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Abstract 
Gravity is the only force that cannot be explained by the Standard Model 
(SM), the current best theory describing all the known fundamental particles 
and their forces. Here we reveal that gravitational force can be precisely given 
by mass of objects and microwave background (CMB) radiation. Moreover, 
using the same strategy we reveal a relation by which CMB can also precisely 
define fine-structure constant α. 
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1. Introduction 

Gravity, called also gravitational force, represents a fundamental and universal 
force because of mass and always acts as attraction between all matters. Al-
though dominantly developed by Issac Newton several centuries ago and then by 
Albert Einstein one century ago, the gravitational force is still one of the most 
mysterious forces in the universe as it cannot be described by the standard mod-
el, the current best theory explaining all the known forces well except gravity [1]. 
Given the critical role of gravity in the universe and its linear relation with the 
gravitational constant G, one of the most fundamental constants of nature, it is 
quite important to get the precise knowledge of gravity and G. During the past 
two centuries, more than 300 experimental G values have been measured [2]; 
however, gravity is still the least precisely known constant due to its extreme 
weakness and non-shieldability [3].  

Here we reveal a quantitative relation between gravity and the cosmic micro-
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wave background (CMB), a kind of radiation almost evenly filling the universe 
[4]. We propose an equation among which the gravitational force and the gravi-
tational constant G can be well determined by the frequency f or temperature T 
of CMB, which suggests that the gravitational force could be from the interac-
tion between matter and CMB. Based on this finding, the “gravitational waves” 
are explained as periodic or non-periodic signals of gravity variation in nature. 
Moreover, this theory can easily interpret why the gravitational force is always 
attractive and why the “gravitational waves” travel at the speed of light. Moreo-
ver, using the same strategy, we reveal that CMB can also precisely predict 
fine-structure constant α.  

2. Gravitational Force Given by the Cosmic Microwave  
Background 

It is well known that the Boltzmann constant k links the average kinetic energy E 
of gas particles with its temperature T as the following equation, 

3
2

E kT=                           (1) 

It is well known that photons have only two physical degrees of freedom. Thus, 
the expected average energy of CMB photons will be 

2
2

E kT kT= =                         (2) 

Moreover, the energy of CMB photons can be given by 

E hf=                            (3) 

where h is the Planck constant and f is the frequency of the CMB photons. Then, 
the expected average frequency f of CMB photons is expressed as 

kTf
h

=                            (4) 

A widely accepted experimental value of the CMB temperature is T = 2.73 K 
(Kelvin) [5], then the expected average frequency of CMB will be f = 5.688397 × 
1010.  

It is known that gravity is always attractive and gravitational waves travel at 
speed of light, which triggers us to obtain the idea and hypothesis that CMB 
could have a role in gravity. As shown in Figure 1, we assume there are two as-
trophysical objects with mass of M and m, and with a distance of r. It is thus not 
difficult to understand that CMB crashes into the two objects at all directions 
except the direction along the line connecting them (Figure 1). Therefore, the 
force by CMB collision will be cancelled out at all directions except the direction 
along the line connecting them. That is, the inner side of both objects does not 
receive collision and the corresponding outer side of each object receives the col-
lision (force), thus resulting in an attractive force, that is, the gravitational force, 
between the two objects along the line connecting them. Then, the gravitational 
force can be given by the following equation: 
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Figure 1. A diagram for the role of cosmic microwave background (CMB) 
in the gravitational force between two astrophysical objects with mass of 
M and m, and with a distance of r. In the diagram, CMB plays a role in 
gravitation as some necessary “stimulus” but not mechanical force of un-
seen tiny particles as Le Sage’s theory of gravitation suggested. 

 

2 2
4
Mm hfF f

r λ
= × × ×

π
                        (5) 

where 24
Mm

rπ
 is the matter interaction of the two objects. hf and λ are the ex-

pected average energy and wavelength of CMB, respectively. Then, hf
λ

  

represents the force doing such a work (energy) in a distance of λ (collision) by 
one CMB-wave. And in unit time (second), there are 2f times of collisions in 
unit mass for object pairs. Given that the speed of light in free space is c = λf, the 
above gravitational force equation then can be given by the frequency f or by the 
CMB temperature T as follows: 

3

2

3 3

2 2

2

2

hf MmF
c r

k T MmF
ch r


= π


 = π

                        (6) 

Therefore, the Newton’s gravitational constant G can be expressed as 
3

3 3

2

2

2

hfG
c

k TG
ch


= π


 = π

                          (7) 

As a result, the gravitational constant determined by the current value T and 
constants h, c and k will be G = 6.474792 × 10−11 m3·kg−1·s−2, which is close to the 
current measured value (6.674184 × 10−11) [3], however, tension still exists. Giv-
en this observation, we have to revisit the temperature of CMB. It should be 
pointed out that this theory is different from Le Sage’s theory of gravitation, 
which represents the kinetic gravitational theory presented by Nicolas Fatio de 
Duillier in 1690 and by Georges-Louis Le Sage in 1748. Le Sage’s theory ex-
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plained Newton’s gravitational force as mechanical force of unseen tiny particles, 
however, in this theory CMB contribute to gravity as some necessary stimulus 
but not mechanical force as it is too weak to explain gravitation.  

On the other hand, using Equation (7) and the current experimental value of 
G, it is not difficult to obtain the corresponding CMB temperature T = 2.757741 
K. Historically, the experimental and estimated T value does vary [6] [7], for 
example from [2.64, 2.77] [8] to [2.710, 2.728] [4]. In addition, it is well known 
that the CMB temperature T displays slight anisotropies [9]. Moreover, it was 
reported CMB radiation is warmer in the past space-time [10]. For example, T at 
redshift z = 2.3371 could be between 6.0 and 14 K, much higher than the tem-
perature at present space-time [10]. As the cooling of our universe, G conti-
nuously decreases, which can easily interpret why astrophysical objects are far 
away from each other. Moreover, given the non-shieldability of gravity and big 
distance of astrophysical objects, it makes sense that T at the scale of measured 
gravity will be a little bit higher than the one (2.73 K) at present space-time. 
Therefore, for something with shieldability and small measurement scale, it is 
expected that the temperature of CMB will be a little bit smaller, for example 
2.71 K. 

In addition, under the proposed framework, we can revisit some famous issue 
in gravity, e.g. gravitational waves. In Albert Einstein’s theory of general relativ-
ity, gravity is not a force but modeled as a curvature in space-time. A famous 
prediction of the general relativity is that accelerating astrophysical objects with 
mass will produce “gravitational waves” [11], that is, fluctuations in the 
space-time, which were directly detected for the first time by LIGO recently [12]. 
Here we try to re-interpret “gravitational waves” using the proposed theory. Ac-
cording to Equation (6), any changes in the parameters (M, m, r, and T) will 
change the gravitational force from original F to new F’. Then, the variation of 
the gravitational force Fv will be 

3 3 3

2 2 22v
k MmT M m TF F F
ch r r

 ′ ′ ′
′= − = − ′π  

             (8) 

This equation describes the “gravitational waves”. If any value of M, m, r, c, or 
T changes dramatically enough, the “gravitational waves” Fv would be observed. 
It is thus not difficult to infer that the “gravitational waves” will travel at the 
speed of the CMB radiation, that is, the speed of light. Fv could be periodic or 
non-periodic, but obviously in most cases it is non-periodic because the para-
meters in Equation (10) show less periodicity. 

3. Fine-Structure Constant Given by the Cosmic Microwave  
Background 

Fine-structure constant α, called also Sommerfeld’s constant, is a dimensionless 
physical constant, which characterizes the strength of the electromagnetic inte-
raction between elementary charged particles [13]. Given its central importance 
to the foundations of physics, this constant has been measured using various 
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methods [14] [15] [16], but still remains one of the mysterious constants of na-
ture. Here we try to describe fine-structure constant using CMB using the same 
strategy as above. Fine-structure constant is defined as the ratio of the tangential 
velocity of the electron in the lowest-energy orbit of the hydrogen atom to the 
speed of light. Using the same strategy as above, the force Fe between the electric 
charges of the electron and the proton can be given by the following equation: 

2 2

2 22
4 2e

e e fF f
r r

= × =
π π

                      (9) 

where e is the elementary charge (e = 1.602176634 × 10−19C), r is the Bohr radius 
(r = 5.2917721067 × 10−11 m), and f is the frequency of CMB. Unlike the gravita-
tional force, electric force is the unit interaction (e2/4πr2) of charges in unit time 
(second). Therefore, Fe is described by Equation (9) as the 2f times (in one 
second) of unit interactions of paired charges. Besides the electric force, there 
could also exist the gravitational force Fg between the electron and the hydrogen 
nuclei, which can be given by Equation (10):  

3

22
n e

g
m mhfF

c r
=

π
                        (10) 

where mn and me are the rest mass of the electron (me = 9.109 × 10−31 kg) and the 
hydrogen nuclei (mn = 1.67 × 10−27 kg), respectively. In addition, the central force 
Fc for the electron with a tangential velocity v at the Bohr orbit can be given by:  

2
e

c
m v

F
r

=                          (11) 

In a steady state, Fe + Fg = Fc. That is,  
22 3

2 222
n e em m m ve f hf

c rr r
+ =

ππ
                  (12) 

Using the present frequency f of CMB and other parameters in Equation (12), 
we can obtain that the electronic force Fe is much greater (2.36 × 1039 times) than 
the gravitational force Fg. In this case, the force between the electron and the hy-
drogen nuclei can be precisely given by the electronic force Fe. Hence, the Equa-
tion (12) can be simplified to the following equation in a high precision. 

