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ABSTRACT 

We make a numerical study of decoherence on the teleportation algorithm implemented in a linear chain of three 
nuclear spins system. We study different types of environments, and we determine the associated decoherence time as a 
function of the dissipative parameter. We found that the dissipation parameter to get a well defined quantum gates 

(without significant decoherence) must be within the range of 44 10    for not thermalized case, which was 

determined by using the purity parameter calculated at the end of the algorithm. For the thermalized case the 
decoherence is stablished for very small dissipation parameter, making almost not possible to implement this algorithm 
for not zero temperature. 
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1. Introduction 

It is well known now that in the real world the interaction 
of the system with the environment is almost unavoid- 
able. The study of this type of systems implies a many 
bodies problem which is unsolvable within any picture of 
the quantum mechanics. At this moment, there are two 
approaches to attack this type of problems. The first one 
consists on to look for the phenomenological classical 
dissipative system and to get its associated Hamiltonian, 
then to proceed to do the usual quantization of the system 
[1] as an unitary evolution of the phenomenological sys- 
tem. The other one, which it is more fundamental, uses 
the matrix density approach for the whole system and 
makes the trace over the environment variables [2-8], the 
resulting density matrix is called “reduced density ma- 
trix”, and its associated non-unitary evolution equation is 
called “master equation”. In this sense, this equation is 
also phenomenological one, and it has defined a dissipa- 
tive and diffusion parameters which can (non Markovian 
process) or can not (Markovian process) depend on the 
time evolution of the system. These parameter are re- 
sponsible for the decay behavior of the non diagonal ma-
trix elements of the reduced density matrix. This phe-
nomenon is called “decoherence” because is related also 
with the disappearance of the interference terms of the 
product of the quantum wave function [9]. Decoherence 
is one of the mayor set back to build a full quantum 
computer of many qubits for real serious computation 

calculations (one would required of at least 1000 qubits) 
[10], and one of the most important phenomenon to be 
considered in quantum information [11]. The main 
mechanism to transport information between two quan- 
tum elements is the so called teleportation phenomenon 
[12]. Teleportation is a quantum procedure which is used 
to send a quantum state from the sender (Alice) to some 
receiver (Bob), and has already been used experimentally 
[13]. The study of decoherence is important here to de- 
termine how good this information is transferred (the 
fidelity must remain close to one). In this paper, we study 
the decoherence of the teleportation phenomenon in a 
chain of three nuclear spin one half [14], and for this 
propose, we will use approaches for quantum discrete 
system described in [15], which is based mainly in [7] 
and [16] approaches, and it was used for studying sudden 
death of entanglement of two qubits. 

In the first part of our work, we describe the model 
and the Hamiltonian of our quantum system, and we 
must point out that, although this Hamiltonian will be 
time explicitly dependent, if we consider weak interac- 
tion between our system and the environment (the char- 
acteristic times of the quantum system are much longer 
than those of the environment) as a first approximation, 
the above mentioned Markovian-Lindblad master type 
equation can be still used for our study [11,17,18]. One 
needs to mention that even this linear chain of three nu- 
clear spins model for solid state quantum computer has 
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not been built yet, it has been very useful for theoretical 
studies about implementation of quantum gates and 
quantum algorithms [19-21] which can be extrapolated to 
other solid state quantum computers [22,23]. After doing 
this, we establish the five cases to be considered with the 
quantum-environment system: independent environment 
interaction (A), pure dephasing interaction (B), corre- 
lated dissipation interaction (C), dephasing correlated 
interaction (D), and thermalization case (E). The ana- 
lyticcal dynamical systems of the reduced density matrix 
elements are obtained for these cases, and the results of 
the numerical simulations are presented. Finally, we 
study the behavior of the purity parameter for the tele- 
portation algorithm. 

2. Hamiltonian for the Linear Chain of Spins 

The Hamiltonian that describes the ideal insulated system 
of a linear chain of N paramagnetic atoms with nuclear 
spin one half inside the magnetic field  

   , cos , sinz t b t b t  B    , ,B z 

, ,

   (1) 

where b   and   are the amplitude, the angular 
frequency and the phase of the RF-field, and  B z
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 re- 
presents the amplitude of the z-component of the mag- 
netic field, is given by [19] 
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where kμ  represent the magnetic moment of the kth- 
nucleus, which it is given in terms of the nuclear spin as 

 , ,x y zS S Sk k k k , with μ   being the proton gyro- 
magnetic ratio and j

k  being the jth-component of the 
spin operator, k

S
B  represents the magnetic field, Equa- 

tion (1) valuated at the location of the kth-nuclear spin 

k . The parameters  z z  J  and J   represent the 
coupling constant at first and second neighbor interaction. 
The angle between the linear chain and the z-component 
of the magnetic field is chosen as cos 1 3 

0 ,

 to eli- 
minate the dipole-dipole interaction between the spins. 

