on the 
meaning of the Schrödinger equation for chemistry: “The 
underlying physical laws necessary for the mathematical 
theory of a large part of physics and the whole of che- 
mistry are thus completely known and the difficulty is 
only that the exact application of these laws leads to equ- 
ations much too complicated to be soluble. It therefore 
becomes desirable that approximate practical methods of 
applying quantum mechanics should be developed” [3]. 
And let us contrast it with a very recent one (2012) of 
Nakata et al.: “The goal [of chemistry] is to enable us to 
predict, understand, and control what happens when we 
mix substances. To do that, we usually do experiments, 
which can be explosive, poisonous, expensive, and unsta- 
ble. This means that it is desirable to do chemistry without 
experiments. Fortunately, the basic equation of chemistry 
is known, and it is called the Schrödinger equation. [...] 
The reduced-density-matrix method is a promising next- 
generation electronic structure calculation method; it is 
equivalent to solving the Schrödinger equation for the 
ground state. The number of variables is the same as a 
four electron system and constant regardless of the num- 
ber of electrons in the system. Many researchers have 
been hoping for a simpler method of doing quantum 
mechanical calculations and this one may be it” [2]. 

Apparently Dirac’s request for the development of appro- 
ximate methods so that the Schrödinger equation be- 
comes a predictive tool in chemistry is in its way to being 
fulfilled. 

In order to succintly state the meaning of the N-re- 
presentability problem in 2-RDM theory, consider the 
Hamiltonian for an N-electron system 

   
1

1 1 1 1

ˆ ˆ ˆ ˆ

1ˆ ˆ

ext ee

N N N N

i ext i
i i i j i i j

H T V V

t v


    

  

  


   r r
r r

    (1) 

  where  2ˆ 1 2t
ii   r  v̂ r

-thi
r , ext i  is the interaction of 

the  electron with the external field of nuclei and 
1 i jr r  represents the electron-electron repulsion. The 
Hamiltonian can also be written in terms of the two-  

 ˆ ,N
i jK r r

N

 
1

1 1

ˆ ˆ ,
N N

N
i j

i j i

H K


  

   r r

 (where its dependence on  particle operator 

the number of electrons, , is emphasized) as: 

          (2) 

where 

 
         

ˆ ,

1 ˆ ˆˆ ˆ
1

1

N
i j

i ext i j ext j

i j

K

t v t v
N

     




r r

r r r r

r r

  (3) 

The energy corresponding to a normalized wave-func- 
tion  1, , N r r

 

 is: 

ˆE H   

  2ˆ NE Tr K D
    

            (4) 

which in view of Equation (2) can be written as 

           (5) 

 2 , ; ,D 1 2 1 2 where r r r r  is the normalized reduced second- 
order density matrix obtained from the wavefunction 
 : 

 

   

2

3 1 2 3 1 2 3

1

2

d d , , , , , , , ,N N N

N N
D




      r r r r r r r r r r

 (6) 

Thus, the ground state energy is obtained by mini- 
mizing this functional 

 0
ˆinf

N

E H


  


          (7) 

where N

 2 2

2
0

ˆinf ,
N

N

D
E Tr K D


   

 is the antisymmetric Hilbert space, or equi- 
valently through 

        (8) 
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2
Nwhere 

2

 is the set of normalized N-representable 
2-matrices. Hence, the N-representability problem in 2- 
RDM theory has to do with how to set up the necessary 
and sufficient intrinsic conditions for defining N

 2 2
ND 

applied mathematical problem arising in the treatment of 

pplication of com- 
pu

1 1 2 1 2 full

 such  

that it is guaranteed that the 2-RDM  satis-  

fies Equation (6). 
The development of 2-RDM theory may be separated 

in the following four stages. A first stage, which is mar- 
ked by the studies of the properties of reduced density 
matrices carried out by Löwdin (1955) [4] and McWeeny 
(1960) [5] (based on the pioneering works of Dirac (1930, 
1931) [6,7] and Husimi (1940) [8]); by the unsuccessful 
attempts to obtain the energy by direct variation of the 
2-RDM undertaken by Mayer in 1955 [9] and Tredgold 
in 1957 [10]); by the recognition and formulation of the 
N-representability problem by Coleman in 1963 [11] (see 
also [12,13]) and by the construction of a formal solution 
to this problem by Garrod and Percus in 1964 [14] (for a 
comprehensive description and bibliography of this stage, 
see [15-17]). 