22

22
em ve f
rr

=
π

                        (13) 

Then, the tangential velocity v of the electron with the Bohr radius can be 
given by: 

2 e

fv e
rm

=
π

                       (14) 

Then, fine-structure constant will be 

2 e

v e f
c c rm

α = =
π

                     (15) 

Given the shieldability effect analyzed above, the temperature of CMB in an 
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atom would be a little bit smaller than the observed one (~2.73 K), for example 
2.71 K. As a result, using this CMB temperature (~2.73 K), we have calculated 
fine-structure constant to be α−1 = 137.036804055, which is quite close to the ex-
perimental values, for example the values by Smiciklas et al. (137.03599955) [17], 
by Morel et al. (137.035999206) [14], by Pachucki et al. (137.0360011), by Parker 
et al. (137.035999046), and by Aoyama et al. (137.0359991491) [18]. This finding 
suggests that CMB has a critical connection with fine-structure constant. On the 
other side, if we take the average (137.03599961) of the above five experimental 
values, the corresponding temperature of CMB will be ~2.710032 K. In addition, 
given that the Bohr radius is given by 

2

0

2

4
2

e

h

r
m e

ε  π  π =                       (16) 

where ε0 is vacuum permittivity. Then, Equation (14) can be further described by 
2

02
e f
hc

α
ε

=                        (17) 

Moreover, it is well known that ( )2
02e hcα ε= . Therefore, it is not difficult 

to obtain ( )0 1 2 fε = , suggesting that vacuum permittivity could be the time 
used for once stimulus on the interacting charges by CMB. Finally, fine-structure 
constant can be further expressed as the frequency of temperature of CMB with 
a number of other constants, as follows: 

2

2

2

e f
hc

e kT
h c

α

α


=


 =

                        (18) 

From the above analysis, we know that based on the temperature of CMB T = 
2.757741 K and T = 2.710032 K, the predicted G value and α value match the expe-
rimental values with very high precision. However, at present, the widely accepted 
temperature is 2.72548 K, indicating that the temperature of CMB is variable at dif-
ferent space-time scale or conditions (e.g. shieldability or non-shieldability) [9]. For 
example, it was reported that the temperature of CMB at a past time (redshift z = 
2.3371) is between 6.0 and 14 K. We summarized the relations of CMB with gra-
vitational constant and fine-structure constant (Figure 2).  

4. Conclusion and Discussion 

We have revealed and quantified possible relations of the cosmic microwave 
background (CMB) with gravity and fine-structure constant. These relations can 
easily interpret a number of observations. For example, the gravitational force is 
always attractive and the gravitational wave travels at the speed of light. Moreo-
ver, as CMB is continuously cooling, the gravitational constant is expected to 
decrease as the CMB temperature, which can easily explain why astrophysical 
objects are far away from each other. In addition, we noted that although the  
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Figure 2. Cosmic microwave background (CMB) can precisely predict the current meas-
ured value of fine-structure constant at 2.710032 K and the current measured value of 
gravitational constant at 2.757741 K. The y-axis value has no meaning but just to separate 
the data points. 
 
proposed equations match the observation data well but the original dimensions 
do not match consistently. Therefore, some traditional dimensions should be 
removed or new dimension should be introduced. Although clear relations of 
CMB with gravity and fine-structure constant have been revealed, exact explana-
tions are still needed. In addition, it should be noted that besides CMB photons, 
the cosmic background may also include large amounts of neutrinos and gravi-
tons. Therefore, it is important to investigate whether these “particles” contri-
bute to gravity. Finally, although the proposed equations match the observations 
well, more data and especially new experiments are needed to further support 
the proposed findings.  
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Abstract 
Gravitational time dilation directly reflects the difference between gravita-
tional potentials at different altitudes in the gravitational field. At the same 
time this phenomenon is expected to obey the Einstein’s equivalence prin-
ciple, one of two pillars (apart from general covariance) of general relativity. 
The experiments aimed at detecting the gravitational time dilation are there-
fore described as the tests of general relativity or, alternatively, the tests of 
equivalence principle. When applied to the exterior of a solid sphere, these 
two interpretations are fully compatible both theoretically and experimental-
ly. However, when applied to the interior of a solid sphere (e.g., to the inte-
rior of Earth), they seem to contradict each other. Namely, a strict depen-
dence of the gravitational time dilation on the gravitational potential inside 
the sphere proves to be at odds with the equivalence principle. This paper re-
veals this problem and provides solution to it. As a consequence, it is con-
cluded that, contrary to the current belief, the Earth’s center is older, not 
younger, than the Earth’s surface. Since all the previous experiments have 
been performed either on or above the Earth’s surface, an experiment per-
formed below the Earth’s surface is proposed. 
 

Keywords 
Equivalence Principle, General Relativity, G-Force, Gravitational Potential, 
Gravitational Time Dilation 

 

1. Introduction 

Gravitational time dilation is a form of time dilation predicted by general rela-
tivity (GR), referring to an actual passage of time—the difference of elapsed time 
between two events as measured at different altitudes in the gravitational field. It 
relates to the gravitational potentials (metric tensor) at these altitudes. This 
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phenomenon was originally predicted by Einstein prior to the formulation of GR, 
as a consequence of applying special relativity to the accelerated frames of refer-
ence, hence without direct regard to the gravitational mass (Einstein [1] [2]). It 
is therefore strictly connected with the equivalence principle, i.e., the Einstein’s 
observation paving the way to GR, according to which there is no experimental 
difference between the inertial frame of reference and the (local) frame in free 
fall, as well as between the local reference frame at rest in the uniform in gravita-
tional field (e.g., on the surface of Earth) and the reference frame under uniform 
acceleration. 

Gravitational time dilation has been tested in numerous experiments, to name 
most important: the Pound-Rebka experiment conducted in 1959 inside the 
building shaft (tower) of Harvard University (Pound and Rebka [3] [4]); the 
Hafele-Keating experiment—as a compound effect including both gravitational 
(due to mass) and kinematic (due to relative velocity) time dilations (Hafele and 
Keating [5]); Gravity Probe A, performed in 1976 (Vessot et al. [6])—the hydro-
gen maser high precision measurements of the rate of time passage at the alti-
tude of ca. 10,000 km, compared with the measurements of identical maser 
placed on the Earth’s surface; the (Chou et al. [7]) experiment with light clocks 
placed in the Earth’s gravitational field, with their altitude differing by only 1 
meter. This effect has also a practical relevance: an inclusion of the gravitational 
time dilation is crucial, apart from the kinematic time dilation, for the correct 
operation of the GPS (Ashby [8]). 

Besides, the experiments aimed at testing the gravitational time dilation in the 
context of equivalence principle have been conducted using the Mössbauer effect 
discovered shortly before (Mössbauer [9]). In these experiments, the accelerated 
system due to rotation of “ultracentrifuge rotor” replaced the gravitational mass 
(Hay et al. [10], Kündig [11]). 

Presumably, Richard Feynman was the first who considered this phenomenon 
in application to the interior of cosmic bodies, specifically to the interior of 
Earth. According to this great scholar, the inner core (center) of the Earth is, due 
to the gravitational time dilation, “one or two days” younger than the Earth’s 
crust (surface). Feynman made this illustrative evaluation during his Lectures on 
Gravitation held at Caltech in 1962/63 (Feynman, Morinigo and Wagner [12]). 
For a long time taken on trust, the Feynman’s estimate has been recently reap-
praised by Uggerhøj, Mikkelsen and Faye [13], which resulted in its significant 
correction. Accordingly, the difference between respective ages turned out to be 
far greater; namely, for the idealized model of the Earth with the assumed uni-
form density, the center of Earth proved to be 1.58 years younger than the 
Earth’s surface; instead, for the realistic model with factual inhomogeneous mass 
distribution, this difference increased to 2.49 years. Anyway, no matter if the re-
vealed discrepancy did originate from the Feynman’s cursory calculation or 
from a later misprint in the lecture transcription confusing days with years, the 
new results differ from the old ones by the magnitude only. Since both estimates 
share the same theoretical framework, they concordantly state that the Earth’s 
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core is younger than the Earth’s crust. There is a general agreement that, due to 
the gravitational time dilation, the time at the center of Earth (and, generally, of 
any other massive spherical cosmic body, hereinafter referred to as “solid 
sphere”) is passing slower than on the surface. This stems from the established 
conviction “probated” by the authority of Feynman, according to which, both 
outside and inside a solid sphere, gravitational time dilation and gravitational 
potential are linked by the linear relationship.  

A hypothetical clock located at the center of Earth occupies the lowest point of 
the Earth gravity well, which corresponds with the lowest, negative by conven-
tion, gravitational potential. Consequently, the respective clock rate is thought to 
be the slowest one compared to the rate of any other clock located on the radial 
path both below and above the surface. This conclusion seems also to follow, as 
the logical extension, from the experiments aimed at detecting the gravitational 
time dilation performed on, or above, the Earth’s surface. The representative 
(and earliest) example is the Pound-Rebka experiment. The respective rates of 
time manifesting themselves through the differences in the gamma ray frequen-
cy at different altitudes directly reflect the difference between the gravitational 
potentials. Although both frequencies were measured outside the sphere (at the 
top and bottom of the building shaft), the obtained result has been extrapolated 
by Feynman and his successors (including Uggerhøj) on the whole radial path, 
both outside and inside the Earth. A direct dependence between gravitational 
time dilation and gravitational potential in both these cases is treated as obvious. 
Consequently, the time at the center of Earth is thought to lag behind the surface 
time, in result of which the Earth’s inner core is supposed to be younger than the 
Earth’s crust. 

2. The Uggerhøj’s et al. Paper 

In introduction to their paper, Uggerhøj, Mikkelsen and Faye (henceforth col-
lectively titled the “Authors”) write: “…arguments based on symmetry will con-
vince most skeptics, including those from ’the general public’, that there is no 
gravitational force at the Earth center. Consequently, such an effect [i.e., gravita-
tional time dilation] cannot be due to the force itself, but may instead be due to 
the ‘accumulated action of gravity’ (a layman expression for the gravitational 
potential energy being the radial integral of the force)” [13].  

This is a key passage determining the further conclusions of the cited paper. 
The Authors take for granted that time passes slower at the center of Earth, 
which unavoidably implies disconnection of the gravitational time dilation from 
the g-force (interpreted as the proper acceleration). As a consequence, the time 
dilation must depend directly on the gravitational potential. Hence, in so far as 
the Authors find justified to reappraise the Feynman’s quantitative prediction, 
they do not intend to question its underlying theoretical framework, determin-
ing the general age-relation.  