This Hamiltonian can be written as  

H H W 
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                (3) 

where H  and W  are defined as  
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and 
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I

I

, with the op- 

erator  written in terms of Pauli matrixes as 

where we have used the relation S

2I σ
 k B z 
b

. 
Here we have that: k  is the Larmor fre- 
quency of the kth-spin,    is the Rabi frequency, 
and  x y

k k kI II   represents the ascend operator    
or the descend operator   . The Hamiltonian 0H  is 
diagonal in the basis    0,11 0N   with k   
(zero for the exited state and zero for the exited state ). In 
this work, we consider that the action of the spin opera- 
tors on its respective qubit is given by  

  1
1 2kz

k k kI
   , ,1 0

kk kI    , 

and ,0 1
kk kI    0. The eigenvalues of H  in this 

basis are given by  
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      (6) 

The elements of this basis forms a register of - 
qubits with a total number of N  registers which is the 
dimensionality of our Hilbert space. The allowed transi-
tion of one state to another one is gotten by choosing the 
angular frequency of the RF-field,  , as the associated 
angular frequency due to the energy difference of these 
two levels, and by choosing the normalized evolution 
time t  with the proper time duration (so called RF- 
field pulse). The set of selected pulses defines the quan-
tum gates and quantum algorithm. The energy difference 
between two eigenstates of 0H  is  

 1 0 ,
k k kE E J J                  (7) 

with , 2, 1,0,1, 2      depending on the state of the 
first and second neighbor of the kth-quit. Any gate is 
realized applying RF-pulses of rectangular shape and 
choosing the radio frequency   in resonance with the 
desired transition, k J J     

 , ,R 
. The unitary evo- 

lution of the system is denoted by k   , where 
   denotes the type of pulse of duration    [21]. 
We shall make our study of the teleportation algorithm 
with this quantum computer with . 3N 

3. Teleportation Algorithm 

Denoting by xAB  our three-qubit register, where 

10 1x x
ox C C   represents the state to be teleported 

by Alice, 0A  , to Bob, 0B  , the initial state 
of our system is given by  

0 1 1000 100 1 5x x x x
o oC C C C         (8) 

where one has used also the decimal notation, 
000 1 , 001 2 ,   , meaning that the initial re- 

duced density matrix has the following expression 
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Then, a resonant π 2 -pulse between the states 1  
and 3 ,  2,0 0,π 2R 2AA , with frequency J   , 
and a resonant π 2 -pulse between the states 5  and 
7 ,  0,0 0,π 2RA , with frequency A  , are applied 

to get the state  

1 0 0

1
1 3

2
x xC C    1 15 7x xC C       (10) 

To put Alice and Bob in an entangled state, a CNOT 
gate between these elements is done, that is, it is applied 
a resonant π-pulse between the states 3  and 4  with 
frequency B J    ,  π0,

xR 1 0, , and a resonant π- 
pulse between the states 5  and 6  with frequency 

2B J J    2,, 1
xR  π0, , getting the state 

2 0 0 1 11 4 7 6 .
2

x x x xC C C C      
1

   (11) 

Now, to get the teleportation of the state x  to Bob, 
we make an Hadamar gate to the state x , that is, we 
use a resonant π 2 -pulse between the states 1  and  

5  with frequency x J J    ,  2, 2 0,π 2xR  , a  

resonant π 2 -pulse between the states 4  and 8  
with frequency x J J     ,  2,2 0,π 2Rx , a 
resonant π 2 -pulse between the states 2  and 6  
with frequency x J J  π   and phase   , 

 2,2 π,π 2x , and a resonant R π 2 -pulse between the 
sates 7  and 3  with frequency x J J    

π
 

and phase   ,  π 22, 2
xR  π, , to get finally the state 

(binary notation) 

1 ˆ ˆ ˆ00 01 10
2 2

f

ˆ ˆ11 ,z zI N N x   

ˆ ˆ,



  
  (12) 

where zI   and N represent the identity operator, 

I i i , z-Pauli matrix,  1
i

i i z , and NOT 

quantum gate, ˆ 1N i i   (i = 0,1), acting on the 
teleported state x  at Bob location, meaning that all 
the final density matrix elements would be (without in- 
teraction with environment) different from zero. For our 
numerical studies, we have selected the following coeffi- 
cients for the state x . 