The second stage is characterized by the reduction of 
the Schrödinger equation to a hierarchy of equations re- 
lating RDM of different orders (Cohen and Frishberg 
(1976) [18], Nakatsuji (1976) [19], Alcoba and Valde- 
moro [20]). This reduction has received the generic name 
of Contracted Schrödinger Equation, CSE. These CSEs 
have been derived both in their Hermitian and anti-Her- 
mitian [21,22] versions. If the RDM which are connect- 
ed through the CSE are N-representable then, according 
to Nakatsuji’s theorem [19], the CSE is equivalent to the 
Schrödinger equation. Harriman, however, pointed out to 
the difficulties of the CSE approach when the RDMs do 
not satisfy N-representability conditions [21]. 

For a number of years the CSE remained as a theore- 
tical finding which had little possibility of being applied 
to solve the quantum many-body problem. However, an 
important development ocurred when Valdemoro et al. 
advanced a way to reconstruct the higher-order RDM in 
terms of lower-order ones [23,24]. This effort, certainly 
stimulated other developments such a those of Nakatsuji 
and collaborators and of Mazziotti [25-28]. These advances, 
once again, restored the high expectations that had been 
previously placed on methods based on RDMs. More- 
over, through these works it became evident that the N- 
representability conditions for the 2-RDM are intimately 
tied to the reconstruction of the 3- and 4-RDM in the 
context of the CSE formalism. As a result, the N-repre- 
sentability problem became a basic ingredient of the cu- 
mulant theory for RDM ensuing from these develop- 
ments [27-31]. For some more recent applications and 
discussions of this approach, see Refs [32,33]. 

The third stage is related to the identification of the 

RDMs as semidefinite programming. This problem had 
certainly attracted the attention of mathematicians and 
engineers (see, for example the early work of Vanden- 
berghe and Boyd [34] plus other more recent ones [35- 
38]). Thus, useful tools already developed in applied ma- 
thematics were identified and adapted to the particular 
application at hand, namely, the direct optimization of 
the 2-RDM [39-47]. These efforts are still being extend- 
ed to other domains of physics [48]. 

This third stage also comprises a
ter codes based on semidefinite programming to the 

actual calculation of the 2-RDM subject to N-represent- 
ability conditions [49-51]. In fact, these mathematical and 
computational developments made it possible to syste- 
matically assesss the effect that the progressive inclusion 
of tighter N -representability conditions had on the ener- 
gy [52-56]. This has lead to the possibility of approach- 
ing the accuracy of traditional and very exact quantum 
chemical calculations such as those based on the Cou- 
pled-Cluster method [57,58]. In fact, Nakata et al. [58] 
have obtained the following inequalities for the energies 
when the N-representability conditions are progressive- 
ly included: 

PQ PQGE E PQGT PQGT T PQGT T CIE E E E      (9) 

In the above expression, the energies are characte
by

rized 
 the imposition of a set of N-representability con- 

ditions. For example, PQE  is the variational energy ob- 
tained when the conditions P and Q are imposed in the 
variation; similarly, 1 2PQGT TE  is the variational energy 
obtained under conditions , , , 1Q G T  and 2T . These 
variational energies give lower becaus he vari- 
ational 2-RDM are non-N-representable. However, the 
very interesting finding of these authors is that they pro- 
gressively approach the upper-bound energy given by 

fullCIE . Summing up, as in the variational upper bound 
ations based on wave functions, where the accuracy 

is improved when the variational space is made larger, in 
the 2-RDM theory, the accuracy is also improved by 
imposition of more N -representability conditions. 

Finally, we are f oming a fourth stage marke

 P
 bounds e t

calcul

ath d by 
im

onstructive solution of N-representability estab- 
lis

portant mathematical developments such as Mazziotti’s 
very recent discovery of complete N-representability con- 
ditions for the 2-RDM and higher order reduced density 
matrices [59,60]. No doubt, faster and more efficient 
computer codes will be developed to implement these 
new ideas. Thus, these recent developments, obviously 
place 2-RDM theory in a very bright perspective. To 
close this section, let us quote Mazziotti on these impli- 
cations: 

“The c
hes 2-RDM theory as a fundamental theory for many 

particle quantum mechanics for particles with pairwise 
interactions. Lower bounds on the ground-state energy 
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can be computed and improved systematically within the 
theory. While not all of the 2-RDM conditions will be 
imposed in practical calculations, a complete knowledge 
of the conditions their form and functions can be invalu- 
able in devising and testing approximate N-represen- 
tability conditions for different types of quantum systems 
and interactions” [60]. 

