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Abstract 
In this paper, we analyze the enthalpy, enthalpy energy density, thermody-
namic volume, and the equation of state of a modified white hole. We obtain 
new possible mathematical connections with some sectors of Number Theory, 
Ramanujan Recurring Numbers, DN Constant and String Theory, that enable 
us to extract the quantum geometrical properties of these thermodynamic 
equations and the implication to the quantum vacuum spacetime geometry of 
our early universe as they act as the constraints to the nature of quantum 
gravity of the universe. 
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1. Introduction 

The geometric structure of quantum gravity has been established to be disconti-
nuous and other theories of quantum gravity like loop quantum gravity consider 
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the quantum geometry to be in the form of loops [1] while string theory consid-
ers quantum geometry to be in the form of strings [2]. We shall observe that the 
results of the analysis of this paper based on the work of thermodynamic con-
strains of a modified white hole [3] [4] encompass the form of quantum geome-
tries as predicted by these two promising theories fundamental of physics. Pre-
cisely, it is shown that a full picture of complete quantum vacuum geometry is a 
combination of the two quantum geometries. A full connection of between the 
two quantum geometries is found through a number theoretic properties of the 
constraints of the thermodynamics of the modified white hole. The quantum 
vacuum geometry picture we found, indicates a clear depiction of the gauge bo-
sons and the scalar bosons supergravity lattice and how they are related and ar-
ranged in relation to the graviton which through the analysis suggests that it 
may not be a gauge boson, but an independent quantum geometric force carrier 
as discussed by [5]. This then shows that in the final analysis, the quantum va-
cuum geometry that we derived, is fundamentally as it sheds some light of mat-
ter creations facilitated by the Higgs scalar boson from supersymmetric vacuum 
quantum geometry, through to symmetric breaking at the moment of big bang, 
and into the well know mechanism of matter formation moment after the 
big-bang  

Our paper is structured as follows: Sections A and B, we analyse and list the 
number theoretic properties and the Ramanujan recurring number properties of 
the fundamental thermodynamic quantities of the modified white hole in the 
presence of a cosmological constant at extremely low entropy. Then in Section C, 
we apply these properties to quantum gravity and in the process we get a picture 
of the nature of the quantum geometry of the modified white whole in terms of 
octahedrons and a sphere, and we show that this quantum geometry has the 
properties of quantum strings and brane/Instanton. In Section D, we illustrate 
theoretic number connections to Planck multiple spectrum frequency and to the 
hypothetical Gluino mass. 

SECTION A: Analysis the equations of the modified white hole enthalpy 
coupled to quantum Bose-Einstein condensate at extremely low entropy 

The equations to be analysed in this section are from paper by [4] 

2. Analysis of the Enthalpy of the Modified White Hole 

The enthalpy of the modified white hole is given by 

( )
1 2 1 2

1 2
2 1 2 ln SH S a ab

SS Sb

ππ π
π

π π

    = − −    
       − +  

 

.         (1) 

We analyze the number theoretic properties and the Ramanujan recurring 
number properties of the enthalpy Equation (1) as follows;  

1) Exact result 
The exact results of enthalpy Equation (1) is 
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( )3 2 12 2 log 1Sa b a
S

b S S

π π
π

ππ

  
− − +      

−
.                (2) 

Which has the alternate forms;  

( ) ( )3 2 12 log log 1ab a S a
S

b S S

π π π π π

π

 
+ − −  

 −
−

,             (3) 

( )

12 log 1Sa b
S

s b S

π π π
π

π

   + −        −
−

,                  (4) 

3 2 12 2 log 1Sab a
S

b S S

π π π
π

π

  
+ −      −

−
.                 (5) 

The alternative forms Equations (3), (4), and (5) has the following expanded 
form 

3 2 1 4 log2 2
Saab

S
b S S b S S b S S

ππ π

π π ππ π π

 
  
 − − +

− − −
.               (6) 

Assuming a, b, and S are positive, the alternative forms are 

( ) ( )( )3 2

3 2

2 log logab a S S a S S

bS S

π π π π π

π

+ − −
−

−
,           (7) 

( )3 2

3 2

2 loga b a S S
S

bS S

ππ π π

π

  − + +    
−

.                 (8) 

from which we obtain the expanded logarithmic form as 

( )
( ) ( )1 2 21 2 5 2 1 2 2 2 log2 2 2 log S a SS ab S a

b S b S b Sb S S

ππ π π π
π π ππ

−− − −
± + +

− − −−
,   (9) 

and assuming that 0S > , 0S π > , and ( ) 0S b Sπ π− ≠ , then we 
get the alternate form  

( )

3 22 2 log Sab S a S

b S S

π π π
π

π

  
− + −      

−
,               (10) 

and the its derivative  
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2

2 1 2 log

12 log

Sa ab
S

a S Sb

Sb
S

b S S

ππ π
π

π π

π π
π

π

   
 − −     ∂    = ∂  − +
 
 

  +     −
−

               (11) 

2) Indefinite integral 
Equation (11) has the following indefinite integral 

3 2

3 2 2 2

12 1 2 log

d

1 12 log
2

Sab a
S

a
b S S

Sa b a a
S

Constant
b S S

π π
π

ππ

π π π
π

π

  
− −      

−

  
+ −      = − +

−

∫
          (12) 

from which we obtain the alternate forms 

( ) ( ) ( )( )3 2 1 log log 2a a b a S
S

b S S

π π π π

π

 
− + − +  

 
−

,             (14) 

( )

1 log 2Sa a b
S

S b S

π π π
π

π

   + −        −
−

,                  (15) 

( )

( )

2 3 2 2
2 2

4 3 2 2
34

2 2 3 22 3 2 2

2 4

23 2 2 2 2

4

2

1 1

11

12 log2 log

1 2 log2 log

2 log

a S a Sa aS S
b b

bb b S
SS

SS ab S a Sa a
S

bb b b S

SS a b aSa a
S

bb S S

Sa b aS

ππ

π

π ππ π

π

π π ππ

π
π

− − − −
  − 
 

   
−            − + −

−

   
−            − − +

  
−   

 +
3b S


 


       (16) 

Assuming a, b, and S are positive, then the alternate forms are 

( ) ( )( )3 2

3 2

log log 2a ab a S S a S S

bS S

π π π π π

π

− − + +

−
,          (17) 
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( )

( ) ( )2 2
5 2 2

log log
2

2 2 2
S

a
a b a

b S S b S SS b S S

π
π

π π
π ππ

 
− 

 − − +
− −−

   (18) 

( )3 2

3 2

log 2a a b a S S
S

bS S

ππ π π

π

  − + +    
−

             (19) 

The expanded logarithmic form of the alternate forms Equation (17), (18), 
and (19) are then given by  

( ) ( )
2 5 2

2 2 2 2
1

log log2 a b a a Sa S
b S S b S S b S S b S S

π π π ππ
π π π π

± + ±
− − − −

      (20) 

and assuming that 0S > , 0S π > , and 0b S Sπ − ≠ , then we get the 
alternate form  

3 2 12 2 log Sa ab a
S

b S S

π π π
π

π

  
− + +      −

−
             (21) 

and then its derivative  

2 3 2 2

3 2

1 12 log
2

12 2 log 1

Sa a b a
S

a b S S

Sab a
S

b S S

π π π
π

π

π π π
π

π

   
 − + +     ∂   − ∂ − 
 
 

  
+ −      = −

−

          (22) 

3) Indefinite integral 
We obtain the indefinite integral of the Equation (22) as 

( )

2 3 2 2

2 3 2

1 12 log
2

d

1 2 log 3

3

Sa a b a
S

a
b S S

Sa ab a
S

Constant
b S S

π π π
π

π

π π π
π

π

  
− + +      −

−
  

+ −      = − +
−

∫
         (23) 

which has the alternative forms  

( ) ( ) ( )( )2 3 2 1 log log 3

3 3

a a b a S
S

b S S

π π π π

π

 
− + − +  

 
−

,         (24) 

( )

2 1 log 3

3

Sa a b
S

S b S

π π π
π

π

   + −        −
−

,              (25) 
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( )

3 3 2 3
3 3

4 3 2 2
34

3 3 2 33 2 3 2 3

2

2 2 2 3

4 3

2 2 3 3 2

1 1

3 311 33

1 12 log 2 log

33 3 3

2 log 3 2 log 3

3 3

3 2 log

a S a Sa aS S
b b

bb b S
SS

S Sa aa a
S S

bb b S S

S Sa aS b a aS b

b b S

a b S a S

ππ

π

π ππ ππ π

π
π π

− − − −
  − 
 

   
      
   − − − −

      
− −                  − −

−

+
( )43

S

b b S

π

π

 
  
 

−

     (26) 

Equations (24), (25), and (26) has the expanded form  

( ) ( )

2 35 2 3
2

1 2 log

3 3

Saa b aS
b S Sb S S b S S

ππ π π
ππ π

 
  
 − − +

−− −
         (27) 

and assuming a, b, and S are positive, then we obtain the alternate form  

( ) ( )( )2 3 2

3 2

log log 3

3 3

a ab a S S a S S

bS S

π π π π π

π

− − + +

−
        (28) 

which has the expanded logarithmic form 

( ) ( )
3 5 2

3 2 3 22
1

log log3
3 3 3 3 3 3 3 3

a b a a Sa S
b S S b S S b S S b S S

π π π ππ
π π π π

± + ±
− − − −

.   (29) 

and assuming that 0S > , 0S π > , and 0b S Sπ − ≠ , then we get the 
alternate form  

( )

2 3 2 13 2 log

3

Sa ab a
S

b S S

π π π
π

π

  
− + +      −

−
,             (30) 

which has the derivative  

( )

3
2 2

3 2

13 2 log

3

1 2 log 2

Sa ab a
S

a b S S

Sa ab a
S

b S S

π π π
π

π

π π π
π

π

   
 − + +     ∂   − ∂ − 
 
 

  
+ −      = −

−

           (31) 

4) Indefinite integral  
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The indefinite integral of the Equation (31) is  

( )

( )

2 3 2

3 3 2

13 2 log

d
3

1 2 log 4

4 3 2

Sa ab a
S

a
b S S

Sa ab a
S

Constant
b S S

π π π
π

π

π π π
π

π

  
− + +      −

−

  
+ −      = − +

−

∫
         (32) 

5) Volume analysis 
Because of supersymmetry of space at extremely low entropy, then it is there-

fore possible to consider the vortices of the quantum vacuum schematized as 
cubes or octahedrons loops. We also assume that the quantum Van der Waals 
fluid [4] [6] are characterized by smooth spheres. In reality, the quantum va-
cuum will have n-dimensional hyperspheres in which the compactified dimen-
sions “roll up” and octahedrons representing the “fluctuations”, containing vi-
brating quantum Van der Waals fluid particles.  

Therefore, for 31 2
3

V a=  (octahedron volume) and 34
3

V rπ=  (sphere 

volume), where 
2
ar = , we get the following;  

a) Octahedron volume 
From indefinite integral Equation (32) we obtain the following exact result 

( )

6 3 2 1 2 log 4

6 2 3 3

Sa a ab a
S

b S S

π π π
π

π

  
+ −      −

−
              (33) 

which has the alternative forms 

( ) ( ) ( )( )

( )

6 3 2 1 log log 4

18 2 2

a a b a S
S

b S S

π π π π

π

 
− + − +  

 
−

,          (34) 

( )

6 1 log 4

18 2

Sa a b
S

S b S

π π π
π

π

   + −        −
−

,                (35) 

( )

7 3 2 77
7

3 24 2
34

7 3 2 73 2 7 2 7

2

1 1
2

18 2 1 18 21 1818 2

1 1log log

9 2 18 2 9 2 18 2

a S a SaaS S
b bbb b S

SS

S Sa aa a
S S

b b b S S

π π

π

π ππ ππ π

− − − −
  − 
 

   
      
   − − − −

   (36) 
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( )

6 2 6 2

4 3

7 3 2 6 2

4

log 2 log 2
2

9 2 9

log 2

9 2

S Sa aS b a aS b

b b S

Sa S a b S

b b S

π
π π

π

π

      
− −                  − −

 
−  

 −
−

 

The expanded form of Equations (34), (35), and (36) is  

( ) ( ) ( )

2 75 2 7
6

1 log
2

6 2 3 3 3 2 3 3 3 3 3

Saa b aS
b S S b S S b S S

ππ π π
π π π

 
  
 − − +

− − −
   (37) 

and assuming a, b, and S are positive, we obtain the alternate forms of Equation 
(37) as 

( ) ( )( )
( )

6 3 2

3 2

log log 4

18 2

a ab a S S a S S

bS S

π π π π π

π

+ − −
−

−
, 

( ) ( )

( )

3 2
6 log log 4

18 2 2

aba a S a
S

b S S

ππ π π π

π

 
+ − − 

 −
−

,            (38) 

which has the expanded logarithmic form given by 

( )

( ) ( ) ( )

7 5 26

7 2 7 2

1 21 14 2
3636

1 12 log 1 2 log
36 36

a ba
S

b S S b S S

a a S

b S S b S S

ππ

π π

π π π

π π

−
+

− −

−
+ +

− −

.           (39) 

The alternate form of Equation (39) is  

( )

6 3 2 14 2 log

18 2

Sa ab a
S

b S S

π π π
π

π

  
− + +      −

−
             (40) 

and its derivative is given by 

( )

( )( )

( )

3 3 2 3

5 3 2

14 2 log 2

3 4 3 3

17 7 log 24

18 2 2

Sa ab a a
S

a b S S

Sa ab a
S

b S S

π π π
π

π

π π π
π

π

    
  − + +      ∂    − 

∂  − 
  
 

  + −     = −
−

       (41) 
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The indefinite integral of Equation (41) is then given by 

( )

( )

6 3 2

7 3 2

14 2 log

d
6 2 3 3

17 7 log 32

336 2 3 3

Sa ab a
S

a
b S S

Sa ab a
S

constant
b S S

π π π
π

π

π π π
π

π

  
− + +      −

−

  + −     = − +
−

∫
         (42) 

b) Sphere volume 
From indefinite integral Equation (32) we obtain the exact result 

( )

2 6 3 2 1 2 log 4

24 3 3

Sa ab a
S

b S S

π π π
π

π

  
+ −      −

−
             (43) 

which has the alternate forms 

( ) ( ) ( )( )

( )

2 6 3 2 1 log log 4

72

a a b a S
S

b S S

π π π π

π

 
− + − +  

 
−

,         (44) 

( )

2 6 1 log 4

72

Sa a b
S

S b S

π π π
π

π

   + −        −
−

,              (45) 

( )

7 5 2 7 3 2
7 7

6 5 2 3 2 4
2 5

2 72 7 5 2 7
3 2 7

2 2
3

6 25 2 7 3 7

6

6

1 1

72 721 172 72

1 1log

7272 36172

1 log 2log

3636 72

log

a S a Sa aS S
b b

b b S b
S S

Saa S aa S S
bb b

b
S

SS a S aS ba a
S

bb S S

Sa S aS

ππ

π

ππ πππ

π π ππ

π

− − − −
   −   
   

 
  
 − − − −

   
−            − − −

−

( )

2 6 2

5 4

3 2 6 2 6 2 3 2 7 5 2

3 6

2 log 2

36 36

log 2 2 log

36 36

Sb a aS b

b b

S Sa aS b a b S a S

b S b b S

π
π π

π
π π

π

      
− −                  −

    
−  −           − +

−

   (46) 

and the expanded forms of Equations (44), (45), and (46) are given by 
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( )
( )

( ) ( ) ( )

7 2 7
3 7 3 7 2 6

3 77 2 7
2 6

1
log log

72 72 72 72 72 72 18

1 log

24 3 3 12 3 3 6 3 3

a b a S a aS
b S S b S S b S S b S S

Saa b aS
b S S b S S b S S

π π π π π
π π π π

ππ π π
π π π

− − + +
− − − −

 
  
 − − +

− − −

 (47) 

Now assuming that a, b, and S are positive, then we obtain the alternate 
forms 

( ) ( )( )
( )
( ) ( )

( )

2 6 3 2

3 2

3 2
2 6

log log 4

72

log log 4

72

a ab a S S a S S

bS S

aba a S a
S

b S S

π π π π π

π

ππ π π π

π

+ − −
−

−

 
+ − − 

 −
−

         (48) 

with the expanded logarithmic form  

( ) ( ) ( ) ( )7 7 26 2 7 3 7 31 11 1 114 log 1 log
7272 72 72

a ba a a S
S

b S S b S S b S S b S S

ππ π π π

π π π π

− −
+ + +

− − − −
. (49) 

The alternate form of Equation (49) is  

( )

6 2 3 2 14 2 log

72

Sa ab a
S

b S S

π π π
π

π

  
− + +      −

−
,             (50) 

with the derivative  

( )( )

( )

3
3 3 2

2 5 3 2

14 2 log 4
2

3 4 3 3

17 7 log 24

72

S aa ab a
S

a b S S

Sa ab a
S

b S S

π π π π
π

π

π π π
π

π

          − + +             ∂      − 
∂  − 

  
 

  − − +     =
−

      (51) 

and the indefinite integral 

( )

( )

6 2 3 2

2 7 3 2

14 2 log

d
24 3 3

17 7 log 32

4032

Sa ab a
S

a
b S S

Sa ab a
S

constant
b S S

π π π
π

π

π π π
π

π

  
− + +      −

−

  + −     = − +
−

∫
        (52) 

c) Number theoretic properties of the volume 
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i) DN Constant 
Now dividing the two indefinite integral results for the octahedron and the 

sphere volumes; Equation (42) and Equation (52) respectively, we get 

( )

( )

6 3 2

3
7 2

14 2 log

d
6 2 3 3

17 7 log 32

336 2 3 3

Sa ab a
S

a
b S S

Sa ab a
S

constant
b S S

π π π
π

π

π π π
π

π

  
− + +      −

−

  + −     = − +
−

∫
         (53) 

and 

( )

( )

6 2 3 2

3
2 7 2

14 2 log

d
24 3 3

17 7 log 32

4032

Sa ab a
S

a
b S S

Sa ab a
S

constant
b S S

π π π
π

π

π π π
π

π

  
− + +      −

−

  + −     = − +
−

∫
         (54) 

which simplifies to the exact result 

( )
( )

6 2

3 3

b S S

b S S

π

π π

−

−
                      (55) 

of which the expanded form is 

( )

26 6 2
3 3 3 3

b S S
b S S b S S
π

π π π
−

− −
                (56) 

with the alternative form  

0.9003163161 712 2 5
π

=                    (57) 

which is a DN Constant. 
ii) The property of the function 
The function has an even parity 
iii) Indefinite integral  

( )
( )

6 2 2 2d
3 3

b S S bb constant
b S S

π

ππ π

−
= +

−
∫               (58) 

iv) Global maximum 

( ) ( )( )( )
( )

2

2 2max
336 2 3 3

4032

b S S

b s S

π
ππ π

π

 
 
 
  = 

− 
 
 − 

 at ( ) 12 1, ,
5 2

b S  = − − 
 

 (59) 
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v) Global minimum 

( ) ( )( )( )
( )

2

2 2min
336 2 3 3

4032

b S S

b S S

π
ππ π

π

 
 
 
  = 

− 
 
 − 

 at ( ) 12 1, ,
5 2

b S  = − − 
 

 (60) 

vi) Limit 

( )
( )

6 2 2 2lim 0.900316
3 3

b

b S S

b S S

π

ππ π
→±∞

−
= ≈

−
           (61) 

( )
( )

6 2 2 2lim 0.900316
3 3

S

b S S

b S S

π

ππ π
→±∞

−
= ≈

−
           (62) 

vii) Series representations 

( ) ( )( )( )
( )

( ) ( )2
0 0

0 0

4
1336 2 3 3 1 2
2

4032 !

kk k

k
k

b S S z z
zb S S k

π

π π

ππ

−

∞

=

=
 − − − − 
 

− ∑

 (63) 

for (not ( 0z ∈  and 0 0z−∞ < ≤ ))  

( ) ( )( )( )
( )

( ) ( ) ( )

2

0

336 2 3 3

4032

4
11 2

arg 2 2exp
2 !

k k k

k
k

b S S

b S S

x x
x

i x
k

π

π π

π

π π
π

−

∞

=

−

−

=
 − − −  −   

     
∑

      (64) 

for ( x∈  and 0x < )  

( ) ( )( )( )
( )

( ) ( )
( ) ( )

( ) ( )

0
0

1 2 arg 2 2 1 1 2 arg 2 2
2

0
0

2
00

0

14

1336 2 3 3 1 2
2

4032 !

z
z

kk k

k
k

z
z

b S S z z

b S S k

π
π

π

π π

ππ

 − − 
 − − − 

−

∞

=

 
 
 =

 − − − − 
 

− ∑

 (65) 

where !n  is the factorial function, (a)n, is the Pochhammer symbol (rising fac-
torial),   is the set of real numbers, ( )arg z  is the complex argument, x    
is the floor function, and i, is the imaginary unit. 

viii) Definite integral over a disk of radius R 

( )
( )2 2 2

2
6 2

d d 2 2
3 3b S R

b S S
b S R

b S S

π

π π+ <

−
=

−
∫∫             (66) 

Definite integral over a square of edge length 2L 
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( )
( )

26 2 8 2d d
3 3

L L

L L

b S S LS b
b S S

π

ππ π− −

−
=

−
∫ ∫                 (67) 

3. Analysis of the Thermodynamic Volume of the Modified  
White Hole 

The thermodynamic volume of the modified white hole is given by 

( )

1 2 1 2
2

1 2

1 2

25 2 2 2 lnbab ab a ab a
S S S SS

V
S Sb

π π π π
ππ

π π

        − + + − + − +                 =
  − 
 

. (68) 

The analysis gives the following number theoretic properties and the Rama-
nujan recurring number properties of the thermodynamic volume: 

1) Alternate forms 
The thermodynamic volume Equation (68) has the following alternate forms 

2 2
2 1 15 2 2 log

b
b S Sa b a b

S S S

π
π π π

π π

−     − + + − +             
,      (69) 

( ) ( )( ) ( ) ( )( ) ( )2 log 5 log
2 2 log 1 log 2

1
b S

a b S S S b S

S
S

π π
π π π π

π

 
 − −
 + − − − − −
 
 
  . (70) 

Assuming a, b, and S are positive, then the alternative forms Equations (69), 
and (70) becomes 

( ) ( ) ( )( )( )3 22 2 log 1 logb S ab a S S a S S

S

π π π π π

π

− + − + −
     (71) 

and the derivative is  

( )2

2

2 25 2 2 log

2 1 15 2 log 2

ab b Sab a ab a
a S S SS

b Sb b
S S S

ππ π
π ππ

π π π
π

  ∂   − + + − + − +     ∂    
   = − + − +       

    (72) 

The indefinite integral is then given by 

( )2

2 2
2 2

2

2 25 2 2 log d

5 1 1 1 2 log
2 2

2

ab b Sab a ab a a
S S SS

a b Sa b a b
S S S

ba
S

a constant

ππ π
π ππ

π π π
π

π

π

     − + + − + − +        
   = − + −       

 
−  

 + + +

∫

    (73) 
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Dividing the alternate form Equation (69) by 

S Sb
π π
−                            (74) 

we obtain the exact result 

2 2
2 1 15 2 2 log

b
b S Sa b a b

S S S

S Sb

π
π π π

π π

π π

−     − + + − +             

−
.   (75) 

2) Volume analysis 

From the exact result Equation (75), and with 31 2
3

V a=  (octahedron 

volume) and 34
3

V rπ=  (sphere volume), where 
2
ar = , we obtain respec-

tively;  
a) Octahedron volume:  
The exact result 

2
3

2
2 1 12 5 2 2 log

3

b
b S Sa a b a b

S S S

b S S

π
π π π

π π

ππ

 
−       − + + − +              

 
 

−  
 

 (76) 

b) Sphere volume: 
The exact result 

2
3

2
2 1 15 2 2 log

6

b
b S Sa a b a b

S S S

b S S

π
ππ π π

π π

ππ

 
−       − + + − +              

 
 

−  
 

 (77) 

3) Number theoretic properties of the volume 
By dividing the two exact results Equations (76), and (77), and simplifying by 

making the input 2 1
3

6
π

× , we get the results 

2 2
π

                          (78) 

With the decimal approximation 

2 20.9003163161571060695551991910067405826645741499552206255714374712
π

=
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which is a DN Constant, and also 
2 2
π

 it has property that it is a transcendental  

number. The transcendental numbers have important properties in physics and 
in particular in astrophysics, particle physics, cosmology because they allow us 
to reformulate and resolve unresolved problems, and in our case, the geometry 
of quantum gravity of the very early universe [7].  

The series representation of Equation (78) is  

( ) ( )0 0

0 0

11 2
222 !

3
6

kk k

k
k

z z
z

k
π π

−

∞

=

 − − − 
 

=
∑

              (79) 

for (not ( 0z ∈  and 0 0z−∞ < ≤ )) 

( ) ( ) ( )
0

11 2
arg 2 22exp

2 !2
3
6

k k k

k
k

x x
x

i x
k

π
π

π π

−

∞

=

 − − −  −   
     =

∑
     (80) 

for ( x∈  and 0x < ) 

( ) ( )
( ) ( )( )

( ) ( )0
0

1 2 arg 2 2 0
1 2 1 arg 2 2
0 0

0

0
11 2
212

!2
3
6

kk k
z

z k
k

z z
z

z k

π
π

π π

−
 − 

 + − ∞ 
=

 − − −    
 
 =

∑
 (81) 

4. Analysis of the Enthalpy Energy Density of the Modified  
White Hole 

The enthalpy energy density of the modified white hole is given by 

( )
ent

H S
V

ρ =                           (82) 

and dividing the exact result Equation (2) by the alternative form Equation (69), 
we obtain  

2

2 1 2 log

2
1 2 12 5 2 log

Sa ab
SS Sb

b
b SSa b a b

S S S
S Sb

ππ π
π

π π
π

ππ π
π π

π π

  
− −      − +

−     − + + + − +             

−

.   (83) 

Then the analysis gives the following number theoretic properties and the 
Ramanujan recurring number properties of the enthalpy energy density. The 
exact result is 
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( )3 2

2

12 2 log 1

2
2 1 15 2 2 log

Sa b a
S

b
b S Sa b a b

S S S

π π
π

π
π π π

π π

  
− − +      

−     − + + − +             

,   (84) 

and for 12.566 4S π= = , we obtain 

( )

( )
2

2 2 log 2 1
2

25 22 log 4 2
2 2 2

ab a

b
b b ba a

π π

π

 − − + 
 

−   − + + − +   
  

,            (85) 

which has the alternate forms 

( )( )( )
( )( ) ( )

2 log 16 2
12 4 1 log 16 2 4
2 2

a b
ba b b a b

π π

π π

+ −

   − − + − − +   
   

         (86) 

( )( )( )
( ) ( )2

2 log 16 2
12 5 4 log 16 2 4
2 2

a b
ba b b a b

π π

π π

+ −

   − + + − − +   
   

         (87) 

( )( )

( )
2

2 4 log 2 2

52 2 2 log 4 2 4
2 2 2

ab a

b b ba a b

π π π

π π

+ −
−

   − + + − − +   
  

          (88) 

The alternate forms Equations (86), (87), and (88) have the expanded forms 

( )

( ) ( )

( )

( )

( )

2 2

2 2

2

4 log 2
5 2 5 22 2log 2 2 2 2log 2 2

2 2 2 2 2 2 2 2

4 log 22
5 2 5 22 2log 2 2 2 2log 2 2

2 2 2 2 2 2 2 2

5 2
2 2

a ab
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a
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b ba

π π

π π π π

π

π π π π
π
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      
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      − + + − − + − + + − − +      

      

−
 

− +


( ) ( )
2

2
2 5 22log 2 2 2 2log 2 2

2 2 2 2 2 2
b b b b b ba a a

π π π π

+
    + − − + − + + − − +     

     

 (89) 

with the expanded logarithmic form 

( ) ( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )

2

2

2

2

2

4
1 14 2 4 5 4 4 log 2
2 2

2
1 14 2 4 5 4 4 log 2
2 2

8 log 2
1 14 2 4 5 4 4 log 2
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b a b b a b
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b a b b a b
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b a b b a b

π

π π

π

π π

π

π π

   − + − + + − +   
   

−
   − + − + + − +   
   

−
   − + − + + − +   
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      (90) 
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which has the alternate form 

( )( )
( )( ) ( ) ( )

2 2 4 log 2
1 14 2 4 1 2 4 log 4
2 2

ab a

b a b b a b

π π π

π π

− −

   − + − + − + + − +   
   

.      (91) 

The root for the variable b is 

( )2 log 16a
b

a
π
π

−
= .                     (92) 

1) Indefinite integral 
The indefinite integral for the alternative form Equation (91) is 

( )

( )

( )( )

( ) ( )

2

2

2

2 1 2 log 2
2 d

2 52 2 2 log 4
2 2 2

12 log 16 2
2

12 5 4 log 16 2 4
2 2
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a b a
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ba b b a b

π π

π

π π

π π

 − − 
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 = − +
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   

∫

    (93) 

from which we obtain the alternate forms  

( ) ( )( )
( ) ( )2

1 4 log 2 4
5 2 log 2 4 8 log 2 4

a ab a
ab ab ab a a b

π π π
π π π π π
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− + + − − +
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( )( )( )
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log 16 4

4 1 log 4 1

a a b

b a b

π π

π

+ −
−

− − + −
,                 (95) 

( )( )( )
( ) ( )( )( )

2 log 16 4

4 2 2 log 16 2

a a b

b a b

π π

π

+ −
−

− − + −
.               (96) 

The expanded form of Equations (93), (94) and (95) is 
( )

( ) ( )

( ) ( )

( ) ( )

2 2

2

2 2

2

2

log 16

5 4 2 log 16 4
2

5 4 2 log 16 4
2

4

5 4 2 log 16 4
2

a
ba b b a b

a b
ba b b a b

a
ba b b a b
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π

−
 − + + − − + 
 

−
 − + + − − + 
 

+
 − + + − − + 
 

           (97) 

Assuming a, b, and S are positive, then we have the alternative form 

( ) ( )

( )( )
( ) ( )

2

2 2

2

4

5 4 4 2 log 2 4
2
4log 2

5 4 4 2 log 2 4
2

a
ba b b a b

a b
ba b b a b

π

π π

π

π π

 − + + − − + 
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           (98) 

https://doi.org/10.4236/jmp.2024.151001


M. Nardelli et al. 
 

 

DOI: 10.4236/jmp.2024.151001 18 Journal of Modern Physics 
 

From which the expanded logarithmic form is 

( ) ( )

( ) ( )
( )

( ) ( )

2

2 2

2

2 2

2

4
4 4 5 8 log 2 2 log 2

4 4 5 8 log 2 2 log 2

4 log log 2
4 4 5 8 log 2 2 log 2

a
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a
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π
π π π π π

π
π π π π π

π
π π π π π

− + − + − +

−
− + − + − +

−
− + − + − +

      (99) 

The alternate form of the Equation (99) is 

( )( )
( ) ( )2

2 4 log 16
8 2 8 10 2 4 log 16 log 16

a ab a
b a ab ab a ab

π π π
π π π π π

− + +
−

− + − + − +
,   (100) 

with the roots are  

0, 4 0,a b= − ≠  

( )4 4 log 2
0, ,

a
a b

a
π
π

−
≠ =  

( ) ( ) ( )22 2 2 2 2 28 16 log 2 log 2 32 40 log 224 24 0a a a a aπ π π π π+ ++ − − ≠  

( )4 log 16a
b

a
π
π

−
=                      (101) 

2) Series expansion 
The Taylor series expansion about 0a =  is  

( )( )

( )( ) ( ) ( )( )( )
( )

( )( ) ( )( )( )
( )

( )( ) ( )( )( )
( ) ( )

2 2
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6
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2 4

2 2 log 16 3 4 log 16
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a b b

b
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a b b
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ππ

π

π
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− −
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−
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−

−

− + − +
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−

    (102) 

and the Laurent series expansion about 0a =  is 

( )( )( )
( ) ( )( )

( )( )
( ) ( )( )

( )( )
( ) ( )( )

( )( )
( ) ( )( )

2

3 42 2

3

2 log 16 4 3 4 log 16
4 2 2 log 16 4 2 2 log 16

8 3 4 log 16 16 3 4 log 16

4 2 2 log 16 4 2 2 log 16

1

a b b
b b b b

b b

a b b a b b

o
a

π

π π

+ − +
− +

− − + − − +

− + − +
+ +

− − + − − +

  +      

  (103) 

The derivative of the alternative form, Equation (100) is 
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( )( )

( )( ) ( )
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2 2 log 16 2 log 16 4 log 16 8
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+ − − + −
= −

− − + −

 (104) 

With the indefinite integral given by 

( )( )

( ) ( )

( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )( )

2

2
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2
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2
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a
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b a b
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π π

π

π
π
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

= − + − +
− − +

− + − +
−
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− +



∫

 (105) 

Taking the limit of alternative form, Equation (100) as b →±∞ , we get 

( )( )

( ) ( )

2

2

12 2 log 16
2lim 0

4 4 5 2 log 16
2

b

a a b

bb a b b a

π π

π π
→±∞

 − + + 
 − =

 − + − + + − + 
 

,    (106) 

and for 31 2
3

V a=  (octahedron volume) and 34
3

V rπ=  (sphere volume), 

where 
2
ar = , we obtain the following respectively;  

a) Octahedron volume 
For the octahedron volume we have 

( )( )

( ) ( )

3 2

2

12 2 log 16 2
2

3 5 4 2 log 16 4
2

a a b a

ba b b a b

π π

π π

 + − 
 

  − + + − − +    

,        (107) 

and plotting this result, we obtain the following 3D and the contour plots that 
can be related to a D-brane/Instanton.  

The key observation from Figure 1 and Figure 2 and as confirmed by [4], is 
that at 1a = , which is taken as the energy density of the universe at the Big 
bang, with 0b =  the zero spacetime volume, the vacuum geometry brakes/or 
there is symmetry breaking on the vacuum quantum geometry. We see from 
the plots as the vacuum spacetime break/tear apart. Continuing further, we 
obtained the following properties of the Equation (107), that the alternate 
forms are  
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Figure 1. 3D plot. 
 

 

Figure 2. Contour plot.  
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π

+ −
−
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The expanded forms of Equations (108), (109), and (110) are 
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  (111) 
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and assuming a, b, and S are positive, then we have the alternative form 

( ) ( )
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( ) ( )
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         (112) 

from which the expanded logarithmic form is 
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with the alternate form 

( )( )
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    (114) 

The roots of the alternate form Equation (114) are 

0, 4 0,a b= − ≠  

( )4 4 log 2
0, ,
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a b
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( )4 log 16a
b

a
π
π

−
=                      (115) 

Furthermore, the Taylor series expansion about 0a =  is 
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 (116) 

and about a = ∞  is 
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    (117) 

The derivative of the alternate form Equation (113) is 
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and the indefinite integral is 
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b) Sphere volume 
For the octahedron volume we have 
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( ) ( )
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2
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2
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,           (120) 

And similarly plotting this result, we obtain the following 3D and the contour 
plots that can be related to a D-brane/Instanton.  

The observation in Figure 3, and Figure 4, is the same as in Figure 1, and 
Figure 2. Continuing further, we obtained the following properties of the Equa-
tion (120), that the alternate forms are 
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Figure 3. 3D plot. 
 

 

Figure 4. Contour plot. 
 