0 13 4 , and 1 4 .x xC C         (13) 

In summary, one has the following eight pulses to get 
the teleportation algorithm,  

     1, 1 1,1 1,1π,π 2 π,π 2 0,π 2f x x xR R R    

     1, 1 2,1 0, 10,π 2 0,π 0,πx x BR R R     

   0,0 2,0
00,π 2 0,π 2  A AR R               (14) 

4. System-Environment Interaction Models 

Now, to deal with the non ideal situation where the effect 
of the environment is taken into account, we make use of 
the Lindblad type master equation for the evolution of 
the reduced density matrix 

   d
i , ,

d
H

t


         (15)    

   

where the first part on the right side denotes the usual 
von Neuman unitary evolution of the reduced density 
matrix, and the second term represents the Lindblad part 
(non unitary) evolution. This second term has different 
expression for different consideration of the system-en- 
vironment interaction. For the qubits interacting inde- 
pendently with the environment (case (A)), this term has 
the following form [15] 

 
1

1
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i 2
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N
i

j j j j j j
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

  


      (16) 

where j  is the dissipative parameter associated to the 
jth-qubit. 

For the pure dephasing interaction case, where the 
qubits independently dephase to their respective bath 
with a dephasing rate j , the Lindblad term is given by 

   

 
1

1
2 .

i

B

N
z z z z z z

j j j j j j j
j

S S S S S S


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

  


       (17) 

For the independent-qubit-correlated case (qubits in- 
teract with the environment collectively), the Lindblad 
operator is written as 

   

 
, 1

1
2 ,

i 2

C

N
jk

j k k j j k
j k

S S S S S S



       




  


    (18) 

where one has that jj j   is the decay rate of case 
(A). In this case, the decay of the state of a qubit has an 
effect on the other qubits. 

For the qubit-correlated and dephasing case, with ij  
as the decay rate of the correlated dephasing, the Lind- 
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blad operator is given by    and 
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In this case, the decay of one qubit affects too the 
other qubits. 

Finally, we define another environmental description 
for the Lindblad term related to a thermalization process 
of the system. This system-environment interaction in- 
duces an energy absorption process leading the system 
into a mixed thermalized state. The environment is now 
at a certain finite temperature, and it can be thought as 
field radiation modes contained in a cavity where the 
central system lies. The Lindblad term has the following 
form [11,24] 
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 (20) 

where the damping factors are now functions of the tem- 
perature and the characteristic frequencies related to the 
eigenenergies of the closed system. They have the form 

   †1 ,j oj j          (21) 

and the function  

  1
,

p 1j

kT

 
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 


ex

jN               (22) 

represents the Planck’s distribution function, and oj s   
are phenomenological damping factors which depend on 
the cavity, the eigenfrequencies of the system and the 
strength of the coupling between the system and the en- 
vironment. We can manipulate the dissipation parameters 
by considering a low or high strength of the coupling 
between the system and the environment, and also some 
other phenomenological parameters like the volume of 
the cavity. In this way, we have some freedom to modu- 
late the damping factors. We want to point out that if we 
go to temperature equals to zero, (the thermal vacuum), 
the case (A) is recovered since for , 0T

N 0  0j   and , †
j j oj  . 

The dynamical system for each case for the reduced 
density matrix elements is deduced from Equation (15) 
as 

   
d

i ,
d

where   represent the elements of the basis of 
the Hilbert space, 

, , = 1, ,H N  
t


 


        (23) 

1 0N
  


   and 

1 0N
   . 


 

3N In our case, one has that , the dimensionality of 
our Hilbert space is eight, and the explicit equations for 
the dynamical system of each case be see in the appendix 
of reference [24,25]. We have considered that it is not 
necessary to repeat those equations in this manuscript. 