3. N-Representability in NOFT 

nsity matrix or 

 1 2, , ,

The normalized reduced first-order de
1-RDM  1

1 1;D r r  is defined by: 

 1
2 1 2d d , , ,N N N r r r  (10) 

The kinetic plus the external energy are linear func- 
tio

D N   r r r r r 

nals of the 1-RDM: 

    1
0

ˆTr h D      (11) 

    ˆi i ext iv r r r . In view of Equation 
ng functional 

ˆ ˆ
ext extT E T V      

where  0
ˆ ˆh t
e followi(11), th of the 1-RDM can be 

defined: [61]  
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In this expression, N  is the set containing the en- 
se

s m

ce êeV  is a sum of 2-particle operators, we can re- 
w fun
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1

1 2
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ˆ ,

d ,

D

mble N-representability conditions on 1D , [11], q  is 
the highest eigenvalue of 1D  and I  i the unit a- 
trix. 

Sin
rite the ctional  
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1
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fixe

ND

ND
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e wher
1

ˆ
i j

v 
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Thus, we see that once again, the N-representability 
conditions 1

2 2
ND

D
xed 1

  on the 2-RDMs that reduce to the 
given and f 1i ND 

nal W
 observ - 

sp

 
1

i
i





 also appear here in the defini- 
tion of the functio 1D    through Equation (13). 

It is interesting to e under the present per
ective, i.e., bearing in mind the need to impose N- 

representability conditions, that the initial works [62-65] 
attempting to obtain Euler-Lagrange equations of motion 
for the 1-RDM, when the 1-RDM is expressed in terms 
of the natural orbital expansion, namely, 

   1 ;D n  


 r      (14) 

led to the paradoxical situation in which all partially 

alue of a

ˆ
i i ih

 r r r

occupied natural spin orbitals 0 1in   had to belong 
to the same degenerate eigenv  natural orbital 
one-particle equation: 

                 (15) 

However, in the variational treat
Lu

ment of Nguyen-Dang, 
deña and Tal where built-in N-representability con- 

ditions were included from the outset, this paradoxical 
results did not emerge [66-68]. 

A fairly complete historical account of the formulation 
and development of density matrix theory based on the 
1-RDM can be found in the review article of Piris, 2007 
[69].  

The simplest case in which the energy can be ex- 
pressed as a funtional of the 1-RDM is, of course, the 
Hartree-Fock approximation. The exchange term is just a 
functional of the occupied Hartree-Fock orbitals: 

 HF
x iE

       
1 1

1
d d

2

HF HF HF HFN N
i i j j

i j

x x x x
x x

   

 

 
 

  r r

 

(16) 

where 

 
 

x s r  denotes both the spatial and spin c
. In ter

oor- 
dinates ms of natural orbitals and their occupation 
numbers, a generalization of this expression, for the ex- 
change-correlation functional is given by: 

   ,x i iE n

         
1 1

1
, d d

2

m m
i i j j

i j
i j

x x x x
f n n x x

   

 

 
 

   r r

 

(17) 

where m   
ral app ximations to the function 

  

 ,i jfSeve ro n n  
those o

base

define different types of functionals such as f 
Müller, [70] Goedecker-Umrigar, [71] Csanyi and Arias, 
[72] Buijse and Baerends, [73,74] Gritsenko-Pernal- 
Baerends, [75] Sharma et al., [76] and Lathiotakis et al. 
[77-80]. 

The mathematical characteristics of the Müller func- 
tional, taken as a paradigmatic example, has been ex- 
tensively studied [81]. The accuracy of these approxi- 
mate functionals has been assessed with respect to tra- 
ditional quantum chemistry methods [78]. The lack of 
size consistency in these functionals has been recently 
analized. [80] 

We have selected to discuss separately the approach of 
Piris et al., because although they present functionals 

d on occupation numbers and natural orbitals, their 
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approach is different in that they systematically introduce 
N-representability conditions. Piris’ work is essentially 
based on the reconstruction of the 2-RDM by means of 
an explicit formulation of the cumulant expansion [27- 
30]. The particular reconstruction functional for the two- 
particle cumulant is presented in Ref. [82] and it is based 
on the introduction of some auxiliary matrices ,     
and  , expressed in terms of natural orbitals and their 
occupation numbers. The matrix elements of these - 
trices are required to satisfy some necessary conditions 
for the N-representability of the 2-RDM [69, 83-87]. 