( )( )
( ) ( )( )

2 4

2

4 log 2 4

3 2 5 2 log 2 4 8 log 2 4

a ab a

ab ab ab a a b

π π π

π π π π π

+ −

× − + + − − +
,   (121) 

( )( )( )
( ) ( )( )( )

2 4 log 16 4

6 4 1 log 4 1

a a b

b a b

π π

π

+ −
−

− − + −
,              (122) 

( )( )( )
( ) ( )( )( )

2 4 log 16 4

3 4 2 2 log 16 2

a a b

b a b

π π

π

+ −
−

− − + −
             (123) 

from which the expanded forms are 

( )

( ) ( )

( ) ( )

( ) ( )

( )
( ) ( )

3 5

2

3 5

2

2 4

2

3 5 3 5 2 4

2

log 16

6 5 4 2 log 16 4
2

6 5 4 2 log 16 4
2

2

6 5 4 2 log 16 4
2

log 16 4
6 30 3 log 16 24 12 log 16 6 2

a
ba b b a b

a b
ba b b a b

a
ba b b a b

a b a a
ab ab ab a a b

π

π π

π

π π

π

π π

π π π
π π π π π

−
  − + + − − +    

−
  − + + − − +    

+
  − + + − − +    

− − +
+

− + + − − + 4

 (124) 
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Assuming a, b, and S are positive, the alternative forms are 

( ) ( )

( )( )

( ) ( )

2 4

2

3 5

2

2

3 5 4 4 2 log 2 4
2

4log 2

6 5 4 4 2 log 2 4
2

a
ba b b a b

a b
ba b b a b

π

π π

π

π π

  − + + − − +    
+

−
  − + + − − +    

          (125) 

and thus the expanded form is 

( ) ( )

( ) ( )
( )

( ) ( )

4 2

2

5 3

2

5 3

2

2
12 3 12 15 3 24 log 2 6 log 2

1
2

12 3 12 15 3 24 log 2 6 log 2

2 log log 2
12 3 12 15 3 24 log 2 6 log 2

a
b a ab ab a ab

a b

b a ab ab a ab

a
b a ab ab a ab

π
π π π π π

π

π π π π π

π
π π π π π

− + − + − +

−
+

− + − + − +

+
− + − + − +

    (126) 

from which the alternate form is 

( )
( ) ( )( )

4 2

2

( 4 log 16 )
3 8 2 8 10 2 4 log 16 log 16

a ab a
b a ab ab a ab

π π π
π π π π π

− + +
−

− + − + − +
   (127) 

with the roots 

0, 4 0,a b= − ≠   

( )4 4 log 2
0, ,

a
a b

a
π
π

−
≠ =  

( ) ( ) ( )22 2 2 2 2 28 16 log 2 24 log 2 32 40 log 2 24 0,a a a aπ π π π π+ + − − + ≠  

( )4 log 16a
b

a
π
π

−
= .                  (128) 

The Taylor series expansion about 0a = , is  

( )
( )( )( )

( )

( )( ) ( ) ( )( )( )
( )

( )( ) ( )( )( )
( )

( )( ) ( )( )( )
( ) ( )

5 32 4

26 4 2

27 5

38 6

9

3 4 log 162
3 4 6 4

6 5log 16 14 8 log 16 6log 16

12 4

2 2 log 16 3 4 log 16

24 4

2 2 log 16 3 4 log 16

48 4

a ba
b b

a b b

b

a b b

b

a b b
O a

b

ππ

π

π

π

− +
− −

− −

+ − + + −
−

−

− + − +
−

−

− + − +
− +

−

    (129) 

and about a = ∞ , is  
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( )( )( )
( ) ( )( )( )

( )( )
( ) ( )( )

( )( )
( ) ( )( )

( )( )
( ) ( )( )

( )( )
( ) ( )( )

4 2 3
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2

3 4

1

52

log 16 2 3 4 log 16

3 4 2 2 log 16 3 4 2 2 log 16

4 3 4 log 16 8 3 4 log 16
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16 3 4 log 16 1

3 4 2 2 log 16

a b a b
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b
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ab b
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− − + − − +

 − +  + +     − − +  

     (130) 

The derivative of the alternate form Equation (127) 

( )( )

( ) ( )

( )( ) ( )( ) ( )( )((
( )( ) )) ( ) ( )( )( )( )
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2

2 3 2 2 2

2

12 2 log 16 4
2 2
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2
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a a b b
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       − + +            ∂  − ∂    × − + − + + − +      

= − + − + −

+ − + − + − − + −

 (131) 

and the indefinite integral is  

( )( )

( ) ( )

( )( ) ( )( ) ( )( ) ( )( )
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( )( )
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+ +
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+

∫
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4 5
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960 3 4 log 16 log 2 2 2 log 162 log 16

/ 90 4 2 2 log 16

b a b

b b

π

π π

− + − − ++
+



− − +

 (132) 

c) The ratio of the Octahedron volume to the sphere volume and its number 
theoretic properties 

Taking the limit  

( )( )

( ) ( )

3 2 2

2

12 log 16
2lim 0

3 4 4 5 2 log 16
2

b

a a a b

bb a b b a

π π

π π
→±∞

 − + + 
 − =

  − + − + + − +    

,   (133) 

and thus, dividing Octahedron volume Equation (107) by the Sphere volume 
Equation (120), and simplifying by the factor  

2
2 2π
π

−
−

                         (134) 
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we obtained  
3 22
π

                           (135) 

with decimal approximation 

2 20.90031631615710606955519919100674058266457414995522206255714374712
π

=  

(which is DN Constant, and it is also a transcendental number as well). It has the 
following series representations  

( ) ( )0 0

0 0

2

11 2
222 2 !

kk k

k
k

z z
z

kπ
ππ

−

∞

=

 − − − 
 

−
=

−

∑
          (136) 

for (not ( 0z ∈  and 0 0z−∞ < ≤ )) 

( ) ( ) ( )
0

2

11 2
arg 2 22exp

2 !2 2

k k k

k
k

x x
x

i x
k

π
ππ

ππ

−

∞

=

 − − −  −   
   −   =

−

∑
  (137) 

for ( x∈  and 0x < ) 

( ) ( )
( ) ( )( )

( ) ( )0
0

1 2 arg 2 2 0
1 2 1 arg 2 2
0 0

0
2

0
11 2
212

!2 2

kk k
z

z k
k

z z
z

z k

π
π

π
ππ

−
 − 

 + − ∞ 
=

 − − −    
 

−  =
−

∑
 (138) 

5. Analysis of the Equation of State of the Modified White  
Hole 

The equation of state of the modified white hole is given by 

( ) 2 2 2

2

1 1 ln, 1 1
4 2 42 2

2 .1 2 4 8 161
4

V a r abT V P
rr r r br

r r b a abV r P
r r

π π π

π
π π π π

π


   = − − − −    − +   

 
  + − − + + −  

   −    

      (139) 

The analysis gives the following number theoretic properties and the Rama-
nujan recurring number properties of the equations of state: 

The exact result is 

( ) 2

2 2

2

1 log 1 2
1 4 2 4 21 14 2 1

4
16 82

ab b rV a r r r
r P V

br r r
ab a

r rr

π
π π

π π
π

π ππ

     − − + − +            − + −  + −    −    − − +  (140) 

and considering 4S π= , we obtain V to be 
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( )
( )

2 4 25 2 2 2 log
4 4 44

bab ab a ab aπ π π π
π π π π ππ π

   − + + − + − +       
,  (141) 

which then simplifies to 

( )
2 5 2log 4 2 2

2 2 2 2
ab ab ab ba a

π π
 − + − + − + 
 

,          (142) 

which when we plot it, get the 3D and the contour plots below that can be re-
lated to a D-brane/Instanton,  

From Figure 5, and Figure 6, we note that the gravitational potential is al-
most zero as the self vacuum perturbations have not started to take effects re-
sulting in the flat quantum vacuum geometry. The alternate forms of Equation 
(142) are 

( ) ( )( )( )4 1 log 4 1

2

b a bπ

π

− − + −
               (143) 

( ) ( )( )4 log 4 1
2

b ab a aπ π π
π

− − + −
              (144) 

( )( ) ( ) ( )4 1 1 4 log 4
2 2

b ab a
a b

π π
π

− − −
+ −            (145) 

which have the expanded logarithmic form 

( ) ( )
25 22 4 log 2 log 2

2 2 2
ab ab ba a ab

π π
− + + − − + +        (146) 

 

 

Figure 5. 3D plot. 
 

 

Figure 6. Contour plot. 
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1) number theoretic properties of the equation of state 
a) Roots 
From which the alternate form  

( ) ( )24 4 5 4 log 4 log 4
2

b a ab ab a abπ π π π
π

− + − + − +
       (147) 

and the roots are 

( )2 log 2 1
0, ,

a a
a b

a
π π

π
− +

≠ =  

4b =                           (148) 

( )log 4 1a a
b

a
π π

π
− +

=                     (149) 

The polynomial discriminant is 

( ) ( ) ( )22 2 2 2 2 2

2

9 log 4 6 log 4 6 2 log 4 1
4b

a a a a aπ π π π π
π

+ + − − +
∆ = ,  (150) 

and the integer root are 

0, 4.a b= =                         (151) 

Thus the derivative of the alternative form Equation (147) is 

( )
( )

( ) ( )( )

22 4 25 2 2 log
4 4 44

1 4 1 log 4
2

a

ab bab a ab a

b b

ππ π π
π π π π ππ π

  ∂   − + + − + − +     ∂    

= − − +

 (152) 

b) Indefinite integral 
The indefinite integral is  

( )

( ) ( )( )

2

2

5 22 2 log 4 d
2 2 2 2

14 1 log 4
2

2

ab ab b aba a a

b a b a
constant

π π

π

π

  − + + − + − +  
  

 − − + − 
 = +

∫
         (153) 

which when we plot it, get the 3D plot that can be related to a D-brane/Instanton, 
and we also plot its contour plot 

From Figure 7, and Figure 8, we also observe that the vacuum quantum 
geometry starts to be uneven, meaning the seeds for the gravitational potential 
are starting to take effects due to the self-perturbations starting to take effect.  

The alternate forms of indefinite integral Equation (153) is 

( ) ( )( )4 2 log 2 2
2 2

a b ab a aπ π π
π

− − + −
               (154) 

( ) ( )( )( )4 1 log 4 2

4

a b a bπ

π

− − + −
                 (155) 

( ) ( ) ( )( )2 4 21 4 log 4
4 4

a b ab a
a b

π π
π

− − −
− +             (156) 
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Figure 7. 3D plot. 
 

 

Figure 8. Contour plot. 
 

and assuming a, b, and S are positive, then we have the alternative form 

( )( ) ( )( )2 21 21 2log 2 1 2log 2
4 2

ab aa b b a b
π π

− + − − + − + ,       (157) 

from which the expanded logarithmic form is 

( ) ( )2 2 2 2 2 2

1
2 5 1 122 log 2 log 2

4 4 2

aba a a b a a b a b
π π

−
+ ± − + + + .    (158) 

From the expanded logarithmic form, Equation (158), the alternative form is 

( ) ( )( )4 2 log 4
4

a b a ab aπ π π
π

− + − − + +
              (159) 

With the root 

( )2 log 2 2
0, ,

a a
a b

a
π π

π
− +

≠ =  

0, 4,a b= =  

( )log 4 2a a
b

a
π π

π
− +

=                    (160) 

The polynomial discriminant is  
2

2
8 16Δ

4a
b b

π
− +

=                      (161) 
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and the derivative is 

( ) ( )( )

( ) ( )( )( )

214 1 log 4
2

2

4 1 log 4 1

2

b a a b

a

b a b

π

π

π

π

  − + − + − + +  ∂   
∂  

 
 

− + − + −
=

           (162) 

with the indefinite integral 

( ) ( )( )

( ) ( )( )

2

3 2

14 1 log 4
2 d

2
14 1 log 4
3 .

4

b a a b
a

b a b a
Constant

π

π

π

π

 − + − + − + + 
 

 − − + − 
 = +

∫
         (163) 

From the above indefinite integral, we have the following 3D and the contour 
plots that can be related to a D-brane/Instanton,  

From Figure 9, and Figure 10, we also observe that the vacuum quantum 
geometry starts to be more uneven that that in Figure 7 and Figure 8. That is, 
the gravitational potential of the quantum vacuum geometry is growing, as a re-
sult of the growth of the vacuum self-perturbations.  

 

 

Figure 9. 3D plot. 
 

 

Figure 10. Contour plot.  
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The alternate forms of the indefinite integral Equation (163) are 

( ) ( )( )2 4 2 log 2 3
4 3

a b ab a aπ π π
π

− − + −
               (164) 

( ) ( )( )( )2 4 1 log 4 3

12

a b a bπ

π

− − + −
                (165) 

( ) ( ) ( )( )2
3 4 31 4 log 4

2 12
a b ab a

a b
π π
π

− − −
− +             (166) 

and assuming a, b, and S are positive, then we have the alternative form 

( )( ) ( )( )
2 2

3 31 11 2log 2 1 2log 2
12 2 4

a b aa b b a b
π π

− + − − + − + .      (167) 

The expanded logarithmic form of Equation (167) is 

( ) ( )
2

2
3 3 3 3 2 3

1
1 5 2 1 14log 2 log 2
3 12 3 12 6

a ba a a b a a b a b
π π

−
+ ± ± + + +    (168) 

and the alternate form is 

( ) ( )( )2 4 3 log 4
12

a b a ab aπ π π
π

− + − − + +
,             (169) 

with the root 

( )2 log 2 3
0, ,
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a b

a
π π

π
− +

≠ =  

0, 4,a b≠ =  

( )log 4 3a a
b

a
π π

π
− +

= .                   (170) 

The polynomial discriminant is 0∆ = , and the derivative of the alternate 
form Equation (169) is 

( ) ( )( )

( ) ( )( )( )

2 314 1 log 4
3

4

4 1 log 4 2
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           (171) 

and the indefinite integral is 

( ) ( )( )
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2 3
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14 1 log 4
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4
14 1 log 4
4 .
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b a a b
a
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 − + − + − + + 
 

 − − + − 
 = +

∫
         (172) 

The local minimum is  
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( ) ( )( )
( )( )

2 3
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14 1 log 4
13min

4 12 3 log 4
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π π

  − + − + − + +     = − 
+ 
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at  

( )
( )( ) ( )1, ,7 2log 2

3 2log 2
a b

π

 
= +  + 

             (173) 

In conclusion, the indefinite integral result Equation (172), and for 31 2
3

V a=  

(octahedron volume) and 34
3

V rπ=  (sphere volume), where 
2
ar = , we obtain: 

1) Octahedron volume 
For the octahedron we have 

( ) ( )( )3 4 314 1 log 4
4

18 2

a b a b aπ

π

 − − + − 
               (174) 

which when we plot it, get the 3D and the contour plots that can be related to a 
D-brane/Instanton 

From Figure 11, and Figure 12, we now observe that the vacuum gravitation-
al potential has grown exponentially and infinitely high as a results of the expo-
nentially grown and infinitely high growth vacuum self-perturbations near a = 1, 
i.e. the energy density of the universe at the big bang. 

The alternate forms were found to be  

( ) ( )( )62 4 2 log 2 4
4 12 3

a b ab a aπ π π
π

− − + −

×
             (175) 

( ) ( )7
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 (176) 

( ) ( )( )( )6 4 1 log 4 4

72 2

a b a bπ

π

− − + −
                (177) 

and the expanded form is 

( ) ( )
4

3 4 4 31 14 log 2
4 4 2

18 2

aa b a b a aππ π

π

 
− − + − 

             (178) 

with the expanded logarithmic form 

( )
( )

( ) ( )

6 6
7 7

7

77 2
7

1 14 2 1 2 2 2 136 36 2 1
36 36 2 2 36

log 2 22 1 2 log 2
36 2 2 18 36 2

a a b a a b a b

a ba b a

π π

× −
+ + − + −

× ×

+ − +
× × ×

   (179) 
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Figure 11. 3D plot. 
 

 

Figure 12. Contour plot. 
 

The alternate form of Equation (179) is 

( ) ( )( )6 4 4 log 4

72 2

a b a ab aπ π π

π

− + − − + +
             (180) 

With the root 

( )2 log 2 4
0, ,

a a
a b

a
π π

π
− +

≠ =  

0, 4,a b= =  

( )log 2 4a a
b

a
π π

π
− +

= .                  (181) 

The polynomial discriminant is 0∆ = , and the derivative is 

( ) ( )( ) ( )
( )

( ) ( )( )( )

3 4 3

5

14 1 log 4 2
4

12 3

4 7 1 log 4 24

72 2

b a a b a

a

a b a b

π

π

π

π

   − + − + − + +   ∂    
 ∂ ×
 
 

− + − + −
=

      (182) 
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and the indefinite integral  

( ) ( )( )

( ) ( )( )( )

3 3 4

7

14 1 log 4
4 d

18 2
4 7 1 log 4 32

4032 2

a b a a b
a

a b a b
Constant

π

π
π

π

 − + − + − + + 
 

− − + −
= +

∫
         (183) 

The local minimum is  

( ) ( )( ) ( )
( )

( )( )

3 4 3

57

14 1 log 4 2
4min

12 3

3200000 2

7411887 3 log 4

b a a b aπ

π

π

   − + − + − + +      
 
 
  

= −
+

 

at 

( )
( )( )

( )2log 220 23, , ,
5 57 3 2log 2

a b
π

 
=   + 

             (184) 

2) sphere volume 
For the sphere we have  

( ) ( )( )3 4 31 14 1 log 4
72 4

a b a b aπ − − + − 
 

             (185) 

Which when we plot it, get the 3D plot that can be related to a D-brane/ 
Instanton, and we also plot its contour plot 

As in Figure 13, and Figure 14 in case of the octahedron, here, we also 
observe that the vacuum gravitational potential has grown exponetially and 
infinittely high as a results of the exponentially grown and infinitely high growth 
vacuum self-perturbations near a = 1, i.e. the energy density of the universe at 
the big bang.  

The alternate forms of Equation (185) are  

( ) ( )( )6 4 2 log 2 4
2 2 2 4 3 3

a b ab a aπ π π− − + −

× × × × ×
              (186) 

( )

( )

6

7 6

1 1log 4
72 72 18

1 1 5 1log 4
288 288 288 72

a a

b a b a a

π π

ππ π

  − +  
  

   + + − −   
   

         (187) 

( ) ( )6 5 1 1 1log 4 log 4
288 288 288 72 72 72 18

b ba a b π π ππ π
   − + + − − +   

   
  (188) 

and assuming a, b, and S are positive, then we have the alternative form 

( )( ) ( )( )
6 6

7 71 11 2log 2 1 2log 2
288 72 72 18

a b aa b b a bπ π− + − − + − + ,   (189) 
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Figure 13. 3D plot. 
 

 

Figure 14. Contour plot. 
 

from which the expanded logarithmic form is  

( ) ( ) ( )76 7 7 2
6 7 7 log 21 1 5 11 log 2

18 72 72 72 4 72 4 36 72 2
a ba a b a ba b a a

ππ ππ π+ − + − + − +
× × ×

.(190) 

The alternative form of the expanded logarithmic form E. (193) 

( ) ( )( )61 4 4 log 4
288

a b a ab aπ π π− + − − + +           (191) 

with the root 

( )2 log 2 4
0,

a a
a b

a
π π

π
− +

≠ =  

0, 0,a b= =  

( )log 4 4a a
b

a
π π

π
− +

= .                   (192) 

The polynomial discriminant is 0∆ = , and the derivative is 
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( ) ( )( )

( )

( ) ( )( )( )

3
3 4

5

14 1 log 4 4
4 2

12 3

1 4 7 1 log 4 24
288

ab a a b

a

a b a b

π π

π

π

      − + − + − + +          ∂  
 ∂ × 
 
 

= − + − + −

      (193) 

From the indefinite integral is 

( ) ( )( )

( )

( )( )

3
3 4

56

14 1 log 4 4
4 2

min
12 3

1600000

7411887 3 log 4

ab a a bπ π

π

π

      − + − + − + +             
 
 
 
 

=
+

 

at  

( )
( )( )

( )2log 220 23, ,
5 57 3 2log 2

a b constant
π

 
= + +  + 

,       (194) 

By dividing the integral Equation (183) with the integral Equation (194), we 
obtain the result 

2 2
π

                          (195) 

With the decimal approximation 

2 20.9003163161571060695551991910067405826645741499552206255714374712
π

=  

(which is a DN Constant and also a transcendental number). It is also the re-
duced logarithmic form. The alternative representations are 

( ) ( )( )( )
( ) ( )( )( )( )( )

( ) ( )( )( )
( ) ( )( )( )( )( )

7

7

7

7

4 32 7 1 log 4

4 32 7 1 log 4 4032 2

16128
4 32 7 1 log 4

4 32 7 1 log 4 4032 2

16128

e

a b a b

a b a b

b a b a

a b a b

π

π π

π

π π

− + − + − + +

− + − + − + +

− + − + − + +
=

− + − + − + +

       (196) 

( ) ( )( )( )
( ) ( )( )( )( )( )

( ) ( )( )( )
( ) ( )( )( )( )( )

7

7

7

7

4 32 7 1 log 4

4 32 7 1 log 4 4032 2

16128
4 32 7 1 log log 4

4 32 7 1 log 4 4032 2

16128

a

a b a b

a b a b

b a b a a

a b a b

π

π π

π

π π

− + − + − + +

− + − + − + +

− + − + − + +
=

− + − + − + +

       (197) 
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( ) ( )( )( )
( ) ( )( )( )( )( )

( ) ( )( )( )
( ) ( )( )( )( )( )

7

7

7
1

7
1

4 32 7 1 log 4

4 32 7 1 log 4 4032 2

16128
4 32 7 1 3

4 32 7 1 3 4032 2

16128

a b a b

a b a b

b a b Li a

a b a b Li

π

π π

π

π π

− + − + − + +

− + − + − + +

− + − + − + − −
=

− + − + − + + −

      (198) 

where logb x  is the base b logarithm, ( )nLi x  is the polylogarithm function 
1) Series representations 

( ) ( )( )( )
( ) ( )( )( )( )( )

( ) ( )

7

7

0 0

0 0

4 32 7 1 log 4

4 32 7 1 log 4 4032 2

16128
4

11 2
2

!

kk k

k
k

a b a b

a b a b

z z
z

k

π

π π

π

−

∞

=

− + − + − + +

− + − + − + +

=
 − − − 
 ∑

       (199) 

for (not ( 0z ∈  and 0 0z−∞ < ≤ ))  

( ) ( )( )( )
( ) ( )( )( )( )( )

( ) ( )

7

7

0 0

0 0

4 32 7 1 log 4

4 32 7 1 log 4 4032 2

16128
4

11 2
2

!

kk k

k
k

a b a b

a b a b

z z
z

k

π

π π

π

−

∞

=

− + − + − + +

− + − + − + +

=
 − − − 
 ∑

       (200) 

for (not ( 0z ∈  and 0 0z−∞ < ≤ )) 

( ) ( )( )( )
( ) ( )( )( )( )( )

( ) ( ) ( )

7

7

0

4 32 7 1 log 4

4 32 7 1 log 4 4032 2

16128
4

11 2
arg 2 2exp

2 !

k k k

k
k

a b a b

a b a b

x x
x

i x
k

π

π π

π π
π

−

∞

=

− + − + − + +

− + − + − + +

=
 − − −  −   

     
∑

    (201) 

for ( x∈  and 0x < ) 

( ) ( )( )( )
( ) ( )( )( )( )( )

( ) ( )
( ) ( )( )

( ) ( )

0
0

7

7

1 2 arg 2 2
1 2 1 arg 2

0

2
0

0

0

0

4 32 7 1 log 4

4 32 7 1 log 4 4032 2

16128

14

11 2
2

!

z
z

kk k

k
k

a b a b

a b a b

z
z

z z

k

π
π

π

π π

π

 − − 
 − + − 

−

∞

=

− + − + − + +

− + − + − + +

 
 
 =

 − − − 
 ∑

     (202) 
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SECTION C: On the application of the formulas of the volumes of an oc-
tahedron and a sphere to quantum gravity 

In this section we apply the number theoretic properties and the Ramanujan 
recurring number properties to the quantum geometry of the white hole. With 
regard to a sphere inscribed in an octahedron, we have the following formulas. 

3
0

1 2
3

V l= , 34
3sV rπ=  where 1

2sr =               (203) 

We take the ratio between the two above formulas for the octahedron and 
sphere in Equation (203) as shown in Figure 15 

3

3

1 2 2 23
4
3 2

l

l π
π

=
 
 
 

, (for 0l ≠ )                 (204) 

with the decimal approximation,  

2 20.9003163161571060695551991910067405826645741499552206255714374712
π

= (205) 

(which is a DN Constant, and a transcendental number)  
The series representations Equation (204) 

( ) ( )0

3 0 0

3

0
11 2
222 !

1 4 3
3 2

kk k

k
k

z z
zl k

l π
π

−

∞

=

 − − − 
 

=
  
     

∑
        (206) 

for (not ( 0z ∈  and 0 0z−∞ < ≤ )) 

( ) ( ) ( )
03

3

11 2
arg 2 22exp

2 !2

1 4 3
3 2

k k k

k
k

x x
x

i x
kl

l

π
π

π
π

−

∞

=

 − − −  −   
     =

       

∑
 (207) 

for ( x∈  and 0x < ) 
 

 

Figure 15. Sphere inscribed in an octahedron. 
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( ) ( )
( ) ( )( )

( ) ( )0
0

1 2 arg 2 2 0
1 2 1 arg 2 2
0 03

0

0
3

11 2
212

!2

1 4 3
3 2

kk k
z

z k
k

z z
z

z kl
l

π
π

π
π

−
 − 

 + − ∞ 
=

 − − −    
 
 =

       

∑
 (208) 

from which we obtain 
2

2

3

3

1 2
13 62
3

4
3 2

l

l

π

π

 
 
 
 
 

= 
 
 
       

,                   (209) 

with the decimal approximation 

( )
1.6449340668482264364724151666460251892189499012067984377355582293

2 2 6 1.644934ζ π= = =
(210) 

(which is the trace of the instanton shape and Ramanujan Recurring Number, 
and it is also a transcendental number).  

The series representations of Equation (209) are 
2

213

3

1 2 1
3 2

3 4
3 2

k kl
lπ

∞

=

 
 
 
 
  =
 
 

          

∑ ,                (211) 

( )

2

213

3

11 2 2
3 2

3 4
3 2

k

k kl
lπ

∞

=

 
 
 
  −  = −
 
 

          

∑               (212) 

( )

2

203

3

1 2 4 1
3 32 1 2

3 4
3 2

kl k
lπ

∞

=

 
 
 
 
  =
  +
 

          

∑ ,            (213) 

with the integral representations 
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( )

2

2
2

3 0

1

3

1 2 8 1 d
3 32

3 4
3 2

t t
l
lπ

 
 
 
 
  = −
 
 

          

∫                (214) 

2

2

23 0

3

1 2 2 1 d
3 3 12

3 4
3 2

t
tl

lπ

∞

 
 
 
 

   =    + 
 

          

∫                (215) 

2

2
1

23 0

3

1 2 2 1 d
3 3 12

3 4
3 2

t
tl

lπ

 
 
 
 

   =    + 
 

          

∫                (216) 

We note that, from the sum of the first nine numbers excluding 0, i.e., 
1 2 3 4 5 6 7 8 9 45+ + + + + + + + =  (these are the fundamental numbers, from 
which, through infinite combinations, all the other numbers are obtained), we 
obtain the following interesting formula:  

23

11
2 1 1 2 3 4 5 6 7 8 9
3 MRBC

e
ππφ

+
  + + + + + + + + +  
  

      (217) 

where φ  is the golden ratio, MRBC  is the MRB constant. The exact result of 
Equation (217) is then given by 

( ) ( )2 3 1 3

3 2
3 5 12

3
MRB

e
C

π π

π φ

− −× +
+

,               (218) 

With the decimal approximation 

( )
1.6452973785207760327718962297937282004549534211102915708253939286

2 2 6 1.644934ζ π≈ = =
(219) 

(which is a trace of the instanton shape and Ramanujan Recurring Number)  
The alternate forms for Equation (218) is 

( ) ( )1 3 2 3 1 3
3 23 5 1

2 3MRB

e
C

π π

π φ
− −× +

+
,              (220) 
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( ) ( )

( )
2 3 1 3

3
3 5 12 1 3 5

3 2
MRB

e
C

π π

π
− −× +

+ +
,             (221) 

( ) ( )1 3 2 3 1 32 3
32 3 5 1

8 18 6 5MRB

e
C

π π

π
− −× × +

+ +
,           (222) 

From which the expanded forms are 

( ) ( )

( )
2 3 1 3

23
3 5 12 1 1 5

3 4
MRB

e
C

π π

π
− −× +

+ +
,            (223) 

( ) ( )2 3 1 3

3
3 5 1

2 3 5
3 2 2

MRB

e
C

π π

π
− −× +

+ +
,             (224) 

and making input  

23

16 1
2 1 1 2 3 4 5 6 7 8 9
3 MRBC

e
ππφ

 
 
 +    + + + + + + + + +      

,    (225) 

then we get exact results 

( ) ( )2 3 1 3

3 2
6 3 5 12

3
MRB

e
C

π π

π φ

− −

 
 

× + 
 + 
 

               (226) 

with the decimal approximation 

3.141939571526843089243307321961626326775133868116590446825417393 π≈ (227) 

(which is a Ramanujan Recurring Number) 
The alternate form of Equation (226) is 

( ) ( )1 3 2 3 1 3
3 26 3 5 1

2 3MRB

e
C

π π

π φ
− − 

× +  + 
,              (228) 

( ) ( ) ( )1 2 1 3 1 6 2 3 3
3

63 5 2 3 5
4 9 3 5MRB

e
C

π π π π

π
− −  

× +  + + 
,         (229) 

from which the expanded forms are 

( ) ( )

( )
2 3 1 3

23
6 3 5 12 1 1 5

3 4
MRB

e
C

π π

π
− −

 
 

× + 
 + + 
 

,           (230) 

( ) ( )1 2 3 1 3

3
2 3 5 6

2 3 5
3 2 2

MRB

e
C

π π

π
− −× × +

+ +
.            (231) 
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All 2nd roots of ( ) ( )

( )

1 3

2 3 1 3
1
3

2

6 3 5 1
2

3
MRB

e

C

π π

π
φ

− −

  
  
  
   +     +       

 are 

( ) ( )2 3 1 30

3 2
e 6 3 5 1 3.14192

3
MRB

e
C

π π

π φ

− −

 
 

× + ≈ 
 + 
 

        (232) 

(real, principal root) 

( ) ( )2 3 1 3

3 2

ee 6 3 5 1 3.14192
3

i

MRBC
π ππ

π φ

− −

 
 

× + ≈ − 
 + 
 

       (233) 

(real root). 
Furthermore, form the input: 

3

3

1 2
32 2 8

4
3 2

l

l
π

π
× =

 
 
 

,                    (234) 

where value 8 is linked to the “Ramanujan function” (an elliptic modular 
function that satisfies the need for “conformal symmetry”) that has 8 “modes” 
corresponding to the physical vibrations of a superstring. 

The series representations Equation (234) are 

( )( ) ( ) ( )
2

3 0 0
2

0 03

11 22 2 2 24
!1 4 3

3 2

kk k

k
k

z zl
z

kl

π

π

−

∞

=

  − − −    =
            

∑       (235) 

for (not ( 0z ∈  and 0 0z−∞ < ≤ )), 

( )( )

( ) ( ) ( )

3

3

2

22
0

2 2 2

1 4 3
3 2

11 2
arg 2 24exp

2 !

k k k

k
k

l

l

x x
x

i x
k

π

π

π
π

−

∞

=

       

  − − −   −    =          
 

∑

   (236) 

for ( x∈  and 0x < ) 

( )( ) ( ) ( )
( ) ( )

( ) ( )0

0

2

3 arg 2 2 0
1 arg 2 2
0 03

0

0

11 22 2 2 214
!1 4 3

3 2

kk k
z

z k
k

z zl
z

z kl

π
π

π

π

−
 − 

∞ + − 
=

  − − −      =                 

∑  (237) 
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And by the input 
2

3

1 2
36 2 24

4
3 2

l

l
π

π
× =

 
 
 

                     (238) 

The value 24 is linked to the “Ramanujan function” (an elliptic modular 
function that satisfies the need for “conformal symmetry”) that has 24 “modes” 
corresponding to the physical vibrations of a bosonic string representing a 
bosons. From the analysis, we observe that there is no number theoretic 
connection with physical vibrations of fermionic strings at extremely low 
entropy. This fact is confirmed by the fact that the Higgs bosons at the moment 
of the big bang and infinitesimally shortly thereafter, facilitated the creation of 
fermions (matter and antimatter particles) [8]. Thus we note that the ingredients 
for the formation of electromagnetic radiation from photons (a Boson), and the 
formation of matter from the Higgs boson after the big bang, are intrinsic 
properties of the vacuum energy in pre big bang. 

The series representations are 

( )( ) ( ) ( )
2

3 0 0
2

0 03

11 26 2 2 212
!1 4 3

3 2

kk k

k
k

z zl
z

kl

π

π

−

∞

=

  − − −    =
            

∑       (239) 

for (not ( 0z ∈  and 0 0z−∞ < ≤ )), 

( )( )

( ) ( ) ( )

3

3

2

22
0

6 2 2

1 4 3
3 2

11 2
arg 2 212exp

2 !

k k k

k
k

l

l

x x
x

i x
k

π

π

π
π

−

∞

=

  
     

  − − −   −    =          
 

∑

    (240) 

for ( x∈  and 0x < ), 

( )( )

( ) ( )
( ) ( )

( ) ( )0

0

3

3

2

arg 2 2 0
1 arg 2 2
0

0

0
0

6 2 2

1 4 3
3 2

11 2
2112

!

kk k
z

z k
k

l

l

z z
z

z k

π
π

π

π

−
 − 

∞ + − 
=

       

  − − −      =     
 
 

∑

 (241) 

By the input 
4

3

3

1 2
32 2 4096

4
3 2

l

l
π

π

 
 
 × =
    

  

.                 (242) 
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The number 4096 = 642, is the Ramanujan Recurring Number, that when 
multiplied by 2 give 8192. The total amplitude vanishes for gauge group SO 
(8192) for bosonic string SO (8192), while the vacuum energy is negative and 
independent of the gauge group. The vacuum energy and dilaton tadpole to 
lowest non-trivial order for the open bosonic string. While the vacuum energy is 
non-zero and independent of the gauge group, the dilaton tadpole is zero for a 
unique choice of gauge group, SO (213) i.e. SO (8192), [9]. This could be the 
implications for a pre-big bang scenario where only self-perturbative bosonic 
strings lived when the enthalpy was extremely low as discussed above. This regime 
contains all the intrinsic properties of superstrings inherent in the bosonic 
strings that as observed by [10], (2006), would at the big bang give effect to the 
properties of matter (fermions) as Higgs Boson. This number theoretic connection 
to the gauge group SO (8192), gives a much more compelling relevance of the 
bosonic string theory SO (8192), to quantum gravity and places this string 
theory where it should appropriately be in the evolution of the universe from a 
quantum gravity perspective rather than it be neglected because it doesn’t include 
fermionic strings to confirm to post big-bang reality. The vanishing of the bosonic 
string’s amplitude could be explained by the effect of extreme low entropy on the 
quantum vacuum geometry as discussed in [4]. Thus, as the entropy increases 
infinitesimally as a result of the vacuum self-perturbation then also is the 
amplitude of the vibrating bosonic strings from zero. [9] was right to indicate 
that the “vanishing of the amplitude of the bosonic string could be the results of 
string theory itself”, but here, we give a much more elaborate explanation of 
what could be happening.  

We further proceed and make the input 
4

3

3

1 2
327 2 2 1 1729

4
3 2

l

l
π

π

 
 
 × + =
    

  

                (243) 

This result is very near to the mass of candidate glueball ( )0 1710f  scalar 
meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of 
an elliptic curve 2 31728 8 3= × . The number 1728 is one less than the Hardy- 
Ramanujan number 1729 (taxicab number, as it can be expressed as the sum of 
two cubes in two different ways 3 3 3 310 9 12 1 1729+ = + =  and Ramanujan’s 
recurring number). Since bosons are made of gauge bosons and scalar bosons 
(meson), then this number theoretic analysis perhaps confirm that the number 
1729, confirm the fact that both the gauge and scalar bosons are actually 
different states of a single bosonic string, and that these states are isomorphic or 
that the states vibrations are synchronised with the state of the bosonic string. 
This also implies that each state lives inside a cubic or octahedron as a spherical 
cloud, and that the total sum of these two states is the state of the bosonic string. 
Taking the cross section of the bosonic string, we realise that it must be a 
rectangular, or a two shaped octahedron. As the string vibrates in difference 
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frequencies, so is the two spherical cloud states inside the string. That is, the 
string vibrations simply excites the gauge bosons i.e. Photon, gluon, W and Z 
inside one cube/octahedron, and the scalar boson i.e. Higgs inside the other 
cube/octahedron. 