5. Results of Teleportation Simulation 

Our registers are made up of three qubits 2 1 0  
0,1

 with 

i  , (also denoted as CAB , do not confuse with 
the type of environment) or written them with decimal 
notation, 1 000 , 2 001

2π MHz

400, 200, 100, 10 ,

and 0.4
A B C J

J

     
 

 and so on. The pa- 
rameters used for our simulation are taken from [21] and 
are given (in units of ) as  

    (24) 

The selected teleported state is defined by the coeffi- 
cients (13) of the state x . Assuming that the environ- 
ment acts homogeneously on the qubits, the damping 
parameter can be the same for each qubit, and the damp- 
ing parameter for correlated cases at second neighbors 
can be one order of magnitude weaker that at first neigh- 
bors. Thus, the dissipative coefficients appearing for the 
cases (A), (B), (C), and (D) are taken of the following 
way  

, , , 1,j jj jk k j           

10, 2, , 1,2,3jk k j j k          (25) 

where   is the free common parameter which takes into 
account the interaction with the environment. The re- 
duced density matrix is then made up of  complex 
elements, and if the initial reduced density matrix is 
given by (9). 

8 8

Figure 1 shows the teleportation algorithm without 
environment interaction  0  , as seen from the point 
of view of density matrix elements. The diagonal and 
real part of non diagonal elements where the coherence 
of the systems is clearly shown (non diagonal matrix 
elements have not zero value). 

Figure 2 shows the purity behavior at the end of the 
teleportation algorithm as a function of the dissipative 
parameter  . As we can see, for range of values of 
gamma in the interval , this algorithm is 
well defined except for the thermalization case in which 
even at that range, the algorithm is totally affected. For 
higher values the purity decreases and the algorithm is 
destroyed for all cases. The cases (C) has a similar be- 
havior as (A) case has, and the case (D) has a similar 

40,10    
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 Figure 1. Matrix elements without environment interaction 
.   0 Figure 2. Purity at the end of teleportation algorithm. 

 

 

Figure 3. Diagonal matrix elements for low (upper) and high (lower) dissipation, and for the cases A (left) and B (right). 
 
behavior as (B) case has. Therefore they are not pre- 
sented on the figures. The thermalized case is presented 
for T = 2˚K and the destruction of the algorithm is evi-
dent for very low dissipation. 

Figure 3 shows the diagonal matrix elements for low 
 and high   dissipation and for the 

A and B cases (the results for the C and D cases are 
similar to these ones). As one could expected, the inde- 
pendent case (A) has much more stronger effect on the 

algorithm than the dephasing case (B), and for strong 
dissipation and independent case the system return to a 
pure system since 

 410  0.01 

Tr  must be conserved equal to one 
(the final state is ). 111

Figure 4 shows the behavior of the real part of the 
matrix elements 15 , 48 , 34 , and 56  for low and 
high dissipation ranges, and for the case A (independent). 

Figure 5 shows the behavior of the real part of the 
atrix elements m , 
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Figure 4. Case A, real part of some non diagonal matrix elements for low and high dissipation. 
 

 

Figure 5. Case B, real part of some non diagonal matrix elements for low and high dissipation.    
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Figure 6. Purity for the Thermalization process for differ-
ent values of temperature. 
 
high dissipation ranges, and for the case B (independent).  

In Figure 6, we see the transition from the system 
(Case A) into a thermalized mixed system, when we rise 
up the temperature for high dissipation range 
 10J 

40 4 10   

  1tr  

j  is presented. As we can see, the system 
goes in to a thermal mixture very rapidly and at relative 
low temperatures. At zero temperature, there is a differ- 
ent behavior of the purity since the system is recovering 
purity before the process of the algorithm is ended. So, 
the resonant pulses used to perform the teleportation gate 
and the interaction with the environment begin a new 
dissipation process. 

6. Conclusion 

We have made a numerical study of decoherence on the 
teleportation algorithm implemented in a linear chain of 
three nuclear spins system. We have studied different 
types of environments, and we have determined the asso-
ciated decoherence time as a function of the dissipative 
parameter. We have used the purity value at the end of 
the algorithm as a quality factor to determine the behav-
ior of the teleportation algorithm. With this parameter 
and with the selection of the other parameters as (24), we 
have found that the dissipation parameter to get a well 
defined quantum gates (without significant decoherence) 
must be within the range of  for the non 
thermalization case. For high dissipation parameter we 
observed the expected recovery of the purity since 

 must be conserved. With the selected dissipa-
tive coefficients, the cases (C) and (D), corresponding to 
correlation between spins, have little contribution to the 
cases (A) and (B) (independent and dephasing cases), 
and the most danger situation corresponds to the A-in-
dependent case when thermalization is not taken into 
account. However, when thermalization is taken into 
account, we have shown that even for very low dissipa-
tion parameter and very low temperature, the destruction 

of the algorithm occurs. 
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