For the sake of transparency (and also with the aim to adopt respective nota-
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tion), let us quote almost exactly the formal derivation placed in the first part of 
the cited paper, concerning the relationship between the gravitational time dila-
tion and gravitational potential inside the Earth, for the homogenous distribu-
tion of mass. Accordingly, the gravitational potential (Φ) for the exterior of the 
solid sphere is  

Φ ,ext
MG r R
r

= − ≥                       (1) 

G—Newton’s gravitational constant, M—sphere mass, R—sphere radius, 
r—distance from the center. Instead, the gravitational potential inside, i.e., in the 
interior of the sphere is 

( )2 2

3

3
,

2int

M R r
G r R

R

−
Φ = − ≤                  (2) 

These two different expressions share the common result at r R=  (at the 
surface): 

( ) GMR
R

Φ = −                         (3) 

Instead, at the center, i.e., for 0r = , one has: 

( ) 30
2
GM

R
Φ = −                         (4) 

The respective difference is therefore: 

( ) ( ) 10
2

MR G
R

∆Φ = Φ −Φ =                   (5) 

Consequently, “a difference in gravitational potential implies a time dilation at 
the point with lower potential” [13], given by the standard gravitational redshift: 

0 21
c

ω ω ∆Φ = − 
 

                       (6) 

where ω  and 0ω  are the angular frequencies at the center and at the surface, 
respectively. Combining Equation (6) with the result of Equation (5), and consi-
dering 0ω ω ω∆ = − , gives the difference in the frequencies related to the dif-
ference between the gravitational potentials: 

0 2

1
2

MG
Rc

ω ω∆ = −                      (7) 

3. Gravitational Time Dilation and the Equivalence Principle 

Let us precisely consider the application of the equivalence principle to our 
problem. This principle clearly states that, if any effect (hence also the effect of 
time dilation) takes place in the non-inertial frame due to gravity, it must also 
take place in the non-inertial frame due to the kinematically determined accele-
ration. And vice versa. Accordingly, an isolated non-inertial observer located, 
say, in the “windowless box” is basically (i.e., assuming the box small enough to 
make the tidal forces negligible) unable to detect if the perceived effect is due to 
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“real” gravity or due to “pseudo-gravity” caused by the engine running. The spe-
cific examples of pseudo-gravity are the non-inertial systems due to rotation 
about an axis, e.g., the rotating toroidal spaceship (an idea exploited in the sci-fi 
movies so far), the hypergravity centrifuge—the lab device also used for pilots 
and astronauts training, or the ultracentrifuge rotor used in the experiments 
testing the equivalence principle in the context of gravitational time dilation. 
The respective centrifugal acceleration, perceived as g-force, is particularly evoc-
ative because it eliminates the relative motion between any pair of two radially 
positioned clocks aimed at comparing the time rates. A formal condition to 
make this possible consists in applying the rotating frame, so to say comoving 
with the centrifuge. At the same time, in the stationary lab frame, inertial by as-
sumption, the time dilation takes place due to the linear orbital motion of a giv-
en point laid on the centrifuge arm (edge of the rotor), hence it is the SR time 
dilation. The time dilation measured in the rotating frame must be identical to 
the time dilation measured in the stationary lab frame. This is because in both 
frames this effect is absolute; in the rotating frame as it were by definition, and 
in the lab frame on the same basis as it is predicted by the twin paradox and ve-
rified in practice in the Hafele-Keating experiment. Likewise, in both frames, the 
clock located at the centrifuge pivot can be recognized as the reference clock 
with the null time dilation. 

The particular question is whether and how the pseudo-gravity due to rota-
tion of the centrifuge is similar to the real gravity due to the gravitational mass. 
According to the equivalence principle, this similarity is both exact and limited. 
Namely, apart from the demand of locality (in the case of centrifuge, the pseu-
do-tidal forces are even much more distinct), a striking difference is that proper 
acceleration (g-force) on the surface of a planet is centripetal, whereas the 
g-force perceived on the rotating arm is centrifugal. Therefore, of course, the lo-
cation of the mass-center cannot be identified with the location of the centrifuge 
axis. Let us consider this more specifically. 

Let K be the stationary lab frame, and K' the centrifuge rotating frame. Let O 
be the central point of the frame K', coincident with the pivot of centrifuge. Let E 
be the point at the outer end of the centrifuge arm. Let L be the distance between 
O and E, obviously equal in both frames. The point O represents both the rotat-
ing frame K' (as its unique point) and the stationary frame K (as an exemplary 
point). According to the SR time dilation applied to the frame K, the clock lo-
cated at E goes slower than the clock located at O. According to GR (on the base 
of equivalence principle), the numerically identical effect takes place in the ro-
tating frame K'.  

Let v be the linear velocity of E in the frame K. The SR time dilation in the K is  

( )

1 22

21K
v
c

γ
−

 
= − 
 

                       (8) 

The gravitational time dilation in the frame K', as compared to the 
non-dilated reference clock at the center (pivot) is defined as  
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( )

1 2

21K c
γ

−

′

 Φ 
= − 
 

                      (9) 

The gravitational potential and gravitational acceleration relate to each other 
as 

( )rg rΦ =                         (10) 

According to the equivalence principle, the centrifugal acceleration at point E, 
being 

2
ca v L=                         (11) 

can be considered equivalent to the centripetal gravitational acceleration (due to 
the presence of gravitational mass): 

( )
2

rg GM r= −                      (12) 

Consequently, also the time dilation factors ( )Kγ  and ( )Kγ ′  would be equiv-
alent (equal in value). This can only be achieved if we identify L with r. Then, by 
multiplying ca L×  and ( )rg r× , we would identify 2v  with ( )rg r . Can we do 
that? The short answer is: yes, because time dilations in both K and K' are abso-
lute. And since we deal with the same pair of clocks, both factors have to be 
identical. However, as far as the purpose to identify L with r is clear, it is not as 
much clear the reason (possibility) for doing that. For example, the gravitational 
acceleration (g-force) on the Earth’s surface, unitary by convention, is ~9.8 ms−2 
with the Earth radius being 6.37 × 106 m, whereas the same acceleration 1g (and 
much greater) can be easily obtained using the centrifuge with the arm few me-
ters long only, or the ultracentrifuge with the radius few centimeters only. So, it 
follows that equal accelerations can be associated with extremely different radii. 
Hence, how L and r can be identified?  

The answer is pretty trivial. Although the equivalence principle implies deep 
consequences leading to general relativity, we don’t need to dig into the GR de-
tails. The equality between L and r is taken by assumption, whereas the remain-
ing quantities: either mass or linear velocity, should be considered as variables 
that have to be adjusted to obtain given preset value of acceleration. There are 
two options, basically. If we start with the centrifuge arm of definite length, then, 
to equalize the radius connected with gravity with the arm length, the gravita-
tional mass has to be adjusted to match the preset acceleration. If, in turn, we 
start with the definite mass and radius due to gravity, then, in order to assume 
the same length of the centrifuge arm, we have to adjust the linear velocity to 
match the preset acceleration.  

In general (i.e., regardless of the details discussed above), the basis for identi-
fying the “pseudo-gravity” due to kinematic acceleration with the “real” gravity 
due to gravitational mass is the equivalence principle. This means however that 
the reason for which the clock located at the outer end of the centrifuge rotating 
arm lags behind the clock located close to the pivot is that it perceives the cen-
trifugal force indistinguishable from the force of gravity. In both cases, there is 
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one and the same g-force, in formal terms the proper acceleration measurable by 
accelerometer. The term “perceive” (roughly tantamount to “feel” or “sense”) 
has an unambiguous physical meaning; e.g., exceeding certain critical value of 
the centrifugal acceleration would result in the damage of clock or, in the case of 
a trained pilot, in the loss of consciousness. Consequently, if a clock does not 
actually “perceive” any g-force, one cannot expect it to go slower, hence to un-
dergo the gravitational time dilation. This apparently obvious claim, based on 
the equivalence principle, has a crucial importance to our problem. 

At the center of Earth defined by symmetrical distribution of mass, the lowest 
gravitational potential coincides with zero g-force. Therefore, to obey the equi-
valence principle, we shouldn’t expect gravitational time dilation to occur there. 
In fact, it doesn’t matter if the clock is located in the center of a planet or in 
“empty space” far away from any gravity sources. In other words, it is not im-
portant whether the g-force is “actually” absent or if it is only “effectively” ab-
sent—being neutralized due to the generally conceived free fall (the motion 
along geodesic), ranging between the rectilinear accelerated motion along the 
radius and the orbital motion with constant linear velocity, the latter including 
specific case of a body remaining at rest in any of the five Lagrange points. In 
both “actual” and “effective” cases, the onboard accelerators (and clocks) do not 
perceive any g-force, which eventually implies the lack of gravitational time dila-
tion. Otherwise, the equivalence principle would be nothing but a groundless 
demand. An obvious precondition for the equivalence principle to be valid is the 
requirement that identical g-forces make two local frames (hence clocks) iden-
tical with regard to gravity.  

4. Gravitational Time Dilation near the Event Horizon of the  
Schwarzschild Black Hole  

The gravitational properties of the black hole observed from a distance do not 
basically differ from these of other cosmic bodies. The differences become im-
portant only near the event horizon and beyond. The ratio between the time rate 
near the event horizon of a non-rotating uncharged black hole and the time rate 
indicated by remote clock is given by equation: 

1 2

1 Sr
t r
τ∆  = − ∆  

                      (13) 

∆τ—elapsed proper time between two events close to observer located near 
the event horizon of black hole; ∆t—elapsed coordinate time between these same 
events, measured by distant observer; Sr —Schwarzschild radius; r—radial dis-
tance from the center of black hole, provided Sr r> . Considering 22Sr GM c= , 
it follows:  

1 2

2

21 GM
t c r
τ∆  = − ∆  

                    (14) 

The gravitational time dilation factor is therefore: 
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1 2

2

21 GM
rc

γ
−

 = − 
 

                    (15) 

This can be alternatively expressed in terms of escape velocity ( )1 22ev GM r= , 
written as the fraction of c, i.e., e ev cβ = : 

( ) 1 221 eγ β
−

= −                      (16) 

5. Gravitational Time Dilation outside and inside the Solid  
Sphere 

Our goal is to reconcile the two seemingly contradictory premises: 1) According 
to GR, the gravitational time dilation is modeled by the metric tensor, which 
means that it directly depends on the gravitational potential. This prediction has 
been confirmed by all previous experiments; 2) Extending this prediction to the 
interior of a solid sphere violates the equivalence principle. Namely, it contra-
dicts the demand according to which an exemplary windowless box (lab) located 
at the center of a solid sphere should not differ physically from the identical 
windowless box located far away from the sources of gravity. This is because, in 
both cases (in both local inertial frames), the g-force amounts to zero. The pre-
vious solution to this problem, represented both by Feynman and Uggerhøj et al., 
so to say “ignores” the equivalence principle in the application of the gravita-
tional time dilation to the interior of solid sphere. Below, it is proposed an alter-
native solution consistent with this principle.  

Let R be the radius of solid sphere, M—mass of this sphere, r—radial distance 
from the center of a basically free magnitude, either greater or less than R. Let us 
consider first the gravitational potential Φ as the function of r. Due to different 
(regarding gravity) physical conditions inside and outside the solid sphere, the 
respective relationship is plotted by two separate functions connected at “inflec-
tion point” r R= , at which 1

ext int GMR−Φ = Φ = − . Hence, the overall depen-
dence of Φ on r takes the form of a single graph consisting of two functions on 
two complementary half-open intervals, according to the conditions specified on  
the right sides of Equations (1) and (2). At 0r = , the function based on Equa-

tion (2) reaches the minimum (lowest gravitational potential): 13
2int GMR−Φ = − .  

The gravitational potential defined according to Equation (2) determines the 
shape of the gravity well, for 0 r R≤ ≤  (Figure 1). 