Furthermore, if we bring the picture of loop quantum gravity (LQG) with the 
property of a discontinuous quantum geometry, we can therefore, think of the 
graviton living on the vertices of the rectangles or the octahedrons. This graviton 
then acts a glue binding the bosonic strings lattice together forming a complete 
cross section of alternating states of between the gauge bosons and scalar bosons. 
This arrangement of states then gives a precise supersymmetric quantum picture 
of the vacuum geometry at low entropy.  

But the geometry further reveal very important fact, that since the vacuum 
geometry is discontinues, then we observe that there is no relation whatsoever 
between the quantum vibrational frequencies of the strings, and that of the 
vertices of the vacuum geometry where the graviton lives. Ashtekar et al., (2021) 
asserted that gravity is simply a manifestation of spacetime geometry. Thus, the 
graviton cannot be a string boson, however, there is a duality between gravity 
and strings [11]. Also, gauge bosons have spin-1, while the graviton has spin-2. 
Then lastly, because of the thermodynamic constraints we were able to arrive at 
the results we have, now this bring us to this fundamental question; that string 
theory and LQG theory are two intrinsic aspects of a complete quantum gravity 
theory we are after? That is, without the other no complete and compelling 
quantum geometry can be attained, as it is done here? This needs to be 
investigated further. 

The series representations of Equation (243) are 

( )( ) ( )

4

3
8 8

03

12 2 2
27 1 1 27 1 256 2 1 256 22

1 4 3
3 2

k

k

l

l k

π

π

∞

=

 
      + = + − + − +                 

∑ , (244) 

( )( )

( ) ( )

4

3

3

8

8

0

2 2 2
27 1

1 4 3
3 2

11 1 256 2
21 27 1 256 2

!

k
k

k
k

l

l

k

π

π

−

∞

=

 
 
 

+           

 − − − + 
 = + − + ∑

,       (245) 

( )( ) ( ) ( )
4

8
3 0 0

0 03

11 256 22 2 2 227 1 1 27
!1 4 3

3 2

k
k k

k
k

z zl
z

kl

π

π

−

∞

=

     − − −    + = +           

∑ . (246) 
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We input 
4 4

3 3

3 3

1 12 21 1 2333 32 2 27 2 2 1
25 144 1444 4

3 2 3 2

l l

l l
π π

π π

               × × + × + =                            

, (247) 

With a decimal approximation 

1.61805555555555555555555555555555555555555555555555555555555555, (248) 

Which is the result that is a very good approximation to the value of the gol-
den ratio 1.618033988749… (which is a Ramanujan Recurring Number). The 
1.61805 is the repeating decimal.  

The series representations  

( ) ( )

( ) ( )

( ) ( )

4 4

3 3

3 3

8

0 0
8

0 0

8

0

0

2 2 2 2 2 2
27 1

3 34 4
3 2 3 2

144 25

11 2
21 1 256

3600 !

11 256 2
227

kk k

k
k

k

k

l l

l l

z z
z

k

z
z

π π

π π

−

∞

=

             + +                                     
×

    − − −     = +  
    

 − − − 
 +

∑

0

0 !

k
k

k

z

k

−

∞

=








∑

       (249) 

for (not ( 0z ∈  and 0 0z−∞ < ≤ )), 

( ) ( )

( ) ( ) ( )

4 4

3 3

3 3

8

88
0

2 2 2 2 2 2
27 1

3 34 4
3 2 3 2

144 25

11 2
arg 2 21 1 256exp

3600 2 !

k k k

k
k

l l

l l

x x
x

i x
k

π π

π π

π
π

−

∞

=

             + +                                     
×

    − − −   −     = +             

+

∑

( ) ( ) ( )88

0

11 256 2arg 256 2 227exp
2 !

k
k k

k
k

x xx
i x

k
π

π

−

∞

=

    − − − +− +                 

∑

 (250) 

for ( x∈  and 0x < ) 
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( ) ( )

( ) ( )
( ) ( )

( ) ( )0

0
0

4 4

3 3

3 3

4 arg 2 2 0
4 4 arg 2 2
0 0

0

2 2 2 2 2 2
27 1

3 34 4
3 2 3 2

144 25

11 2
21 11 256

3600 !

kk k
z

z k
k

l l

l l

z z
z

z k

π
π

π π

π π

−
 − 

∞ + − 
=

             + +                                     
×

  − − −    = +    

 

∑

( )
( )

( ) ( )8
80

0

8

8
1 2 arg 256 2 2 01 2 1 2 arg 256 2 2

0

0

0
0

11 256 2
2127

!

k
k k

z
z

k
k

z z
z

z k

π
π

−  −        + −     ∞  
=


 
 
 
 


 − − −      +    



∑

 (251) 

From inputting the transcendental number Equation (233), we obtain: 
2

1 26
3 2 2

π

    
  
  
     

,                      (252) 

with the decimal approximation 

3.1415926535897932384626433832795028841971693993751058209749445923 π=  (253) 

(which is a transcendental number). 
All 2nd roots of 2π  are 0e 3.1416π ≈  (real, principal root), e 3.1416iππ ≈ −  

(real root). Thus the series representations of Equation (252) are  

( )
2

0

16 2 4
3 1 22 2

k

k k
π

∞

=

 
  −
  =

+ 
 
 

∑ ,                  (254) 

( ) ( )
2

1 2 1 2 1 2

0

4 1 1195 5 4 2396 2
3 1 22 2

k k k k

k k
π

− − + +
∞

=

 
  − − ×
  = −

+ 
 
 

∑ ,     (255) 

2

0

6 2 1 1 2 1
3 4 1 2 1 4 3 42 2

k

k k k k
π

∞

=

 
       = − + +   + + +     
 
 

∑ .       (256) 

The integral representations are  
2

2
0

16 2 4 1 d
3 2 2

t t

π

 
 
  = −
 
 
 

∫ ,                  (257) 
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2

0

1

2

6 2 12 d
3 2 2 1

t
t

π

 
 
  =
  −
 
 

∫                   (258) 

2

20

6 2 12 d
3 12 2

t
t

π

∞

 
 
  =

+ 
 
 

∫                   (259) 

It is plausible to hypothesize that π and φ, in addition to being important ma-
thematical constants, are constants that also have a fundamental relevance in the 
various sectors of Theoretical Physics and Cosmology 

From 
2

6
π , we obtain: 

2
1 4

3
6
π

×                          (260) 

With the decimal approximation  

2 20.90031631615710606955519919100674058266457414995522062557714374713
π

=  

(which is the DN Constant, and a transcendental number). 

All 2nd roots of 2
8
π

 are 
02 2e 0.9003

π
≈  (real, principal root), and  

2 2e 0.003
iπ

π
≈  (real root). The series representations of Equation (260) are  

( ) 2

2 0

8 11 1
24

!3
6

k
k

k
k k

π
π

∞

=

   − − + −   
   = ∑              (261) 

( ) 0 02

02 0

1 81
24

!3
6

k
k k

k
k

z z
z

k
π

π

−

∞

=

   − − −   
   = ∑           (262) 

for (not ( 0z ∈  and 0 0z−∞ < ≤ )), 

( ) 22

2 0

8 18 1arg
24 exp

2 !3
6

k
k k

k
k

x xx
i x

k
πππ

ππ

−

∞

=

        − − −−              =
  
    

∑  (263) 

for ( x∈  and 0x < ) 
Section B: Number connections to the Planck multipole spectrum fre-

quency and to the hypothetical Gluino mass  
We note that, from the number 8, we obtain as follows: 
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Figure 16. “Golden” Range number scale. 
 

28 64= , 28 2 8 1024× × = , 4 2 28 8 2= × ,          (True) 
48 4096= , 2 68 2 4096× = , 13 42 2 8= × ,          (True) 

132 8192= , 42 8 8192× =  

From Figure 16, we notice how from the numbers 8 and 2 we get 64, 1024, 
4096 and 8192, and that 8 is the fundamental number. In fact 82 = 64, 83 = 512, 84 
= 4096. We define it “fundamental number”, since 8 is a Fibonacci number, 
which by rule, divided by the previous one, which is 5, gives 1.6, a value that 
tends to the golden ratio, as for all numbers in the Fibonacci sequence 

Finally we note how 82 = 64, multiplied by 27, to which we add 1, is equal to 
1729, the so-called “Hardy-Ramanujan number”. Then taking the 15th root of 
1729, we obtain a value close to ζ(2) that 1.6438…, which, in turn, is included in 
the range of what we call “golden numbers” 

Furthermore for all the results very near to 1728 or 1729, adding 64 = 82, one 
obtains values about equal to 1792 or 1793. These are values almost equal to the 
Planck multiple spectrum frequency (Black Body Radiation) 1792.35 and to the 
hypothetical Gluino mass.  
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Abstract 
Previously, we presented several empirical equations using the cosmic mi-
crowave background (CMB) temperature that were mathematically con-
nected. Next, we proposed an empirical equation for the fine-structure con-
stant. Considering the compatibility among these empirical equations, the 
CMB temperature (Tc) and gravitational constant (G) were calculated to be 
2.726312 K and 6.673778 × 10−11 m3∙kg−1∙s−2, respectively. Every equation can 
be explained in terms of the Compton length of an electron (λe), the Comp-
ton length of a proton (λp) and α. However, these equations are difficult to 
follow. Using the correspondence principle with the thermodynamic prin-
ciples in solid-state ionics, we propose a canonical ensemble to explain these 
equations in this report. For this purpose, we show that every equation can be 
explained in terms of Avogadro’s number and the number of electrons in 1 C. 
 

Keywords 
Temperature of the Cosmic Microwave Background 

 

1. Introduction 

The symbol list is shown in Section 2. We discovered Equations (1), (2) and (3) 
[1] [2] [3] expressed in terms of the cosmic microwave background (CMB) 
temperature. We then attempted to reduce their errors by modifying the values 
of 4.5 and π [4] [5]. 
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2
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p eGm m hc
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= × ×
 
 
 

π
π

                     (2) 

2 2

04
e

c
m c e kT

e ε


π


× = × 
 π 

                     (3) 

Next, we discovered an empirical equation for the fine-structure constant [6]. 

137.0359991 136.0 1113077
3 13.

1
5×

= + +              (4) 

136.011307713.5 1836. 26515 4 p

e

m
m

× = =               (5) 

Equations (4) and (5) may be related to the transference number [7] [8]. Next, 
we proposed the following values as deviations of the values of 9/2 and π  [8] [9]. 

( )

24
3

3.13201 V m

p
e

e

m
m

m
c

ec

 
+ 

 =⋅                (6) 

2

14.48852
A m 4

3

m

p
p

e

m
m

c

c
m

q 
 ⋅   + 

 

=


               (7) 

Then, 4
3

p

e

m
m

 
+ 

 
 has units of 

2m
s

 
 
 

. Using the redefinition of Avogadro’s 

number and the Faraday constant, these values can be adjusted back to 9/2 and π 
[9]. 
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p
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 

+ 
 π =⋅                 (8) 
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14.5
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3
p

p n
e

m

e

new

w

m
c

m

q

m

c 
 ⋅    + 

 

=                (9) 

Furthermore, every equation can be explained in terms of the Compton length 
of an electron (λe), the Compton length of a proton (λp) and α  [10]. However, 
these equations are difficult to follow. Our purpose in this report is to consider 
the physical meanings. Using the correspondence principle with the thermody-
namic principles in solid-state ionics, we propose a canonical ensemble to ex-
plain these equations. For this purpose, we show that every equation can be ex-
plained in terms of Avogadro’s number and the number of electrons in 1 C. The 
remainder of this paper is organized as follows. In Section 2, we present the list 
of symbols used in our derivations. In Section 3, we discuss the purpose of this 
report. Using the correspondence principle with the thermodynamic principles 
in solid-state ionics, we try to show the canonical ensemble to explain these equ-
ations. In Section 4, we propose several equations that are functions of Avoga-
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dro’s number and the number of electrons in 1 C. In Section 5, using these equa-
tions, we explain our main equations. The remaining problems are discussed. In 
Section 6, our conclusions are described. 

2. Symbol List 
2.1. MKSA Units (These Values Were Obtained from Wikipedia) 

G: gravitational constant: 6.6743 × 10−11 (m3∙kg−1∙s−2) 
(we use the compensated value 6.673778 × 10−11 in this report) 
Tc: CMB temperature: 2.72548 (K) 
(we use the compensated value 2.726312 K in this report) 
k: Boltzmann constant: 1.380649 × 10−23 (J∙K−1) 
c: speed of light: 299792458 (m/s) 
h: Planck constant: 6.62607015 × 10−34 (J s) 
ε0:  electric constant: 8.8541878128 × 10−12 (N∙m2∙C−2) 
μ0: magnetic constant: 1.25663706212 × 10−6 (N∙A−2) 
e: electric charge of one electron: −1.602176634 × 10−19 (C) 
qm: magnetic charge of one magnetic monopole: 4.13566770 × 10−15 (Wb) 
(this value is only a theoretical value, qm = h/e) 
mp: rest mass of a proton: 1.6726219059 × 10−27 (kg) 
(we use the compensated value 1.672621923 × 10−27 kg in this report) 
me: rest mass of an electron: 9.1093837 × 10−31 (kg) 
Rk: von Klitzing constant: 25812.80745 (Ω) 
Z0: wave impedance in free space: 376.730313668 (Ω) 
α: fine-structure constant: 1/137.035999081 
λp: Compton wavelength of a proton: 1.32141 × 10−15 (m) 
λe: Compton wavelength of an electron: 2.4263102367 × 10−12 (m) 

2.2. Symbol List after Redefinition 

( )4.48852
4.

1.59809E 19
5

Cnewe e= × −=                (10) 

( )_ 3.1320
4.14832E 15

1
Wbmm newq q π

= −=×             (11) 

( )_
4.48852

4.5 3.1
6.62938E 34 J s

3201new m nnew ewe qh h π
= =× = × − ⋅×    (12) 

( )_

_
_

4.5
4.48852 3.13201

25958.0 Ωm new
n w

new
eRk

q
Rk

e
== × ×

π
=        (13) 

We observe that Equation (13) can be rewritten as follows. 

( ) ( )14.5 V m 25957.9966027 Ω
A m

p
new

e

m
Rk

m
 = × π ⋅ =× ⋅ 

      (14) 

( )0 _ 02

2 4.52 378.849 Ω
4.48852 3.13201

new
new new

new

hZ Rk Z
e

α α= × = × = × =
π

×  (15) 

We observe that Equation (15) can be rewritten as follows. 
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( ) ( )0 _
14.5 V m 2 378.8493064 Ω

A m
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e

m
m

Z α × π ⋅ × × ⋅ 
==      (16) 

( )0 _ 0
20 _ 4.5

4.48852 3.1320
1.26371

1
E 06 N Anew
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Z
c

µ µ −×
π

−= ⋅= × =    (17) 

( )0 _ 0
0 _

14.48852 3.13201
4.

8.80466E 12 F m
5

1
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newZ c
ε ε −× = −× ⋅

π
= =

×
   (18) 

( )_
0 _ 0 _ 0 0

12997921 458 m s1
new

new new

c c
ε µ ε µ

−= = ⋅= =         (19) 

The Compton wavelength (λ) is as follows. 
h

mc
λ =                            (20) 

This value (λ) should be unchanged since the unit for 1 m is unchanged. 
However, in Equation (12), the Planck constant is changed. Therefore, the units 
for the masses of one electron and one proton should be redefined. 

( )_
4.48852

4.5 3.13201
9.11394E 31 kge new em m == −×

π
×         (21) 

( )_
4.48852

4.5 3.13201
1.67346E 27 kgp new pm m == −×

π
×         (22) 

From the dimensional analysis in the previous report [9], 

( )_
4.48852

3.13201
3.7659625E 2

4.5
3 Jc new ckT kT == −×

π
×        (23) 

Next, to simplify the calculation, GN is defined as follows. 

( ) ( )3 2 3 26.6737781 kg m s E 11 m sNG G − −= × ⋅ = ⋅−           (24) 

Now, we hope that the value of GN remains unchanged. However, GN should 
change [9]. 

( ) ( )3 2 3 2
_ m s 6 m s.69084770E 11

4.48 2
4

8
.

5
5

N new NG G − −−= × ⋅ = ⋅      (25) 

2.3. Symbol List in Terms of the Compton Length of an Electron  
(λe), the Compton Length of a Proton (λp) and α 

The following equations were proposed in a previous report [10]. 
2 4

_ 2

2 2 4

2

2 4 J m
3 s

J m m J mV m A m 2.76564E 07 constant
4.5 s s s

p
e new

e

p

m
m

c
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+   

  
     π ⋅ ⋅
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 
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4.5 s s
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e
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e c
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× +  
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     (31) 

3. Purpose 

The purpose of this report is to explain the empirical equations through the cor-
respondence principle with thermodynamic principles in solid-state ionics. 

3.1. Introduction to the Thermodynamic Principles in Solid-State  
Ionics 

A solid oxide fuel cell (SOFC) directly converts the chemical energy of a fuel gas, 
such as hydrogen or methane, into electrical energy. A solid oxide film is used as 
the electrolyte, where the main carriers are oxygen ions and the minor carriers 
are electrons. When samarium-doped ceria (SDC) electrolytes are used in 
SOFCs, the open-circuit voltage (OCV = 0.80 V at 1073 K) becomes lower than 
the Nernst voltage (Vth = 1.15 V at 1073 K), which is obtained when using yt-
tria-stabilized zirconia (YSZ) electrolytes. The canonical ensemble is shown in 
Figure 1. 

Then, we noticed the following equations, which can be explained by Jarzyns-
ki’s equality [11] [12]. 

( )1
2

a
th ion

EOCV V t
e

= − − ×                     (32) 

where tion is the transference number of ions near the anode. Ea is the activation 
energy for ions. When SDC electrolytes are used, tion near the anode is 0. Ea is 0.7 
eV. Thus, 

0.7 eV1.15 V 0.80 V
2

OCV
e

= − =                  (33) 
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Figure 1. Canonical ensemble in SOFCs. 

 
To explain Equation (32) by the electrochemical method, the following equa-

tions are proposed. 

i i iz Fη µ ϕ= +                        (34) 

_ _i hopping i vacanciesη η=                     (35) 

_ _i hopping i vacancies A aN Eµ µ= +                 (36) 

i hopping i vacancies A aZ F Z F N Eφ φ= −                (37) 

where ηi, μi, Zi, F, φ and NA are the electrochemical potential energy of ions, the 
chemical potential energy of ions, valence of species i, the Faraday constant, the 
electrical potential and Avogadro’s number. ηi_hopping, ηi_vacancies, μi_hopping, μi_vacancies, 
φhopping, and φvacancies are the electrochemical potential energy of hopping ions, 
electrochemical potential energy of ions in vacancies, chemical potential of hop-
ping ions, chemical potential of ions in vacancies, electrical potential of hopping 
ions, and electrical potential of ions in vacancies, respectively. 

From Equation (37), 

2
a

hopping vacancies
E

e
ϕ ϕ= +                       (38) 

This electrical potential is neutralized by free electrons and dissipated. There-
fore, the energy loss due to dissipation (Eloss_dissipation) is 

( )_ 1loss dissipation ion aE t E= − ×                    (39) 

3.2. Correspondence Principle with the Thermodynamic  
Principles in Solid-State Ionics 

The fine structure constant is the interaction coefficient. Thus, 

1 iontα = −                           (40) 

We thought that kTc is related to the energy loss due to dissipation. From Eq-
uations (39) and (40), 
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_
_ 0.03219 (eV)

1
loss dissipation c

a space
ion

E kT
E

t α
= = =

−
            (41) 

where Ea_space is the activation energy of the space. The canonical ensemble from 
the correspondence principle is shown in Figure 2. From Equations (36) and (41), 

_ _ _ 0i vacancies i hopping c new

A A

kT
N N

µ µ
α

= − >                 (42) 

Therefore, the minimum mass (Mmin), which may be related to our main Equ-
ation (2), is 

( )2 2 5.739210E 38 kgspace c
min

E kTM
c cα

= = =
×

−             (43) 

3.3. Our Image for the Proposed Canonical Ensemble from the  
Correspondence Principle 

From the correspondence principle, there should be inevitable dissipations from 
the wave situation to the particle situations. In the area of solid-state ionics, the 
dissipations recover immediately after ion hopping.  

Gravity is not directly related to the dissipation energy and is related to the 
activation energy (kTc/α). In the area of solid-state ionics, the activation energy 
becomes small when the vacancies increase. From the correspondence principle, 
a large mass has a smaller activation energy due to the increase in the number of 
vacancies. Then, one large mass has a smaller dissipation energy than the sum of 
dissipation energies from the two separated masses. 

 

 

Figure 2. Canonical ensemble from the correspondence 
principle. 

4. Methods 
4.1. Introduction to Avogadro’s Number and the Number of  

Electrons in 1 C 

Avogadro’s number is 6.02214076 × 1023. This value is related to the following 
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value. 

1 5.978637E 23A
p

gN
m

= = +                     (44) 

Using the redefined values, the new definition of Avogadro’s number is 

_
_

1 5.975649E 26new
A new

p new

kgN
m

= = +                   (45) 

From Equations (44) and (45), 

_
4.5 3.132011 1000

4.488520A new AN N= × × ×
π

              (46) 

The number of electrons in 1 C (Ne) is 
 

6.241509E 181
e

CN
e

+= =                    (47) 

Using the redefined values, 

_
1 6.257473E 18new

e new
new

CN
e

= +=                  (48) 

From Equations (47) and (48), 

_
4.5

4.488520e ne ewN N ×=                     (49) 

4.2. List of Important Equations 

We propose the following 7 equations using NA_new (5.975649.E+26), Ne_new 
(6.257473E+18), c and α. 

_
_

1

n
ew

ew
n

A
p N

m =                       (50) 

_
_

e p
e n

A n w
ew

e

m m
N

m =                       (51) 

Here, mp/me (=1836.1526) is not changed after redefinition. 

_

1

e new
new N

e =                        (52) 

_
_

4.5
4.148319E 15p e

e new
m new

m m
q

N
π×

−= =             (53) 

( )2
_

4.5
6.62938382E 34p e

new

e new

m m
h

N

π×
= = −             (54) 

3

_ _
_

4.5 3.7659625
2

E 23
e ne

c n
w

e
A

w
new

kT c
N N

α× ×
= −

π
=

× ×
         (55) 

23

_
_

3
_

6.6908477E
4

11
4

.5 A new

e new

p e
N new

m m
G

N c
N

α× ×
=

×

×
−

×
=      (56) 
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5. Results 

From this section onward, the values used are those obtained after redefinition. 
Strictly speaking, me should therefore be written as me_new. However, we omit the 
subscript “new” to avoid unnecessarily notational complexity. 

5.1. Explanation of Our First Equation 

For convenience, Equation (1) is rewritten as follows. 
2

22
4 5

1
.p cGm kT

hc kg c
= ×

×
                       (57) 

So, 
2

2
4.
2
5N p cG m kT

hc c
= ×                         (58) 

The left side in Equation (58) is rewritten as 

( )
( ) ( )

( )

3 2

3 22

2

5.975649E 26 299792458

4 6.257473E 18 5.975649E 26
4.5

299792458
6.257473E 18

4.5 p e

N p

p e

m m
G m

h m mc

α+ × ×

× + × +
π×

×
+

× ×

=       (59) 

Therefore, 
2 2 299792458

4 6.
4.

257473E 18 5.975649E 6
5

2
N pG m
hc

α× ×
π× + × +

=             (60) 

The right side in Equation (58) is 

( )
( )

3

22

4.5 2997924584.5 4.5
6.257473E 18 5.975649E 26 29972 2 452 92 8

ckT
c

α
×

× ×

×π × +
×

+
=

×
(61) 

Therefore, 
2

22
4 5

1
.p cGm kT

hc kg c
= ×

×
                    (62) 

5.2. Explanation of Our Second Equation 

For convenience, Equation (2) is rewritten as follows. 
2

2

0

4.5
2

4

p eGm m hc
ee

ε

= × ×
 
 
 

π
π

                   (63) 

Therefore, 
2 2

0

4.5
2 4

N p eG m m e
hc e επ

 
= × ×  

 π
                 (64) 

According to Equation (60), the left side in Equation (63) is 
2 2 299792458

4 6.
4.

257473E 18 5.975649E 6
5

2
N pG m
hc

α× ×
π× + × +

=             (65) 
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Regarding the right side in Equation (63), 
2

0
0 0

4.5 4.5 4.5
2 4 2 4 2 4

e
e e

m e ec ecm m Z
e cε π ε

 
× × = × × = × × × 

 π π π π π
        (66) 

For convenience, Equation (16) is rewritten as follows. 

0 9 p

e

m
m

Z α= π× ×                          (67) 

Therefore, 
2

0

4.5 4.5 4.59 9
2 4 2 4 8

e
e

p

e
p

m
m

m e ecm m ec
e

α
ε

α
 

× × = × × × × × 


π× × = ×
π π π π π

  (68) 

Hence, 
2 299792458

6.2
4.

57473E 18 5.975649E 26
5 4.59

8 4pec mα α× × =
π π +

× ×
× +

×    (69) 

From Equations (65) and (69), we obtain 
2 2

0

4.5
2 4

N p eG m m e
hc e επ

 
= × ×  

 π
                  (70) 

Therefore, 
2

2

0

4.5
2

4

p eGm m hc
ee

ε

= × ×
 
 
 

π
π

                    (71) 

5.3. Explanation of Our Third Equation 

For convenience, Equation (3) is rewritten as follows. 
2 2

04
e

c
m c e kT

e ε


π


× = × 
 π 

                    (72) 

The left side in Equation (72) is 

2 2 2
0

0 04 4 4e e e
e ec ecm c m c m c Z

cε επ π
× = ×

π
× = ×             (73) 

Therefore, using Equation (16), we obtain 

2 2 2
0

99
4 4 4e e

p
p

e

ec ecm c Z m c c
m

cm e
m

α α× × = × × = ×× × ×π
π π

      (74) 

Therefore, 

( )3
2 299792458

5.975649E
9 9
4 26 6.257473E 184pc ecm α α= ×

+ × +
× ×        (75) 

The right side in Equation (72) is 

( )34.5 299792458
6.257473E 182 5.975649E 26ckT

α× ×
π

+ ×× +
× =             (76) 

From Equations (75) and (76), we obtain the following equation. 
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2

04e c
em c kT
ε

π= ×
π

×                     (77) 

5.4. Compatibility between Two Lists 

The compatibility between the list shown in Section 2.3 and the list shown in 
Section 4.2 is explained in this section. The Faraday constant is 

_
C 5.97564907E 26 C1

mol 6.25747328E 18 mol
C9.5496198E 07

mol

new new A newF e N +   = × =   +   
 = +  
 

         (78) 

This value is rewritten as follows: 

4 299792458 1837.4859889.5496198E 07
3 1836.152654

p e

e p

m mc
m m

  ×
+ × + × = π π× 

=     (79) 

Next, 

2
5.97564907E 26 1836.152654 41837.485988

6.25747328E 18 299792458 3
p

e e

e m
m

c
m c

×  π π + ×
= + + × 

=


=   (80) 

2
5.97564907E 26 41837.485988

6.25747328E 18 2997924 4 8 34.5 .5 5
p

ep

m mRk
mc

q
m

c  × +
= + + × 

= =
×

(81) 

Consequently, Equation (82) is related to the Faraday constant. 

2 2
4
3 4.5

p

e p

m

e

q cm
m c c

c
mm

e  π
+ =


=


                  (82) 

5.5. The Problem of the Number of Real Microstates 

The canonical ensemble is related with Boltzmann’s entropy formula as follows. 

lnS k W=  

where S and W are the entropy and the number of real microstates, respectively. 
The main problem is that we cannot calculate W. Strictly speaking, we need 
years to do it. However, the hints are shown in this section. 

5.5.1. More Suitable Expression for G and kTc 
Equations (30) and (55) for kTc are very complex. Equations (31) and (56) for G 
are very complex, too. We discovered a more suitable expression. For kTc, there 
are the following two equations. 

21 1 3.76596
2

254E 23
V m mc ekT m cq cα   × −= × ×

π π ⋅ 
=          (83) 

214.5
2 A

3.76596254E 2
m

3c pkT ec m cα  = × × × = ⋅
−

π 


         (84) 

In Equations (83) and (84), 2π is dimensionless. For G, there are the following 
two equations. 

( )2
2 6.69084770E 14.5

4
1m

p
N m

q ccG e
c

cα
= −

π
= × × ×           (85) 

https://doi.org/10.4236/jmp.2024.151002


T. Miyashita 
 

 

DOI: 10.4236/jmp.2024.151002 62 Journal of Modern Physics 
 

( )3
24.5 6.69084

4
770E 11N

e

cG ec
m c

α
= × × = −

π
×

π           (86) 

In Equations (85) and (86), 4π is dimensionless. In a previous report [10], 
there seemed to be two definitions for 1 kg. However, the definition of 1 kg is 
only one. The definition of GN should be more complex. 

5.5.2. Schwarzschild Radius of Electrons 
We calculated the Schwarzschild radius of electrons (rg) using redefined values. 

( ) ( )2 2
6.690848E 11 9.113939E 31 1.356988E 57 m

2997924 8
m

5
2
1

N e
g

G mr
kg c

− ×
=

×
−

−= =
× (87) 

Then, using Equations (51) and (56), 

( )
( )

( )
3

2 3 1.356988E 57 m
2 6.257473E 1

4.52
8

m
1

N e
g

G mr
kg c

α×
= =

×
= −

× +×
     (88) 

So, using Equation 52, 

( ) ( )3m 1.356988E 574.5
2g er α

=× −×=                 (89) 

We hope that these equations will be the solution for the black hole entropy. 

5.5.3. Unexplained Issues 
Regarding the protons, the positive charge and the mass ratio with the electrons 
are unexplained, which will be explained in a future report. 

6. Conclusions 

We tried to explain empirical equations by using the correspondence principle 
with the thermodynamic principles in solid-state ionics. We proposed a canoni-
cal ensemble from the correspondence principle. We proposed the existence of a 
minimum mass of 5.7420807E-38 kg. Our images for kTc and G are explained. 
We showed that every equation can be explained in terms of Avogadro’s number 
(NA_new) and the number (Ne_new) of electrons in 1 C. 

_
_

1

n
ew

ew
n

A
p N

m =                         (90) 

_
_

e p
e n

A n w
ew

e

m m
N

m =                         (91) 

_

1

e new
new N

e =                          (92) 

_
_

4.5
4.148319E 15p e

e new
m new

m m
q

N
π×

−= =               (93) 

( )2
_

4.5
6.62938382E 34p e

new

e new

m m
h

N

π×
= = −               (94) 

3

_ _
_

4.5 3.7659625
2

E 23
e ne

c n
w

e
A

w
new

kT c
N N

α× ×
= −

π
=

× ×
          (95) 
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23

_
_

3
_

6.6908477E
4

11
4

.5 A new

e new

p e
N new

m m
G

N c
N

α× ×
=

×

×
−

×
=       (96) 

Using these seven equations, we have proven our three main equations. The 
main problem in the proposed correspondence principle is that we cannot cal-
culate W (the number of real microstates). Strictly speaking, we need years to do 
it. However, we tried to show the hints to calculate W. About the protons, the 
positive charge and the mass ratio with the electrons are unexplained, which will 
be explained in the future report. 
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Abstract 
This paper describes an extension and a new foundation of the Standard 
Model of particle physics based on a SU(4)-force called hyper-color, and on 
preon subparticles. The hyper-color force is a generalization of the SU(2)- 
based weak interaction and the SU(1)-based right-chiral self-interaction, in 
which the W- and the Z-bosons are Yukawa residual-field-carriers of the hy-
per-color force, in the same sense as the pions are the residual-field-carriers of 
the color SU(3) interaction. Using the method of numerical minimization of 
the SU(4)-action based on this model, the masses and the inner structure of 
leptons, quarks and weak bosons are calculated: the mass results are very 
close to the experimental values. We calculate also precisely the value of the 
Cabibbo angle, so the mixing matrices of the Standard model, CKM matrix 
for quarks and PMNS matrix for neutrinos can also be calculated. In total, we 
reduce the 29 parameters of the Standard Model to a total of 7 parameters. 
 

Keywords 
SU(4), Generalization of Weak Interaction, Extension of Standard Model, 
Numerical Minimization of Action, Hyper-Color, Preon 

 

1. Introduction 

The Standard Model of Particle Physics (SM) formulated in its final form in 
mid-seventies, is a very successful theory: in spite of repeated search for devia-
tion from observation, after 50 years there is not a single experimental result 
contradicting it.  

Still, it has several shortcomings, which make it hard to accept as a final 
theory, so it is generally considered to be incomplete. 

SM has the following problems [1] [2] [3] [4]: 
▪ SM does not fully explain baryon asymmetry (observed imbalance of matter 
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and antimatter) 
▪ SM does not explain the left-right-chiral asymmetry of the electro-weak 

force (spontaneous symmetry breaking SU(2)LxSU(1)R) 
▪ SM does not explain the CP violation in kaons, it has to be introduced as a 

complex phase in the quark mixing Cabibbo-Kobayashi-Maskawa (CKM) matrix 
▪ SM does not naturally incorporate neutrino oscillations and their non-zero 

masses, the masses are introduced by hand, and neutrino oscillations are in-
serted by introducing the purely experimental Pontecorvo-Maki-Nakagawa- 
Sakata (PMNS) matrix 

▪ Pauli-SU(2) weak interaction is mediated by massive W- and Z-bosons, 
which is hard to accept from the relativistic point-of-view: all fundamental inte-
ractions should propagate with maximum velocity c, like gravitation, electro-
magnetism, and color interaction. Furthermore, this has remarkable parallels to 
the early interpretations of color interaction as a Yukawa force mediated by 
massive pions. 

▪ SM does not contain any candidates for the dark matter particle required by 
observational cosmology 

▪ SM has no explanation for the observed three generations of quarks and 
leptons 

▪ SM has 29 parameters, which makes hard to accept as a complete theory 
A starting point for an extended formulation of SM appears to be the fifth 

problem in the above list: Pauli-SU(2) weak interaction. 
A plausible solution of the problem is the introduction of a SU(4) interaction 

with four charges and fifteen massless field bosons in analogy to the concept of 
the SU(3) color interaction with three charges (colors r g b), eight massless 
field-bosons (gluons) and eightfold symmetry introduced by Gell-Mann, Fritsch 
and Leutwyler in 1973.  

SU(4) interaction, in the following called hypercolor, in analogy to the color 
interaction, yields a renormalizable quantum gauge field theory, with confine-
ment and asymptotic freedom. 

Pauli-SU(2) weak interaction becomes then the Yukawa weak force of the 
SU(4)-hypercolor interaction, and the mass of the Yukawa-bosons W and Z 
(~90 GeV) give the critical energy ( ( )2 180 GeVhcE m Z= = ) in analogy to the 
Callan-Symanzik color critical energy 220 MeVcolE = . 

So in reality the extended weak hypercolor force is roughly 1000 times 
stronger than the color force. 

A plausible formulation of the four charges is hc = (L−, L+, R−, R+), where (+, 
−) is the electric charge, and (L, R) is the (left, right) chirality. The chirality χ is a 
fundamental invariant for spinors (left-chiral and right-chiral Weyl-spinors are 
components of a Dirac-bispinor).  