Of course, progressive enforcement of these N-re- 
presentability conditions plus some different ways of

 ma

 ap- 
proximating the off-diagonal elements of the matrix   
have led to the appearance of different versions of these 
functionals, generically denoted as Piris Natural Orbit l 
Functional i, PNOFi. In general, the performance of these 
functionals is comparable to those of best quantum che- 
mistry methods in the sense that chemical accuracy is 
being attained by the PNOFi, [78] in particular by 
PNOF5 [85]. 

In a recent paper, Pernal [88] has shown that PNOF5 
and the natura

a

l orbital functional corresponds to the anti- 
sy

FT 

n of density func- 
asic assertion con- 

mmetrized product of strongly orthogonal geminal 
theory if the expansion of geminals is limited to two- 
dimensional subspaces. This result is remarkable in the 
sense that for the first time it is shown that top-down and 
bottom-up methods for generating density functionals are 
equivalent. The top-down method is represented by the 
reduction of an N-particle functional generated from an 
ansatz wave function such as the antisymmetrized pro- 
duct of strongly orthogonal geminals. In the bottom-up 
method a functional is generated by progressive inclusion 
of N-representability conditions. This example shows 
that perhaps the unity of quantum theory on many-par- 
ticle systems can be attained by careful handling of top- 
down and bottom-up methods. 

4. N-Representability in D

In the Hohenberg-Kohn-Sham versio
tional theory, HKS-DFT, there is a b
cerning the existence of a universal functional  F  , 
depending solely on the density which in the context of 
Levy’s constrained-search formulation of DFT is d d 
as [61]: 

 

efine
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Note that in this  1, ,

ˆ ˆinf ,F T V    

 case, the wavefunction N r r  
is any N-particle wavefunction in N  yielding the fixed 

density  . Now, introducing the two-part

 
icle operator 
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1 1ˆ ˆ ˆ,
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N
i j i jt t

N
    

i j

K


r r r r
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  (19) 

and using the same arguments as those used in d
Equation (8), the above functional can be rewritten as 

 
0

2 2 2fixed ,

N

ND D



 
  

 




      (20) 

The striking similarity between Equations (
where the latter is the definition of the exact functional 

eriving 

[89]: 

   2ˆinf ,NF Tr K D  

8) and (20) 

 F   leads us to the conclusion that this exact func- 
tional is fully characterized only in terms of the N-re- 

tability conditions on the reduced 2-matrix. 
It has been generally assumed that there is no N-re- 

presentablity problem in HKS-DFT as it was be

presen

lieved 
that only N-representable conditions on the one-particle 
densities were necessary. But, as shown by Gilbert [62] 
any N   is N-representable. In fact, much more ef- 
fort has been dedicated to solving the one-particle den- 
sity entability problem. However, the existence 
of functional derivatives of the functionals 

v-repres
 F  , im- 

portant for v-representability, is not related to the N-re- 
presentability of this functional [89]. 

By and large, the great majority of functional develop- 
ments in DFT do not incorporate the N-representability 
conditions on approximate realizations of the functional 
 F  . Some early warnings pointing out that these con- 

ditions should be relevant are given in the works of 
in, McWeeny, Ludeña and Keller [90-92] as well 

as in the local-scaling transformation version of DFT, 
LST-DFT [93-96]. 

However, the current situation is that the N-represent- 
ability of the exac

Löwd

t and approximate  F   has been 
fu

uffici
lly recognized as a true problem in HKS-DFT [89]. In 

fact, formal solutions (necessary and s ent condi- 
tions) to the N-representability problem for  F   have 
been advanced by Ayers and Liu [97] and a more prac- 
tical one through a variational principle for th hange 
hole, by Ayers, Cuevas-Saavedra and Chakraborty [98]. 
However, aside from this formal recognition, there is lit- 
tle that has been done to impose N-representability on the 
construction of commonly used functionals. 

Imposition of N-representability conditions on DFT 
functionals is not merely an academic exer

e exc

cise. Its im- 
portance stems from the fact that, for example, the N- 
electron self-interaction error is directly related to the 
non-N-representability of  F  . Also, the lack of these 
conditions can affect the values of vibrational frequen- 
cies as well as of dipole mo s [99]. 