In turn, the gravitational accelerations inside and outside the sphere of radius 
R are:  

( ) ( )2 2
ˆ

extr
GM GMg r R
r r

= − = ≥r                 (17) 

( ) ( )3intr
GMg r r R
R

= ≤                     (18) 

( r̂ —the unity vector directed outward). As previously, the respective graph 
consists of two functions on two complementary half-open intervals “glued to-
gether” at r R=  (Figure 2).  
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Figure 1. Gravitational potential Φ inside and outside the massive spher-
ical body, as a function of distance (r). The respective graph (lower qua-
drant, bold line) consists of two functions on two complementary 
half-open intervals connected at r = R. The upper quadrant graph depicts 
the gravitational potential absolute value, thought to correspond directly 
to the gravitational time dilation. The constant factors G, M and R are 
here normalized to unity. 

 

 

Figure 2. Gravitational proper acceleration g(r) (g-force) inside and out-
side the solid sphere. The respective graph consists of two functions on 
the two complementary half-open intervals connected at r = R. All con-
stant factors are here normalized to unity. 

 
The gravitational time dilation based on the gravitational acceleration, is, in 

the general case: 
1 2

21
c

γ
−

 Φ 
= − 
 

                        (19) 

This equation is basically consistent with the gravitational time dilation for 
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the Schwarzschild black hole defined by Equation (13). It is to be noted that gra-
vitational potential Φ is not a quantity directly “perceived”. It is rather a mathe-
matical being corresponding to the GR metric tensor. However, the gravitational 
potential can be factorized into the proper gravitational acceleration (g-force) 
and the radius. As mentioned before, g-force is a quantity directly “perceivable” 
by the accelerometer.  

Let’s rewrite then the gravitational potential as ( )rg rΦ =  (as we already did 
in Equation 10). For any case specified as r R≥ , this way of defining the gravi-
tational potential is equivalent to the one given by Equation (1), i.e., 

( )G M rΦ = − . Hence, outside the sphere, this way of denoting (and defining) 
Φ is a purely formal operation with no physical consequences. However, for 
r R≤ , things look different. Combining Equation (19) with Equation (10) gives:  

( )
1 2

21 rg r

c
γ

−
 

= −  
 

                     (20) 

The next step is the following. We specify ( )rg  according to Equations (17) 
and (18) and plug them into the above equation. In result, we obtain the two 
differing modes to obtain the time dilation factors: one for the exterior and the 
other one for interior of a solid sphere, both complying with the equivalence 
principle:  

( )
1 2

21ext
GM r R
c r

γ
−

 = − ≥ 
 

                (21) 

( )
1 22

2 31int
GMr r R
c R

γ
−

 
= − ≤ 
 

                (22) 

In agreement both with theory and experiments, Equation (21) remains phys-
ically identical with Equation (19), expressing linear dependence (proportionali-
ty) between the gravitational potential and the gravitational time dilation. In-
stead, in Equation (22), the factorized gravitational potential makes the actual 
radius mathematically interacting with the sphere radius, in result of which the 
gravitational time dilation does not depend any more directly on the gravita-
tional potential. In particular, for 0r →  one has ( ) 1inttγ =  (which is also di-
rectly obvious considering ( ) 0rg =  at the center). This corresponds with 
( ) 1exttγ =  for r →∞ . Hence, the “windowless box” at the center of a solid 

sphere and the “windowless box” far away in the empty space prove to be iden-
tical with each other with regard to the gravitational time dilation, in compliance 
with the equivalence principle. 

6. Numerical Estimation for the Idealized Model of Earth  

Let us use the equations obtained in the previous section to estimate the differ-
ence in age between the Earth’s center and Earth’s surface, for the simplified 
model of Earth with the uniform density. At the center of Earth, i.e., at 0r = , 
Equation (22) reduces to 1intγ = . Instead, at the surface, i.e., for r R= , the 
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Equations (21) and (22) reduce to a one common equation, namely: 
1 2

surface 21 GM
c R

γ
−

 = − 
 

                    (23) 

Let us denote: ET —the overall reference age of Earth, identified with the age of 
the Earth’s center ( centerT ); surfaceT —age of the Earth’s surface; center surfaceT T T∆ = − . 
Hence, the difference is given by: 

surface

1
E ET T T

γ
∆ = − ×                     (24) 

It follows: 
1 2

21E E
E

GMT T T
c R

 
∆ = − − × 

 
                 (25) 

Substituting: 2 16 2 28.99 10 m sc −× ⋅≈ ; 11 3 1 26.67 10 m kg sG − − −⋅ ⋅≈ × ;  
94.55 10 yrET ≈ × ; 245.97 10 kgEM ≈ × ; 66.37 10 mER ≈ × , we obtain after 

some arithmetic: 

center surface 1.58 yrT T T∆ = − ≈                   (26) 

It follows that the center of Earth is approximately 1.58 years older than the 
Earth’s surface—the value equal, but reversely attributed, compared to the figure 
obtained by Uggerhøj et al. The term “approximately” refers here to: 1) assumed 
homogenous distribution of the Earth mass; 2) assumed constancy of both G 
and c in cosmic time (precisely, invariability of the factor G/c2). It is to be noted 
that, in the light of various “non-standard” theories/hypotheses such as VSL or 
Dirac’s LNH, the latter is not obvious by itself.  

7. Conclusions 

A principle-based analysis of the problem of gravitational time dilation in the 
interior of Earth and other cosmic solid spheres reveals fallacy of the current 
view represented by Feynman, Uggerhøj and other researchers. The quantitative 
difference between particular estimates eventually appears less important than 
the incorrectness of the general assumptions commonly shared. Namely, a con-
sistent application of the Einstein’s equivalence principle impels us to revise the 
so far view as to the relationship between the gravitational time dilation and the 
gravitational potential. It appears that in the case of interior of a solid sphere, the 
time dilation depends on g-force rather than on the gravitational potential. As 
applied to the Earth, this means that relation between the ages of Earth’s center 
and Earth’s surface is basically different from the one previously formulated; 
namely, the inner core of the Earth is not younger, but older than the Earth’s 
crust.  

As in most cases in physics, an ultimate criterion to settle a given problem is 
an experiment. To make it happen, we do not need to reach the Earth’s core be-
cause all that counts here is the general tendency described by Equation (22). 
The respective test could be basically similar to the Pound-Rebka experiment 
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except being performed not above but below the Earth’s surface. This should be 
neither too difficult nor expensive, considering that devices needed for that 
purpose are typically on standard lab equipment, and that any of numerous in-
active mines endowed with vertical shaft could be used for that purpose. 
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Abstract 
Dispersion relation of surface waves generated by a relativistic plasma stream 
in an infinite duct surrounded by vacuum is derived by means of relativistic 
Vlasov equation. The kinematic boundary condition imposed on the distribu-
tion function, the specular reflection conditions on the four sides of duct, can 
be satisfied by placing infinite number of fictitious surface charge sheets 
spaced by the duct widths. By placing appropriate fictitious surface charge 
sheets one can effectively deal with the extended electric field introduced in 
the Vlasov equation and treat kinetically the surface waves in semi-infinite, 
slab, and duct plasmas on equal ground. The relativistic duct dispersion rela-
tion is compared with the earlier non-relativistic surface wave dispersion re-
lation. 
 
Keywords 
Surface Wave, Relativistic Plasma, Duct, Slab 

 

1. Introduction 

We investigate surface waves generated by a relativistic plasma beam travelling 
in a duct interfaced with vacuum by using relativistic Vlasov equation. Surface 
waves propagate along the interface between two different media while being at-
tenuated in the perpendicular direction. Surface waves are the normal modes 
that are given rise to in bounded plasmas by satisfying the kinetic and the elec-
trodynamic boundary conditions on the interface between two media. The elec-
trodynamic boundary conditions are the connection formulas matching the 
fields of the two media, which can be mathematically worked out from the go-
verning equations themselves if the density gradient across the plasma and the 
other side is very steep. “A sharp interface” is synonymous to a theoretically in-
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finite density gradient across the boundary. In this case, the connection formula 
can be obtained by “infinitesimal integration” across the interface, which is the 
operation performed on a certain relevant equation in the manner ( )dx

−∫ �



, 

where   is a positive infinitesimal. If the quantity ( )�  is a perfect differential, 
this operation yields a non-vanishing surface term that contributes to the con-
nection formula. Usually the surface term is surface charge or surface current, In 
this way, the well-known electromagnetic and dynamic boundary conditions on 
the boundary can be derived [1]. We might say that the surface wave in the plas-
ma and the vacuum side wave are two different manifestations of “the same wave” 
created in an extreme inhomogeneous plasma. The electromagnetic boundary 
conditions are the same in both non-relativistic and relativistic plasmas. 

Integrating the Maxwell equation  

4 1 
c c t

∂
∇× = +

∂
π EB J  

over an infinitesimal segment ( ),−   across the interface 0x = , we obtain  

*4
y zB J

c
  =

π
   

where [ ]�  signifies the jump across the interface, * dx
−

= ∫J J
ε

ε
 is the surface 

current. In a cold plasma, the normal component of the electric field is discon-
tinuous by the amount of surface charge σ : [ ] 4xE = πσ . On the other hand, 
we have the relation *

zJ u= σ  due to the charge conservation law, where u is 
the drift velocity of the plasma in the z direction, and c is the speed of light. Thus 
we have the characteristic boundary condition in a cold streaming plasma [1] 
[2]:  

[ ] y x
uB E
c

  =                         
 

(1) 

or equivalently,  

[ ] z
x y

ckD B =  ω
                       (2) 

where xD  is the normal to the interface component of D , the electric dis-
placement, zk  is the z component of the wave vector, and ω  is the wave fre-
quency. The casual use of [ ] 0xD =  or 0yB  =   in a drifting plasma leads to 
erroneous results as discussed in earlier works [1] [3]. The physical origin of the 
boundary relation in Equation (1) is due to the surface current formed in a cold 
streaming plasma as is evident in the above derivation. Equation (1) is valid in 
non-relativistic as well as in relativistic plasmas [2]. 

In bounded Vlasov plasmas, the kinematic boundary condition that is usually 
referred to as the specular reflection condition is assumed to be satisfied on a 
sharp boundary [4], regardless of whether the plasma is described by 
non-relativistic distribution function ( ), ,f tr v  or relativistic distribution func-
tion ( ), ,f tr p  (see Equation (9) below). Most of the works on bounded kinetic 
plasmas were dealt with non-relativistically. Non-relativistic kinetic theory of 
surface waves in semi-infinite plasmas is well-known [5] [6]. Non-relativistic 
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kinetic dispersion relation of surface wave in a slab plasma was worked out ear-
lier [7]. 