This hc-charge definition is the only possible, because it has to encompass the 
electric charge (because of the electro-weak interaction) and chirality (because of 
the chiral asymmetry in SM). 
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With this hc-charge definition, there is a spontaneous symmetry breaking of 
the SU(4)-hc-interaction ( ) ( ) ( ) ( )L emSU 4 SU 2 SU 1 SU 1= ⊗ ⊗  

A remaining task is to find a sub-structure (preons), which unifies the basic 
components of SM: the 6 leptons and the 6 quarks. The simplest ansatz is intro-
ducing preons r and q with hc-charges, plus color-charge for q, with the para-
meters: 

wave function ( ), , ,L L R Ru u u u− + − +Ψ =  
r-preons ( ), , ,L L R Rr r r r− + − + , ( ) 1 2Q r = − , ( ) 1 meVm r 

,  
q-preons ( ), , ,L L R Rq q q q− + − + , ( ) 1 6Q q = + , ( ) ~ 1 MeVm q , ( ) ( ), ,colQ q r g b=  
At first, such an ansatz based purely on symmetry aspects, seems risky to say 

the least. 
Substructure ansatzes based on preons were proposed before (e.g. Harari [5]), 

and ended in speculations without concrete results. 
Here enters the third component of a successful SM-extension: a new power-

ful and numerically relatively simple calculation method: direct minimization of 
action [6] [7]. This calculation method was introduced in [4] [7] and applied 
successfully in QCD for calculation of hadrons. 

With these three ansatzes it is possible, as shown in the rest of this paper: 
▪ to calculate numerically the mass hierarchy spectrum of the basic leptons 

and quarks in SM 
▪ to explain naturally the huge differences of scale in energy-mass in SM, in 

particular the minuscule neutrino masses  
▪ to explain naturally the three generations (simply by symmetry-compatible 

hc-boson configurations) 
▪ to calculate in principle the mixing matrices CKM for quarks and PMNS for 

neutrinos (which explains also the neutrino oscillations) 
▪ to reduce the number of parameters in SM from 29 to 7 parameters 
Furthermore, reproducing by pure numeric calculation correctly the ener-

gy-mass spectrum of SM is as good as a direct experimental verification for 
proving the observational correctness of the extended SU(4)-preon-model 
(SU4PM). 

Taken all this into account, it appears extremely lucky that such an ad-hoc 
model proved to be so successful both theoretically and experimentally. On the 
other hand, it is another example of the extreme importance and fundamental 
significance of symmetry aspects in physics. 

In the following, we introduce in chap.2 the SU(4) gauge theory with 15 gene-
ralized Gell-Mann 4 × 4-matices as generators of the SU(4) Lie group. 

In chap.3 we extend the SM to SU4PM by the introduction of the SU(4)- 
hypercolor interaction, and the two preons (r, q) as sub-particles of leptons and 
quarks. 

In chap.4 the ansatz for wavefunctions, and the numerical algorithm are de-
scribed. 

In chap.5 we present the calculation results for energy-mass of the SM: the six 
leptons, the six quarks, and the interaction bosons W, Z, H (higgs), and some 
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weakly interacting new particles, which arise from the ansatz. 
In chap.6 we discuss some selected weak hadron decays. 

2. SU(4) Gauge Theory 
2.1. Gauge Theory 

In the following, we consider the gauge theory QCD (quantum chromodynamics) 
based on SU(3) and the gauge theory QHCD (quantum hyper-color dynamics) 
based on SU(4) [8] [9]. 

The gauge invariant QCD Lagrangian is ( 1c= = ) 

( ) 1
4

a
aL i D m F Fµ µν

µ µνψ γ ψ= − −                  (1) 

where ( )i xψ  is the quark field, a dynamical function of spacetime, in the fun-
damental representation of the SU(3) gauge group, indexed by i j; ( )aA xµ  are 
the fields, also dynamical functions of spacetime, in the adjoint representation of 
the SU(3) or the SU(4) gauge group, indexed by a, b, … The γμ are Dirac matric-
es connecting the spinor representation to the vector representation of the Lo-
rentz group. 

The total field is ( ) ( )a a
aA x A xµ µ λ≡  and the Dirac-conjugate  

( ) ( ) 0c
i ix xψ ψ γ= , where c

iψ  is the complex-conjugate. 
Dμ is the gauge covariant derivative for calculation  

a
aD i g Aµ µ µλ≡ ∂ −                         (2) 

for simplicity, instead of a aD i g A Tµ µ µ≡ ∂ − , with rescaled field 2a aA Aµ µ≡ , 
and where g is the coupling constant and 2a

aT λ=  are the generators of the 
gauge group/algebra. 

For the QCD based on SU(3) ([10] [11] [12] [13]), ( )aA xµ is the (color) 
gluon gauge field, for eight different gluons 1, ,8a =  , ψ(x) is a four-component 
Dirac spinor, and λa is one of the eight Gell-Mann matrices, 

1, ,8a =   

1

0 1 0
1 0 0
0 0 0

λ
 
 =  
 
 

 2

0 0
0 0

0 0 0

i
iλ

− 
 =  
 
 

 3

1 0 0
0 1 0
0 0 0

λ
 
 = − 
 
 

         (3) 

4

0 0 1
0 0 0
1 0 0

λ
 
 =  
 
 

 5

0 0
0 0 0

0 0

i

i
λ

− 
 =  
 
 

 

6

0 0 0
0 0 1
0 1 0

λ
 
 =  
 
 

 7

0 0 0
0 0
0 0

i
i

λ
 
 = − 
 
 

 8

1 0 0
1 0 1 0
3 0 0 2

λ
 
 =  
 − 

 

These matrices are traceless ( ) 0aTr λ = , Hermitian, and obey the extra trace 
orthonormality relation 

( ) 2a b abTr λ λ δ=   

https://doi.org/10.4236/jmp.2024.151003


J. Helm 
 

 

DOI: 10.4236/jmp.2024.151003 68 Journal of Modern Physics 
 

and commutation relations  

[ ], 2 abc
a b ci fλ λ λ=  , 2abc abcf f=                   (4) 

For the QHCD based on SU(4) ( )aA xµ  is the hc-boson field, for 15 hc-bosons 
and λa are the 15 generators of the SU(4), 1, ,15a =  , the hc-matrices [14] [15] 
(in analogy to the 8 Gell-Mann matrices for the SU(3)): 

1

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

λ

 
 
 =
 
 
 

 2

0 0 0
0 0 0

0 0 0 0
0 0 0 0

i
i

λ

− 
 
 =
 
 
 

 3

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

λ

 
 − =
 
 
 

      (5) 

4

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

λ

 
 
 =
 
 
 

 5

0 0 0
0 0 0 0

0 0 0
0 0 0 0

i

i
λ

− 
 
 =
 
 
 

 

6

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

λ

 
 
 =
 
 
 

 7

0 0 0 0
0 0 0
0 0 0
0 0 0 0

i
i

λ

 
 − =
 
 
 

 8

1 0 0 0
0 1 0 01
0 0 2 03
0 0 0 0

λ

 
 
 =
 −
 
 

 

9

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

λ

 
 
 =
 
 
 

 10

0 0 0
0 0 0 0
0 0 0 0

0 0 0

i

i

λ

− 
 
 =
 
 
 

 

11

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

λ

 
 
 =
 
 
 

 12

0 0 0 0
0 0 0
0 0 0 0
0 0 0

i

i

λ

 
 − =
 
 
 

 

13

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

λ

 
 
 =
 
 
 

 14

0 0 0 0
0 0 0 0
0 0 0
0 0 0

i
i

λ

 
 
 =
 −
 
 

 15

1 0 0 0
0 1 0 01
0 0 1 06
0 0 0 3

λ

 
 
 =
 
 

− 

 

The symbol aF µν  the gauge invariant field strength tensor, analogous to the 
electromagnetic field strength tensor, F µν , in quantum electrodynamics. It is 
given by 

a a a abc b cF A A g f A Aµν µ ν ν µ µ ν= ∂ − ∂ + , 

rescaled a a a abc b cF A A g f A Aµν µ ν ν µ µ ν= ∂ − ∂ +      
where abcf  resp. abcf  are the structure constants of SU(3) or SU(4).  
the generators 2a

aT λ=  satisfy the commutator relations 
,a b abc cT T i f T  =  , rescaled [ ], abc

a b ci fλ λ λ=   
General Yang-Mills theory 
Yang-Mills theories are a special example of gauge theory with a non-commu- 
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tative symmetry group given by the Lagrangian [3]  

1
4

a a
gfL F Fµν

µν= −                          (6) 

with the generators of the Lie algebra, indexed by a, corresponding to the 
F-quantities (the curvature or field-strength form) satisfying  

( ) 1
2

a b abTr T T δ=  ,a b abc cT T i f T  =  , 

where for SU(3) and SU(4) 2a
aT λ= , and where the fabc are structure constants 

of the Lie algebra, and the covariant derivative defined as  
a

aD i g A Tµ µ µ≡ ∂ −  resp. a
aD i g Aµ µ µλ≡ ∂ −  , where aA µ  is the field carrier, 

2a aA Aµ µ≡  is the rescaled field, and g is the coupling constant, and for a SU(N) 
group one has N2 − 1 generators.  

The relation for the field tensor  
a a a abc b cF A A g f A Aµν µ ν ν µ µ ν= ∂ − ∂ +  

a a a abc b cF A A g f A Aµν µ ν ν µ µ ν= ∂ − ∂ +      

follows from the commutator for the covariant derivative Dµ  

, a
aD D i gT Fµ ν µν  = −   

The field has the property of being self-interacting and equations of motion 
that one obtains are said to be semilinear, as nonlinearities are both with and 
without derivatives. This means that one can manage this theory only by per-
turbation theory, with small nonlinearities.  

From the given Lagrangian one can derive the equations of motion given by  

0a abc b cF g f A Fµ µ
µν µν∂ + =  (Yang-Mills-equations),         (7) 

resp. 0a abc b cF g f A Fµ µ
µν µν∂ + =   

which correspond to the Maxwell equations in electrodynamics 0aFµ
µν∂ = , 

where 0abcf =  
Putting a aF T Fµν µν= , these can be rewritten as  

( ) 0
a

D Fµ
µν =  

The Bianchi identity holds  

( ) ( ) ( ) 0
a a a

D F D F D Fµ νκ κ µν ν κµ+ + =  

which is equivalent to the Jacobi identity  

[ ], , , , , , 0D D D D D D D D Dµ ν κ κ µ ν ν κ µ        + + =          for Lie-groups 

since , a aD F D Fµ µνκ νκ  =  . 

Define the dual strength tensor 
1
2

F Fµν µνρσ
ρσε≡ , then the Bianchi identity 

can be rewritten as  
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0D F µν
µ =   

A source current aJ ν  enters into the equations of motion (eom) as  
a abc b c aF g f A F Jµ µ
µν µν ν∂ + = −   

The Dirac part of the Lagrangian is 

( )DL i D mcµ
µψ γ ψ= −  

with the resulting eom = gauge Dirac equation 

( ) 0i D mcµ
µγ ψ− =  

2.2. The Running Coupling Constant of the QCD 

We introduce the qq-potential (Cornell potential) 

( ) 0
4,
3

c RV R V
R c

α σβ ≈ − +




 potential qq= , 440 MeVσ ≈  

its measured values are shown below. 
R0 is the characteristic scale 0 0.49 fmR ≈ , the scaling β-function is defined 

below. 
Measured values of for different values of β are shown in Figure 1. 
The data at β = 6.0, 6.2, 6.4 and 6.8 has been scaled by R0, and normalized 

such that V(R0) = 0. The collapse of the different sets of data on to a single curve 
after the rescaling by R0 is evidence for scaling. The linear rise at large rR implies 
confinement [16] [17]. 

The color confinement results from ( )( )lim ,V R R →∞ =∞ . 

2.3. Callan-Symanzik Equation 

The Callan-Symanzik equation describes the behavior of the transfer function of 
a Feynman diagram with n momentums [3]  

( ) ( )1 2, , , ; , ,n
nG x x x m M g ,  

where M = renormalization (cut-off) energy, g = coupling constant. φ  = field 
strength, m = energy, with original and renormalized field 0Zφ φ= , transfer 
function ( ) ( )2

0
nn nG Z G= , under scaling transformation  

g g gδ→ +  M M Mδ→ +  ( )0 0 1Z Z Mφ φ φ δη φ′= → = +  
( ) ( ) ( )1n nG n Gδη→ +  

From the cut-off independence  

( )
0 0nG

M
∂

=
∂

 

we get the Callan-Symanzik equation  

( ) ( ) ( )1 2, , , ; , , 0n
m nM g n m G x x x m M g

M g m
β γ γ

 ∂ ∂ ∂
+ + + = ∂ ∂ ∂ 

 ,  

where M
M
ηγ ∂

= −
∂

 
gM
M

β ∂
=

∂
 m

M
m M

ηγ ∂
=

∂
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Figure 1. The static qq-potential in the quenched approxi-
mation obtained by the Wuppertal collaboration [16]. 

 
From the definition we get a differential equation for g(M)  

( ) 0gM g
M

β∂
+ =

∂
                      (8) 

The running coupling for QCD is characterized by the β-function with colors 
N = 3, flavors nf = 3, M = cut-off energy [16] 

( ) ( )3 5
0 1

gM g g g
M

β β β∂
= − = − + +

∂
  

0 2
1 11 2

3 316 fN nβ 
π

= − 
 

 

( )
( )2 2

1 22

1 34 10 1
3 316

f
f

n
N Nn N

N
β

 
= − − − 

 π  

resulting in first order in 
( ) ( )

( )

2
2

2
2

0 21 log

g M
g m

mg M
M

β
=

 
+  

 

 

Which becomes for  

m →∞  ( )
0

1

2 log
g m

m
M

β
=

 
 
 

                  (9a) 

( ) ( )

( )

2

2

0 2

1 12
4 8 log 11 2 log

s

f

g m
m

m mN n
α

β
= = =

   
− 

π
π π  Λ  Λ 

       (9b) 

αs = coupling constant 
where 

M = Λ ≈ 220 MeV critical energy of QCD, Λ ≈ m(pion)2 = 280 MeV 
nf = 3: number of quark flavours  
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The corresponding critical length of QCD  
7

15
0

1.96 10 eV m 0.89 10 m
220 MeVc

cr
−

−∗ ⋅
= = = ∗
Λ


 which is about the proton radius. 
For energies m ≈ Λ we have the exact formula  

( )
( )

2
2

0

2
2

0

34

2 11 2 log

14

18 log

c

f GE

GE

g m
mN n c

m c

=
  − +  Λ  

=
   +  Λ  

π

π

  

for the numerical calculation we set 
( )0

1 0.683
log

GE

QCD

c
m p

= =
 
  Λ 

, which is con-

sistent with the Callan-Symanzik relation for 2m > Λ , as shown in the plot 
Figure 2 below. 

2.4. The Running Coupling Constant of the QHCD 

For the QHCD the Callan-Symanzik equation is still valid, as it is derived from 
the scale-independence of the theory. 

The running coupling for QHCD with colors N = 4, flavors nf = 3, Λ = trans-
fer energy becomes in analogy to (9b) 

( ) ( )

( )

2

2

2

12
4

11 2 log
hc

f
hc

g m
m

mN n
α = =

 
−  Λ

π



π             (10a) 

Again, it must be corrected to avoid a singularity for  

hcm = Λ                           (10b) 

( )

( )
2

2
1

2

2
1

34

2 11 2 log

34

76 log

hc

f GE
hc

GE
hc

g m
mN n c

m c

=
  

− +   Λ  

=
  

+   Λ  

π

π

 

we set ( )02 180 GeVhc m ZΛ = =  in analogy to the QCD, and 
( )
( )

1
1

log
GEc

m t
m d

=
 
  
 

,  

with the masses of the top- and the d-quark: this should assess the logarithmic 
scale of the generation energy ratio. 
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Figure 2. gc (m), m in E0-units, E0 = 196 MeV [18]. 
 

Both settings are of course only a plausible guess, but these values work very 
well for the preon model, as we will see. 

The coupling constant hcg  for the QHCD is shown in the plot Figure 3 be-
low.  

The peak is much higher than in QCD, which reflects the enormous span of 
the mass scale in the Standard Model. 

The corresponding critical length of QHCD  
7

18
0

1.96 10 eV m 1.08 10 m
180 GeVhc

hc

cr
−

−∗ ⋅
= = = ∗
Λ


  which is about 1/1000 of the proton radius: the energy scale of the QHCD is by a 
factor 1000 larger, and consequently the length scale by a factor 1000 smaller 
than in QCD. This agrees with the experimental assessment of the quark radius 
being about 1/1000 of the proton radius. 

3. The Standard Model and QCD, the SU(4)-Preon Model and  
QHCD 

The Standard Model of particle physics (SM) emerged in the mid 1970s as the 
universal theory of high-energy physics encompassing the electromagnetic, weak 
Pauli and strong color interactions, and based on a particle model with 6 basic 
lepton and 6 basic quark spinors in 3 generations (=flavors), plus field carrier 
bosons: 1 photon, 8 color gluons, 2 weak Pauli massive W-Z bosons, and scalar 
higgs H ([2] [3] [14] [20] [21] [22]). 

The interactions of SM are described by SU(n) gauge theories: trivial SU(1) 
electromagnetic, SU(2) weak Pauli interaction, and SU(3) strong color interac-
tion. The gauge charges are: n = 1 electromagnetic charge q, n = 2 the weak isos-
pin I3 = ±1, n = 3 the color c = (r, g, b). 

The quarks form composite particles known as hadrons, among them the 
nucleons (p, n) which build the atomic nuclei, the leptons do not form compo-
site particles. 
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Figure 3. ghc (m), m in E0-units, E0 = 196 GeV [19]. 
 

The weak Pauli interaction breaks the chiral symmetry and becomes 
SU(2)LxSU(1)R gauge interaction. 

It combines via the Glashow-Weinberg mechanism with the electromagnetic 
interaction to become electroweak interaction SU(2)L(W)xSU(1)(Z) xSU(1)(γ) 
with W-boson, Z-boson, photon. 

Finally, the masses of the basic particles are generated via the Higgs mechan-
ism through SU(n) symmetry breaking by the higgs H particle. 

Based on this scaffold, the SM developped into a powerful theory, which de-
scribes all of particle physics correctly with no deviation from experiment until 
present. 

3.1. Parameters of the Standard Model 

Basic particles of the standard model [22] 
The properties of the basic particles of the Standard Model are shown in Ta-

ble 1 below. 
The quark radius: as of 2014, experimental evidence indicates they are no big-

ger than 10−4 times the size of a proton, i.e. less than 10−19 metres [23]. 
Field bosons 
The following Table 2 describes the basic bosons of the SM: 3 massive bosons 

W±, Z, H and 2 massless field-carriers: photon γ and gluon g. 
Parameters Standard Model  
The model has 28 parameters + fine-structure constant emα  [2] [21], as de-

scribed in Table 3 below. 

3.2. The Basics of the Preon Model 

The preon model describes the basic particles of the Standard Model (leptons, 
quarks and exchange bosons) as composed of smaller particles (preons), which 
obey a super-strong hyper-color interaction. 

Examples are the rishon model (Harari 1979 [5] [24]) and the primon model 
(de Souza 2002 [25]). 
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Table 1. Basic particles of the Standard Model. 

Generation 1 

Fermion 
left-handed 

Symbol 
Electric 
charge 

Weak  
isospin 

Weak  
hyper-charge 

Color 
charge 

Mass 

electron e−  −1 −1/2 −1 1 511 keV 

positron e+  +1 0 2 1 511 keV 

e-neutrino eν  0 +1/2 −1 1 <0.22 eV 

e-antineutrino eν  0 0 0 1 <0.22 eV 

up-quark u  +2/3 +1/2 +1/3 3 2.3 MeV 

up-antiquark u  −2/3 0 −4/3 3  2.3 MeV 

down-quark d  −1/3 −1/2 +1/3 3 4.8 MeV 

down-antiquark d  +1/3 0 −2/3 3  4.8 MeV 

Generation 2 

muon µ−  −1 −1/2 −1 1 105.6 MeV 

antimuon µ+  +1 0 2 1 105.6 MeV 

mu-neutrino µν  0 +1/2 −1 1 <0.22 eV 

mu-antineutrino µν  0 0 0 1 <0.22 eV 

charm-quark c  +2/3 +1/2 +1/3 3 1275 MeV 

charm-antiquark c  −2/3 0 −4/3 3  1275 MeV 

strange-quark s  −1/3 −1/2 +1/3 3 95 MeV 

strange-antiquark s  +1/3 0 −2/3 3  95 MeV 

Generation 3 

tau τ −  −1 −1/2 −1 1 1776.8 MeV 

antitau τ +  +1 0 2 1 1776.8 MeV 

tau-neutrino τν  0 +1/2 −1 1 <0.22 eV 

tau-antineutrino τν  0 0 0 1 <0.22 eV 

top-quark t  +2/3 +1/2 +1/3 3 173,210 MeV 

top-antiquark t  −2/3 0 −4/3 3  173,210 MeV 

bottom-quark b  −1/3 −1/2 +1/3 3 4180 MeV 

bottom-antiquark b  +1/3 0 −2/3 3  4180 MeV 

 
Table 2. Field bosons of the Standard Model. 

Particle Charge w.Isospin T w.hcharge Y Spin Color Lifetime Mass 

W± ±1 ±1 0 1 0 3 × 10−25 s 80.4 GeV 

Z 0 0 0 1 0 3 × 10−25 s 91.2 GeV 

γ photon 0 0 0 1 0  0 

g gluon 0 0 0 1 3  0 

H higgs 0 0 0 0 0 10−22 s 125.1 GeV 
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Table 3. Parameters of the Standard Model [16], where electromagnetic fine-structure 

constant 
2

0 1
4 137em
eα = =
π

. 

Parameters of the Standard Model 

Symbol Description 
Renormalization 
scheme (point) 

Value 

me Electron mass  511 keV 

mμ Muon mass  105.7 MeV 

mτ Tau mass  1.78 GeV 

mu Up quark mass μMS = 2 GeV 1.9 MeV 

md Down quark mass μMS = 2 GeV 4.4 MeV 

ms Strange quark mass μMS = 2 GeV 87 MeV 

mc Charm quark mass μMS = mc 1.32 GeV 

mb Bottom quark mass μMS = mb 4.24 GeV 

mt Top quark mass On-shell scheme 172.7 GeV 

θ12 CKM 12-mixing angle q flavor mixing 13.1˚ 

θ23 CKM 23-mixing angle  2.4˚ 

θ13 CKM 13-mixing angle  0.2˚ 

δ13 CKM CP-violating Phase  0.995 

θ12 PMNS 12-mixing angle ν flavor mixing 33.6˚ ± 0.8˚ 

θ23 PMNS 23-mixing angle  47.2˚ ± 4˚ 

θ13 PMNS 13-mixing angle  8.5˚ ± 0.15˚ 

δ13 PMNS CP-violating Phase  4.1 ± 0.75 

g1 or g' U (1) gauge coupling μMS = mZ 0.357 

g2 or g SU (2) gauge coupling μMS = mZ 0.652 

g3 or gs SU (3) gauge coupling μMS = mZ 1.221 

Λ crit. energy in SU (3)  220 MeV 

cgE0 additional log in col-coupling  0.69 

θQCD QCD vacuum angle  ~0 

v Higgs vacuum expectation value  246 GeV 

mH Higgs mass  125.36 ± 0.41 GeV 

mνe electron neutrino mass  ≤0.12 eV 

mνμ mu neutrino mass  ≤0.12 eV 

mντ tau neutrino mass  ≤0.12 eV 

emα  fine-structure constant  1/137 

 
The rishon model 
In the rishon model, there are two preons (called rishons) T (charge +1/3e) 

and V (charge 0). Leptons and quarks and exchange bosons are built of 3 rishons. 
They obey a hc-interaction based on SU(3), the 3-rishon combinations have the 
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(color)x(hyper-color) representation SU(3)cxSU(3)hc  
TTT = antielectron 
VVV= electron neutrino 
TTV, TVT, VTT = three colours of up quarks 
TVV, VTV, VVT = three colours of down antiquarks 
TTT  = electron 
VVV  = electron antineutrino 
TTV , TVT , VTT  = three colours of up antiquarks 
TVV , VTV , VVT  = three colours of down quarks 
W+ boson = TTTVVV  
Generations are explained as excited states of the first generations, mass is not 

explained. 
The primon model 
In the primon model there are four preons (called primons) (p1, p2, p3, p4), 

which carry charge (+5/6, −1/6, −1/6, −1/6) and hc-charge, they obey a 
hc-interaction based on SU(2).  

Quarks are built of two primons:  
u (p1, p2), c (p1, p3), t (p1, p4), d (p2, p3), s (p2, p4), b (p3, p4), leptons are 

non-composite, there are 3 non-composite Higgs-bosons. 
Generations are explained as primon-configuration, the mass spectrum is only 

qualitatively explained  
Requirements for the preon model 
The two basic ideas of the preon model (PM) are 
-the basic particles of the Standard Model (SM) are composed of a few fun-

damental fermions 
-there is a super-strong hyper-color interaction, with massless field bosons 
A successful PM should uphold the symmetries and invariances of the SM and 

solve its main problems: 
-PM should encompass the preservation of the baryon and lepton number 
-PM should explain and derive the generations (flavor) of the SM and their 

energy scales 
-PM should explain the allowed and not-allowed decay modes and the fla-

vor-mixing of the SM 
-PM should correctly calculate the mass spectrum, and explain the huge dif-

ference in mass scale between leptons and quarks, and between the generations: 
m(neutrino νe)~10−4 eV, m(top quark t) = 170 GeV, which makes a factor of 
1015  

-PM should describe the weak exchange bosons W, Z, and the higgs H as Yu-
kawa-bosons of the hc-interaction,  

as all other fundamental field bosons graviton Aμν, photon Aμ, gluon Ac
μ are 

massless waves; the field bosons Ahc
μ of hc should be also massless 

-hc interaction should be stronger the SU(3)-color interaction and should en-
compass the weak SU(2), also it should reproduce the spontaneous symmetry 
breaking of the electroweak symmetry group  

https://doi.org/10.4236/jmp.2024.151003


J. Helm 
 

 

DOI: 10.4236/jmp.2024.151003 78 Journal of Modern Physics 
 

SU(2)L,ch-weak ⊗ SU(1)n-weak ⊗ SU(1)em with their exchange bosons {Wμ} ⊗ {Zμ} 
⊗ {Aμ} and corresponding currents {charged-weak} ⊗ {neutral-weak} ⊗ {elec-
tromagnetic}. 

-PM should reduce the 28 parameters of the SM to very few fundamental pa-
rameters. 

3.3. Realization of the SU(4) Preon Model 

The SU(4) preon model (SU4PM) is based essentially on two assumptions 
-The SU4PM postulates two basic Weyl-spinors {r, q} as the fundamental par-

ticles and the SU(4) as the gauge group of the hc-interaction, with spin S = 1/2, 
with electrical charge Qe = {−1/2, 1/6} and color charge Qc = {0, 1} 

-The field-bosons are the 15 generators Ahc
μ of the SU(4), described by the 15 

standard generator 4 × 4 matrices λi of the SU(4). The SU(4) has 4 hc-charges: 
{chirality L, chirality R, electrical charge +, electrical charge - } in analogy to the 
3 color charges of the SU(3): {r, g, b}. 

From these assumptions follow the basic particle families of  
-leptons L = r ⊗ r being a hc-tetra-spinor of a doublet of two r-preons, fer-

mions with total spin S = 1/2 
-quarks Q = r ⊗ q being a hc-tetra-spinor of a doublet of an r- and a q-preon, 

colored fermions with color Qc = 1 with total spin S = 1/2 
-(hypothetical) strong neutrinos Nc = q ⊗ q being a hc-tetra-spinor of a doub-

let of two q-preons, colored fermions with color Qc = 0 with total spin S = 1/2 
-weak bosons Bw = r ± r being a linear combinations of two or more r-preons, 

with total spin S = 0 (scalar like higgs H) or S = 1 (vector like W and Z) 
-(hypothetical) strong bosons Bc = q ± q being a linear combinations of two or 

more q-preons, with color Qc = 0 and total spin S = 0 (scalar like higgs Hq) or S = 
1 (vector like Zq) 

A a hc-tetra-spinor is a hc-quadruplet with the hc-charges {L−, L+, R−, R+}. 
Both preons can carry all four charges of SU(4), i.e. there are {rL−, rL+, rR−, 

rR+} and {qL−, qL+, qR−, qR+}, where the spinor-anti-spinor pairs are {rL−, 
rR+} and {rL+, rR−}. 

The r-q-doublets, i.e. the quarks, have one more degree of freedom, as they 
consist of different fermions, and are therefore chiral-neutral, which is energeti-
cally more favorable. 

A hc-doublet occupies two positions in a hc-tetra-spinor with indices (i, j), e.g 
the e-neutrino with the configuration {rL−, rL+, 0, 0} has the hc-indices ( )1, 2 , 
the bar over 2 signifies the anti-spinor. 

One can show, that for two hc-indices {i, j} there are three field-boson confi-
gurations, which are compatible with the SU(4) symmetry: one boson Ai j (cor-
responding to the non-diagonal hc-matrix jiλ

~
 interchanging i with j, e.g. for 

( ) ( ), 1,2i j =  1i jλ λ= ), four bosons , , ,i j i j k l k lA A A A  (interchanging resp. 
( ),i j , ( ),i j , and the dual index pairs ( ),k l , ( ),k l  ), and all 15 bosons as the 
third configuration. These correspond to the three generations (flavors) of the 
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SM, as the calculation shows. 
Basic parameters of SU4PM 
We have 6 parameters for SU4PM: 2 preon masses, and hyper-color/SU4 in-

teraction the critical energy hcΛ  and the peak height constant 1GEc . Further-
more, we still have the corresponding 2 parameters of the color/SU3 interaction: 
the critical energy cΛ  and the peak height constant 0GEc . 

The 4 interaction parameters have been derived in chap. 2. 
For the mass of the r-preon, we make a guess of m(e-neutrino)/3: in the ligh-

test lepton, the e-neutrino, there are two r-preons and one hc-boson, so m(r) 
will be approximately 1/3 of the assessed m(e-neutrino): this is assumed to be 
1/1000 (1000 = approximate factor for flavor 3) of the best upper limit for m 
(tau-neutrino) = 0.1 eV. 

For the mass of the q-preon, we take 1/3 of mass(u-quark) the lightest quark, 
in analogy to the r-preon. 

preon data  
r-preons {rL−, rL+, rR−, rR+}  
Q(r) = −1/2, m(r) = 0.033 meV 
q−preons {qL−, qL+, qR−, qR+} 
Q(q) = +1/6, m(q) = 0.77 MeV 
coupling constant of hc-interaction 
The coupling from the Callan-Symanzik equation must be corrected to avoid 

a singularity for hcµ = Λ  

( )
2

2
1

34

76 log

hc

GE
hc

g m
m c

=
  

+   Λ  

π               (11) 

we set ( )02 180 GeVhc m ZΛ = =  in analogy to the QCD, and  

( )
( )

1
1 0.095

log
GEc

m t
m d

= =
 
  
 

  

The configuration of the SM in the SU4PM 
Every basic particle of the SM is assigned a preon and a hc-boson configura-

tion. 
The preon configuration of a fermion (leptons and quarks) occupies two of 

the 4 positions in a hc-quadruplet by a Dirac-bispinor, e.g. for electron with in-

dex pair (1, 3) we have 
0

rL − 
 
 

 in position 1 and 
0

rR − 
 
 

 in position 3, ac-

cording to the hc-charge. The hc-quadruplet has the hc-charges (L−, L+, R−, 
R+).  

There are 3 possible hc-boson configurations for an index-pair (i, j), which are 
consistent with the SU(4)-symmetry: 1 hc-boson Aij corresponding to first gen-
eration of flavor = 1, 4 hc-bosons Aij Aij Akl Akl+ + +  corresponding to flavor 
= 2 (the bar specifies the conjugate coupler, and (k, l) is the complementary in-
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dex pair, e.g. for electron it is (2, 4)), and finally all 15 hc-bosons corresponding 
to flavor = 3. 

The fermions (leptons and quarks) have two independent preon-components 
u1 and u2, they form a bispinor with spin S = 1/2. 

The bosons (weak boson W, Z, H) have only one independent preon-component 
u1, which is a linear combination of two preons, the spins add up to S = 1 for W 
and Z, or to S = 0 for H, e.g. for Z = Z0 ( ) ( )( )1 2u rL rR= − + −  and  

1 0 1 0
0 , , , 2

0 1 0 1
u u

Z
u u

        
=         

        
. The weak bosons W and Z0 are carrier of the  

residual weak interaction, and the higgs H generates masses for all r-containing 
particles: leptons, quarks, weak bosons and the r-preon itself. 

The SU4PM predicts the existence of hypothetical strong neutrinos, which 
consist of qq  with electrical charge Q = 0 and color charge Qc = 0. They are 
heavy (m(qnu) = 23.2 MeV) practically non-interacting particles: the interact 
only via very heavy q-boson Zq (m(Zq) = 644 GeV)), i.e. they interact only at 
high resonance energies with small cross-sections. There is a new hypothetical 
model for Dark Matter called SIMP with mass around 100 MeV and interacting 
strongly at high resonance energies [26]. The strong-neutrinos do fit into this 
category. 

Furthermore, the SU4PM predicts the existence of strong bosons Zq and Hq, 
in analogy to weak bosons Z0 and H, built of q-preons instead of r-preons. the 
strong neutrinos interact with themselves via Zq, and Hq generates masses for 
strong neutrinos and the q-preon. 

The decay of neutron and pion requires (to safeguard the conservation of 
hc-charge) the existence of further weak neutrinos: the non-chiral (sterile) neu-
trinos with masses similar to lepton neutrinos. The nc-neutrinos are neutral, 
non-chiral, and interact with themselves and lepton neutrinos via the weak 
ZL-boson similar to the Z0, but left-chiral. 

The SU4PM SU(4) symmetry is spontaneously broken into the electroweak 
symmetry group  

SU(2)L,ch-weak ⊗ SU(1)n-weak ⊗ SU(1)em with their exchange bosons {Wμ} ⊗ {Zμ} 
⊗ {Aμ} and corresponding currents {charged-weak} ⊗ {neutral-weak} ⊗ {elec-
tromagnetic}. 

The basic particle families in the SU4PM representation of the Standard Mod-
el are shown in the schematic Table 4 below. 

4. The Calculation Method of the SU(4)-Preon Model 

We apply for the calculation of the parameters of SM particles the numerical 
minimization of action, using a Ritz.Galerkin expansion for the hc-bosons and a 
parameterized gaussian for the preons. 

4.1. The Ansatz for the Wavefunction 

Hc-boson wavefunction  
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Table 4. Particle configurations in the SU4PM representation of the Standard Model. 

 
 

For the hc-boson wavefunction we apply here the full Ritz-Galerkin series on 
the function system 

( ) ( ){ } ( ){ }1 2 2
0 0 1 2, , , , 0, , cos ,cos sin , 0, ,k k k

k rf r bfunc r r dr r k n k nθθ θ θ θ= = × =   

with coefficients kα , where ( )0 0
0

0

1, ,
1 exp

bfunc r r dr
r r
dr

=
 −

+  
 

 is a Fermi-step- 
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function which limits the region 0r r≤  of the preon with “smearing width” dr0. 