One of the most successful correlation functionals in 
DFT is the LYP functional developed b

ment

y Lee, Yang and  
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Parr [100]. This functional resulted from a reconstruction 
of the Colle-Salvetti functional, [101] which in turn came 
from an approximate 2-RDM formed by the product of 
the Hartree-Fock 2-RDM times a correlation factor. 
Through this reconstruction, the functional was ex- 
pressed in terms of ,   and 2 . Dependence on 
the Laplacian was later on eliminated by integration by 
parts [102]. Although as suspected that this func- 
tional was not N-representable, the mathematical proof of 
this fact was presented by Morrison in 1993 [103]. Also, 
an analysis of this functional showed that it over- 
correlated at high density but it did not account properly 
for long-range correlation [104]. Other approximations 
based on the Colle-Salvetti ansatz, such as the Ragot- 
Cortona local correlation energy model, also suffer from 
non-N-representability [105]. 

Corrections of long-range correlation by means of the 
introduction of “double-hybr

 it w

id” functionals based on 
se

lished as a solid mathematical fact, 
th

f reviewing from a unified perspec- 
parate approaches embodied in 2- 

ed that there is no N-representability problem
th

lity conditions has been realized in the con- 
te

econstruction of the 2-RDM has not been the usual 
w

s his gratefulness to Senescyt 
pportunity to participate 

ES 
[1] D. A. Mazziot ed Density Matrix 

as the Basic on Quantum Che- 

cond-order Møller-Plesset perturbation theory, MP2, 
although quite adequate for producing reasonable values 
for the energy, also lead to difficulties for other variables, 
such as the dipole moments [99]. Again, the cause of this 
difficulties was traced to non-observance of N-represent- 
ability conditions. 

In summary, although N-representability of the DFT 
functionals is estab

e actual development of functionals that satisfy these 
conditions has not been a general trend (we should men- 
tion, however, the exceptions cited above). This lack of 
compliance to these conditions not only is observed in 
functionals standing at all rungs of Joseph’s ladder but 
also in the more recent double hybrid functionals, etc. 

5. Conclusions 

The main purpose o
tive the somewhat dis
RDM, 1-RDM and DFT is to bring into focus a common 
problem: the N-representability conditions on the energy 
functionals. For a long time it had been assumed that 
there is no N-representability problem in DFT as all that 
is necessary is to enforce N-representability on the one 
particle densities. But, as discussed in Section 4 these 
conditions are trivially met by most trial densities. How- 
ever, the N-representability problem of the energy func- 
tional in DFT has been finally been recognized as such 
and it stands nowadays on firm mathematical bases. In 
fact, the necessary and sufficient conditions guarantee- 
ing the N-representability of DFT functionals are known. 
[97]. 

Also in the case of the 1-RDM theory, it has been 
assum  for 

e energy functional and that just the knowledge of the 
ensemble-N-representability conditions on the 1-RDM is 
sufficient. For this reason, most approximations examined 

in Section 3 have been determined either through heuri- 
stic considerations or by invoking reasonable physical 
arguments. Only in the case of the Piris functionals does 
one find a systematic application of the 2-RDM N-repre- 
sentability conditions in the construction of the 1-RDM 
functional. 

Of course, the full-fledged application of these N- 
representabi

xt of the 2-RDM theory. Obviously, in that case there is 
no need to actually construct a functional for the energy 
because the energy is a linear functional of the 2-RDM. 
In the cases of the 1-RDM theory and DFT, the func- 
tionals have to be constructed by reduction of the 2-RDM 
in terms of natural orbitals and their occupation numbers 
for the 1-RDM theory, and of the density (and other 
forms such as gradient, Laplacian of the density, etc.), in 
DFT. 

A systematic construction of DFT energy functionals 
via a r

ay to develop these functionals. Of course, we should 
mention the early attempt of Colle-Salvetti of setting up a 
correlation functional based on the 2-RDM of the helium 
atom which, later on, was complemented by the recon- 
struction of Lee-Yang-Parr of this 2-RDM in terms of the 
density and its derivatives leading to the LYP correlation 
energy functional. Maybe it is time to devise systematic 
schemes for the reconstruction of 2-RDM in terms of the 
one-particle density (and its derivatives) taking care in 
applying N-representability conditions. Perhaps in this 
way one could incorporate the computational advantages 
of DFT to the strictness of a quantum mechanical ap- 
proach based on the enforcement of the N-represent-abi- 
lity conditions. 
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