In this work, we investigate surface waves of a moving relativistic Vlasov 
plasma in a duct. We consider an infinite duct formed by intersections of four 
planes: 0, x a=  and 0, y b= , with z−∞ < < ∞ . We shall discuss the specular 
reflection boundary condition in terms of ( ), ,f tr v , rather than in terms of 
( ), ,f tr p , since the reflection of v  is entirely equivalent to the reflection of p  

in the kinetic equation (see Equation (12) below). Thus the specular reflection 
conditions require for the distribution function ( ), ,f tr v  to satisfy  

( ) ( )0, , , , , , 0, , , , , ,x y z x y zf y z v v v t f y z v v v t= −  on 0x =  plane 

( ) ( ), , , , , , , , , , , ,x y z x y zf a y z v v v t f a y z v v v t= −  on x a=  plane 

( ) ( ),0, , , , , ,0, , , , ,x y z x y zf x z v v v t f x z v v v t= −  on 0y =  plane 

( ) ( ), , , , , , , , , , , ,x y z x y zf x b z v v v t f x b z v v v t= −  on y b=  plane. 

In our duct-bounded plasma, the kinematic conditions on the four planes are 
satisfied by introducing extended electric field in the fashion:  

( ) ( ) ( ) ( ), , , , ,    2 , , , ,x x x xE x y z E x y z E a x y z E x y z− = − − = −       (3) 

( ) ( ) ( ) ( ), , , , ,    , 2 , , ,y y y yE x y z E x y z E x b y z E x y z− = − − = −       (4) 

This scheme is workable if ( )0f p , the zero order distribution function, is 
invariant with respect to the reflections x xp p→ −  and y yp p→ − , and clearly 
this reflectional property is satisfied by the moving Maxwellian to be introduced 
later. Equations (3) and (4) are the important conclusion of the above discussion 
that is valid in relativistic as well as in non-relativistic kinetic equations. 

The function ( )xE x  as defined in Equation (3) is a periodic function of a 
piecewise continuous function of period “a” extending over the range x−∞ < < ∞  
with discontinuity at 2x na= ±  with a jump of 1A  (say) and with discontinui-
ty at ( )2 1x n a= ± −  with a jump of 2A  (say), where n is integer. The profile 
of the piecewise function ( )xE x  is plotted in the book by Lee [8]. The algebra 
involved in carrying out the Fourier transform of the piecewise discontinuous 
functions with aforementioned discontinuous jumps is quite laborious [7]. 
However, it turns out that, after all the algebraic hard work, the discontinuities 
that are present in the extended field components ( ),xE x y  and ( ),yE x y  in 
Equations (3) and (4) at the locations 2x na= ±  and ( )2 1x n a= ± −  and 

2y nb= ±  and ( )2 1y n b= ± −  are mathematically (as well as physically) tan-
tamount to placing fictitious surface charges at the corresponding jump loca-
tions in the form  

( ) ( ) ( )( )

( ) ( )( )

1 2
0,1,2, 1,2,

1 2
0,1,2, 1,2,

, , , 2 2 1

2 2 1
n n

n n

S x y z t A x na A x n a

B y nb B y n b
= =

= =

= ± + ± −

+ ± + ± −

∑ ∑

∑ ∑
� �

� �

δ δ

δ δ
       (5) 

This is the crucial part of improvement in this work as compared with the ear-
lier work [7]. The surface charges are associated with the surface currents by sa-
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tisfying the charge conservation equation  

ˆ 0s
S
t

∂
+∇ ⋅ =

∂
zJ                          (6) 

Therefore, we can assume the presence of the fictitious surface currents  

( ) ( )ˆ,  ,z
s

k S=J k z kω ω
ω

                     (7) 

The surface charges in Equation (5) and the surface currents in Equation (7) 
should be included in the Maxwell equations for our duct plasma wave analysis. 

In this work, we consider a streaming plasma which moves along the axial di-
rection (z-direction) with a relativistic speed u. In Section 2, we introduce the 
relativistic Vlasov equation. In Section 3, the boundary value problem satisfying 
the kinetic and electromagnetic boundary conditions are solved to find the dis-
persion relation of the duct surface wave. Section 4 furnishes discussions, and 
compares the dispersion relation with the recent work of Lee and Cho on 
non-relativistic duct flow [9].  

2. Basic Equations  

We begin with the relativistic equation of motion for electrons  

d 1
d

e
t c

 = − + × 
 

p E v B                      (8) 

where p , the relativistic momentum, is  
m=p vγ                           (9) 

with m being the rest mass and v  being the particle velocity, and  

2

22 1

1 v
c

−
 

= − 
 

γ                        (10) 

An easy way to write down the relativistic Vlasov equation is to note that the 
particle orbit as given by Equation (8) is the characteristics of the Vlasov equa-
tion. Indeed, the characteristic equation of the following equation is Equation 
(8):  

( ) ( ) 1, , , 0f ff t e t
t c
∂ ∂ ∂ + ⋅ − + × ⋅ = ∂ ∂ ∂ 

r p v E r v B
r p

        (11) 

Linearizing (11) gives  

( ) ( ) ( )01, , , 0
fff t e t

t c
∂∂ ∂  + ⋅ − + × ⋅ = ∂ ∂ ∂ 

p
r p v E r v B

r p
      (12) 

where ( )0f p  is the zero order equilibrium distribution function which will be 
specified later. We also have the Maxwell equations for electrons. Ions are as-
sumed to be stationary and only form the neutralizing background.  

1
c t
∂

∇× = −
∂
BE                      (13) 

4 1 ˆ sJ
c c t

∂
∇× = + +

∂
π EB J z                 (14) 
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where the plasma current J  is  

( ) ( )3, d , ,  eNt p f t
m

= − ∫
pJ r r p
γ

                 (15) 

with N being the zero order equilibrium number density. The fictitious surface 
current sJ  corresponding to the surface charge S in Equation (5) takes the 
form  

( ) ( )( )

( ) ( )( )

1 2
0,1,2, 1,2,

1 2
0,1,2, 1,2,

2 2 1

2 2 1

s
n n

n n

J A x na A x n a

B y nb B y n b
= =

= =

′ ′= ± + ± −

′ ′+ ± + ± −

∑ ∑

∑ ∑
� �

� �

δ δ

δ δ
      (16) 

( )34 d , ,e f p S x y z∇⋅ = − +π ∫E                 (17) 

0∇⋅ =B                          (18) 

We Fourier transform all the dependent variables in the basic equations, in-
cluding f, E , and B , and assume the form ( )~ exp i i t⋅ −k r ω . Then Equation 
(12) gives  

( ) 01 1, ,  
fef i

m c
∂ = + × ⋅ − ⋅ ∂ 

k p E v B
k v p

ω
ω

           (19) 

where v  reads as the function of p  as given in Equation (9). Using Equation 
(19) in the Fourier transform of Equation (15) yields  

( )
2

3 0

1

d
i ijk j k

l l
i

E e v B fie N cJ p p
m p

 +  ∂
= −  − ⋅ ∂ 

 

∫ k vγ ω
            (20) 

where l  is the Cartesian index and ijke  is the Cartesian tensor called Le-
vi-Civita symbol, and repeated indexes are summed over. We evaluate the cur-
rent in Equation (20) for a cold streaming plasma whose zero order distribution 
function is  

( ) ( ) ( ) ( )0 0x y zf p p p p= −p δ δ δ                 (21) 

where  

0 0 0 2

2

1,  

1

p mu
u
c

= =

−

γ γ                   (22) 

which corresponds to the streaming velocity 0 ˆu=v z . Integrating by parts Equ-
ation (20) gives  

( )
2

3
0

1

d  
i ijk j k

l il l
i

E e v Bie N cJ p f p
m p

 +  ∂
= +   ∂ − ⋅   

 

∫ k v
δ

γ ω
        (23) 

The following relations are useful for evaluating the above integral:  

( )
2

2 2 2 21  ,   j

j

ppp
pm c m c
∂

= + =
∂
γγ

γ
             (24) 
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22 2 2

1,  i ji i
i ij

j

v vcp v
v

p m cm c p

 ∂
= = − ∂+  

δ
γ

             (25) 

Using Equation (21) in Equation (23), we obtain after a long algebra,  

( )
2 2 2

2 2
0

ˆ ˆ ˆ, z z z
ie N u u u u uE k E

m c cc c

     = + × + − + ⋅ + × −    ′ ′       
J k E z B z k E z Bω

γ ω ω
(26) 

where zk u′ = −ω ω  is Doppler-shifted frequency. 

Using c
= ×B k E
ω

 and writing in components, we have  

2

0

x
x x z

ukie NJ E E
m

 = + ′ ωγ ω
                   (27) 

2

0

y
y y z

ukie NJ E E
m

 
= + ′ ωγ ω

                   (28) 

( ) ( )
2 2

2 2 2
2 2

0 0

z
z x x y y x y

Eie N uJ k E k E u k k
m

  
= + + + +  ′ ′   

ω
ωγ ω ω γ

       (29) 

The array formed by the coefficients of the electric field components is the 
conductivity tensor, as defined by i ij jJ E= σ . 

Combining Equations (13) and (14) with the aid of Equations (27)-(29) yields 
a vector equation for ( ),E k ω  in the form  

( )
2

2
ˆ ij j s

iE J
cc

× × + = −k k E zω ωε                  (30) 

where  
2 2

2 2
0 0

4 1 p p
ij ij ij ij ij

i U
 

= + = − −  
π

 

ω ω
ε δ σ δ

ω γ ω γ ω
            (31) 

is the dielectric tensor, and pω  is the plasma frequency, and  

0 0

0 0

x

y
ij

yx
zz

uk

uk
U

ukuk
U

 
 ′ 
 

=  ′ 
 
 ′ ′ 

ω

ω

ω ω

 

2 2
2

2 2

2 z
zz

k uuU k
c

 
= − +  ′′  

ω
ωω

 

Putting Equation (31) into Equation (30) gives a 3 by 3 matrix equation for 

jE :  
2 2

2 2
2 2 2

0 0

ˆ1 p i j p
ij ij j s

k k icn n U E J
k

  
− − + − = −      

z
ω ω

δ
ωγ ω γ ω

        (32) 

where 2 2 2 2n c k= ω  is the refractive index, and sJ  is the Fourier transform 
of the fictitious surface currents in Equation (16):  
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( ) ( ) ( )

( ) ( )

2 12
1 0 2 1

2 2 1
1 0 2 1

, e e

e e

xx

y y

i n aki nak
s y

i nbk i n bk
x

J k A A

k B B

± −±

± ± −

 = Σ + Σ 
 + Σ + Σ 

k ω δ

δ
         (33) 

where A’s and B’s may be functions of zk  and ω , and the double signs are 
summed over, and the notations 0Σ  and 1Σ  are the summations in Equation 
(16). 