( )

( )
( )
( )
( )

1

2

1

2

, , cos

, , cos
, , , 1, ,15

, , sin

, , sin

i i

i i
i

i i

i i

Ag t r aA

Ag t r aA
Ag t r i

Ag t r aA

Ag t r aA

θ

θ
θ

θ

θ

  
  
  

= =  
  
  
  

           (12) 

where iaA  is the phase angle between the particle and the anti-particle part of 
the hc-boson, and with the Ritz-Galerkin-expansion 

( ) [ ] ( ) ( ), , , , , exp , 1, ,15; 1,2kl j k
j

Ag t r k l j f r i t EA k lθ α θ= − = =∑ 
 

with energies kEA   
Because of hc-symmetry, the active (non-zero) hc-bosons are 

{ }1 15, ,Ag Ag Ag= 
 all hc-bosons: generation 3, flavor = 3 

{ }, , ,ij ij kl klAg Ag Ag Ag Ag=  4 hc-bosons: coupler and anti-coupler for 
hc-indices (i, j) and the corresponding 2 coupler-anti-coupler pair for the com-
plementary indices (k, l): generation 2, flavor = 2 

{ }ijAg Ag=  one hc-boson for the hc-indices (i, j): generation 1, flavor = 1. 
Preon wavefunction 
The hc-quadruplet has 4 positions with the hc−charges {L−, L+, R−, R+}, and 

the particle wavefunction of a fermion (lepton or quark) has two positions occu-
pied with indices (i, j) 

( ) ( ){ }1 2.. ... ...u u u=  u1 and u2 are preon Weyl spinors with 2 components.  
For the preons we use here a model of a gaussian “blob” 

( )

( ) ( )

( ) ( )

2
,

,

2
,

,

exp exp cos
2

, ,

exp exp sin
2

u k
k k

u k

k

u k
k k

u k

r r
i t Eu a

dr
u t r

r r
i t Eu a

dr

θ

  −  − −
  

  =   −  − −     

 

 

         (13) 

where kEu  is the energy, ( ), ,u k k kr ru uθ=
  and ,u kdr  is the position (r, θ) and 

its width, ka  is a phase. 
A basic particle of the Standard Model consists of 2 preons iu  and 1, 4, 15 

hc-bosons iAg  for generation 1, 2, 3 respectively. The hc-boson number i of 

iAg  is equal to the general Gell-Mann matrix 4λ . 
For instance, the electron has one hc-boson 4 13Ag A=  corresponding 

Gell-Mann matrix 4λ , and the preon configuration 
electron e = (rL−, rR−), occupied positions (1, 3) 

electron configuration: ,0, ,0
0 0
L Rr r

u − −    
=     

    
 

Antiparticle positron configuration 
0 0

0, ,0,
L R

u
r r+ +

    
=     

    
 

The SU(4) Lagrangian 
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From 2.1 we have for the SU(4) Lagrangian 

( ) 1
4

a
QHCD aL u i D m u F Fµ µν

µ µνγ= − − ,  

where u is the particle (lepton or quark) wave function defined above, and the 
covariant derivative is a

aD i g Agµ µ µλ= ∂ −  with SU(4) Gell-Mann 4 × 4 ma-
trices aλ  ( 1, ,15a =  ) and the field tensor is 

( ) ( ) ( ) ( ),
abc

a a a b cF Ag Ag g f Ag Agµν µ νν µ µ ν
= ∂ − ∂ + ,  

where aAg  are the hc-boson wavefunctions ( 1, ,15a =  ). 
The action is ( ) 2, , sinQHCD i i

V

S L x u Ag r dt dr d dµ θ θ φ= ∫ , which is to be inte-
grated over the particle volume V and minimized in the parameters of u and 

aAg . 
The parameters of the component preons and the hc-bosons within a particle 

are (see below): 

( ) { }, , , ,i i i i i ipar u Eu a ru u druθ= , ( ) { },i i ipar Ag EA aA= ,  

where iEu  and iEA  are energies, ia  and iaA  are internal phases,  
( ), ,i i iru u druθ  describe particle’s location and smear-out. 

The calculation method of minimization of SU(4) action is shown below for 
the electron in a schematic Table 4(a). 

4.2. The Numerical Algorithm  

The energy, length, and time are made dimensionsless by using the units: E 

( 0 0.196 TeV
1

cE
am

= =
 ), r(fm), t(am/c) am = 10−18 m. We can assume axial 

symmetry, so we can set φ = 0 and use the spherical coordinates 

( ), ,t r θ . 

We choose the equidistant lattice for the intervals ( ) [ ] [ ] [ ], , 0,1 0,1 0,t r θ ∈ × × π  
with 21 × 21 × 11 points and, for the minimization 8x in parallel, 8 random sub-
lattices [4] [19]: 

[ ] ( ) ( ) ( ){ }{ }1 2 3, , , | 1, 2, 3 , 1, ,100 | 1, ,8i i il ix j t r t i i i random lattice j ix= = = =  . 

For the Ritz-Galerkin expansion in ( ),r θ  we use the 12 functions  

( ) ( ){ } ( ){ }1 2 2
0 0 1 2, , , , 0, , cos ,cos sin , 0, ,k k k

k rf r bfunc r r dr r k n k nθθ θ θ θ= = × =    

The action ( ) 2, , sinQHCD i iS L x u Ag r dt dr d dµ θ θ φ= ∫  becomes a mean-value 
on the sublattice [ ]l ix  

[ ] [ ]( ) ( )
[ ]

1 , , 2
sub

QHCD i i tr
x l ix

S ix L x u Ag V
N l ix θ

∈

= π∑ , 

where trV θ = π  the ( ), ,t r θ -volume and [ ]( )N l ix  is the number of points. 
We set [ ]( ) 100N l ix =  for generation 1 and 2, [ ]( ) 25N l ix =  for generation 3. 
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Table 4(a). Minimization of SU (4) action for the electron. 

 
 

We impose the boundary condition for ( )0 0iAg r r= =  via penalty-function 
(imposing exact conditions is possible, but slows down the minimization process 
enormously). 

S  is minimized 8x in parallel with the Mathematica-minimization method 
“simulated annealing”. 

The proper parameters of the component preons and the hc-bosons within a 
particle are: 

( ) { }, , , ,i i i i i ipar u Eu a ru u druθ= , ( ) { },i i ipar Ag EA aA=  
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iEu  is the energy-mass of the preon iu  

ia  is sin(phase) of the preon iu , where phase is the phase between the two 
spinor components 

( ),i iru uθ  is the location of the preon iu  

idru  is the uncertainty (stdev) of iru  

iEA  is the energy of the hc-boson iAg  

iaA  is sin(phase) of the hc-boson iAg , where phase is the phase between the 
two upper and the two lower components of the vector iAg   

The complexities and execution times (on a 2.7 GHz Xeon E5 work-station) 
differ greatly for different generations. 

For the generation 1 electron ,0, ,0
0 0

rL rR
e

 − −    
=     

    
 with 1 hc boson A13: 

complexity (Lagrangian) = 6.2 × 106 terms, minimization time t (minimiza-
tion) = 37 s. 

For the generation 3 tauon ,0, ,0
0 0

rL rR
τ

 − −    
=     

    
 with all 15 hc-bosons: 

complexity (Lagrangian) = 283 × 106 terms, minimization time t (minimiza-
tion) = 2500 s. 

5. The Particles and Families of the SU(4)-Preon Model 

Here we present the result of the calculation of the masses, inner structure, and 
some of the angles of the mixing matrices CKM and PMNS, using the minimiza-
tion of the action described in chap.4. 

5.1. Charged Leptons Electron, Muon, Tau 

Spin S = 1/2, two free preons, occupying fixed positions in the hc-tetra-spinor 

Preon configuration: ,0, ,0
0 0

rL rR
u

 − −    
=     

    
 

Boson configuration: flavor = 1: ( )13 4A λ= , flavor = 2:  
( )13 4, 13 5, 24 11, 24 12A A A Aλ λ λ λ= = = =  

flavor = 3: all 15 bosons 
The leptons are charged particles, they interact electromagnetically or weakly 

via Z and W bosons. 
The leptons are spherically symmetric, and have therefore the gyromagnetic 

ratio g = 2 exactly, which is valid from the Dirac-equation for a point-like (or 
spherically symmetric) spin-1/2-particle.  

The spherical symmetry arises from the fact, that all leptons consist of two 
r-preons, which differ only in the hc-charge, so it is plausible that their geome-
tric parameters are equal (equal radius ri, its uncertainty dri, equal phase angle ai, 
and inter-preon-angle th = 0), as is shown in calculation. 

In the energy distribution, the preons (shown in the first two values: i = (1, 2)) 
have considerably less energy than the hc-bosons in the case of the muon and 
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the tauon, for the electron the only hc-boson carries almost all of the energy. 
The calculated and observed masses of the charged leptons are shown in Ta-

ble 5. 
The energy of component preons and field bosons are shown in Figures 4-6. 
The structure, i.e. calculated average distances of components with smear-out 

are shown in Figure 7. 
The parameters of the three generations (flavors) are shown in Tables 6-8. 

 
Table 5. Charged lepton masses. 

 m (e) m (mu) m (tau) 

exp. 0.511 MeV 106 MeV 1.78 GeV 

calc. 0.29 ± 0.23 MeV 228 ± 150 MeV 2.26 ± 0.7 GeV 

 
Table 6. Parameters of the electron. 

Eui (MeV) EAi ai aAi drui rui sin (θui) 

0.0256, 
0.0256 

0.241 
−0.27, 
−0.27 

−0.017 
0.104,  
0.104 

0.276,  
0.276 

0 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δsin (θui) 

0.057, 
0.044 

0.121 .  
0.058,  
0.058 

0.014,  
0.014 

 

 
Table 7. Parameters of the muon. 

Eui (MeV) EAi ai aAi drui rui sin (θui) 

24.06, 24.06 
0.00036, 0.0013, 

46.33, 133.75 
−0.48, 
−0.48 

0.24, 0.266, 
−0.55, −0.632 

0.648, 
0.648 

0.68, 
0.68 

0 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δsin (θui) 

18.32, 18.32 
0.00045, 0.0011, 

30.89, 87.17 
.  

0.045, 
0.045 

0.047, 
0.047 

 

 

 

Figure 4. Energy distribution of electron: first preons (u1, u2), then 
bosons Agi.  
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Figure 5. Energy distribution of muon: first preons (u1, u2), then 
bosons Agi.  

 

 

Figure 6. Energy distribution of tauon: first preons (u1, u2), then 
bosons Agi.  

 
Table 8. Parameters of the tauon. 

Eui MeV EAi ai aAi drui rui sin (θui) 

77.68, 
77.68 

0.000258, 1.274, 
3.51, 8.51, 11.45, 
18.12, 25.0369, 
30.46, 37.057, 
52.78, 69.55, 

106.83, 191.129, 
259.009, 1297.48 

0.216842, 
0.216842 

−0.33192, −0.0188942, 
−0.0449149, −0.325663, 

−0.0118209, \ 
−0.0943335, −0.226005, 

−0.149676, 0.143007, 
0.0745547, 

0.102575, −0.154493, 
−0.0987211, −0.161108, 

−0.0258635 

0.19, 
0.19 

0.36, 
0.36 

0 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δsin (θui) 

77.66, 
77.66 

0.00028103, 
1.68893, 

2.36353, 5.65246, 
6.56911, 9.40924, 
11.9228, 11.9599, 

15.7698, 
30.2164, 34.4179, 
17.5376, 107.57, 
106.864, 180.17 

.  
0.033, 
0.033 

0.076, 
0.077 
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Figure 7. Structure of charged leptons: preons (u1, u2) radii ri, uncertainty 
dri and angle th. 

 
electron e = (rL−, rR−) 

Preon configuration: ,0, ,0
0 0

rL rR
u

 − −    
=     

    
 

Antiparticle positron 
0 0

0, ,0,u
rL rR

    
=     + +    

 

hc-boson 4 4Ag λ , as 13 4A λ=  
Eexp = 0.511 MeV Q = −1 
Etot = 0.29 MeV, ΔEtot = 0.23 MeV  
muon mu = (rL−, rR−) 
hc-bosons 

4 5 11 1213 4, 13 5, 24 11, 24 12Ag A Ag A Ag A Ag Aλ λ λ λ= = = =     
Eexp = 106 MeV Q = −1 
Etot = 228 MeV, ΔEtot = 154  
tauon tau = (rL−, rR−) 
hc-bosons: all 15 1 15, ,Ag Ag  
Eexp = 1.78 GeV Q = −1  
Etot = 2.26 GeV, ΔEtot = 0.70.  

5.2. Lepton Neutrinos νe, νmu, νtau  

Spin S = 1/2, two free preons, occupying fixed positions in the hc-tetra-spinor 

Preon configuration: 
0

, ,0,0
0

rL
u

rL
 −    

=     +    
 

Boson configuration: flavor = 1: ( )112A λ= , flavor = 2:  

( )1 2 13 1412 , 12 , 34 , 34A A A Aλ λ λ λ= = = =  
flavor = 3: all 15 bosons 
The lepton neutrinos [27] are spherically symmetric, as shown in the calcula-

tion, and have therefore zero magnetic momentum. The spherical symmetry 
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arises from the fact, that all leptons consist of two r-preons, which differ only in 
the hc-charge, so it is plausible that their geometric parameters are equal (equal 
radius ri, its uncertainty dri, equal phase angle ai, and inter-preon-angle th = 0). 

The lepton neutrinos are neutral, interact only weak via Z and W bosons. 
As for mass, the best upper limit from cosmological data is m < 0.12 eV. 
The calculated masses of the lepton neutrinos are shown in Table 9. 
The energy of component preons and field bosons are shown in Figure 8. 
The structure, i.e. calculated average distances of components with smear-out 

are shown in Figure 9. 
The parameters of the three generations (flavors) are shown in Tables 10-12. 

 

 

Figure 8. Energy distribution of lepton neutrinos: first preons (u1, u2), 
then bosons Ai. 
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Figure 9. Structure of lepton neutrinos: preons (u1, u2) radii ri, uncer-
tainty dri and angle th. 

 
Table 9. Lepton neutrino masses. 

 m (nue) m (num) m (nut) 

exp.    

calc. 0.30 meV 11 meV 98 meV 

 
Table 10. Parameters of the electron neutrino. 

Eui (meV) EAi ai aAi drui rui sin (θui) 

0.0195789, 
0.0198162 

0.0198727 
−0.00159052, 
0.00281348 

0.000719502 
0.672092, 
0.672795 

0.817591, 
0.817365 

−0.0362275 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δsin (θui) 

0.000442384, 
0.000217995 

0.0000872723 .  
0.0533686, 
0.0533475 

0.000416971
, 0.00028167 

 

 
Table 11. Parameters of the muon neutrino. 

Eui (meV) EAi ai aAi drui rui sin (θui) 

1.83215, 
1.80438 

1.83322, 
1.83333, 
1.83335, 
1.84298 

0.00294051, 
0.00304653 

0.000719502 
0.306423, 

0.3312 
0.943812, 
0.936186 

0.02 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δsin (θui) 

0.00234254, 
0.0359295 

0.000209844, 
2.8895 × 10−6, 
0.0000362216, 

0.0162998 

.  
0.111082, 
0.111082 

0.126494, 
0.179059 

 

 
e-neutrino nue = (rL−, rL+) 

Preon configuration: 
0

, ,0,0
0

rL
u

rL
 −    

=     +    
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Table 12. Parameters of the tauon neutrino. 

Eui (meV) EAi ai aAi drui rui sin (θui) 

5.74691, 
5.74691 

5.74263, 
5.74519, 
5.74578, 
5.74647, 
5.74688, 
5.74707, 
5.74725, 
5.74761, 
5.7479, 

5.74861, 
5.74951, 
5.75005, 
5.7531, 
5.7595, 
5.79127 

0.00216278, 
−0.0145027 

0.0645884, 
0.0321258, 
0.0714192, 
0.0356015, 
0.0665154, 
0.0652989, 
0.060689, 
0.0555585, 
0.0499117, 
0.062275, 
0.0407549, 
0.0359398, 
0.0666184, 
0.0482816, 
0.031136 

0.306423, 
0.3312 

1.1011, 
1.07371 

0.0414724 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δsin (θui) 

0.110619, 
0.110619 

0.112495, 
0.112474, 
0.112249, 
0.111351, 
0.110999, 
0.110905, 
0.110818, 
0.110445, 
0.110137, 
0.109776, 
0.109065, 
0.108836, 
0.107668, 
0.102724, 
0.09513 

.  
0.207277, 
0.197369 

0.0609252, 
0.06686 

 

 

Antiparticle right-chiral antineutrino 
0

0,0, ,
0

rR
u

rR
 −    

=     +    
 

Eexp < 0.12 eV Q = 0  
Etot = 0.30 meV, ΔEtot = 0.038  
mu-neutrino num = (rL−, rL+) 
Eexp < 0.12 eV Q = 0 
Etot = 11.0 meV, ΔEtot = 0.055  
tau-neutrino nut = (rL−, rL+) 
Eexp < 0.12 eV Q = 0 
Etot = 98.0 meV, ΔEtot = 1.85.  
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5.3. Non-Chiral Sterile (Hypothetical) Neutrinos νs1, νs2, νs3  

Spin S = 1/2, two free preons, occupying fixed positions in the hc-tetra-spinor 

Preon configuration: 
0

,0,0,
0

rL
u

rR
 −    

=     +    
 

Boson configuration: flavor = 1: ( )914A λ= , flavor = 2:  
( )9 10 6 714 , 14 , 23 , 23A A A Aλ λ λ λ= = = =  

flavor = 3: all 15 bosons 
The hypothetical sterile neutrinos are involved in the neutron decay and inte-

ract only among themselves and with lepton neutrinos via the weak chiral boson 
ZL (see 4.1), so the denomination “sterile” is justified. They have similar masses 
as the lepton neutrinos, but they are Majorana particles: antiparticle = particle. 
Like lepton neutrinos, they are spherically symmetric and have zero magnetic 
momentum. 

The calculated masses of the sterile neutrinos are shown in Table 13. 
The energy of component preons and field bosons are shown in Figure 10. 
The structure, i.e. calculated average distances of components with smear-out 

are shown in Figure 11. 
The parameters of the three generations (flavors) are shown in Tables 14-16. 
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Figure 10. Energy distribution of sterile neutrinos: first preons (u1, u2), then 
bosons Ai. 

 

 

Figure 11. Structure of sterile neutrinos: preons (u1, u2) radii ri, uncertainty 
dri and angle th. 

 
Table 13. Masses of sterile neutrinos. 

 m (nus1) m (nus2) m (nus3) 

exp.    

calc. 0.09 meV 3.6 meV 100 meV 

 
Table 14. Parameters of the sterile e-neutrino. 

Eui (meV) EAi ai aAi drui rui sin (θui) 

0.0295438, 
0.0295438 

0.03085 
0.00981786, 
−0.00539754 

0.000719502 
0.247601, 
0.245064 

1.0941, 
1.09465 

0.0385823 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δsin (θui) 

0.000714214, 
0.000714214 

0.000840173 .  
0.00802575, 
0.00776682 

0.00348974, 
0.00362492 
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Table 15. Parameters of the sterile mu-neutrino. 

Eui (meV) EAi ai aAi drui rui sin (θui) 

0.555866, 
0.555866 

0.610776, 
0.610849, 
0.616444, 
0.616708 

0.0837203, 
0.0837203 

0.524038, 
0.145884, 
0.584979, 
0.615694 

2.22087, 
2.22087 

0.439613, 
0.439613 

0.0 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δsin (θui) 

0.0579322, 
0.0579322 

0.029421, 
0.0294231, 
0.0244551, 
0.0243638 

.  
1.8611, 
1.8611 

0.337827, 
0.337827 

 

 
Table 16. Parameters of the sterile tau-neutrino. 

Eui (meV) EAi ai aAi drui rui sin (θui) 

5.87822, 
5.87822 

5.88029, 
5.88029, 
5.88029, 
5.88029, 
5.88029, 
5.88029, 
5.88029, 
5.88029, 
5.88029, 
5.88029, 
5.88029, 
5.88029, 
5.88029, 
5.88029, 
5.88029 

0.0997489, 
0.0997489 

0.0517683, 
0.0478681, 
0.156694, 

0.0480563, 
0.0494643, 
0.0577212, 
0.0685586, 
0.155112, 

0.0500668, 
0.050109, 

0.0505401, 
0.15493, 
0.468362, 
0.154732, 
0.155897 

0.0261638, 
0.0261638 

0.0974364, 
0.0974364 

0.0 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δsin (θui) 

0.00678084, 
0.00678084 

0.00339045, 
0.00339045, 
0.00339044, 
0.00339043, 
0.00339043, 
0.00339043, 
0.00339042, 
0.00339042, 
0.00339042, 
0.00339042, 
0.00339041, 
0.00339011, 
0.00338995, 
0.00338953, 
0.00338949 

.  
0.0738441, 
0.0738441 

0.0850158, 
0.0850158 

 

 
nc-neutrino 1 nus1 = (rL−, rR+) 

Preon configuration: 
0

,0,0,
0

rL
u

rR
 −    

=     +    
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Antiparticle u u=  (Majorana neutrino) 
Eexp = ? Q = 0 
Etot = 0.090 meV, ΔEtot = 0.023  
nc-neutrino 2 nus2 = (rL−, rR+) 
Eexp = ? Q = 0 
Etot = 3.56 meV, ΔEtot = 0.22  
nc-neutrino 3 nus3 = (rL−, rR+) 
Eexp = Q = 0 
Etot = 100 meV, ΔEtot = 0.064.  

5.4. U-Quarks u, c, t 

Spin S = 1/2, two free preons, occupying fixed positions in the hc-tetra-spinor 

Preon configuration: ( )
( )

( )
( )

2 2
0, ,0,

2 2

rL qL rR qR
u

rL qL rR qR

    ++ + ++ +
    =

    ++ + ++ +    
 

Boson configuration: flavor = 1: ( )1124A λ= , flavor = 2:  
( )11 12 4 524 , 24 , 13 , 13A A A Aλ λ λ λ= = = =  

flavor = 3: all 15 bosons 
The U-quarks have the composition (r+, q+), and they are non-chiral, i.e. a 

superposition of (rL+, qR+) and (rR+, qL+). They are non-symmetric in r and q, 
so their internal structure is cylinder-symmetric or ring-symmetric, therefore 
there are corrections to the standard gyromagnetic factor 2, like for the nucleons. 
They carry the color charge, and do not appear separately, as the overall color 
must be zero (white). 

The calculated and observed masses of the U-quarks are shown in Table 17. 
The energy of component preons and field bosons are shown in Figure 12. 
The structure, i.e. calculated average distances of components with smear-out 

are shown in Figure 13. 
The parameters of the three generations (flavors) are shown in Tables 18-20. 
 

Table 17. Masses of U-quarks. 

 m (u) m (c) m (t) 

exp. 2.3 MeV 1.34 GeV 171 GeV 

calc. 2.35 ± 0.26 MeV 3.2 ± 1.87 GeV 163 ± 55 GeV 

 
Table 18. Parameters of the up-quark.  

Eui (MeV) EAi ai aAi drui rui sin (θui) 

0.00100815, 
0.00100963 

1.58472 
0.0674651, 
0.100981 

−0.538922 
0.209696, 
0.253259 

0.0263, 
−0.280785 

0.318731 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δsin (θui) 

0.000620367, 
0.00057238 

0.254744 .  
0.0522386, 
0.0483211 

0.0472523, 
0.0327625 
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Table 19. Parameters of the c-quark. 

Eui (MeV) EAi ai aAi drui rui sin (θui) 

207.62, 
158.774 

84.6596, 
281.775, 
304.222, 
2180.43 

−0.0473157, 
−0.196647 

0.187462, 
0.228959, 
0.152956, 
−0.33979 

0.157295, 
0.31158 

0.0654933, 
0.259696 

0.15086 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δsin (θui) 

482.44, 
296.717 

281.296, 
312.201, 
159.539, 
339.955 

.  
0.0332725, 
0.0300652 

0.00845404, 
0.00406528 

 

 
Table 20. Parameters of the t-quark. 

Eui (MeV) EAi ai aAi drui rui sin (θui) 

16169.4, 
10963.2 

447.568, 
1324.51, 
1905.22, 
3572.08,  
4060.9,  
5512.97, 
7201.35, 
8224.84, 
8756.76, 
9567.63, 
11233.9, 
12195.9, 
14838.4, 
19649.7,  
27968.5 

0.260102, 
−0.288355 

0.0345205, 
−0.0889711, 

0.117581, 
0.0804355, 
0.0439144, 
0.0473357, 
−0.10843, 
0.016335, 

−0.129588, 
−0.247394, 

−0.0279795, 
−0.18897, 
−0.337228, 
0.0823711, 
−0.174481 

2.30158, 
2.56518 

0.661335, 
−0.588081 

0.381818 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δsin (θui) 

10545.1, 
7710.93 

650.619,  
827.92, 

845.732,  
723.36,  
260.622, 
1147.26, 
2692.84, 
3336.08, 
3111.95, 
2532.61,  
1738.6,  
1466.69, 
3647.34, 
7499.15,  
7115.09 

.  
0.896934, 
0.609087 

0.559172, 
0.505538 

 

 
up-quark u = (rL+ + qR+)/ 2  

Preon configuration: ( )
( )

( )
( )

2 2
0, ,0,

2 2

rL qL rR qR
u

rL qL rR qR

    ++ + ++ +
    =

    ++ + ++ +    
 

https://doi.org/10.4236/jmp.2024.151003


J. Helm 
 

 

DOI: 10.4236/jmp.2024.151003 97 Journal of Modern Physics 
 

Antiparticle ( )
( )

( )
( )

2 2
,0, ,0

2 2

rL qL rR qR
u

rL qL rR qR

    −+ − −+ −
    =
    −+ − −+ −    

 

 

 
Figure 12. Energy distribution of U-quarks: first preons (u1, 
u2), then bosons Ai.  

 

 

Figure 13. Structure of U-quarks: preons (u1, u2) radii ri, un-
certainty dri and angle th. 
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hc-boson 11 11Ag λ  
Eexp = 2.3 MeV Q = +2/3 
Etot = 2.35 MeV, ΔEtot = 0.26 
c-quark c = (rL+ + qR+)/ 2  
hc-bosons 

11 12 4 524 11, 24 12, 13 4, 13 5Ag A Ag A Ag A Ag Aλ λ λ λ= = = =     
Eexp = 1.34 GeV Q = +2/3 
Etot = 3.2 GeV, ΔEtot = 1.87 
t-quark t = (rL+ + qR+)/ 2  
hc-bosons: all 15 1 15, ,Ag Ag  
Eexp = 171 GeV Q = +2/3 
Etot = 163 GeV, ΔEtot = 55. 

5.5. D-Quarks d, s, b 

Spin S = 1/2, two free preons, occupying fixed positions in the hc-tetra-spinor 

Preon configuration: ( ) ( )2 2,0, ,0
0 0

rL qL rR qRu
    −+ + −+ +

=             
 

Boson configuration: flavor = 1: ( )413A λ= , flavor = 2:  
( )4 5 11 1213 , 13 , 24 , 24A A A Aλ λ λ λ= = = =  

flavor = 3: all 15 bosons 
The D-quarks have the composition (r−, q+), and they are non-chiral, i.e. a 

superposition of (rL−, qR+) and (rR−, qL+). They are non-symmetric in r and q, 
so their internal structure is cylinder-symmetric or ring-symmetric, therefore 
there are corrections to the standard gyromagnetic factor 2, like for the nucle-
ons.  

Apparently, the breaking of spherical symmetry is caused by flavor-mixing, as 
demonstrated in the dC-quark. 

They carry the color charge, and do not appear separately, as the overall color 
must be zero (white). 

D-quark flavors intermix via the CKM-matrix, its angles can be calculated (see 
dC-quark) by making a linear combination with variable CKM-angles, inserting 
into the hc-Lagrangian and minimizing. The solution is the energetically optimal 
CKM-mixture and yields the observed CKM-angles. 

The calculated and observed masses of the D-quarks are shown in Table 21. 
The energy of component preons and field bosons of the three flavors and 

Cabibbo-mixed quark (d, s) are shown in Figure 14. 
The structure, i.e. calculated average distances of components with smear-out 

are shown in Figure 15. 
 

Table 21. Masses of D-quarks. 

 m (d) m (dC), α (C) m (s) m (b) 

exp. 4.8 MeV 4.8 MeV, 13.04˚ 100 MeV 4.2 GeV 

calc. 4.58 ± 0.3 MeV 4.74 MeV, 13.1˚ 149 ± 15 MeV 6.1 ± 2.9 GeV 
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dC = d-part of Cabibbo-mixed quark (d, s), calculated Cabibbo-angle aC12 = 0.229 = 
13.13˚ (exp. 13.04˚ + −0.05) 

 

 

Figure 14. Energy distribution of D-quarks: first preons (u1, u2), 
then bosons Ai.  
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The parameters of the three of the three flavors and Cabibbo-mixed quark (d, 
s) are shown in Tables 22-25. 

down-quark d = (rL− + qR+)/ 2  

Preon configuration: ( ) ( )2 2,0, ,0
0 0

rL qL rR qRu
    −+ + −+ +

=             
 

Antiparticle 
( ) ( )

0 0
0, ,0,

2 2
u

rL qL rR qR

    
=         ++ − ++ −    

 

hc-boson: 4 4Ag λ  
Eexp = 4.8 MeV Q = −1/3 

 

 

Figure 15. Structure of D-quarks: preons (u1, u2) radii ri, uncertainty dri 
and angle th. 

 
Table 22. Parameters of the down-quark. 

Eui (MeV) EAi ai aAi drui rui sin (θui) 

0.0011901, 
0.000620564 

3.81209 
0.067465, 
0.100981 

−0.538924 
0.209696, 
0.253259 

0.0263002, 
−0.280785 

0.318731 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δsin (θui) 

0.000811471, 
0.00070369 

0.305601 .  
0.0188066, 
0.0900718 

0.00476172, 
0.00350625 

 

 
Table 23. Parameters of the s-quark. 

Eui (MeV) EAi ai aAi drui rui sin (θui) 

18.791, 
5.99053 

6.94284, 
24.1632, 
43.9623,  
48.9406 

−0.047311, 
−0.196639 

−0.339778, 
0.228951, 
0.164457, 
0.175962 

0.157295, 
0.311592 

0.0654906, 
0.259695 

0.150859 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δsin (θui) 

1.73863, 
1.93842 

2.1682, 
1.88257, 
6.34742,  
1.22757 

  
0.018, 
0.0088 

0.0183405, 
0.08854 
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Table 24. Parameters of the b-quark. 

Eui (MeV) EAi ai aAi drui rui sin (θui) 

601.532, 
130.4 

35.4338, 
69.6218, 
92.0785, 
120.049, 
193.853, 
224.967, 
255.088, 
266.136, 
297.881, 
348.389, 
446.951, 
535.473, 
559.583, 
713.301,  
1232.01 

−0.350658, 
0.419618 

−0.119199, 
0.0701848, 
0.0403467, 

0.2601, 
0.0412506, 
0.175386, 

−0.0645038, 
0.196578, 

0.00791169, 
−0.0408362, 
−0.309195, 
0.147146, 

0.0139774, 
−0.126303, 
−0.178367 

2.00585, 
1.73462 

0.0775948, 
0.502463 

0.186426 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δsin (θui) 

472.193, 
67.3475 

20.0937, 
39.4015, 
39.3106, 
70.0438, 
171.994, 
191.423, 
173.845, 
173.003, 
149.678, 
106.309, 
107.786,  
107.91,  
124.87,  
228.263,  
689.167 

  
0.903552, 
0.675784 

0.0546897, 
0.235836 

 

 
Table 25. Parameters of the Cabibbo-mixed down-quark. 

Eui (MeV) EAi ai aAi drui rui sin (θui) 

1.55842, 
1.40699 

1.00898 
−0.624805, 
0.263432 

−0.649125 
0.495338, 
0.386903 

0.877748, 
0.308765 

0.332405 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δsin (θui) 

1.38348, 
0.700002 

0.373778 .  
0.00188066, 
0.0900718 

0.122162, 
0.0502502 

 

 
Etot = 4.58 MeV, ΔEtot = 0.31  
s-quark s = (rL− + qR+)/ 2  
hc-bosons 4 4 5 5 11 11 12 1213 , 13 , 24 , 24Ag A Ag A Ag A Ag Aλ λ λ λ= = = =     
Eexp = 100 MeV Q = −1/3 
Etot = 149 MeV, ΔEtot = 15  
b-quark b = (rL− + qR+)/ 2  
hc-bosons: all 15 1 15, ,Ag Ag  

https://doi.org/10.4236/jmp.2024.151003


J. Helm 
 

 

DOI: 10.4236/jmp.2024.151003 102 Journal of Modern Physics 
 

Eexp = 4.2 GeV Q = −1/3 
Etot = 6.1 GeV, ΔEtot = 2.9  
Cabibbo-mixed down-quark dC = (rL− + qR+)/ 2  
Eexp = 4.8 MeV Q = −1/3 
Etot = 4.74 MeV, ΔEtot = 2.45.  

5.6. Weak Massive Bosons W, Z0, ZL, H 

Spin S = 1 or = 0, one preon u1: combination of one, two or four spinors 
Preon configuration:  

1
0,0, ,0

0
u

u
  

=   
  

 for weak exchange boson W, S = 1 

1 0 1 0
, , ,

0 1 0 1
u u

u
u u

        
=         

        
 for weak exchange boson Z0, S = 1 

1 1
, ,0,0

1 1
u u

u
u u

    
=     

    
 for (hypothetical) left-chiral Z-boson ZL, S = 1 

1 1 1 1
, , ,

1 1 1 1
u u u u

u
u u u u

        
=         

        
 for higgs H, S = 0 

Boson configuration: only one flavor = 3: all 15 bosons 
The weak massive bosons are the Yukawa bosons of the hc-interaction, i.e. 

they mediate the residual force of the hc-interaction in the form of a exponen-
tially decreasing potential.  

As shown below, they are spherically symmetric, the only preon is located ap-
proximately at radius r ≈ 1 am. 

The L-projections of leptons and quarks interact via SU(2) and (W, Z0) bo-
sons, the R-projections of leptons and quarks interact via SU(1) and Z0.  

This happens because of the SU(4)-symmetry breaking  
( ) ( ) ( ) ( )L R emSU 4 SU 2 SU 1 SU 1= ⊗ ⊗  with their exchange bosons  

{ } { } { }0 emW Z A⊗ ⊗ .  
The higgs H is the only scalar among them, it generates mass for leptons and 

quarks, and also for the r-preon. 
The sterile nc-neutrinos interact SU(2)-weakly with neutrinos via the (hypo-

thetical) ZL-boson. 
The calculated and observed masses of the weak massive bosons are shown in 

Table 26. 
The energy of component preons and field bosons are shown in Figure 16. 
The structure, i.e. calculated average distances of components with smear-out 

are shown in Figure 17. 
 

Table 26. Masses of weak massive bosons. 

 m (W) m (Z0) m (ZL) m (H) 

exp. 80.4 GeV 91.2 GeV  125.1 GeV 

calc. 89 GeV 97 GeV 91 GeV 125 GeV 
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Figure 16. Energy distribution of weak massive bosons: first preons 
(u1), then bosons Ai.  
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Figure 17. Structure of weak massive bosons: preons (u1) radii ri, 
uncertainty dri and angle th, the only preon is located approx-
imately at radius r ≈ 1 am.  