Equation (32) can be inverted after spending a considerable amount of time to 
solve for ( ),E k ω :  

22

2 2
0

  ps x
x z

J c k uE k
c

 
= − −  ′∆  

ω
γ ωω

                (34) 

2 2

2 2
0

  y ps
y z

c kJ uE k
c

 
= − −  ′∆  

ω
γ ωω

                (35) 

2 2 2

2 2
0

1 ps z
z

J c kE
 

= − −  ∆  

ω
γ ω ω

                  (36) 

where  

( )
2 2 22 2 2

2 2
2 2 2 2 2

0 0 0

1 1p p p
zz x y

c k uU k k
    

∆ = − − − − − +      ′     

ω ω ω
γ ω ω γ ω γ ω ω

   (37) 

After further algebra, ∆  becomes  
2 22 2

2 2 3 2
0 0

1 1p pc k  
∆ = − − −    ′  

ω ω
γ ω ω γ ω

               (38) 

Also we obtain  
2

0

1 ps
x y

JcB k
 

= −  ′∆  

ω
ω γ ωω

                  (39) 

2

0

1 ps
y x

JcB k
 

= − −  ′∆  

ω
ω γ ωω

                 (40) 

In addition, we put 0zB =  since we investigate the transverse magnetic 
mode. 

3. Boundary Equations  

In order to apply the boundary conditions, the electric and magnetic field 
components in the Fourier k  space should be inverted to the fields in the 
ordinary r  space by performing ( )d d e x yik x ik y

x yk k
∞ ∞ +

−∞ −∞∫ ∫ � . The integrals 
involve infinite series through the surface charge sJ , but the infinite series are 
nicely summed at the particular positions corresponding to 0, x a=  and 

0, y b= . Thus, we apply the boundary conditions along the two infinite lines: 
( ) ( ), , 0,0,x y z z=  and ( ), ,a b z  with z−∞ < < ∞ . The two lines correspond to 
the two seams of the duct which are diagonally opposite. 

When the inversion integrals are performed, the following formulas are useful, 
which can be verified by a simple change of variable, as is shown in earlier work 
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[7]. We have integrals of the type in the inversion integrals  

( ) ( ) ( )2 12
1 0 2 1d e e e xx x i n akik x i nak

x xQ x k k k A A
∞ ± −±

−∞
 = Φ Σ + Σ ∫        (41) 

where ( )kΦ  is an even function of xk . Then, we have  

( ) ( )10 d x x xQ A k k k
∞

−∞
= Φ∫                   (42) 

( ) ( )2 d x x xQ a A k k k
∞

−∞
= − Φ∫                  (43) 

We also have integrals of the type  

( ) ( ) ( )2 12
1 0 2 1d e e e xx x i n akik x i nak

xR x k k A A
∞ ± −±

−∞
 = Φ Σ + Σ ∫         (44) 

Then, we have  

( ) ( )( )1 1 2 20 2 d x xR k k A S A S
∞

−∞
= Φ +∫                (45) 

( ) ( )( )1 2 2 12 d x xR a k k A S A S
∞

−∞
= Φ +∫                (46) 

where  

2 4
1

1 e e
2

x xiak iakS = + + +�                    (47) 

3
2 e ex xiak iakS = + +�                      (48) 

Formulas in Equations (42), (43), (45), and (46) are useful for evaluating the 
integrals. Let us evaluate:  

( )

( )(
( ) ) ( ) ( )( )

( )( )

22
2

1 02 2
0

2 2 12 1
2 1 1 0 2 1

22
2 12

1 0 2 12 2
0

22

2 2
0

0,0,

d d e

e e e

d e e

x

y yx

xx

x

p i nakx
z x y y

i nbk i n bki n ak
x

p i n aki nakx
z x

p
z

E z

u kc k k k k A
c

A k B B

u kc k k A A
c

uc k
c

∞ ∞ ±

−∞ −∞

± ± −± −

∞ ± −±

−∞

 
= − − Σ   ′ ∆ 

+ Σ + Σ + Σ 
 

= − − Σ + Σ  ′ ∆ 

= − −
′

∫ ∫

∫

ω
δ

ω ω γ

δ

ω
ω ω γ

ω
ω ω γ 1 d x

x
k

A k
∞

−∞

 
   ∆ 

∫

     (49) 

where we used Equation (42). In the last (also in the later) integral, 2k  hidden 
in ∆  is 2 2 2

z xk k k= + . We have  

( )

( )(
( ) ) ( ) ( )( )

( )( )

22
2

1 02 2
0

2 2 12 1
2 1 1 0 2 1

22
2 12

1 0 2 12 2
0

, ,

d e d e e

e e e

d e  e e

yx x

y yx

xx x

x

ik bp ik a i nakx
z x y y

i nbk i n bki n ak
x

p i n akik a i nakx
z x

E a b z

u kc k k k k A
c

A k B B

u kc k k A A
c

c

∞ ∞ ±

−∞ −∞

± ± −± −

∞ ± −±

−∞

 
= − − Σ   ′ ∆ 

+ Σ + Σ + Σ 
 

= − − Σ + Σ  ′ ∆ 

= −

∫ ∫

∫

ω
δ

ω ω γ

δ

ω
ω ω γ

( )
22

22 2
0

dp x
z x

u k
k A k

c
∞

−∞

 
− −  ′ ∆ 

∫
ω

ω ω γ

   (50) 
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where we used Equation (43). Analogous integrations yield  

( )
22

12 2
0

0,0, dp y
y z y

u kcE z k B k
c

∞

−∞

 
= − −  ′ ∆ 

∫
ω

ω ω γ
             (51) 

( ) ( )
22

22 2
0

, , dp y
y z y

u kcE a b z k B k
c

∞

−∞

 
= − − −  ′ ∆ 

∫
ω

ω ω γ
           (52) 

In the above (also in the later) d yk∫  integral, 2k  hidden in ∆  is 
2 2 2

z yk k k= + .  

( )
2

1
0

0,0, 1 dp y
x y

kcB z B k
∞

−∞

 
= −  ′ ∆ 

∫
ω

ω ωω γ
              (53) 

( ) ( )
2

2
0

, , 1 dp y
x y

kcB a b z B k
∞

−∞

 
= − −  ′ ∆ 

∫
ω

ω ωω γ
            (54) 

( )
2

1
0

0,0, 1 dp x
y x

kcB z A k
∞

−∞

 
= − −  ′ ∆ 

∫
ω

ω ωω γ
             (55) 

( ) ( )
2

2
0

, , 1 dp x
y x

kcB a b z A k
∞

−∞

 
= − − −  ′ ∆ 

∫
ω

ω ωω γ
            (56) 

We encounter with different type of integral in  

( ) ( )(
( ) ) ( ) ( )( )

2 2 2
2

1 02 2
0

2 2 12 1
2 1 1 0 2 1

10,0, 1 d d  e

e e e

x

y yx

p i nakz
z x y y

i nbk i n bki n ak
x

c kE z k k k A

A k B B

∞ ∞ ±

−∞ −∞

± ± −± −

 
= − − Σ    ∆ 

+ Σ + Σ + Σ 

∫ ∫
ω

δ
γ ω ω

δ

 

which becomes  

( ) ( )( )
( )( )

2 2 2
2 12

1 0 2 12 2
0

2 2 1
1 0 2 1

d
0,0, 1 e e

d
e e

xx

y y

p i n aki nakxz
z

i nbk i n bky

kc kE z A A

k
B B

∞ ± −±

−∞

∞ ± ± −

−∞

  = − − Σ + Σ    ∆ 


+ Σ + Σ ∆ 

∫

∫

ω
γ ω ω

 

which we write in the form  

( ) ( ) ( )( )

( ) ( )( )

2 2 2

1 1 2 22 2
0

1 1 2 2

d
0,0, 2 1

d

p xz
z x x

y
y y

kc kE z A S ak A S ak

k
B S bk B S bk

∞

−∞

∞

−∞

  = − − +    ∆ 


+ + ∆ 

∫

∫

ω
γ ω ω

   (57) 

where we used Equation (45), and  

( ) ( )2 4 3
1 2

1 e e ,    e e
2

i i i iS S= + + + = + +� �ξ ξ ξ ξξ ξ           (58) 

Analogously, we obtain  

( ) ( ) ( )( )

( ) ( )( )

2 2 2

1 2 2 12 2
0

1 2 2 1

d
, , 2 1

d

p xz
z x x

y
y y

kc kE a b z A S ak A S ak

k
B S bk B S bk

∞

−∞

∞

−∞

  = − − +    ∆ 


+ + ∆ 

∫

∫

ω
γ ω ω

   (59) 
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where we used Equation (46). 
• Vacuum solution. 

Vacuum solutions should solve  
2

2
2 0

c
 
∇ + = 
 

Bω                        (60) 

and  

ic
= ∇×E B
ω

                         (61) 

Equation (60) is solved by  

~ e e e yxz k yk xik z ±±B                        (62) 

with constraint 
2

2 2 2 2
2x y zk k k

c
+ = − ≡

ω λ  and 0∇⋅ =B . Furthermore, we as-

sume 0zB =  since we consider the TM (transverse magnetic) mode.  

The vacuum regions corresponding to (or exterior to) the lines ( )0,0, z  and 
( ), ,a b z , which we designate as (i) and (ii), respectively, are: 

Vacuum region (i) 0, 0x y< < , where we have  

( ) e e e yxz k yk xik zv
x xB i H=                     (63) 

( ) e e e yxz k yk xik zv
y yB i H=                     (64) 

0x x y yk H k H+ =                       (65) 

( ) ( )e e e yxz k yk xik zv
z y x x y

icE i H k H k= −
ω

              (66) 

( ) e e e yxz k yk xik zv
x z y

cE i k H=
ω

                  (67) 

( ) e e e yxz k yk xik zv
y z x

cE i k H= −
ω

                 (68) 

Vacuum region (ii) , x a y b> > , where  

( ) e e e yxz k yk xik zv
x xB ii G −−=                   (69) 

( ) e e e yxz k yk xik zv
y yB ii G −−=                   (70) 

0x x y yk G k G+ =                      (71) 

( ) ( )e e e yxz k yk xik zv
z y x x y

icE ii G k G k −−= − +
ω

            (72) 

( ) e e e yxz k yk xik zv
x z y

cE ii k G −−=
ω

                (73) 

( ) e e e yxz k yk xik zv
y z x

cE ii k G −−= −
ω

                (74) 

Putting ( ) ( ), 0,0x y =  or ( ),a b  in the above equations gives the vacuum 
side values of the relevant quantities. 

https://doi.org/10.4236/jmp.2022.137060


H. J. Lee, Y. K. Lim 
 

 

DOI: 10.4236/jmp.2022.137060 1075 Journal of Modern Physics 
 

4. Dispersion Relation 
We enforce the following boundary conditions to connect the plasma and the 

vacuum fields: [ ] 0zE = , [ ]y x
uB E
c

  =  , [ ] .x y
uB E
c
 = −    

Along line ( )0,0, z  
[ ] 0zE =  gives, per Equations (57) and (66),  

( ) ( )
2 2 2

1 1 2 2 1 1 2 22 2
0

1 p z
y x x y

c k icA I A I B J B J H k H k
 
− − + + + = −  

 

ω
ωγ ω ω

     (75) 

where  

( ) ( ) ( )d d
2 ,  2 ,  1, 2x x

i i x i i y
k k

I S ak J S bk i
∞ ∞

−∞ −∞
= = =

∆ ∆∫ ∫          (76) 

[ ]y x
uB E
c

  =   gives  

2

1 3 2
0

1 0p
yA Q H

c
 
− + =  ′ 

ω ω
γ ω

                   (77) 

where  

d d yx
x y

kk
Q k k

∞ ∞

−∞ −∞
= =

∆ ∆∫ ∫                    (78) 

[ ]x y
uB E
c
 = −    gives  

2

1 3 2
0

1 0p
xB Q H

c
 
− − =  ′ 

ω ω
γ ω

                   (79) 

Along line ( ), ,a b z  
[ ] 0zE =  gives  

( )

( )

2 2 2

1 2 2 1 1 2 2 12 2
0

1

e e yx

p z

k bk a
y x x y

c k A I A I B J B J

ic G k G k −−

 
− − + + +  

 

= − +

ω
γ ω ω

ω

           (80) 

[ ]y x
uB E
c

  =   gives  

2

2 3 2
0

1 e e 0yx k bp k a
yA Q G

c
−−

 
− − =  ′ 

ω ω
γ ω

              (81) 

[ ]y x
uB E
c

  = −   gives  

2

2 3 2
0

1 e e 0yx k bp k a
xB Q G

c
−−

 
− + =  ′ 

ω ω
γ ω

              (82) 

In addition, we have, per 0∇⋅ =B  and 0zB = ,  

0x x y yk H k H+ =                      (83) 
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0x x y yk G k G+ =                        (84) 

Thus, we have 8 equations for 8 unknowns; 1 2 1 2, , , , , , ,x y x yA A B B H H G G . 
Eliminating , , ,x y x yH H G G  gives  

2 2

1 1 2 2 1 1 2 22 2 0x y
c cA I i k Q A I B J i k Q B J

   
+ + + + + =   

   

η η
ξ ξω ω

     (85) 

2 2

1 2 2 1 1 2 2 12 2 0x y
c cA I A I i k Q B J B J i k Q

   
+ + + + + =   

   

η η
ξ ξω ω

     (86) 

1 1y xk A k B=                         (87) 

2 2y xk A k B=                        (88) 

where  
2 22 2

2 2 3 2
0 0

1 ,     1p pzc k
= − − = −

′

ω ω
ξ η

γ ω ω γ ω
               (89) 

Eliminating 1B  and 2B  gives  

( ) ( )
2

2 2
1 1 1 2 2 22  0x y x y x y

icA k I k J k k Q A k I k J
 

+ + + + + = 
 

η
ξω

     (90) 

( ) ( )
2

2 2
1 2 2 2 1 1 2  0x y x y x y

icA k I k J A k I k J k k Q
 

+ + + + + = 
 

η
ξω

     (91) 

The above two equations for 1A  and 2A  yield the dispersion relation in the 
form  

2
2

2

dd d1 e 1 e     0
1 e 1 e

yx

x y

ibkiak
yx x

x y xiak ibk

kk kck k i k
∞ ∞ ∞

−∞ −∞ −∞

± ±
+ + =

∆ ∆ ∆∫ ∫ ∫∓ ∓

ηλ
ξω

   (92) 

where we used  

( ) ( )1 2
d d1 1 e 

2 1 e

x

x

iak
x x

x x iak

k k
S ak S ak

∞ ∞

−∞ −∞

±
 ± = ∆ ∆∫ ∫ ∓

         (93) 

In regard to the Fourier variables xk  and yk  outside the integrals, we im-
posed the constraint 2 2 2 2 2 2

x y zk k k c+ = − ≡ω λ . Therefore it is convenient to 
transform  

2 2 2 2
,   x y

b ak k
a b a b

= =
+ +

λ λ                 (94) 

[ xk , yk  inside the integrals are dummy and let them be there as they are.] The 
transform in Equation (94) satisfies the constraint and the relation x yak bk= . In 
fact it can be derived from the latter and the constraint. Then the dispersion re-
lation takes the form  

2 2 2 2

2

2

dd 1 e 1 e  
1 e 1 e
d

   0

yx

x y

ibkiak
yx

iak ibk

x
x

kkb a

a b a b
kci k

∞ ∞

−∞ −∞

∞

−∞

± ±
+

∆ ∆+ +

+ =
∆

∫ ∫

∫

∓ ∓

ηλ
ξω

         (95) 

If either a or b →∞ , we recover the slab dispersion relation in the 
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non-relativistic limit [7].  
2

2

d d1 e    0
1 e

x

x

iak
x x

xiak

k kci k
∞ ∞

−∞ −∞

±
+ =

∆ ∆∫ ∫∓
ηλ
ξω

               (96) 

where η  and ξ  are given by Equation (89) with 0 1=γ . 
It is recalled that 2k  hidden in ∆  is: 2 2 2

z xk k k= +  in d xk∫ -integral and 
2 2 2

z yk k k= +  in d yk∫ -integral. Thus, let us change the integration variables, 
both xk  and yk , in Equation (95) to κ :  

2 2 2 2

2

2

d 1 e d 1 e  
1 e 1 e

d   0

ia ib

ia ib

b a

a b a b
ci

∞ ∞

−∞ −∞

∞

−∞

± ±
+

∆ ∆+ +

+ =
∆

∫ ∫

∫

∓ ∓

κ κ

κ κ

κ κ

η κλ κ
ξω

          (97) 

where 2 2 2
zk k= +κ . In regard to the double signs in Equation (97), the upper 

(lower) signs correspond to the symmetric (anti-symmetric) mode which also 
occurs in a slab plasma. For a square duct ( a b= ), Equation (97) reduces to the 
form identical with the slab dispersion equation Equation (96), except for factor 

2 . This reduction is due to the x-y symmetry. To recover slab dispersion rela-
tion from Equation (92), we take 0yk → , b →∞ , and put xk = λ . We can 
take 0yk →  since the y-direction has a translational invariance in a slab. 

The duct dispersion relation in Equation (97) can be contour-integrated for a 
cold plasma, giving  

22
2

2 3 22 2 2 2
0

 tanh  tanh  1 0
2 2

p
z

b a a b k
ca b a b

 Γ Γ Γ Γ
+ + − − =  ′+ +  

ωω
γ ω

    (98) 

where 
2 2

02
2

p
zk

c
−

Γ = −
ω ω γ

. For the anti-symmetric mode, tanh-function 

above is replaced by coth-function.  

5. Discussion 

In a bounded plasma, one way of solving Vlasov equation by satisfying the spe-
cular reflection condition is to extend the plasma electric field in the manner of 
Equation (3). The job of Fourier transforming such as piecewise continuous pe-
riodic function, extending to infinity, is laborious. In this work, we present an 
alternative way of avoiding the hard algebra by placing sheets of fictitious sur-
face charges at the location of discontinuities of the electric field. The magni-
tudes of the surface charges are undetermined constants, but they can be deter-
mined through the connection formula with the vacuum side field—resulting in 
the dispersion relation of the surface wave. This method enables one to deal with 
semi-infinite, slab, and duct plasmas in a common work-frame. Taking b →∞  
in Equation (98) gives  

22
2

2 3 2
0

tanh 1 0
2

p
z

a k
c

 Γ
Γ + − − =  ′ 

ωω
γ ω

               (99) 
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which is the slab ( 0 x a< < ) dispersion relation. Taking a →∞  in Equation 
(99) gives the semi-infinite plasma dispersion relation  

22
2

2 3 2
0

1 0p
zk

c

 
Γ + − − =  ′ 

ωω
γ ω

                   (100) 

Equation (100) agrees with the semi-infinite dispersion relation obtained by 
Lee [3]. If 0u = , Equation (99) agrees with the slab dispersion relation obtained 
from the fluid theory worked out by Gradov and Stenflo [10]. 

For a square duct, putting a b=  in Equation (98) yields  
22

2
2 3 2

0

2 tanh 1 0
2

p
z

a k
c

 Γ
Γ + − − =  ′ 

ωω
γ ω

              (101) 

which is similar to the slab dispersion relation. This is because the complete 
symmetry between x and y coordinates makes the three-dimensional problem a 
two-dimensional problem practically. 

The Doppler-shifted frequency ′ω  appearing in Equation (98) represents the 

streaming effect in the lowest order of u
c

. The higher order effect enters 

through the relativistic factor 0γ  and zzU  in Equation (31). The relativistic 

effect manifests itself through the attenuation constant Γ  per 
2

0

pω
γ

 and in the 

dispersion relation per 
2

3
0

pω
γ

. Recently Lee and Cho [9] investigated surface 

waves in a non-relativistically streaming Vlasov plasma in a duct. Their result is 
identical with Equation (98) upon putting 0 1=γ . 

A visual understanding of the extended electric field may be grasped by plot-
ting the extended function [8]. A useful reference for relativistic Vlasov equation 
is, among others, Momtgomery and Tidman [11], in which the velocity-version 
of Vlasov equation (in contrast to the momentum-version employed in this 
work) is presented in detail. This work may find applications in laboratory or 
astrophysical situation where electromagnetic waves propagate through certain 
channels. This work might be useful for analysis of a proton beam travelling in a 
duct. 
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Abstract 
The paper is a kind of a review which considers an investigation of the scale 
of time suggested by an application of the Schrödinger perturbation method, 
especially when the perturbation of a non-degenerate quantum state is ex-
amined. In fact the method was applied in numerous cases—also by 
Schrödinger himself—without any use of the notion of time. Simultaneously, 
because of the development of computers, their use in solving the perturba-
tion problems gradually decreased. However, the point of importance in the 
paper became the time. We demonstrate that collisions of a quantum system 
with the perturbation potential can be arranged along a circular scale of time 
whose properties provide us precisely with the energy terms obtained by the 
Schrödinger perturbation theory. This validity of results is checked till the 
perturbation order N = 7. 
 