 
The parameters of the individual bosons are shown in Tables 27-30. 
weak right-handed exchange boson W−− W−− = (rR− − rR−)/ 2 , S = 1  

Preon configuration: 
1

0,0, ,0 2
0
u

u
  

=   
  

 ( ) ( )( )1 2u rR rR= − − −  antipar-

ticle W W +=  configuration 
0

0, ,0,0
1

u
u

  
=   

  
 ( ) ( )( )1 2u rL rL= + − +  hy-

pothetical chiral counterpart: left-handed W* 
1

,0,0,0
0
u

u
  

=   
  

  

( ) ( )( )1 2u rL rL= − − −  

Eexp = 80.4 GeV Q = −1 
Etot = 89 GeV, ΔEtot = 26  
neutral weak exchange boson Z0 Z0 = (rL− + rR− + rL+ + rR+)/2, S = 1  

Preon configuration: 
1 0 1 0

, , , 2
0 1 0 1
u u

u
Cu Cu

        
=         

        
  

( ) ( )( )1 2u rL rR= − + −  ( ) ( )( )1 2Cu rL rR= + + +  

antiparticle 0 0Z Z=   
Eexp = 91.2 GeV Q = 0 
Etot = 97 GeV, ΔEtot = 30  
neutral left-handed weak (hypothetical) ZL ZL = (rL− + rL+)/ 2 , S = 1  

Preon configuration: 
1 1

, ,0,0 2
1 1

u u
u

u u
    

=     
    

 ( ) ( )( )1 2u rL rL= − + +  an-

tiparticle right-handed LZ  
1 1

0,0, , 2
1 1

u u
u

u u
    

=     
    

 ( ) ( )( )1 2u rR rR= − + +  

Eexp = ? Q = 0 
Etot = 91 GeV, ΔEtot = 28  
neutral mass-generating scalar higgs boson H H = (rL− + rL+ + rR- + 

rR+)/2, S = 0  

https://doi.org/10.4236/jmp.2024.151003


J. Helm 
 

 

DOI: 10.4236/jmp.2024.151003 105 Journal of Modern Physics 
 

Table 27. Parameters of the W-boson. 

Eui (GeV) EAi ai aAi drui rui sin (θui) 

8.20997 

0.316331, 
0.68873, 
1.31464,  
1.8232,  
2.48807, 
3.07844, 
3.6289,  
4.09488, 
4.45176,  
5.1892,  
6.90223,  
8.4103,  
8.99396, 
12.5852, 
17.5486 

−0.294831 

0.0551789, 
−0.362417, 
−0.131927, 
0.176835, 

−0.207657, 
0.0407577, 
0.0430164, 
0.042737, 

−0.161912, 
0.0364995, 
0.056686, 
0.0374209, 

0.10742, 
−0.0329776, 
0.0255881 

2.6109 1.17267 0 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δsin (θui) 

10.1252 

0.188613, 
0.334553, 
0.70658, 

0.801391, 
0.626902, 
0.823354, 
0.876158, 

1.0928, 
0.869573, 
0.559216, 

2.0035,  
2.08725, 
1.95618, 
1.91668,  
1.3873 

  0.81355 0.654887  

 
Table 28. Parameters of the Z0-boson. 

Eui (GeV) EAi ai aAi drui rui sin (θui) 

6.04329 

0.601016, 
1.31219, 
2.03588, 
2.57426, 
3.10174, 
3.96319, 
4.46575, 
5.33916, 
6.22519, 
7.11513, 
8.06896, 
8.94095, 
10.9788, 
13.0787,  
13.777 

−0.294831 

0.0551789, 
−0.362417, 
−0.131927, 
0.176835, 

−0.207657, 
0.0407577, 
0.0430164, 
0.042737, 

−0.161912, 
0.0364995, 
0.056686, 
0.0374209, 

0.10742, 
−0.0329776, 
0.0255881 

2.6109 1.17267 0 
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Continued 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δsin (θui) 

4.21067 

0.42354, 
0.63418, 

0.928717, 
0.946956, 
1.1372,  
1.30358,  
1.4114,  
1.20844, 
1.02434, 
1.25918, 
1.27045, 
0.93689, 
2.58041, 
5.49091,  
5.57065 

  0.81355 0.654887  

 
Table 29. Parameters of the ZL-boson. 

Eui (GeV) EAi ai aAi drui rui sin (θui) 

5.41018 

0.635455, 
1.45762, 
1.94515, 
2.40743, 
2.76174, 
3.62666, 
4.40736, 
5.29138, 
5.81184, 
6.81575, 
7.50969, 
8.17982, 
9.70438, 
12.2009,  
13.1613 

−0.28215 

−0.0634903, 
−0.0177523, 
0.0393775, 

−0.0141295, 
0.238785, 
0.06813, 

−0.0828258, 
−0.0566217, 
0.0147406, 

−0.0549006, 
−0.129071, 
−0.193776, 
0.0224101, 
−0.196448, 
−0.0777609 

4.20897 1.10542 0 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δsin (θui) 

3.61896 

0.361193, 
0.294054, 
0.542048, 
0.685343, 
0.734258, 
1.14914, 
1.37386, 
1.86499, 
2.16942, 
2.02409, 
1.91406, 
1.31147, 
1.01549, 
4.24462,  
4.70292 

  0.896122 0.764349  
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Table 30. Parameters of the higgs H. 

Eui (GeV) EAi ai aAi drui rui sin (θui) 

2.12256 

0.687867, 
1.06114, 
1.89688, 
2.72051,  
3.1891,  
4.31443, 
4.70774, 
5.75923, 
6.2929,  
7.21059, 
8.37697, 
10.7365, 
13.3999,  
22.669,  
30.1505 

0.242174 

0.203185, 
0.209845, 
0.0797134, 
0.249824, 
0.098651, 

−0.0453497, 
0.111729, 
0.153663, 
0.156595, 
0.261526, 

−0.0971455, 
−0.0358294, 
0.0815874, 
0.0875567, 
−0.0353346 

2.65352 1.31158 0 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δsin (θui) 

0.963583 

0.596931, 
0.840909, 
0.733675, 
1.05086,  
1.1562,  
1.75893, 
1.94705, 
1.83638, 
2.30989, 
2.54619, 
2.87418, 
4.01778, 
2.02776, 
10.3933, 
8.6628 

  0.164707 0.599096  

 

Preon configuration: 
1 1 1 1

, , , 2
1 1 1 1

u u u u
u

u u u u
        

=         
        

  

( ) ( ) ( ) ( )( )1 2u rL rL rR rR= − + + + − + +   

antiparticle: itself H H=   
Eexp = 125.1 GeV Q = 0 
Etot = 125 GeV, ΔEtot = 44.  

5.7. Strong Neutrinos (Hypothetical) qνe qνm qνt  

Spin S = 1/2, two free preons, occupying fixed positions in the hc-tetra-spinor 

Preon configuration: 
0

, ,0,0
0

qL
u

qL
 −    

=     +    
 

Boson configuration: flavor = 1: ( )112A λ= , flavor = 2:  
( )1 2 13 1412 , 12 , 34 , 34A A A Aλ λ λ λ= = = =  
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flavor = 3: all 15 bosons 
The strong neutrinos are neutral spherically symmetric particles with compo-

sition (q+, q−) and have masses starting with 23 MeV. They can hc-interact via 
Zq strong bosons, but only for high energies 

(E~ m(Zq) = 644 GeV), they are colorless and do not interact strongly.  
The strong neutrinos are spherically symmetric, the two preons are located 

approximately at radius r ≈ 1 am, as shown in the structure plot below. 
They are candidates for dark matter, as they are in the appropriate mass range 

(around 100 MeV, according to the new SIMP-scheme for dark matter), and 
they interact with themselves at high energies, as was observed for dark matter 
in certain galaxies. 

The calculated masses of the strong neutrinos are shown in Table 31. 
The energy of component preons and field bosons are shown in Figure 18. 
The structure, i.e. calculated average distances of components with smear-out 

are shown in Figure 19. 
The parameters of the three generations (flavors) are shown in Tables 32-34. 
 

Table 31. Masses of strong neutrinos. 

 m (qnue) m (qnum) m (qnut)  

exp.     

calc. 23.2 MeV 205 MeV 2.4 GeV  

 
Table 32. Parameters of the qe-neutrino. 

Eui (MeV) EAi ai aAi drui rui sin (θui) 

0.916713, 
1.57978 

19.1558 
0.0499768, 

0.0499806 
0.0499709 

0.218706, 

0.217761 

1.08906, 

1.08886 
0.0495826 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δsin (θui) 

2.59139, 

4.46489 
6.42353   

0.00260392, 

0.0000482519 

0.000467796, 

0.0000799548 
 

 
Table 33. Parameters of the qm-neutrino. 

Eui (MeV) EAi ai aAi drui rui sin (θui) 

2.31669, 
2.10932 

3.2139, 

27.2516, 

36.8587, 

131.637 

0.049974, 
0.0499723 

0.0499795, 

0.0499777, 

0.0499851, 

0.0499601 

0.218962, 

0.217768 
1.08916, 
1.08885 

0.0494963 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δsin (θui) 

4.18504, 
4.14824 

4.03572, 

16.4507, 

20.6083, 

43.8355 

  
0.00272481, 

0.0000218384 

0.000633244, 

0.0000799629 
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Table 34. Parameters of the qt-neutrino. 

Eui (MeV) EAi ai aAi drui rui sin (θui) 

62.9487, 
61.5266 

6.27604,  
9.78005,  
14.0006, 
17.2518,  
26.4587,  
32.2502,  
44.8203,  
62.4957,  
71.6555,  
88.2316, 
105.198,  
154.92,  
251.417,  
406.445,  
980.267 

0.0498284, 
0.0496889 

0.0499212, 
0.0499565,  
0.0499232,  
0.0499843,  
0.0500119,  
0.0499806, 
0.0499806, 
0.0500343,  
0.0499183,  
0.0495368,  
0.0499496,  
0.0501089, 
0.0500246, 
0.0500326,  
0.0499384 

0.250849, 
0.21778 

1.09488, 
1.08809 

0.0362321 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δsin (θui) 

80.6687, 
82.6461 

7.47768,  
7.63514,  
11.768, 
12.944,  
23.1368,  
23.3382,  
31.1644,  
43.8489,  
52.4387,  
59.1117, 
70.624,  
56.9479,  
109.749,  
231.239,  
579.301 

  
0.0345065, 

0.000493132 
0.00516914, 
0.000793051 
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Figure 18. Energy distribution of strong neutrinos: first preons (u1, 
u2), then bosons Ai. 

 

 

Figure 19. Structure of strong neutrinos: preons (u1, u2) radii ri, un-
certainty dri and angle th. 

 
qe-neutrino qnue = (qL−, qL+) 

Preon configuration: left-handed q-neutrino 
0

, ,0,0
0

qL
u

qL
 +    

=     −    
 

Antiparticle right-handed anti-q-neutrino 
0

0,0, ,
0

qR
u

qR
 +    

=     −    
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Eexp = ? Q = 0 
Etot = 23 MeV, ΔEtot = 13.5  
qm-neutrino qnum = (qL−, qL+) 
Eexp = ? Q = 0 
Etot = 205 MeV, ΔEtot = 93  
qt-neutrino qnut = (qL−, qL+) 
Eexp = ? Q = 0 
Etot = 2.40 GeV, ΔEtot = 1.48.  

5.8. Strong Bosons (Hypothetical) Zq, Hq  

Spin S = 1 or = 0, one free preon u1: combination of four spinors 
Preon configuration:  

1 0 1 0
, , ,

0 1 0 1
u u

u
u u

        
=         

        
 for strong exchange boson Zq 

1 1 1 1
, , ,

1 1 1 1
u u u u

u
u u u u

        
=         

        
 for q-higgs Hq 

Boson configuration; all hc-bosons active flavor = 3 
The strong bosons are color-neutral and do not interact by color. 
They are spherically symmetric, the only preon is located approximately at ra-

dius r ≈ 1 am, as shown in the structure plot below. 
The strong boson Zq is the Yukawa-boson for the hc-interaction of 

q-neutrinos.  
The strong higgs Hq generates masses for the q-neutrinos and for the 

q-preons. 
The q-neutrinos interact very weakly, because the masses of the strong bosons 

are very large. 
The calculated masses of the strong bosons are shown in Table 35. 
The energy of component preons and field bosons are shown in Figure 20. 
The structure, i.e. calculated average distances of components with smear-out 

are shown in Figure 21. 
The parameters of the individual bosons are shown in Table 36, Table 37. 
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Figure 20. Energy distribution of strong bosons: first preon (u1), 
then bosons Ai.  

 
Table 35. Masses of strong bosons. 

 m (Zq) m (Hq) 
exp.   
calc. 644 GeV 637 GeV 

 
Table 36. Parameters of the strong boson Zq. 

Eui (GeV) EAi ai aAi drui rui sin (θui ) 

50.1031 

1.75913, 
20.0747, 
22.9369, 
27.0332, 
31.3827, 
35.2293, 
36.2947, 
37.6842,  
46.383,  
47.6871, 
49.7122, 
52.4871, 
54.6914, 
64.7501,  
66.1951 

0.242169 

0.231796, 
−0.207073, 
0.131049, 

−0.253369, 
0.15414, 
0.199737, 
0.161236, 
0.266433, 

−0.269026, 
0.131364, 
0.155354, 
0.203886, 
0.235986, 
0.226728, 
0.056805 

2.90034 0.953641 0 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δsin (θui) 

0.501804 

1.40428,  
2.2256,  
2.1451,  
4.24188, 
3.13026, 
1.44886, 
1.19789, 
1.53643, 
1.07209, 

0.567924, 
0.839207, 
1.81534, 
1.76197, 
1.38173,  
1.23064 

  0.0598953 0.243724  

https://doi.org/10.4236/jmp.2024.151003


J. Helm 
 

 

DOI: 10.4236/jmp.2024.151003 113 Journal of Modern Physics 
 

 

Figure 21. Structure of strong bosons: preon (u1) radii ri, uncertainty dri 
and angle th, the only preon is located approximately at radius r ≈ 1 am. 

 
Table 37. Parameters of the strong higgs Hq. 

Eui (GeV) EAi ai aAi drui rui sin (θui) 

49.8974 

66.1951}, 
{49.8974, 
1.49444, 
19.6994, 
22.5362, 
26.3583, 
30.6179,  
34.632,  
35.8439, 
37.1908, 
46.1384, 
47.4992, 
49.4017, 
51.9202, 
54.0522, 
64.3069,  
65.783 

0.242181 

0.207549, 
−0.304129, 
0.131516, 

−0.254004, 
0.253908, 
0.206301, 
0.161453, 
0.252253, 

−0.272395, 
0.131765, 
0.163953, 
0.204921, 
0.242696, 
0.221589, 
0.0809426 

2.97112 1.03787 0 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δsin (θui) 

0.0563816 

0.958115, 
1.67958, 
1.65813,  
3.0444, 

1.70715, 
0.281763, 
0.812278, 
0.540787, 
0.748368, 
0.324524, 
0.292485, 
2.08406, 

0.685153, 
0.707936, 
1.09514 

  0.071377 0.253642  
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strong exchange boson Zq Zq = (qL− + qR− + qL+ + qR+)/2 

Preon configuration: 
1 0 1 0

, , , 2
0 1 0 1
u u

u
Cu Cu

        
=         

        
  

( ) ( )( )1 2Cu qL qR= − + −  ( ) ( )( )1 2u qL qR= + + +  

antiparticle itself q qZ Z=   
Eexp = ? Q = 0, S = 1 
Etot = 644 GeV, ΔEtot = 26  
strong higgs scalar boson (hypothetical) Hq, Hq = (qL− + qL+ + qR− + 

qR+)/2 

Preon configuration: 
1 1 1 1

, , , 2
1 1 1 1

u u u u
u

u u u u
        

=         
        

  

( ) ( ) ( ) ( )( )1 2u qL qL qR qR= − + + + − + +   

antiparticle: itself q qH H=   
Eexp = ? Q = 0, S = 0 
Etot = 637 GeV, ΔEtot = 17.  

5.9. Mass Hierarchy and the Koide Formula  

In 1982 Koide set up a formula for the 3 generations of charged lepton masses 
[28] 

( )2

1 2 3 1 2 3
2
3

m m m m m m+ + = + + , where 1 2 3, ,em m m m m mµ τ= = =  or 

for the Koide function ( )
( )2

1 2 3
1 2 3

1 2 3

2, ,
3

m m m
k m m m

m m m

+ +
=

+ +
 we get  

( ) ( ), , 1ek e k m m mµ τ= =  for charged leptons = ( ), ,el e µ τ= . 

Calculation with observed values for basic particles yields [6] for the Koide 
value for charged leptons, U-quarks, and D-quarks 

( ) ( ) ( )0.9998,  1.2673 ,  1.0891k e k u k d= = =   

and for neutrinos with SU4PM calculated values 

( ) 0.8654k ν =   

The masses of the 3 generations of the basic particles of the Standard Model 
are given in Table 38 below, where the neutrino masses are taken from the 
SU(4)-preon calculation above, the remaining values are measured. 

 
Table 38. Masses of the 3 generations of the basic particles of the Standard Model. 

 m1 m2 m3 

neutrino (νe, νμ, ντ) 0.30 meV 11 meV 98 meV 

ch.lepton (e, μ, τ) 0.511 MeV 106 MeV 1.78 GeV 

u-quark (u, c, t) 2.3 MeV 1.34 GeV 171 GeV 

d-quark (d, s, b ) 4.8 MeV 100 MeV 4.2 GeV 
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Nan Li [28] gives the assessment for k(ν): 0.50 < k(ν) < 0.85, which is roughly 
in agreement with the above value for k(ν). 

The Koide formula is approximately k≈1 for all basic particles, with a devia-
tion of about 20% for neutrinos and u-quark generations. 

In the SU(4)-preon model, the generations are due to the 3 configuration of 
hc-bosons (hcb) Ni = (1, 4, 15) which are compatible with the symmetry of SU(4) 
(are invariant under an automorphism subgroup). 

We make an ansatz for the mass-energy of generations ui: 
( ) uia

i ui ui iM u E m N= + , where Eui is the non-hcb energy contribution, mui is 
the first-generation-energy, aui is the hcb-exponent, and Ni = (1, 4, 15) is the 
number of hcb’s in a generation i. 

Fitting the mass table with this ansatz gives 

1
28.18uE = −  2 139.84uE = −  3 550.62uE = −  4 61.19uE = −  

1
5.06um =  

2
10.79um =  

3
19.16um =  

4
6.99um =  

1
1.11ua =  

2
1.20ua =  

3
1.50ua =  

4
1.34ua =  

The resulting exponents aui vary from au1 = 1.11 for neutrinos to au3 = 1.50 for 
u-quark generations with a mean  

E(aui) = 1.292 and standard deviation Std(aui) = 0.1720.  
If we approximate the mass formula ( ) uia

i ui iM u m N=


 neglecting the non- 
hcb energy Eui, then the scale factor cancels out, and the Koide function depends 
only on the exponent aui of the family (ui).  

We get the following approximate values k’ for the Koide value k of the 4 fam-
ilies: 

( ) ( ) ( ) ( )0.8106,  0.9177,  1.242 ,  1.091k k e k u k dν = = = =   

which is a good approximation. 
So we can conclude: 
the approximate validity of the Koide formula k ≈ 1 for the 4 families is the 

result of the power law of the generation mass hierarchy with the exponent aui ≈ 
1.3 approximately constant across the 4 families. 

5.10. Assessment of the Quark and Lepton Mixing  

It is possible to assess roughly the values of the CKM matrix for quark mixing 
and the PMNS matrix for neutrino mixing based on the SU(4) preon model. 

Quark mixing 
In 4.5 we calculated the CKM 12-element for the d → u decay (Cabibbo angle) 

as aC12 = 0.229, which agrees well with the experimental value. The calculation 
for the other elements of the CKM matrix can be carried out correspondingly. 
However, one can assess these elements roughly, based on the number of 
hc-bosons per generation. 

The particle configuration for the generations (=flavors) is 
flavor 1: 1 hc-boson+2 preons e.g. 13 , ,A rL rR− −  for electron e−  
flavor 2: 4 complementary hc-bosons with conjugates +2 preons e.g.  
13, 13, 24, 24 , ,A A A A rL rR− −  for electron e−  
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flavor 3: all 15 hc-boson +2 preons 
We expect naively that the coupling between generations scales roughly with 

the Boltzmann factor (kB = 1)  

( ) ( )0
, 1 1exp N i

i j
E N i

c C C
T

β
 

= = 
 

 

where ( )N i  = number of particles in i-th generation T the temperature and 

1,C β  constants. 
With 1.34β =  and 1 0.5C =  we get 1,2 0.206c =  2,3 0.019c =  1,3 0.0080c =  

in comparison with CKM values ( )0.22,0.041,0.0035  
Lepton mixing 
With quarks, quark transformations run according to the scheme  

1 2q q W→ + , with a W-boson, which consists of r-preons. 
With electrons and neutrinos, transformations e Xν→ +  or e Xν → +  

are impossible because of preon conservation.  
Transformations between neutrino flavors i jν ν→  are described by the 

PMNS matrix, according to the above formula 
( )0

, 1 expi j
E N i

c C
T

 
=  

 
. Normal-

ly neutrinos have kinetic energies much higher than their rest mass, e.g. solar 
neutrinos in MeV range, and ( ) ( )0m E N i Tν ≈ 

, so the exponent is around 
zero, and we expect the ,i jc  to be in the same range, which is the case. 

Transformation between charged leptons with different flavors, e.g. e Xµ → +  
run with flavor conservation 

ee Eµµ ν ν→ + + + ∆  or in preon formulation  

( ) ( ) ( )
( )
13, 13, 24, 24 , , 13 , , 13 , ,

13, 13, 24, 24 , ,

A A A A rL rR A rL rR A rR rR

A A A A rL rL E

− − → − − + − +

+ − + + ∆
 here 

two hcb’s 13A  13A  are emitted, , , ,rR rR rL rL− + − +  are created as pairs, 
and 13, 13, 24, 24A A A A  are simply “passed”. 

The flavor-violating transformation e ee Eµ ν ν→ + + + ∆  is not forbidden by 
conservation laws, but strongly suppressed in comparison to the flavor-conserving 
transformation because of the very small neutrino mass. 

In preon formulation 

( )
( ) ( ) ( )
13, 13, 24, 24 , ,

13 , , 13 , , 13, ,

A A A A rL rR

A rL rR A rR rR A rL rL E

− −

→ − − + − + + − + + ∆
 

In the inverse transformation, which is equivalent, the hcb quartet  
13, 13, 24, 24A A A A  with muon energies has to be emitted in the neutrino eν . If 

we assume the temperature of the neutrinos to be about in the order of the elec-
tron mass, the process will be suppressed by the Boltzmann factor  

( ) ( )
( )

( )
( )

85

4 ,
exp exp

100 MeVexp 1.0 10
0.511 MeV

e e
E Aij m

f e
m e m e

µ µ
µ ν ν

−

   
→ + + = − ≈ −      

   
 

= − = × 
 
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5.11. Deviations from the Standard Model 

We can assess the deviation of the SU(4) hypercolor model from the standard 
model by the energy ratio  

2

dev
hc

mcf
E

 
=  
 

,  

where m is the mass of the corresponding particle, and 180 GeVhcE =  is the 
hypercolor energy scale. As an example, let us consider the magnetic moment off 
the muon, where we measure a deviation from the Standard model result [29].  

Assessed deviation of the muon and electron magnetic moment 
The muon mass is 105.6 MeVmµ = , the measured relative deviation  

62.3 1.2 10
1855900

a
a

µ

µ

−∆
= = ×  [29], the assessed deviation of the muon magnetic 

moment 
2 2

~ ~a r E
a r E
∆ ∆ ∆   

   
   

, so 
22

60.34 10
hc

a m c
a E

µ µ

µ

−
 ∆

≈ = ×  
 

, which is in the 

scale of the measured deviation. 

For the electron we get the assessment 
22

128 10e e

e hc

a m c
a E

− ∆
≈ = × 
 

, where the 

current measurement precision is 103 10e

e

a
a
δ −= × , well above the assessed devia-

tion. 

6. Weak Hadron Decays in the SU(4)-Preon Model 
6.1. Neutron Decay 

The neutron decay obeys the scheme edd ud e ν−→ + + , i.e. for free neutrons  

en p e ν−→ + +                        (14) 

with the mean lifetime of τ = 881.5 ± 1.5 s and energy ΔE = 0.782343 MeV 
In the SM it is described by the interaction of a virtual W-boson 

en p W p e ν− −→ + → + +                   (14a) 

With the probability of about p = 0.001, an additional photon is emitted  

en p W p e ν γ− −→ + → + + +  

Currently, there is a “neutron lifetime puzzle”: the lifetime measured by pro-
ton-counting (beam-method lifetime τ1) yields τ2 = τ1 + 8 s, compared to the 
bottle-method (lifetime τ2) of counting the remaining neutrons. 

A possible explanation is the possibility of other decay channels for n. 
In the SU4PM the decay proceeds as follows 

( ) ( ) ( ) ( ), , , ,qd rR qL u rL qR W rR rR Z qL qL−− + → + + + − − + − +     (15) 

( ) ( ) ( ) ( ), , , ,L qd rL qR d rR qL Z rL rL Z qR qR− + → − + + − + + − +  

with the immediate decay ( ) ( ) ( ), , ,eW rR rR e rL rR rR rRν− −− − → − − + − +  and 
the decay ( ) ( ) ( )1, , ,L e sZ rL rL rL rL rL rRν ν− + → − + + + − , i.e. the total reaction 
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is 1e e sn p e ν ν ν−→ + + + + , with the additional emission of a neutrino and a 
sterile neutrino, which are undetectable and carry away a small fraction of the 
total energy, ascribed to the antineutrino. 

The neutrino and the antineutrino annihilate in a small fraction of events, 
producing an additional photon. 

The virtual qZ  and qZ  annihilate immediately and carry no energy away. 

6.2. Transitions of Quarks  

A quark can make a transformation, which swaps the chirality of its components. 
This is seen at the example of a d-quark transition (16) 

( ) ( ) ( ) ( )
( ) ( ) ( )

, , , ,

, , ,
L q

e q

d rR qL d rL qR Z rR rR Z qL qL

d rL qR rR rR q L qLν ν

− + → − + + − + + − +

→ − + + − + + − +
 

( ) ( ) ( ) ( )
( ) ( ) ( )

, , , ,

, , ,
L q

e q

d rR qL d rL qR Z rR rR Z qL qL

d rL qR rR rR qL qLν ν

− + → − + + − + + − +

→ − + + − + + − +
 

Both transitions take at least the energy ΔE = 23 MeV for the mass of qν . 
This transition can serve as an additional channel for the neutron decay:  

e e q qn n ν ν ν ν→ + + + + , which takes away ΔE = 2 × 23 MeV and makes fast 
neutrons slow, making them undetectable by the usual scintillation method. This 
would explain the “neutron lifetime puzzle”. 

6.3. Pion Decay 

The pion decay is the other major source of weak hadron decays, in the SM it is 
described as 

eud e ν+→ +                          (17) 

In the SU4PM the decay proceeds as follows 

( ) ( ) ( ) ( ), , , ,L qu rR qL u rL qR Z rR rR qL qLν+ + → + + + − + + − +     (18) 

( ) ( ) ( ) ( ), , , ,qd rL qR u rR qL W rL rL qR qRν++ − → − − + + + + − +  

the virtual W-boson and ZL-boson decay into electron and neutrinos 

( ) ( ) ( ), , ,eW rL rL e rL rR rL rLν+ ++ + → + + + − +  

( ) ( ) ( )1, , ,L e sZ rR rR rR rR rL rRν ν− + → − + + − +  

so the overall reaction is (19) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1

, , , ,

, , , ,e e s

u rR qL d rL qR u rL qR u rR qL

e rL rR rL rL rR rR rL rRν ν ν+

+ + + + − → + + + − −

+ + + + − + + − + + − +
, i.e. 

1e e sud e ν ν ν+→ + + + , the pion decays into an electron and antineutrino plus 
the (undetectable) neutrino and sterile neutrino. 

7. Conclusions 

Formulation of the extended model 
In the first three chapters we describe SU4PM, the extended SM.  
The extension happens in four steps: 
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-in chap.2: extending the Pauli-SU(2) weak interaction to SU(4)-hypercolor 
interaction, which is renormalizable quantum gauge field theory, with confine-
ment and asymptotic freedom, with charges hc = (L−, L+, R−, R+).  

Pauli-SU(2) weak interaction becomes then the Yukawa weak force of the 
SU(4)-hypercolor interaction, after a spontaneous symmetry breaking of the 
SU(4)-hc-interaction ( ) ( ) ( ) ( )L R emSU 4 SU 2 SU 1 SU 1= ⊗ ⊗ . 

-in chap.3: introducing sub-particles as constituents of basic particles of SM: 
preons r and q with hc-charges, plus color-charge for q, with the parameters: 

wave function ( ), , ,L L R Ru u u u− + − +Ψ =  
r-preons ( ), , ,L L R Rr r r r− + − + , ( ) 1 2Q r = − , ( ) 1 meVm r 

,  
q-preons ( ), , ,L L R Rq q q q− + − + , ( ) 1 6Q q = + , ( ) ~ 1 MeVm q ,  
( ) ( ), ,colQ q r g b=  

-in chap.4: adding a new powerful calculation method: direct minimization of 
action. This calculation method was introduced in [4] [7] and applied success-
fully in QCD for calculation of hadrons. 

-in chap.5: formulating the ansatz for wavefunctions. 
The calculated results for energy-mass of basic particles are presented in 

chap.5. 
Systematics 
The systematics is described at the example of charged leptons. 
For each particle family (generations), are presented: 
-preon configuration and hc-boson configuration 

Preon configuration: ,0, ,0
0 0

rL rR
u

 − −    
=     

    
 

Boson configuration: flavor = 1: ( )13 4A λ= , flavor = 2:  
( )13 4, 13 5, 24 11, 24 12A A A Aλ λ λ λ= = = =  

flavor = 3: all 15 bosons 
-calculated and observed mass 

 
 m (e) m (mu) m (tau) 

exp. 0.511 MeV 106 MeV 1.78 GeV 
calc. 0.293 ± 0.22 MeV 228 ± 150 MeV 2.26 ± 0.7 GeV 

 
-energy distribution for three generations 

 

 

https://doi.org/10.4236/jmp.2024.151003


J. Helm 
 

 

DOI: 10.4236/jmp.2024.151003 120 Journal of Modern Physics 
 

 
 

-spatial preon configuration in ( ),r θ :  
 

 
 

Mass hierarchy and the Koide formula 
If we take for the neutrinos the calculated values, and for the rest the observed 

values, we get the following mass table for leptons and quarks 
 

 m1 m2 m3 
neutrino (νe, νμ, ντ) 0.30 meV 11 meV 98 meV 

electron (e, μ, τ) 0.511 MeV 106 MeV 1.78 GeV 
u-quark (u, c, t) 2.3 MeV 1.34 GeV 171 GeV 
d-quark (d, s, b ) 4.8 MeV 100 MeV 4.2 GeV 
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The Koide formula [28]  is ap-

proximately valid for the generations (1, 2, 3) of basic particles. The precise values  
are k(ν) = 0.8654, k(e) = 0.9998, k(u) = 1.2673, k(d) = 1.0891 for the four basic 
families neutral leptons, charged leptons, u-quarks, d-quarks. 

There is an approximate scaling law for the generation mass scale. 
We make an ansatz for the mass-energy of generations ui: 

, where Eui is the non-hcb energy contribution, mui is 
the first-generation-energy, aui is the hcb-exponent, and Ni = (1, 4, 15) is the 
number of hcb’s in a generation i. 

Fitting the formula yields the exponents    
, so . 

We have the result: the approximate validity of the Koide formula k ≈ 1 for 
the 4 families is the result of the power law of the generation mass hierarchy 
with the exponent aui ≈ 1.3 approximately constant across the 4 families. 

Calculated and observed masses of basic SM particles 
Leptons and pure quarks 

 
 m (e) m (mu) m (tau) 

exp. 0.511 MeV 106 MeV 1.78 GeV 

calc. 0.293 ± 0.22 MeV 228 ± 150 MeV 2.26 ± 0.7 GeV 

 m (nue) m (num) m (nut) 

exp.    

calc. 0.30 meV 11 meV 98 meV 

 m (u) m (c) m (t) 

exp. 2.3 MeV 1.34 GeV 171 GeV 

calc. 2.35 ± 0.26 MeV 3.2 ± 1.87 GeV 163 ± 55 GeV 

 m (d) m (s) m (b) 

exp. 4.8 MeV 100 MeV 4.2 GeV 

calc. 4.58 ± 0.3 MeV 149 ± 15 MeV 6.1 ± 2.9 GeV 

 
dC = Cabibbo-mixed d-quark 

 
 m (dC), α (C) 

exp. 4.8 MeV, 13.04˚ 

calc. 4.74 MeV, 13.1˚ 

 
Weak massive bosons W, Z0, H (higgs), ZL (weakly interacting left-chiral 

Z-boson) 
 

 m (W) m (Z0) m (ZL) m (H) 

exp. 80.4 GeV 91.2 GeV  125.1 GeV 

calc. 89 GeV 97 GeV 91 GeV 125 GeV 
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new weakly interacting particles  
sterile neutrinos νs1, νs2, νs3;  
strong neutrinos νqe νqm νqt  
strong bosons Zq Hq 

 
 m (nus1) m (nus2) m (nus3) 

exp.    

calc. 0.09 meV 3.6 meV 100 meV 

 m (nuqe) m (nuqm) m (nuqt) 

exp.    

calc. 23.2 MeV 205 MeV 2.4 GeV 

 m (Zq) m (Hq)  

exp.    

calc. 644 GeV 637 GeV  

 
Structure of basic SM particles 
Symmetry and inner structure of particles is determined by the spatial distri-

bution of preons. 
Length is specified in units r0 = 0.2 × 10−18 m 
Mean location (r(gi), θ(gi)) of preons in generation i = 1, 2, 3  

 
 r (g1) r (g2) r (g3) θ (g1) θ (g2) θ (g3) 

e 0.25 0.35 0.5    

ν 0.9 1. 1.1    

u 0, 0.3 0.1, 0.3 0.6, 0.6   0, π/6 

d 0, 0.3 0, 0.3 0.1, 0.5    

dC 0.3, 0.8   0, π/8   
 

Structure characteristics 
We have the following structure characteristics: 
-charged leptons (e, μ, τ) are spherically symmetric, with increasing radii (0.25, 

0.35, 0.5) 
-neutral leptons (νe, νμ, ντ) are spherically symmetric, with roughly equal ra-

dius ≈ 1 
-pure u-quarks (u, c, t) have double-peaked structure with increasing radii ((0, 

0.3), (0.1, 0.3), (0.6, 0.6)), the first two are spherically symmetric, and only the 
t-quark is slightly axial θ = (0, π/6) 

-pure d-quarks (d, s, b) have double-peaked structure with increasing radii ((0, 
0.3), (0, 0.3), (0.1, 0.5)), and are spherically symmetric 

-Cabibbo-mixed d-quark dC has double-peaked structure (0.3, 0.8) and is 
slightly axial θ = (0, π/8) 

Consequences from the calculated structure 
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-Cabibbo-mixing breaks the spherical symmetry 
The observed first generation quarks (uC, dC) are Cabibbo-mixed with the 

CKM matrix, the higher generation quarks can be considered as approximately 
pure.  

Cabibbo-mixing breaks the spherical symmetry, as shown for dC, and makes 
both first-generation quarks (uC, dC) axial. 

-neutrino-mixing with large angles 
Neutrino generations are one-peaked spherically symmetric, with approx-

imately equal radius. Therefore it is plausible that mixing by PMNS matrix is 
easy, i.e. with large angles (neutrino oscillations). 

-comparison of PMNS and CKM matrix 
Quark mixing by CKM matrix is of type , where the first list 

labels the rows and the second list labels the columns, i.e. it is “partner-oriented” 
mixing. 

Neutrino mixing by PMNS matrix is of type , i.e. it is 
“self-oriented” mixing. 

Partner-oriented mixing of leptons according to the CKM scheme is not al-
lowed (or energetically unfavorable), because neutrinos are chiral, and electrons 
are not. 

Self-oriented mixing of quarks is allowed, but energetically unfavorable, which 
could be shown numerically by calculating a combination of both mixing 
schemes. 
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Abstract 
We show that recently multi-messenger astronomy has provided compelling 
evidence that the bulk of high energy cosmic rays (CRs) are produced by 
highly relativistic narrow jets of plasmoids launched in core collapse of 
stripped-envelope massive stars to neutron stars and stellar mass black holes. 
Such events produce also a visible GRB if the jet happens to point in our di-
rection. This has been long advocated by the cannon ball (CB) model of high 
energy CRs and GRBs, but the evidence has been provided only recently by 
what were widely believed to be unrelated discoveries. They include the 
very recent discovery of a knee around TeV in the energy spectrum of high 
energy CR electrons, the peak photon energy in the “brightest of all time” 
GRB221009A, and the failure of IceCube to detect high energy neutrinos 
from GRBs, including GRB221009A. They were all predicted by the cannon-
ball (CB) model of high energy CRs and GRBs long before they were discov-
ered in observations, despite a negligible probability to occur by chance. 
 

Keywords 
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1. Introduction 

Cosmic rays (CRs) are mostly high energy, stable, charged particles (protons, 
nuclei and electrons) which reside in the interstellar and intergalactic space. 
They were discovered in 1912 by Victor Hess [1]. Their scattering by interstellar 
and intergalactic magnetic fields so far has prevented identification of their main 
sources, and the origin of their high energies is still debated. In 1949 Fermi sug-
gested [2] that their high energies are acquired by being reflected from interstel-
lar “magnetic mirrors”—magnetized clouds, which move slowly in random di-
rections in the interstellar medium. However, CR particles may loose energy by 
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synchrotron radiation faster than they gain by repeated magnetic reflections. 
Consequently, the original Fermi acceleration mechanism has been replaced by 
the so called Fermi shock acceleration [3]-[9]. In this model charged particles 
are assumed to gain energy by being scattered repeatedly between the upstream 
and downstream regions of strong shocks produced, e.g., by supernova shells 
expanding into the interstellar medium. This shock acceleration mechanism is 
widely believed to be the main origin of galactic and extragalactic cosmic rays. 

An alternative model of CR acceleration [10]-[15], later called the cannonball 
(CB) model, unified the production of cosmic ray bursts (CRBs) and gamma ray 
bursts (GRBs). In this cannonball model, highly relativistic jets of plasmoids (CBs) 
of ordinary stellar matter are launched by fall back matter on a newly born neu-
tron star or a stellar black hole in core collapse explosion of stripped envelope 
massive stars. GRBs are produced by inverse Compton scattering (ICS) of light 
photons on the path of the jet by the electrons in the plasmoids [16] [17], while 
magnetic reflection of the charged particles by the plasmoids produces the high 
energy cosmic rays [10]-[15]. In the CB model, the CR knee is the maximum 
energy that CR particles of a given type (electrons, protons or nuclei) acquire in a 
single magnetic reflection. These knee energies depend only on the largest Lo-
rentz factor of the plasmoids in such jets and on the mass of the CR particles. In 
the CB model, CRs with energy above their knee are CRs which were reflected 
backward from slower CBs or supernova shells which were ejected earlier. This 
interpretation is different from that adopted in the Fermi/shock acceleration 
models, where the CR knee depends on their rigidity R pc Z= , namely on the 
momentum of the CR particle multiplied by the speed of light per unit charge. 

2. The Knee Energy of Cosmic Rays 

The energy spectrum of high energy CR nuclei from well below to well above the 
CR knee is shown in Figure 1 adopted from [18].  

Until recently the measured knee energies of individual cosmic ray nuclei 
were not accurate enough to conclude whether they depend on their masses, as 
expected in the CB model [13], or on their rigidities as expected in the Fer-
mi/shock acceleration models. However, while the rigidities of high energy elec-
trons and protons are practically equal, their masses are very different;  

1836p em m ≈ . In the CB model, that implies knee energies of high energy CR 
electrons which satisfy [13] [14] [15],  

( ) ( ) ( ) 1TeV.knee e p kneeE e m m E p≈ ≈                 (1) 

Fortunately, during the past decade, precise enough measurements of the 
energy spectrum of CR electrons were extended into the TeV range, in particular 
by the H.E.S.S [19] [20], AMS [21], Fermi-LAT [22], DAMPE [23] and CALET 
[24] collaborations. As shown in Figure 2, they have confirmed the existence of 
a knee around ~1 TeV in the energy spectrum of high energy cosmic ray elec-
trons, which was predicted by the CB model [13] [14] [15] using the observed 
knee around 2 PeV [18] in the energy spectrum of cosmic ray protons. 
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Figure 1. The energy spectrum of cosmic ray nuclei around 
the cosmic ray knee reported in [18]. The knee energy of cos-
mic ray protons is indicated by the wide band around 2 PeV. 

 

 

Figure 2. The high energy spectrum of cosmic ray electrons 
compiled in [19]. The electron knee energy predicted by the 
CB model is indicated by the vertical band around 1 TeV. 

 
Moreover, the observed knees in the energy spectra of cosmic ray nuclei [18] 

and electrons [19]-[24] imply that the largest Lorentz factor of CBs fired ( 0t = ) 
by the main source of high energy CRs, is roughly,  

( ) ( ) 20 2 1000.max knee CRE CR m cγ ≈ ≈                (2) 

In the CB model, this value of ( )0maxγ  of CBs at launch is common to both 
the electrons and protons nearly at rest in the CBs. It allows the following critical 
tests of the common origin of CRs and GRBs. 
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3. Evidence from GRB 221009A 

In the CB model, the peak energy pE  of the time integrated distribution of the 
prompt emission photons of a GRB, which is produced by inverse Compton 
scattering (ICS) of optical photons ( 1.65 eVε ≈ , i.e., 144 10 Hzν = × ) by CB 
electrons having 1000maxγ ≈ , is given by  

( ) ( )21 2 3.3 MeV.p maxmax z E γ ε + ≈ ≈                  (3) 

Indeed, this value is consistent with the measured ( )1 3503 133pz E+ = ±  
keV, [25] of the “brightest of all time” GRB 221009A at redshift 0.151z = .  

Moreover, the time averaged peak photon energy 2.912pE ≈  MeV and the 
isotropic equivalent energy release, ( ) 551.2 0.1 10isoE ≈ ± ×  erg measured in 
GRB 221009A [25] are the record high values measured so far in a GRB. Such 
high values are estimated to be observed once in 10,000 years. They were shown 
[25] to be consistent with the best fit Amati correlation [26],  

( ) [ ]0.421 ,p isoz E E+ ∝                        (4) 

in a sample of 315 Konus-Wind GRBs, which is shown in Figure 3.  
In the CB model [17 for a review], far off axis GRBs, i.e., those which are 

viewed from angles that satisfy, 2 2 1θ γ  , have relatively low ( )1 pz E+  and 

isoE  values which satisfy,  

( ) [ ]1 31 .p isoz E E+ ∝                        (5) 

Near axis GRBs, i.e., those with viewing angles that satisfy, 2 2 1θ γ ≤ , have 
relatively large ( )1 pz E+  and isoE  values and satisfy the correlation [26],  

 

 

Figure 3. The best fit Amati correlation reported in [25] for 
315 long GRBs with known redshift observed by Konus-Wind. 
GRBs are represented by circles; the color of each data point 
represents the GRB redshift. The error bars are not shown for 
reasons of clarity. GRB221009A is indicated by a red star. The 
best fit Amati relation is plotted as a dashed line. 
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( ) [ ]1 21 .p isoz E E+ ∝                       (6) 

Consequently, a mixed population of near axis and far off axis GRBs is ex-
pected to satisfy the Amati correlation [26] with an average power-law index 
( )1 2 1 3 2 0.42+ ≈ . Indeed it is that reported in [25], and is shown in Figure 3. 
Moreover, a sum of two power laws corresponding to low and high values of 
( )1 pz E+ ,  

( ) 1 3 1 21 p iso isoz E aE bE+ = +                     (7) 

also describes well the mixed population of far off axis GRBs and near axis 
GRBs. 

4. The Missing GRB Neutrinos 

The jet of highly relativistic CBs, which produces a GRB, propagates through the 
interstellar medium and/or stellar shells ejected earlier. Its nucleons produce a 
narrow conical beam of short lived high energy pions and kaons along the axis 
of the much wider GRB cone [13]. Their decay produces a narrow conical beam 
of high energy gamma rays, electron and muon neutrinos. Since the transverse 
momentum of their parent π and K mesons is of the order of their masses [27], 
their produced high energy neutrinos and gamma rays (in the source rest frame) 
are mainly within a cone of an opening angle pm mπ γ≈ . The high energy 
gamma rays from GRBs are attenuated by pair production on background pho-
tons [28], while the high energy neutrinos are not attenuated. Both are emitted 
into a cone much narrower than that of the MeV gamma rays from a GRB. But, 
the small cross section of neutrinos and the CB model estimate [13] of the flux of 
GRB neutrinos imply that the chances to detect on Earth the narrow burst of 
high energy (TeV) neutrinos from a GRB are rather small. That is consistent 
with the reported failure by the IceCube collaboration [29] to detect high energy 
neutrinos from GRBs, including GRB 221009A. 

5. Conclusion 

Multi-messenger astronomy has recently provided compelling evidence in sup-
port of the CB model solution of the 111-years-old cosmic ray puzzle. Namely, 
the bulk of high energy cosmic rays (CRs) are produced by the highly relativistic 
narrow jets of plasmoids of ordinary stellar matter launched in core collapse of 
stripped-envelope massive stars to neutron stars and stellar mass black holes. 
Such events produce also visible GRBs only when the jet happens to point near 
our direction, but very rarely a detectable narrower neutrino burst. The maximal 
peak energy of GRBs, as measured in “the brightest of all time” GRB 221009A 
[30] correctly predicts the observed knee energies of CR protons, nuclei and 
electrons. The chances to detect the expected very narrow burst of neutrinos 
from a GRB by detectors such as IceCube are very small, even for record bright 
events like GRB 221009A. Despite the above, a complete understanding of how 
such highly relativistic jets of plasmoids are formed and why the maximum bulk 
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motion Lorentz factor of their plasmoids is ≈1000 is still lacking. 
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Abstract 
Quantum field theory creates fermions via abstract operators exciting abstract 
fields, with a specific field for each type of specific particle. This operator al-
gebra lends itself well to quantum statistics, nevertheless, our physical under-
standing of this process is nonintuitive at best. In this paper we analyze the 
creation of fermions from primordial gauge field quantum gravity loops in 
the context of Calabi-Yau manifold theory. I extend a prior mass-gap treat-
ment based on Yang-Mills gauge theory of higher order self-interaction to in-
clude the half-integral spin of fermions. 
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1. Introduction 

Fermions, generally identified as the matter in our Universe, are characterized 
by a finite mass-gap above the vacuum and by ½ -integer spin. There is currently 
no understanding of the creation of matter, meaning fermions with mass, spin, 
and charge. The Millennium $1,000,000 Mass gap Prize asks for an explanation 
of why particle masses don’t decay to vacuum energy. The lowest stable particle 
energy over the vacuum is the mass gap in question. The Standard Model of Par-
ticle Physics does not know how to compute particle masses; they are put in by 
hand. Mass is tricky in quantum field theory, which is based on the concept of a 
specific field distributed throughout space for each type of particle. Stimulating 
the field is considered to bring the particle into existence. How mass evolved is a 
mystery. Quantum fields cannot be measured, and their physical nature is un-
known; both epistemic and ontological interpretations exist. 

Sbitnev [1], using quaternions for translation in 4D space and spin rotation on 
3D spheres, deals with a space densely filled by an incompressible quantum su-
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perfluid; a Bose-Einstein condensate. Computations on this fluid lead to gravi-
tomagnetic equations similar to Maxwell’s equations for electromagnetic fields: 
“Schrödinger, vorticity, and wave equations follow from these equations as a 
natural outcome.” Sbitnev’s approach differs from primordial theory based pri-
marily on ontological assumptions. For example, ( ),tρ r  is the density distri-
bution of “sub-quantum particles, carriers of masses”; no such sub-quantum par-
ticles exist in primordial theory. Also, “Physical vacuum is a special super fluid 
medium populated by enormous amounts of virtual particle-antiparticle pairs”, 
while virtual pairs do not exist in primordial theory. Further, Sbitnev introduces 
a torus with a string twisting two times around the torus tube, then maps this (in 
a physically impossible way) into a 3D sphere and draws conclusions about spin. 
“The frequency ω is that of rotation about the center of the torus; the toroidal 
vortex wall can be filled by helicoidal strings.” Strings do not exist in primordial 
theory. Rather than zero viscosity, Sbitnev considers dynamical “viscosity that 
fluctuates about zero in time. …we believe that it is zero in the average in time, 
but its variance is not zero.” He further believes that this viscosity µ  avoids a 
singularity at the vortex core and supports infinite lifetime of the vortex. Based  

on mcρ ωΩ = , he observes that the vorticity equation ( ) 2
m t

t
ωρ µ ω∂
= ∇

∂
 de-

scribes vortex motion in a local reference frame sliding along an optimal trajec-
tory guided by the wave function that is solution of Schrödinger’s equation,  
ideally simulating the particle moving along the Bohm trajectory. In summary, 
Sbitnev treats gravito magnetism with quantum fields per particle and with va-
cuum as virtual particle-antiparticle pairs. Finally, Sbitnev assumes the “weak 
field approximation”, a crucial mistake made by physicists for over a century. 

Quantum field theory is well defined, so it is relatively easy to compare to 
primordial field theory, which is explicitly based on an ontological model of the 
physically real primordial field (that all modern theories assume that all forces 
converge to.) Quantum interactions occur between fields/particles and the sys-
tem evolves through these interactions; primordial field evolution is possible 
only through self-interaction; nothing else exists to interact with. Quite simply, 
the change in state of the system, represented by ∇  acting on the system, is 
equal to the system acting on itself, hence: 

( ) ( )1 1  ,ψ ψψ ψ ξ ξ ψ− −∇ = ⇒ = − =ξ ξ                (1) 

with ξ ξ∇ = ∂ . Solutions to the self-interacting equations include inverse scalar 
and inverse vector; interpreted as time and space, these yield duration and distance, 
both applicable to fields. Primordial theory considers only one field to exist, with  

aspects based on space ( ) 1ψ =
r

ξ  and time ( ) 1
t

ψ ξ = − , and dynamics based  

on turbulence of the ultra-dense field. Via Hestenes’ Geometric Calculus oper-
ating on i= +G Cψ  we derive Heaviside’s gravitomagnetic dual of Maxwell’s 
electromagnetics. The important self-interactions are those of a given momen-
tum density interacting with field circulations induced by the momentum den-
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sity, formulated on a fractional lattice [2]. 
Primordial field theory has no undefined entities such as the quantum fields 

and wave functions of quantum field theory; there is only the reality of the gra-
vitomagnetic field. Sbitnev neglects charge in his treatment of spin; we will de-
rive electromagnetic charge in primordial field theory. First, we examine the is-
sue of fermion spin. 

In primordial field theory the primordial field is the real physical gravitomag-
netic force field that interacts with moving mass density. In the beginning the 
density of mass-energy was essentially as high as we wish it to be. Since particle 
creation occurs at LHC energy densities, we already know the relevant range of 
energies; consider the collision-event-resulting-jets simply to be a case of the 
primordial field in action, induced via mind boggling instrumentation. In 2006, 
as I began primordial field theory, the LHC was in process of reassessing their 
expected “quark gas” in the collisions to be instead a perfect fluid. This very 
real particle phenomena is derived in primordial field theory through the 
self-interaction process. Self-linking turbulence involves varying energy distribu-
tion, and momentum density induces circulation in the local C-field. The key  

equation is 
t

ρ ∂
× = − +

∂
GC v∇  with 1g c= = = . The field energy density ρ   

moving through local gravity G  (the ether) induces circulation ×C∇ . This 
circulation induces a higher order circulation, as the field interacts with itself. 
My quantum loop gravity fractional lattice treatment of this interlinked torus 
system has been shown to produce a stability zone in which collapse to a primal 
torus is energetically favored. I formulate this as a mass gap “existence proof”, 
analyzing mass-gap in terms of higher-order self-interactions of the primordial 
field by reinterpreting the non-Abelian term of Yang-Mills gauge theory as fol-
lows: ( ) ( )2, ,i iA A A Aµ ν µ µ

+   ⇒     adapting it to higher-order self-interaction. In 
this paper we assume this mass-gap existence proof establishes the fundamental 
requirement and we analyze the fermion spin in the context of Calabi-Yau 
theory. 

A quantum theorist may wonder, “why introduce Calabi-Yau?” The answer is 
subtle, but for the most part it means that I do not have to prove my statements. 
Calabi-Yau provides a framework of proof and defines the limits and constraints 
of the framework: as long as I remain in the framework, my statements are true. 
For example, Sbitnev introduces a torus with a “string”, which he claims twists 
two times around the torus tube, then he proceeds to map this into a physically 
impossible 3D sphere. But as there is ever-more reason to doubt the efficacy of 
string theory, I prefer to have a specific mathematico-logical framework in mind 
and Calabi-Yau theory provides exactly that framework. The decision to remain 
within the bounds of a compact Kahler manifold, with a vanishing first Chern 
class, allows one to assume a Ricci-flat metric. Hestenes’ Geometric Calculus ap-
plies on a Ricci-flat metric, as well as Wolfram’s Mathematica-based 3D pers-
pectives. 

In short, Primordial field theory differs significantly from Quantum field 
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theory, which assigns an individual quantum field existing at every point in 
space-time for each class of elementary particle. Specific particles are invoked via 
particle creation operator and viewed as excitations in a specific field; when 
Feynman developed his quantum field theory of gravity, he began by assuming 
“gravity as the 31st field” [3]. Creation of such particles is nonintuitive; operator 
algebra enables physics in which the total number of particles changes based on 
harmonic oscillators and provides an abstract means of creating and annihilating 
specific particles, based on specific fields. Elsewhere I develop an intuitive un-
derstanding of particle creation from the primordial field of the universe, in-
volving new concepts of physics. Many physicists, comfortable with complex, 
albeit nonintuitive, theories, tend to dismiss intuitive approaches to any complex 
problem they are familiar with, so I formulate the theory in terms of Einstein’s 
field equations, Yang-Mills gauge theory, and now Calabi-Yau topology, these 
being familiar approaches that have failed to deliver the goods but are felt to be 
generally valid approaches to the problem. The structure of this Letter is as fol-
lows: 

Sec. 2 The ontology of time and space is introduced. We ask if there could be 
gravity in a universe devoid of matter (no particles)? 

Sec. 3 The theory of the primordial field of our Universe, prior to the creation 
of matter. 

Sec. 4 The Calabi conjecture is framed in terms of a metric, the geometry of a 
space, and such a metric, derived in 1921 by Kasner, yields an exact solution to 
Einstein’s field equations, interpreted herein in terms of the dynamical primor-
dial field. 

Sec. 5 Review of primordial field equation in the Kasner metric and higher 
order self-interaction physics. Re-interpreting the Yang-Mills nonabelian terms 
yields a mass-gap existence proof. 

Sec. 6 Topological aspects of the Calabi-Yau manifold, including Kahler geo-
metry, first class Chern, complex manifolds, and Ricci curvature. 

Sec. 7 Primordial flow analyzed in Calabi terms. 
Sec. 8 Ontological flow on a torus. 
Sec. 9 Separation of U(1) × U(1) flow symmetry. 
Sec. 10 Derivation of Quantum Spin. 
Sec. 11 Parallel vector transport around a closed path shows ½ -integral cha-

racter of this flow. 
Sec. 12 Measurements on a dynamic model. 
Sec. 13 Summary. 
Sec. 14 Conclusions. 

2. The Ontology of Time and Space 

Laurent Field states [4]: “Spacetime is just an abstraction…. I believed all my life 
that spacetime exists, but I no longer do so.” Einstein early concluded that space 
and time are abstractions; “there is no vacuum [aka ‘empty space’] absent field.” 
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[5]. He later concluded that the field is effectively the ether through which waves 
propagate but did not, however, go back and fix special relativity; he instead in-
troduced curved space, which dominated physics for a century. In curved space 
local gravitational energy density is undefined; instead, we have variations of 
“quasi-local-mass”. I treat these conflicting concepts in terms of Heaviside’s gra-
vitational equations derived from the primordial field self-interaction principle 
[6]. 

Relevant to these concepts is Ricci curvature, which corresponds to a space 
with no matter. Calabi, a geometer, asked if there could be gravity in our un-
iverse even if space is a vacuum totally devoid of matter [7]. If so, he saw that 
curvature makes gravity without matter possible. In the following we review the 
geometer’s approach to this (essentially physics) problem and attempt to clarify 
problematic areas of this conjecture: we identify “matter” with “particles”, spe-
cifically fermions, while we identify “the vacuum” as the primordial field. 

3. The Primordial Field of the Universe 

The standard model of particle physics assumes all forces merge into one at the 
big bang, though this has not been demonstrated. Our fundamental assumption 
is that the primordial field, and nothing but the primordial field, existed at the 
Creation. If interaction is to occur (as it must, to evolve to our current Universe) 
the field must interact with itself; nothing else exists to interact with. This 
Self-Interaction Principle is represented by the Self-Interaction equation  
ψ ψψ∇ =  where ψ  represents the primordial field and ∇  represents the 

change operator. If the field depends upon some parameter ξ , the change op-
erator becomes ξ∇→ ∂ , which leads to two formal solutions: a scalar solution 
( ) 1ψ ξ ξ −= −  and a vector solution ( ) 1ψ −=ξ ξ , associated respectively with 

time t and position r . Defining primordial field ( ) ( ), ,t i tψ = +G r C r  with 
corresponding operator t∇ = + ∂∇ , Equation (1) becomes  

( )( ) ( )( )t i i i+ ∂ + = + +G C G C G C∇                (2) 

A Hestenes’ Geometric Calculus expansion of this equation immediately leads 
to the following:  

  Self-Interaction equations Heaviside equations 
  ⋅ = ⋅ − ⋅G G G C C∇    ρ⋅ = −G∇  

        2i i⋅ = ⋅C G C∇             0⋅ =C∇                        (3) 

  t∂ − × = × ± ×G C G C C G∇  tρ× = − + ∂C v G∇  

  0ti i× + ∂ =G C∇    t× = −∂G C∇  

The terms on the left are given field energy density interpretation leading to 
Heaviside’s 1893 formulation [8] of the right side of (3) with 1g c= = = . 
These equations are identical (under iteration) to Einstein’s non-linear field eq-
uations. Self-interaction Equations (3) derive from (2) in straightforward fashion. 
To obtain the right-hand side physical meaning is attached to field ψ , with G  
gravity and C  the gravitomagnetic field. The concept of field strength is absent 
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in the derivation, other than the implicit assumption of strong fields existing at 
the big bang. When Heaviside’s equations are derived by linearizing Einstein’s 
equations (discarding higher order terms) the resultant equations are erro-
neously labeled the weak field approximation to Einstein’s equations, leading 
physicists to regard Einstein’s geometric equations as the “true” physics with 
Heaviside believed to hold only for weak fields. Since our Heaviside formulation 
is equivalent to Einstein at all field strengths; these equations of gravity hold at 
all scales, including the particle scale, geometry-based concepts of gravity are ab-
stract and unnecessary for a theory of gravity; despite the common assumption 
that gravity depends on mass, Heaviside’s equations clearly show that the actual 
dependence is on mass density ρ . The equations of gravity (3) are based on 
gravitational fields ( ),tG r  and ( ),tC r  while Yang-Mills is based on gauge 
fields. Field equation 0⋅ =C∇  implies we can make use of vector identity 

0⋅ × =A∇ ∇  to replace C  with vector × A∇ . Compatible with Equations (3) 
are gauge field equations: 

= ×C A∇ , tφ= − − ∂G A∇ , 0tφ∂ + ⋅ =A∇              (4) 

The first two Equations in (4) define the fields in terms of the four-potential A, 
while the last eqn specifies the Lorenz gauge condition, 0Aµ

µ∂ = . The scalar 
potential m rφ = − , and vector potential =A v ; gauge field A  is seen to be a 
velocity field v . Expansion of the gauge field equation allows us to interpret the 
Abelian form of the field strength: F A Aµν µ ν ν µ= ∂ − ∂ . The field strength tensor 
constructed from the above is shown [9]: 

       (5) 

Figure 1. The C-field momentum-energy density matrix. 
 

Ten coefficients are needed to describe how metric coefficients change from 
point to point in the manifold. In Figure 1, the Heaviside field tensor is symme-
trical about the 4 × 4 diagonal, with two sets of six numbers on either side of the 
diagonal. Gravitomagnetic terms y xzC C=  and y zxC C− =  represent bivectors 
rotating in the xz-plane equivalent to the rotation about the axial vector on the 
y-axis. If 1g c= =  the C-field is described by = ×C r p  where p  is the 
momentum density inducing circulation equivalent to angular momentum den-
sity ( = ×L r p ). In the Einstein-deHaas sense, gravitomagnetic field C  essen-
tially is angular momentum. At particle scale we expect this inherent spin densi-
ty field to be quantized, as implied in Figure 1. Were this not the case, a C-field 
vortex, like a skater pulling in her arms to zero, would spin up to infinite density 
at a point. Thus, we anticipate an extended object, not the point particles of 
quantum field theory.  

The formulation F A Aµν µ ν ν µ= ∂ − ∂  separates radial field ( )G r  and gra-
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vitomagnetic field ( )C r , with gravitomagnetic terms representing angular 
momentum. Planck’s constant has dimensions of angular momentum  

2ml t mvr= = , so this is a feasible underlying degree of freedom to be quan-
tized. If gravity does not interact with itself in a static situation, one must ask 
what Yang-Mills non-Abelian term ,A Aµ ν    represents. It has not been inter-
preted in any useful fashion dynamically, so our mass-gap existence proof at-
tempts a new interpretation of self-interaction in Yang-Mills. This is justified by 
the fact that almost seventy years of work in this field has failed to solve the crit-
ical problems. This is perhaps hinted at with a quote from Taubes: 

“Once upon a time a Martian arrived, gave us the Yang-Mills equations, and 
left.” 

Jaffe and Witten define the mass gap problem [10] and note: “Some results are 
known for Yang-Mills theory on a 4-torus T 4 approximating R 4 and, while the 
construction is not complete, there is ample indication that known methods 
could be extended to construct Yang-Mills on T 4.” The existence proof approach 
for a solution to the mass-gap problem [11] will now be used to explore the issue 
of ½ integral spin. 

4. The Calabi Conjecture 

Yau observes that Einstein’s equations tie curvature to gravity. This century old 
concept has been accompanied by century old paradoxes, of the type associated 
with the concept of “quasi-local-mass” [12]. How physical energy density can be 
encoded as geometry is explained in [13]. Our goal here is to employ topology 
and geometry on the primordial field ontology.  

Calabi’s conjecture is concerned with spaces that have a specific type of cur-
vature known as Ricci curvature, relating to the distribution of matter within the 
space. A space is Ricci-flat if space holds no matter. Eugenio Calabi, a geometer, 
viewed the problem as “strictly geometry” and therefore framed the problem in 
terms of a metric, i.e., the geometry of a space, defining the length of every path, 
in terms of distance between points in space. However, a given topological space 
can have many possible shapes and many possible metrics, so Yau concludes 
that Calabi’s conjecture concerning what kind of metric a space can “support” is 
equivalent to asking, “For a given topology, what kind of geometry is possible?” 

We are now dealing with ontological concepts of physics such as vacuum, 
field, matter, energy density, and abstract concepts of geometry such as metric, 
topology, curvature, and manifold. We begin with a specific physics problem, 
the universe defined by the Kasner metric, then analyze it in terms of topological 
concepts. 

5. The Dynamic Universe Defined by the Re-Interpreted  
Kasner Theory 

We assume that the primordial field was present at the moment of Creation and 
expanded as the big bang. Perhaps initially only spherical symmetry applied, G , 
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but at some point, this symmetry broke, and the field became ultra-turbulent, 
with vortices and tori representing C-field angular momentum density distribu-
tions. Physically real turbulent loops twist in 3D and intersect themselves; such 
reconnection events realign forces—both energy and momentum proceed in 
opposite directions along the reconnection axis. Such an event has been used to 
initiate analysis of the Kasner metric, an exact solution to the Einstein field equ-
ation. In [14] I construct the physics of ijh  for a dynamic spatially homogenous 
anisotropic Bianchi vacuum model that solves Einstein’s equations in terms of 
the physically real primordial field, otherwise devoid of matter. Kasner derived 
the solution to 0Rµν =  in 1921. Narlikar and Karmarkar’s later formulation is: 

( )
1 22 2 2 2

1
d d 1 dj

D p
j

j
s c t nt x

−

=

= − +∑ .                   (6) 

While Equation (6) is subject to constraints on jp , the meaning of parameter 
n has been obscure. I interpret n to be primordial field ( )C t  induced by mo-
mentum jp , assumed to exist because of a reconnection event. In Figure 2(a) 
( ), ,r x y z  is the point in space where the induced C-field is measured, while 

Figure 2(b) displays a C-field energy-density histogram based on axial symme-
try associated with an arbitrary slice through the energy density history at ( )tr . 
An arbitrary slice of the field shows self-induced field behavior, with first and 
second order induction diagrammed in Figure 2(c). 

The higher-order self-interaction shown in Figure 2(c) is treated elsewhere, 
but the matter-free field has energy density distribution that is turbulently dy-
namic. This contrasts with the static metrics of the one-body theory of general 
relativity such as Schwarzschild and Kerr. The Schwarzschild metric is  

( ) ( )( )2 2 2 2 2d d d 1 2 d 1 2 d d ds g x x t x y zµ ν
µν φ φ= = + − − + +  where ~ m rφ  is a 

function only of position. In other words, the static metric is not a function of 
time; distribution of the field is fixed in space over all time. The dynamic metric 
(Equation (6)) is best understood as dynamically describing the distribution of 
the field over time, when 0n ≠ , due to the effect of the momentum density p  
of the field. When 0n =  the Kasner metric reduces to Euclidean space since 
( )21 1p =  is always unity. However, if we assume that momentum density p  is 
non-zero, then our interpretation of the n term as the value of the local C-field 
induced by p  implies that n cannot be zero. 

Kasner is a spherical topology in the sense that the boundary of the field can 
be deformed to a sphere. The constraints on the Kasner metric include a geome-
try in which the distributed field lengthens in one direction while shrinking in 
the other two directions, and vice versa. Momentum constraints 

1

1
1

D

j
j

p
−

=

=∑  and 
1

2

1
1

D

j
j

p
−

=

=∑  determine the specific shape. Kasner topology of a primordial field 
universe is not sufficient for creation of a fermion; the mass-gap existence proof 
relies upon local ultra-high-density field turbulence (found at the big bang or in 
atom-atom collisions at LHC) to assume evolution of a vortex-to-helix-to-torus 
topology, hence we next investigate topological concepts applicable to Cala-
bi-Yau. 
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(a)                    (b)                      (c) 

Figure 2. (a) C-field energy is calculated at position r  with respect to a reconnection 
event in an anisometric open universe described by the Kasner metric. (b) An energy his-
tory of two such induced C-field circulations. The time axis is mapped onto the recon-
nection axis corresponding to the z-axis, and cylindrical symmetry is applied. (c) An ar-
bitrary slice through the momentum axis reveals second and third order induced C-field 
flows. 

6. The Topology of Calabi-Yau 

A manifold is a space or surface of any dimension n; the number of two-dimensional 
spaces is restricted to two basis types: either a sphere or a donut. The dynamic 
Kasner solution developed above represents a universe composed of nothing but 
a primordial field. Unlike the Schwarzschild solution, the cosmological Kasner 
solution does not have an “outside”; the surface or boundary of this universe is 
such that all the primordial field is “inside” the boundary, deformable into a 
sphere. In the Kasner solution the field is such that the distribution of field 
energy expands or contracts anisotropically; as noted, two dimensions increase 
in length, while one decreases, or vice versa. Conversely, the mass-gap solution 
has donut topology, specifically a one-hole torus. The Kasner spherical topology 
of the primordial universe differs from the local toroidal topology of the fermion, 
so relevant topological concepts are examined. Per Yau: 

“Calabi wanted to know if a certain kind of complex manifold—a space that 
was compact and ‘Kahler’—that satisfied specific topological conditions (va-
nishing first Chern class) could have a Ricci-flat metric.” 

Kahler: Manifolds resemble Euclidean space on a local scale but can be very 
different on a global scale. Calabi’s conjecture pertains strictly to complex mani-
folds—surfaces that are expressed in terms of complex numbers, i.e., two- 
dimensional local surfaces. Riemann surfaces are complex and automatically 
qualify as Kahler; space looks Euclidean at a single point and stays close to Eucli-
dean when one moves away from the point. Such spaces are even-dimensional as 
only complex manifolds can have Kahler geometry, which provides an indica-
tion of how close a space comes to being Euclidean based on criteria that are not 
strictly related to curvature. Whether a particular metric is Kahler is a function 
of how the metric changes as one moves from point to point. Kahler manifolds 
are a subclass of complex manifolds known as Hermitian manifolds, “on which 
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you can put the origin of a complex coordinate system at any point, such that 
the metric will look like a standard Euclidean metric at that point.” Kahler ma-
nifolds have a rotational symmetry such that vectors ( ),a b a ib= +  on the ma-
nifold are rotated 90˚ via multiplication by the imaginary unit, i, with the length 
of the vector preserved. This “internal” symmetry supports parallel transport, as 
we will see in a following section. This internal symmetry, which in many ways 
defines Kahler manifolds, is restricted to the space tangent to the manifolds.  

Internal symmetry: The “internal symmetry” of Kahler geometry is unrelated 
to the internal symmetry discussed in our Yang-Mills-based existence proof of 
the mass-gap. That internal symmetry refers to “iso-spin symmetry” which Hei-
senberg invented to allow use of Pauli’s SU(2) spin matrix algebra. Abstract 
iso-spin space differs from physical spin space, hence the qualification “internal 
space”. In Calabi-Yau space theory, “internal space” is instead associated with 
the six “hidden dimensions” (of a ten-dimensional string-theory formulation), 
assumed on the order of 10−30 cm, modelled after Kaluza-Klein’s treatment of the 
5th dimension in their attempt to unify gravity and electromagnetics.  

For the primordial field we choose 4-D constructions, rather than the 10-D or 
11-D of string theory, which has been a center of interest in Calabi-Yau theory. 
Some string theorists make strong claims: “All of the numbers we measure in 
nature—all of the things we consider fundamental, such as the mass of quarks 
and electrons—all of these derive from the geometry of Calabi-Yau.” In this 
context, Calabi proposed an internal symmetry related to supersymmetry. Oper-
ation of LHC for over a decade has failed to show the slightest sign of super-
symmetry, and Yau points out that, “…without supersymmetry, string theory 
makes little sense.” Our use of Calabi-Yau has nothing to do with supersymme-
try.  

Chern class: The next topological concept is Chern class, developed to ma-
thematically characterize the difference between two manifolds. We are inter-
ested only in the simplest aspects dealing with complex manifolds. Specifically, 
we are interested in places where the flow in a vector field shuts down. For ex-
ample, a spherical topology such as the earth supports the flow of wind currents 
at every point on the globe except two: there is zero net flow at the North pole 
and the South pole. These dead spots are places where nothing flows at all. The 
donut topology, on the other hand has no dead spots; flows around the surface 
of a torus can flow forever. Maxwell marveled at Helmholtz’s proof that “in a 
perfect fluid such as a whirling ring, if once generated, would go on whirling 
forever.” Clearly, we wish for our fermion flows to last forever—a topology in 
which this is the case is called a “vanishing Chern class” or “first Chern class of 
zero”. 

Ricci curvature: Ricci curvature is essential to understanding what the Calabi 
conjecture is all about. It is a kind of average of a more detailed type of curvature 
known as sectional curvature. To find the Ricci curvature, pick a point on the 
manifold, find a vector tangent to that point, then look at all 2D tangent planes 
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that contain that vector, each of which has a sectional (Gauss) curvature asso-
ciated with the plane. The Ricci curvature is the average of these sectional cur-
vatures. “A Ricci-flat manifold means that for each vector one picks, the average 
sectional curvatures of all the tangent planes containing that vector equals zero.” 
This, although the sectional curvature of any individual plane may not be zero. 
In higher dimensions a manifold can be Ricci-flat without being flat overall. 
Einstein’s formulation equates the flow of matter density and momenta at a 
point to the Ricci tensor. This is its key relevance for our theory of fermions so 
with these topological concepts in hand, we state the Calabi conjecture: “A 
compact Kahler manifold with a vanishing first Chern class will admit a metric 
that is Ricci-flat.”  

Before using these geometer’s concepts to formulate a theory of spin, we re-
view the physics of the same problem. 

7. Analysis of Primordial Field in Calabi Terms 

Having just reviewed the relevant Calabi-Yau topological concepts, we now re-
late these to the physics of the Ricci tensor. Einstein’s field theory equation  

R Tµν µν=                          (7) 

is unique in that the stress-energy tensor T µν  is expressed in Euclidean space, 
whereas the Ricci tensor Rµν  represents curved space coordinates. Despite its 
endurance for over a century, this formulation makes no sense. No one knows 
how to solve an equation in which each side is formulated in a different coordi-
nate system, one of which is unknown. One might ask, why not just express 
T µν  in curved space? The problem is that the curvature is not known until after 
the problem has been solved. Feynman hints at this: 

“In general, it is not possible to write down any kind of consistent T µν  (…) 
unless one has already solved the complete, tangled problem.” (…) “Even for 
very simple problems, we have no idea how to go about writing down a proper 
T µν .” 

Note that there is only one point common to both T µν  and Rµν —the point 
at the origin: (0, 0, 0). If we place a mass at this common point, the equation 
makes sense, and we can derive a solution, the Schwarzschild metric, based on 
the singularity at the origin. The field equation cannot be solved at the singular-
ity, but does apply outside of the singularity, where 0T µν = . Vishwakarma [15], 
concluding that curvature of Rµν  is derived from the gravitation field outside 
the mass point, proposed that T µν  is superfluous, and can simply be deleted 
from Einstein’s equation, leaving 

0Rµν = .                           (8) 

That is, the stress-energy tensor representing energy density distributed over 
space, T µν , is nonsensical and has never been solved for or tested against gen-
eral relativity experiments. In agreement with Vishwakarma’s conclusion that 
Rµν  curvature is based on the gravitational field, I have shown how the gravita-
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tional field energy density can be encoded as geometry (i.e., curvature), however, 
a proper energy-stress tensor of the gravitational field does not exist. This cen-
tury-old paradox has led to such erroneous concepts as “quasi-local-mass”. 

We consider next the left-hand-side of the field equation; starting with a Rie-
mannian tensor, abcdR , we can obtain Ricci tensor Rµν  from the contraction 

bd
ac abcdR g R= , where the sum over repeated indices is a bit like taking a scalar 

product of two vectors. In this case the shape of spacetime is defined by the me-
tric tensor abg  with inverse such that [ ]1ab

abg g = . The Ricci scalar is given by 
ac

acR R g= . These are quantified expressions of spacetime curvature. 
Consider a spherical region of closely spaced points around point P, moving 

with velocity v . As the points flow through curved space the sphere can rotate, 
twist, or distort. The Ricci tensor abR  keeps track of the change in volume of 
the region. An associated Weyl tensor keeps track of the changes in shape of the 
region of points. 

The fields of topology and physics converged when Yau realized that the Ca-
labi-Yau conjecture need not be presented in purely geometric terms but can be 
written as a partial differential equation, whereas I start with differential equa-
tions and derive geometry (encoding energy density as geometry.) The differen-
tial equation he tried to solve in the Calabi-Yau conjecture is literally Einstein’s 
equation of empty space, ( 0T µν = ), that is, Calabi-Yau manifolds are regarded 
as solutions to Einstein’s field equations. 

Summarizing: Yau proved that a Ricci-flat metric can be found for compact 
Kahler space with a vanishing first Chern class; he could not produce a precise 
formulation of the metric itself. One is thus left, not with a solution, but merely 
an existence proof that a solution exists. 

The simplest possible Calabi-Yau space is a two-dimensional torus or donut, 
compatible with the existence proof of the mass-gap, a torus derived from the 
use of Heaviside equations in turbulent media. Here we close with a simple to-
pological “derivation” of the torus. (Figure 3) 

Calabi’s conjecture is formulated in terms of complex manifold, Kahler geo-
metry, metric, Chern class, Ricci curvature. Yau claims spaces satisfying the 
complicated set of topological demands are like rare diamonds, but the conjec-
ture offers a general rule telling us that they are there. 

 

→ → 

(a)                             (b) 

 
(c) 

Figure 3. A toric surface can be entire “flat” (zero Gauss curvature) because it 
can be made, in principle, by rolling up a sheet of paper into a tube and then 
joining the ends of the tube to each other. 

https://doi.org/10.4236/jmp.2024.151005


E. E. Klingman 
 

 

DOI: 10.4236/jmp.2024.151005 144 Journal of Modern Physics 
 

8. Ontological Flow on a Torus 

The above treatment has provided topological context and introduced existence 
proofs. I now analyze fermion topology in a 4D Calabi-Yau, modified Yang- 
Mills context, by focusing on the relevant ontological flow. Ignoring tangent 
bundles of differential geometry, we focus on the fact that the tangent space on 
the manifold can be defined as the set of all velocity vectors.  

The solution to Maxwell’s field wave equations has U(1) symmetry,  
( ) ( )e ~ cos sini iθ θ θ+ . In other words, the propagating field has helical structure. 

The physical regimes of interest are ultra-high-density gravitational fields, exem-
plified by big bang and atom-atom collisions at CERN. Both such regimes are ex-
tremely turbulent such that collisions of helices, including self-intersection occurs, 
potentially forming tori. In such cases the symmetry is U(1) × U(1).  

Our mass-gap existence proof analyzes the self-interaction of a newly formed 
torus, concluding that beyond a certain stage of relaxation, the torus is self- 
stabilizing and self-healing against external interference and disturbances up to a 
limit. A key point on which we will construct our analysis is that Kahler mani-
folds are a subset of complex manifolds known as Hermitian manifolds, “on 
which you can put the origin of the complex coordinate system at any point, 
such that the metric will look like a standard Euclidean metric µνη  at that 
point.” By implication, we could do so at any neighboring point, as well. 

Consider the torus that is formed by “joining” the ends of a helical flow 
structure; the U(1) × U(1) structure is like circles surrounding every point on the 
torus “core” which is itself a circle. The surface of the donut represents the flow 
of the gravitomagnetic field energy density, described by the velocity vector, re-
garded as a vector being transported around a closed path. Topologically, this 
vector has the same direction as the tangent to the path at a given point. The 
tangent at any point on one of the U(1) circles is given as follows: For a curve 
with radius ( )tr  the unit tangent vector ( )T̂ t  is defined by ( )T̂ t = r r  . If 
we relabel this as sr   where s is the arc length, then the tangent vector is given  

by 
d
ds
r

, the change in the vector ( )tr  as it moves along arc length.  

Our U(1) × U(1) conceptual model shows every circle disconnected from 
every other circle; not a helix, (Figure 4). To reflect the physical ontology of the 
torus, we desire helical flow lines. The tangent, and hence flow velocity, has the 
same definition, and since the radius is constant around the U(1) circle, the ve-
locity is constant. The parametric helix is ( ) ( ){ }cos ,sin ,t t t=r r . This is easy to 
see, but for comparison with the torus we display it in Figure 5(b), according to 
the following: 

x[t_]: = Cos[t]; y[t_]: = Sin[t]; z[t_]: = t; 
velocities = Table [{{x’[θ], y’[θ], z’[θ]}}, {θ, 0, 4π, π/180}]//N 
ListPlot[Table[{velocities[[n]][[1]].velocities[[n]][[1]], n}, {n, 361}]]//N 
Figure 5(b) shows the value of the velocity squared, 2⋅ =v v . Observe that 

the velocity of any point of a helix on a cylindrical surface has constant magni-
tude (speed). From the Kahler property we know that the velocity of a neigh-
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boring point on a neighboring helix behaves the same. It is key that these neigh-
boring helices do not intersect; since their tangents are parallel, as seen in Figure 
5(a). 

We elaborate on simple helical flow because it is easy to grasp and yet differs 
from toroidal flow, despite that we constructed a torus from a helix, by curving 
the helix until its ends join; this joining changes the U(1) helix symmetry to the 
U(1) × U(1) symmetry of the torus. We show the difference in Figure 6 by plot-
ting the velocity of the “helical” flow around the torus. 

 

 
(a)                         (b) 

Figure 4. (a) U(1) (circles) centered on red U(1) circle yield; (b) 
Torus with U(1) × U(1) symmetry. 

 

 
(a)                                 (b) 

Figure 5. (a) Illustrating that neighboring helices [induced by the same momentum] 
do not intersect; neighboring vectors that are parallel are transported in parallel fa-
shion. (b) The speed at any point, anywhere in either helix, is constant. 

 

 

Figure 6. Unlike the constant velocity of helical flow, the [squared] velocity of toroidal 
flow is smoothly distributed between minimum and maximum velocities. The velocities 
range from ~6.5 to ~11 as the parametric path is followed from zero to 360 degrees. This 
differs from the velocity of the helix because the size of the torus has changed, neverthe-
less, this distribution of velocities represents any size torus. 

velocity

θ

θ

vel2
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If the donut retains a circular cross section, we might initially guess that the 
flow velocity would have constant magnitude like the helix. We investigate why 
this is not the case. 

Calabi required Kahler manifolds, with the property that we can put the origin 
of a local coordinate system at any point, such that the metric will look like a 
standard Euclidean metric at that point. For simplicity, pick a point on the outer 
equator and choose a path that loops through the “hole” in the donut and even-
tually returns to the starting point. Such a path is closed. But we could have 
chosen a point on the equator infinitesimally close to the point we did choose, 
and created a new closed path in which every point on the new path is infinite-
simally close to the equivalent point on the original path. One can show by con-
struction (Figure 5(a)) that the two paths do not cross each other or intersect. 
The process of adding new paths infinitesimally displaced from the last path ef-
fectively builds a “sheet” of flow with surface energy density σ. Every point on 
the torus can be considered part of a sheet flowing up across the outer equator 
and down across the inner equator. 

Ontologically, if we build the donut with smaller circles centered on a large 
circle in the plane of the donut, the tangent of the smaller circles is constant in 
magnitude; the flow velocity around the small circle is constant. But we cannot 
construct a physical torus from adjacent circles, so we must have a helical struc-
ture such that the flow is not only around the small “circle”, but also flows 
around the donut hole. Toroidal flow as an idealized helix leads to constant ve-
locity, yet, ontologically, the topology is based on “surface flow”. If the surface 
flow along the outer equator is “up”—then continuous flow must be “down” 
along the inner equator of the torus. Consider a segment of arbitrary length 

ox∆  and arbitrary height oy∆  at the outer equator with flow velocity ov  as 
seen in Figure 7(a) with the segment between the two dashed radial lines shown 
as a green overlay on the torus. In Figure 7(b) we show the outer segment and 
corresponding inner segment, extracted from the torus. 

In Figure 7(a) the green segment on the outer equator of the torus is labeled 
with arc length ox∆  and height oy∆ , yielding segmental area o o oa x y∆ = ∆ ∆ , 
through which the surface density of field energy flows with (upward) velocity 

ozv . Figure 7(b) shows both segments labeled, with the inner segment described 
by arc length ix∆  and height iy∆  yielding segmental area i i ia x y∆ = ∆ ∆  with 
inner velocity izv , flowing down across the inner equator. A U(1) slice through 
the torus perpendicular to both equators has two half circles, inner and outer, so 
we set segment heights equal, such that o iy y∆ = ∆ . The toroidal velocity plot, 
Figure 6, shows that the velocity varies from minimum to maximum, so we as-
sume that o i≠v v . It is obvious that the length ix∆  of the inner subtended arc 
is less than that of the outer subtended arc ox∆  so that o ix x∆ > ∆ . (Similarly, 
lengths jy∆  could be that of arc subtended by φ∆  so that o iy y∆ > ∆ ). With 
the topology and geometry of the surface flow described, we next analyze the 
physical ontology. 
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(a)                        (b) 

Figure 7. (a) Two arbitrary radii establish two arc segments subtended by 
the angle between the dashed lines. A green segment of height oy∆  spans 
the arc between these dashed lines. (b) The corresponding segment on the 
inner equator is shown from a different perspective. Surface energy density 
is assumed to flow through both segments. The labelled inner and outer 
segments are shown with respective vertical velocities izv  and ozv .  

 
The circulating field energy density is proportional to ⋅C C , where  
× = −C p∇ . Although we envision the vortex surface as two dimensional, let us 

assume a finite wall thickness jr∆  so that we can write the field density as vo-
lume energy density ~ρ ⋅C C  and mass flow (momentum jP ) through a 
segment with volume j j jx y r∆ ∆ ∆  proportional to 

( )j j j j j jx y r ρ= ∆ ∆ ∆ =P v  mass flow of field through wall segment j  (9) 

This momentum induces more C-field circulation, as analyzed in the mass- 
gap existence proof; the stable final state of the topological ontological structure 
is assumed to represent a fermion. 

A stable continuous mass flow (momentum) up through the outer segment is 
assumed to equal the mass flow (momentum) down through the corresponding 
inner segment through conservation of momentum, thus all vertical mass flow 
across the outer equator equals vertical mass flow across the inner equator. If we 
turn the torus upside down, inner flow is up and the outer down, while the 
meaning of inner and outer equators will not change; therefore we use equator 
indices {i, o}: 

    oz iz o o oz i i iz oz izV Vρ ρ= − ⇒ ∆ = −∆ ⇒ = −v v v v P P            (10) 

The negative sign denotes oppositely directed vertical velocities of vertical 
mass flows across outer and inner equators. Assume that vertical parameters 

jy∆  and wall thicknesses jr∆  are equal, then 

iz o o o o

oz i i i i

V x
V x

ρ ρ
ρ ρ

∆ ∆
= ⇒

∆ ∆
v
v

                  (11) 

We group the energy/mass density jρ  with the relevant velocity jv , cancel 
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the product of vertical parameters and wall thickness i i o oy r y r∆ ∆ = ∆ ∆  and con-
vert horizontal parameters, the segment lengths, to arc lengths for angle θ∆  
between the dashed lines, where 0 2θ< ∆ ≤ π  and arc length subtended by the 
angle is j jx r θ∆ = ∆ . Since θ∆  cancels for all values of the angle, reduce (11) 
to vertical momentum density (mass density flows) izp  and ozp  such that 

  i iz o
i iz o oz

o oz i

r
r p r p constant

r
ρ
ρ

= ⇒ = =
v
v

               (12) 

and expand the geometric product: j jz j jz j jz⋅= + ∧r p r p r p . Both j i=  and 
j o=  radius vectors are perpendicular to the vertical momentum vectors, Figure 

8, hence scalar products 0j j⋅ ≡r p  and, converting to cross products, we have  

i iz o oz× = − ×r p r p .           (13) 

Thus, we have coupled the density flow parameters jzp  to the topology pa-
rameters jr . For an arbitrary slice through the torus the centroid angular mo-
mentum (point at center of hole) is: 

0centroid i iz o ozr p r p= + ≡L                       (14) 

The angular momentum of the centroid is shown to have a specific direction 
in the xy-plane for arbitrary θ  (slice) therefore the value of L  must be zero. 
The bivector relation is i iz o oz= −r p r p  since vertical velocities have opposite di-
rections with respect to the centroid, hence we have i iz o oz× = − ×r p r p . With 
angular momentum density of the slice measured at the centroid zero; we calcu-
late the angular momentum density at the torus core: 

core iz oz= × + ×L b p b p          (15) 

Since i iz o ozr p r p= −  and ( )jz j j jzVρ= ∆P v  where j j j jV x y r∆ = ∆ ∆ ∆  and 

j jx r θ∆ = ∆  with jy∆  and jr∆  the height and thickness of the jth equatorial 
segment specified as i oy y∆ = ∆  and i or r∆ = ∆  so that ( )j j jm r y rρ θ= ∆ ∆ ∆  
under the assumption that the same mass flows across the inner and outer 
equatorial segments: i om m= . From the above: 

iz o i iz

oz i o oz

r v
r v

ρ
ρ

= =
p
p

                      (16) 

Based on the helical velocity the vertical velocity components are equal 

iz ozv v≡ , despite that we have shown that o iv v> . If so, then we have 

i o o
i o

o i i

r r
r r

ρ
ρ ρ

ρ
 

= ⇒ =  
 

      (17) 
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Figure 8. Cartoon depicting relevant vectors of the 
torus model of the fermion. The radii ri, ro, and R 
used in measurements in Table 1. 

 
Thus, mass density of the inner equatorial segment is greater than the outer by 

ratio ( o ir r ) and we have arrived at a relation between the topology and the 
(vertical) field momentum density. We rewrite angular momentum at the core, 

core iz oz= × + ×L b P b P , as 

( ) ( )~core i i iz o o oz i iz o ozV V b m v m vρ ρ= ∆ + ∆ +L b v v            (18) 

Note that 
2

o ir rb −
=  and that we have specified that the same mass must flow 

across the inner and outer equators, hence [ ]
2

o i
core i iz o oz

r r m v m v−
= +L . Since 

i om m=  and iz ozv v=  the angular momentum at the core is  

2
2

o i
core i iz

r r m v− =  
 

L  or  

( )core o i j jzr r m v= −L ,                    (19) 

where  

 


local energy density local segment volume

~j jm V⋅ ∆C C                 (20) 

and jzv  is the vertical velocity at equator j. Angular momentum at the toroidal 
core is induced by energy flowing at the toroidal surface. The energy flowing at 
the toroidal surface is equivalently induced/sustained by the core “current”, that 
is, we again arrive at a relation between the topology and the field momentum 
density, related to the motion of the field energy density. 

We conclude this section on ontological flow by observing that the velocity 
variations seen in Figure 6 imply that toroidal flow velocity varies and thus 
cannot be the constant speed of light. In other words, variations in energy den-
sity of the vector field flow through space, but NOT at the speed of light. The 
speed of light describes the propagation of a stress wave in the field across space. 

9. Separation of U(1) × U(1) Flow Symmetry 

The relevant symmetry is U(1) × U(1) and we have up to this point focused on 
the U(1) circulation about the torus through the donut hole and have required a 
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constant mass flow through the hole: iz oz= −p p . Next, we focus on the other 
U(1) circulation, that around the hole in the donut. In other words, the U(1) × 
U(1) symmetry is resolved into two orthogonal flows z θ= +p p p  where zp  is 
the momentum through the hole and θp  is the momentum around the hole. 
Referring to Figure 8 we have three well defined radii, ir , or  and R, defining 
respectively the radius of the inner equator, the outer equator, and the core of 
the torus. Each of these distances is associated with a velocity: 2 2

x yv vθ = +v . 
Whereas the vertical velocity jzv  is constant, independent of r or θ, the mass 
flow through any given segment is proportional to the arc subtended by θ∆ , 
and the mass of each segment, by construction, is equal to that of the other seg-
ment, independent of θ∆  and of y r∆ ∆ , therefore the mass flow associated with 
each segment is proportional to jv θ , i.e., ( )j j j jm rθ θ=p v . Since o iv vθ θ>  we 
have o iθ θ>p p . Angular momentum L  at the centroid and at any point on the 
core are due to equatorial vertical velocities iz ozv v=  while o iv v> . Next consider 
angular momentum due to corresponding horizontal components o iv vθ θ>  with  

0o oz θ= +v v v  and i iz iθ= +v v v .                   (21) 

Angular momentum at the centroid due to equatorial momentum in the 
xy-plane is: 

~ i i i o o om mθ θ× + ×L r v r v       (22) 

with o ir r>  and o iv vθ θ>  where ( ) ( )22
i ix iyv v vθ = +  and  

( ) ( )22
o ox oyv v vθ = + . We thus resolve ontological flow on the torus into two  

components; vertical components rotate around the core (and through the hole) 
and induce angular momentum in the xy-plane at the core. Horizontal compo-
nents flow around the hole in the θ direction and induce angular momentum 
(C-field) in the z-direction at the centroid. Vertical velocities are the same value 
at inner and outer equators, while horizontal velocity at the outer equator is 
greater than that at the inner equator. Conservation of mass flow in both direc-
tions is achieved via compensating changes in local field density, with the greater 
density appearing at the inner equator. 

However, unlike the vertical momentum, which is constant around the torus, 
the horizontal momentum around the hole varies with the distance from the 
centroid and applies to mass that is off the equatorial plane, requiring integra-
tion over all radii from ir  to or  complicating the issue. For that reason, we 
take a different approach to the problem. Rather than attempting to calculate the 
horizontal momentum associated with every point on the torus, we study the 
third Heaviside Equation in Equation (3): ρ× = −C v∇  derived from the pri-
mordial self-interaction Equation (1). We ignore the time change in gravity field 
G . The ×C∇  represents the circulation of the field induced by momentum  
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density and 
3

mass
volume d

m
x

ρ = =
∫

 with v  the velocity of the U(1) mass density  

circulation in the equatorial plane, ~ θ θ⋅C C . If P  is the momentum of this 
U(1) circulating field, then the U(1) circulation in the vertical plane is  

3
2d ~x

c
θ θ

θ
⋅ × = −  

 ∫
C CC P v∇                   (23) 

In this case the mass density ρ  moving with velocity v  is the mass of the 
horizontal C-field circulation induced by the helical solenoid divided by the re-
levant volume, 3dV x= ∫ , that is  

3d xρ = = ∫v p P                        (24) 

Here momentum P  will be identified with the core of the torus, and volume 
with the inside of the torus. Recall that the minus sign in Heaviside’s equation is 
associated with the direction of flow of the induced C-field circulation, we will 
drop it in our calculations of magnitude. We follow Arfken [16] and set an infi-
nitesimal volume to be 3d d d dx x y z=∫  (cube) and specialize to the cylindrical 
volume corresponding to the U(1)-based eiCt  helix, in which case we redefine 
the volume in cylindrical coordinates as 

 3d d d d   d d d
S

x x y z r r zφ= ⇒∫∫∫ ∫∫ ∫ ∫∫ ∫  (cylinder)          (25) 

If we integrate z from 0 to 1 the result is the unit normal 
1

0
ˆdz n= =∫

n
n

 to the 

vertical plane of circulation. We next use these results to invoke quantum 
half-integral spin.  

10. Derivation of Quantum Spin 
From the above, applying Stokes’s theorem to Heaviside’s equation  

2
g
c

ρ × = − 
 

C v∇ : 

( )ˆd d
S S

a n
∂

⋅ × = ⋅∫∫ ∫C C l


∇                      (26) 

we obtain the line integral around the closed (vertical) path. For a given mo-
mentum (in the z-direction) the circulation in the vertical plane is fixed and 

( )n̂ ⋅ ×C∇  must not depend on the coordinate system. In the following we 
make use of the dimensional relations:  

[ ] 2da l= , 2
g l

mc
  =  

, [ ] 3
m
l

ρ = , [ ]ˆ 1n = , [ ] lv
t

= , [ ] 1C
t

= , [ ] lλ = .   (27) 

To obtain 

( ) 2
3ˆd l ma n l

m l
  ⋅ × =   
  

C v∇                    (28) 

where velocity v  is perpendicular to the plane of the C-field circulation. 
The results in Equation (28) allow us to modify equation (26) as follows: 

( )ˆd d
S S

m a n m m
∂

⋅ × = = = ⋅∫∫ ∫C v P C l


∇               (29) 
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At this point recall that our goal is to derive a fermion from a theory of quan-
tum gravity, so we invoke deBroglie’s fundamental basis of quantum theory,  

hP
λ

= . Substituting this into Equation (29) and multiplying both sides by λ  

we obtain for n̂λ=λ  and unit mass, 1m = : 

d
S

a h⋅ × =∫∫ Cλ ∇                       (30) 

This is a novel quantum relation, relating the wavelength of the core momen-
tum to the circulation induced by this momentum and finding the quantized 
results in terms of Planck’s constant. Since 3 2d dx xλ= ⋅∫ ∫  so λ  is the length 
of the helical cylinder. From Equation (29) we further obtain 

d
S

m hλ
∂

⋅ =∫ C l


, 
1d

S

h
m λ∂

 ⋅ = = 
 ∫ C l v



            (31) 

which implies that the circulation around a closed loop is quantized, and that it 
is the gauge field vector. Of course, the helix is not closed, but the torus induced 
by momentum P  is closed, and that is the focus of our next development. We 
have calculated the vertical contributions of the field energy density momentum 
to the core of the torus and the centroid of the torus. We here identify the hori-
zontal contribution to the angular momentum as related to Planck’s constant.  

11. Vector Transport around a Closed Path 

Many are familiar with vector transport on the surface of a sphere—begin at the 
north pole and follow any longitude line to the equator, maintaining the vector 
as tangent to the curve at every point along the curve. When the equator is 
reached, the vector points south, and motion along the equator retains this di-
rection of the vector. After reaching an arbitrary longitude begin moving the 
vector toward the north pole, maintaining its tangent nature at every point. 
When the north pole is reached, the final tangent vector is not parallel to the 
original vector at the same pole. The pole is used for simplicity, but this concept 
applies at any point and in any coordinate system. The concept of “holonomy” is 
a measure of how tangent vectors on a particular surface get twisted up in such 
parallel transport over a loop around the surface. In fact, to tie Calabi-Yau to 
string theory, supersymmetry was used as the bridge to holonomy; holonomy 
was used as the bridge to Calabi-Yau.  

To analyze vector transport on the torus we arbitrarily choose the starting 
point on the vertical axis at R (red arrow in Figure 8). The green arrow of length 
b ends on the starting point. As this is at the top of the torus, the vertical coor-
dinate is not changing at this point, hence 0z =v . As we move off the starting 
point toward an equator, the vertical component of velocity becomes nonzero, 
finally reaching izv  (or 0zv ) at the equator, then proceeding toward the bottom 
of the torus where again 0z =v . Continuing this U(1)-symmetry vertical mo-
tion the point of interest is transported around the torus through the “donut 
hole”. But the ontological flow has U(1) × U(1) symmetry and flows around the 
donut hole as parameter θ  increases. Therefore, when the flow crosses the in-
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ner equator the velocity at ir  is i z θ= +v v v  where θv  is the rotational veloc-
ity of the flow in the xy-plane. The flow of the field is left-handed with respect to 
the core flow. The z-component of velocity izv  is maximum at the equator, 
then diminishes until it vanishes at the bottom-most parts of the torus.  

A 360˚ θ-rotation effects one complete circle around the torus, but only half a 
rotation about the hole in the torus; the final point on the path does not overlay 
the starting point. In every case, regardless of starting point, a further 2π rota-
tion will return to the starting point, thus requiring a total 4π-rotation to close 
the path, as required for fermions. Once we determine that one circulation 
around the donut hole corresponds to two circulations around the “helical” to-
rus, we invoke Equation (31) to conclude that 2 d

S
h

∂
⋅ =∫ C l



. This implies that 
the relevant wavelength is 2λ and thus, compatible with Equation (29), we have: 

d
2S

ha⋅ × =∫∫ Cλ ∇ .                     (32) 

That is, the quantum gravity-based spin of the fermion is 
2
h

. This implies, 

correctly as we have seen, that the C-field must wind about the torus twice to 
return to its starting state. 

12. Measurements on a Dynamic Model  

Rather than complicating the visual dynamic flow further, by dividing it into two 
components as it flows around the torus, I decided to also dynamically display 
the values of the horizontal and vertical components of velocity as it flows 
through every point. I typically employ 360 points for each U(1) path, and so can, 
via Mathematica controls, determine the speed of simulation, as it is quite simple 
to walk my way around the path, slowing down at each of the critical points (the 
red and green arrow heads in Figure 9(c)) examining the velocity components, 
equatorial vertical velocities iz ozv v=  with o iv v>  and corresponding hori-
zontal components o iv vθ θ>  with  

o oz oθ= +v v v  and i iz iθ= +v v v .                (33) 

thereby building a table as seen in Table 1. The radii are defined in Figure 8, 
with ir  the inner radius, or  the outer radius, and R the radius to the core of 
the torus. 

At any point on the manifold the velocity Zθ= +v v v . If we square both sides, 
term 0Zθ ⋅ =v v  since θv  and Zv  are orthogonal, hence  

2 2
Zv v vθ= +                         (34) 

 
Table 1. Measurement of velocity components. 

deg 0 30 60 90 120 150 180 210 

θv  10.8 9 10.8 3 10.8 9 10.8 3 

Zv  0 9 0 9 0 9 0 9 

v  10.8 12.7279 10.8 9.48 10.8 12.72 10.8 9.48 

radi R ro −R −ri R ro −R ri 
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(a)                    (b)                       (c) 

Figure 9. Based on equation 29 we draw a closed path around the torus, with the area of 
the enclosed xy-plane defining the horizontal boundaries of the torus. (a) shows a pers-
pective angle on the path, while (b) shows an overhead perspective of the same path, and 
(c) depicts a semi-opaque torus with white outer equator shown and the closed path tra-
versing the torus shown in black with colored arrows indicating direction of flow.  

 
For example, at 30˚ the velocity is 2 29 9 12.7279220+ =  while at 90˚  

2 23 9 9.48v = + = . We see from the table that the measurements confirm the 
intuitively derived relations based on the reasoning about conservation of mo-
mentum. In short, the dynamic visualization of the field behavior intuitively 
confirms the correctness of the model/theory, while the measurement access to 
arbitrary parameters can serve as proof of the flow model worked out by con-
servation equations and the U(1) × U(1)-symmetry. When these measurements 
on the model agree in detail with intuitively and/or analytically derived behavior, 
the feeling is as if one has “struck gold”. One can only sincerely thank David 
Hestenes and Steven Wolfram for their contributions to this task. 

13. Summary 

There are a lot of details in this paper, and my focus has been primarily on get-
ting the details right. An anonymous reviewer asked for more context, and this 
has improved the presentation of the information, for which I am grateful.  

The key to fermion spin is its half-integral nature. This was first interpreted 
from spectral statistics, and then projected onto Stern-Gerlach beam-splitting 
experimental results seen in the infamous Bohr-postcard. The formulation fits 
the expected data, but no physical basis of half-integer spin is known. Explained 
succinctly, half-integral spin is not mapped into itself in one revolution, but re-
quires a 4π-rotation, a decidedly nonclassical result. The simplest math analog is 
the mobius strip, but no one takes that seriously. The complete lack of ontologi-
cal theory of half-integral spin has led to such explanations as Feynman’s “belt 
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trick” wherein unobservable “tethers” are “tangled” such that a single rotation 
does not allow untangling to occur, while a 4π rotation untangles the system, 
restoring it to its initial state. Interestingly, Schiller has issued a preprint [17] 
based on a formalization of the belt trick. 

The half-integral spin that flows from primordial field theory is not based on a 
belt trick; it is based on Heaviside’s gravitomagnetic dual to electromagnetism. 
The issue of computation of flow on the surface of the torus is one that is best 
addressed by constraining all calculations to the manifold defined by Calabi-Yau. 
This avoids any use of strings, while allowing use of Hestenes’ Geometric Calcu-
lus—instantiated in Wolfram’s Mathematica 13. The flow of C-field energy den-
sity around the surface of the torus is complicated; the vector being transferred 
around the path is always changing. Even the use of magnitude-adjusted, col-
or-coded vectors is dynamically complex. A dynamically stable model of this 
complexity is a very strong argument for the integrity of the mathematical de-
sign. The ability to make measurements on the dynamic model which can then 
be compared to the predicted measurement results is rather convincing. 

An Internet search for Calabi-Yau topology returns images of the type shown 
in Figure 10. They’re often viewed as “compactified”, meaning that the local 
topology exists at every point in 3D space. This is the “trick” that allows string 
theorists to claim that 10D and 11D theories are meaningful. A decade of opera-
tion of the LHC has failed to find any signs of supersymmetry, and string theory 
makes no sense without supersymmetry; nevertheless, support from the string 
theory community kept Calabi-Yau alive during its critical period.  

Of course, in the context of today’s mysteries in physics, and ready belief in 
higher dimensionality at fundamental levels, such images are always enjoyed by 
physicists and the artistically inclined; but even if higher dimensional models 
turn out to be physically inappropriate, the Calabi-Yau manifolds retain su-
preme importance for (3D + 1)-space-time physics: they allow the use of Eucli-
dean space tools locally in a global non-Euclidean ontology. In other words, we 
are allowed to compute flows on toroidal surfaces confidently. 

In summary, a new theory of physics based on the existence of a primordial 
field at the creation of the universe resolves a number of paradoxes [logical con-
tradictions] associated with 20th century physics. It contrasts with quantum field 
theory, which has one field per particle, and with general relativity, which 
equates the world to geometry. 

 

 

Figure 10. A 10D Calabi-Yau manifold image de-
signed by Stewart Dickson at redbubble.com. 
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The new theory leads almost immediately to Heaviside’s equations of gravity, 
dual to Maxwell’s equations of electromagnetism. While these are generally rec-
ognized as iteratively equivalent to Einstein’s field equations, physicists have 
been ultimately confused by the label “weak field approximation”. Primordial 
field equations are density-based and hold at all field strengths.  

In “Self-linking Field Formalism” [18] we note that the gravitomagnetic field, 
induced by and inter-acting with mass flow, is significantly different from the 
electromagnetic field induced by and interacting with charge flow, in that the 
electromagnetic field is uncharged and hence cannot interact with itself. The 
gravitomagnetic field has energy density, hence mass density, and can therefore 
interact with and induce itself.  

The U(1) × U(1) symmetry described herein supports two orthogonal circula-
tions, vertical and horizontal. It seems reasonable that these self-sustaining inte-

ractions have equal angular momenta, that is, each mode supports 
2
h

. The ver-

tical momenta induce the flow at the core, whereas the horizontal momentum 
produces the half-integral spin at the centroid. Only this spin is measurable. 

Based on analogy with electromagnetism, we show that gravitomagnetism 
supports field structures that are self-induced; these structures include vortices 
in turbulent fluid, and we have shown that higher order self-interactions lead to 
toroidal structures that are self-stabilizing, thus bringing Calabi-Yau theory into 
the picture. The key contribution of Calabi-Yau to primordial field theory is 
found in the definition of Kahler manifold, vanishing Chern class, and Ricci-flat 
geometry. These establish a topological geometry framework subject to existence 
proofs. String theory has focused on 10D and 11D structures, for reasons to be 
examined elsewhere. Primordial field theory deals with (3D + 1) of space and 
time. We consider the torus structure to be effectively described by U(1) × U(1) 
symmetry, in which a 4π rotation is required to transform any point in the flow 
into itself via vector transport over a path on the surface of the torus. This cor-
relates perfectly with the half-integral spin that characterizes fermions. 

Analysis of the flow of the gravitomagnetic field energy density on the toroidal 
surface leads to formulating flow relations through the donut hole and around 
the donut hole, with the velocity at any point resolved into zv  velocity and θv  
velocity. 

Because primordial field theory is ontologically well defined, and the fermion 
is topologically well defined, we create a model fermion based in the mass-gap 
existence proof, now augmented by the half-integral spin existence proof. We 
then make measurements on this well-defined model and prove that our onto-
logical analysis has yielded dynamical equations that match the measurements at 
well-defined points. This is considered an existence proof of the half-integral 
fermion spin. 

The above theory is classical in nature, as is relativity. The quantum is intro-
duced by invoking the key quantum relation underlying all quantum mechanics: 
deBroglie theorem: p h λ= . 
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14. Conclusions 

The above summary reviewed the fact that our primordial field theory is now 
adorned with two key proofs for toroidal fermions: 
• Mass-gap existence proof 
• half-integral spin existence proof 

Note that the standard model of particle physics has no explanation of particle 
mass nor any explanation for half-integral spin. Nor can it calculate the mass of 
any particle. Of course, at this point, primordial field theory cannot calculate 
fermion mass either. It is known that the C-field circulation energy has mass 
density, and it is also known that rotational energy is mass [19]. What has not 
yet been proved is the nature of electric charge in primordial field theory. We 
cannot nail down the mass and size of the fermion until we include the charge 
and associated fields, which are not assumed present at the Creation. The goal is 
to show that this follows from the principles of the primordial field theory. 
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