Keywords 
Scale of Time, Schrödinger’s Perturbation Theory, Non-Degenerate Quantum 
State 

 

1. Introduction. Different Kinds of Approach to the Time  
Parameter in the Everyday Life and Science 

Evidently the time was an important parameter in the human existence from its 
very beginning. 

Duration and repetition of the days, nights, seasons, years became a well-known 
observation of everybody. This situation did not change in course of centuries. 
Simultaneously we had, in general, a strict qualitative distinction between the 
intervals of time and space. 

The space intervals were easy to manipulate in their arrangement, both in 
imagination and practice: there was no difficulty to have or put any such interval 
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in an arbitrary position or direction chosen by the observer. A totally different 
property concerned the intervals of time: they had always a definite property of a 
future object, or a past object, or an object being actually present in our interest. 

Nevertheless the science, especially mechanics, could be developed in spite of 
a difficulty concerning the actual “historical’’ position of an interval of time. In 
effect the time interval entering the mechanical process could be considered in-
dependently from its “history’’ for, in many occasions, the mechanics could be 
liberated from its historical background associated with time. 

A special point which made the sense of mechanical laws questionable was 
connected with an examination of the physical laws concerning the whole me-
chanical systems. In this case the main result became that a mechanical system, 
having a constant velocity, should not obey several kinetic laws other than those 
obtained for a system at rest; see e.g. [1]. This is usually presented by a require-
ment that the Galilean transformation laws for the mechanical parameters have 
to be valid. But the development done in physics in the 19th century led to con-
clusion that the laws of the Maxwell electrodynamics should be equally valid in a 
moving system as well as they are satisfied for a system at rest. 

A well-known consequence of that conclusion was the replacement of the Ga-
lilean transformation of the mechanical parameters by the Lorentz one. In fact, 
the Galilean transformation keeps its good accuracy solely when the speed of the 
moving mechanical system remains low in comparison with the speed of light 
c—the effect which holds in the most part of situations met in the everyday life. 

2. Present Approach to the Problem of Time and Its  
Scientific Position 

A competition between the Galilean and Lorentz transformations done by the 
Lorentz formula, presented a well-known subject of the special relativistic theory. 
This theory applies the joint metrics of the time interval  

dt                               (1) 

and space intervals  

d ,d ,dx y z                            (2) 

by combining them into the formula  

( ) ( ) ( ) ( ) ( )2 2 2 2 22d d d d ds c t x y z= − − −                (3) 

representing the square of a small distant ds  of the moving body. In the gener-
al theory of relativity the metrics (3) is replaced by a more complicated one [2]  

( )2d d d .ik i ks g x x− =                        (4) 

in which summation does apply over the parameters i and k. Usually the space 
coordinates are 1x , 2x  and 3x  and the time coordinate is denoted by 0x . In 
general the terms in (4) being  

ikg                               (5) 

are some functions of ix  and kx . A scientific advantage of the metrics due to 
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(4) and (5) over the metrics (3) is that (4) and (5) can take into account several 
special physical effects, like the gravitational interaction between mass and light 
confirmed next by the observation. 

An outline of the ideas and formulas given above concerns mainly the classical 
physics. They allow us, however, to present the role of time in a different prob-
lem, referred mainly to the quantum theory. This theory, began by the Planck’s 
treatment of the oscillators entering the black-body ensemble, allowed him to 
discover the oscillator quanta of energy, as well as the roles of the oscillator fre-
quency and the constant carrying the Planck’s name. 

The next large step towards quanta was connected with a partly quantum and 
partly classical approach to the hydrogen atom developed by Bohr; see [3], Vol. 1. 
Because of its very good agreement with the observed data, the model was con-
sidered as practically perfect in calculating the light frequencies connected with 
the electron transitions in the atom. But next the applications of the quantum 
theory occurred rather limited because of the difficulty connected with a treat-
ment of the many-electron systems present in the non-hydrogen atoms. This 
difficulty was successfully defeated by Schrödinger—and his successors—in the 
wave-mechanical approach to the electron structure of the atoms; see e.g. [3], 
Vol. 2.  

3. Schrödinger’s Quantum Problems and Simplification  
of Their Solutions  

The main idea of Schrödinger was to follow the de Broglie concept and consider 
the electron as a wave-like particle of matter.  

Then a corresponding wave-like equation can be built up and next solved. 
One side of the equation is a sum of the kinetic energy operator of one or many 
electrons presented in a system, and the next term in the sum is the potential 
energy operator which takes different particle interactions necessary to be con-
sidered into account. Another side of the Schrödinger equation is given by a 
product of the energy constant E multiplied by the electron wave function ψ . 
In effect we obtain the eigenequation for E and ψ . In general its solution 
represents a complicated mathematical task—only for very simple physical sys-
tems the equation can be rather readily solved. 

The Schrödinger equation—on its one side—is a sum of the kinetic and po-
tential energy operators kinÊ  and potÊ , viz.  

kin pot
ˆ ˆ ˆH E E= +                        (6) 

called the Hamiltonian—or energy—operator. This operator is acting on the 
wave function ψ , so  

ˆ ,H Eψ ψ=                         (7) 

is giving the Schrödinger equation. The right-hand side of the Equation in (7) 
represents a product of the eigenenergy E, considered as a constant number, and 
ψ . The effect of solution of (7) is usually a discrete set of values of E and dis-
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crete set of functions ψ . The case when solutions provide us with only different 
E in the set is called a non-degenerate case of solution, the degenerate case oc-
curs when some of the E in the set are equal, though these E are corresponding 
to different eigenfunctions ψ . 

4. A Simplification of the Solution of Equation (7) Done by  
Schrödinger  

His simplified solution was usually based on a separation of the Hamiltonian 
Ĥ  into two parts, namely  

per
0

ˆ ˆ ˆH H H= +                        (8) 

where the eigenequation  

0 0 0 0Ĥ Eψ ψ=                         (9) 

is expected to be more simple to solve than that given in (7). Briefly a more sim-
ple Equation (9) is called the unperturbed equation with eigenvalues 0E  equal 
to the unperturbed energies and 0ψ  are called the unperturbed eigenfunctions. 
Because of (8) the perturbation potential entering the unperturbed Equation (9) 
is equal to:  

per per
0

ˆ ˆ ˆ .H H H V− = =                     (10) 

Usually it is assumed that  

( )per perˆ ,H V r=
�                       (10a) 

so (10a) is taken—for the sake of convenience—as equal to a term independent 
of the momentum operator, or operators. Having solutions of (9) we can calcu-
late the matrix elements  

( ) ( )per per
0 0 d .m pm V p V Vψ ψ= ∫                   (11) 

The matrix elements (11) combined with the eigenvalues 0E  entering (9) can 
provide us—according to the Schrödinger perturbation formalism—with the 
approximate energy eigenvalues of the more complicated eigenproblem (7). 

This calculation can be done gradually for different perturbation orders N, 
beginning successfully with the lowest order 1N = . Huby [4] and Tong [5] cal-
culated the number NS  of kinds of the perturbation terms which should be 
built up from the matrix elements (11) for a given order N, on condition the 
perturbation concerns a non-degenerate quantum state. This number is equal to  

( )
( )

2 2 !
.

! 1 !N

N
S

N N
−

=
−

                      (12) 

But the derivation of a detailed shape of terms entering the number NS  can 
be a complicated task, especially for large N. One of the aims of the present pub-
lication is to demonstrate that the perturbation calculation proposed by 
Schrödinger, especially its part referred to the NS  terms, can be drastically sim-
plified if the collision events of an originally unperturbed system with the per-
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turbation potential  

( )per perV V r=
�                         (13) 

are arranged along a special scale of time. The scale has a circular-like shape and 
the number of collision kinds with the perturbation potential for each N occurs 
precisely equal to NS . Moreover, any collision kind, or collisions ensemble, is 
represented by a specified diagram created on the time scale. Simultaneously, the 
shape of the diagram provides us with a rule for calculating the corresponding 
contribution to the perturbation energy. 

A final result for the perturbation energy obtained in this way for a given N 
agrees with a corresponding energy obtained by the Schrödinger method. The 
details of calculations concerning the time scale and its applications are pre-
sented in the original author’s papers; see [6]-[22]. 

5. Use of a Circular Scale of Time in the Schrödinger’s  
Perturbation Problem 

In fact only the perturbation of a non-degenerate Schrödinger quantum state n 
was thoroughly considered with the aid of the mentioned scale. From the begin-
ning of its application the circular scale of time was developed systematically for 
subsequent perturbation orders N:  

1,2,3,4,N = �                        (14) 

A physical meaning of N was to give a number of collisions of an unperturbed 
system with the perturbation potential. This potential was usually assumed to 
depend solely on the position coordinate r�  of the particle:  

( ) ( )per per perˆ ˆH H r V r= =
� �                   (15) 

Therefore the considered perturbation is independent of the time parameter t. 
The number 1N =  refers to a single collision of the system with the pertur-

bation (10), the number 2N =  refers to two collisions with ( )perV r� , etc. Any 
scale labelled by N is assumed to be composed of the beginning-end (b.e.) point 
of time, in effect the scale represented by 1N =  has solely a single time point 
(b.e.) necessary for consideration. 

The scale of 2N = —giving the perturbation order 2—has two points of im-
portance: beyond of a single beginning-end point it has the second point which 
refers to any non-perturbed state p different than the considered unperturbed 
state n:  

.p n≠                            (16) 

The energy correction of state n due to the perturbation of order 1N =  is 
represented by a single term  

per
1 .E n V n∆ =                       (17) 

On the other hand, the perturbation energy belonging to the order 2N =  is 
given by a sum  
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( ) ( )

per per

2 0 0
p n p

n V p p V n
E

E E
∆ =

−
∑                 (18) 

where evidently the relation (16) does hold. 
According to the formulae given by Tong and Huby [4] [5], the number of 

kinds of the perturbation terms entering order N [see (12)] becomes:  

1 2 1S S= =                         (19) 

which are in agreement with the number of NS  given by the formula (12), see 
Figure 1 and Figure 2. 

But in general we have  

1NS >                           (20) 

and our dominant interest is to calculate these NS  terms. 
In the case of 1N =  the diagram has only a single point—the beginning-end 

point—presented by Figure 1; for 2N =  the diagram is represented by Figure 
2 having two isolated points. In the next step let us consider 3N = . In this case  

3 2.S =                           (21) 

The circular scale for 3N =  has three points on it; see Figure 3. One point is 
the beginning-end (b.e.) point, the other time points are labelled on Figure 3 by 
the numbers 1 and 2.  

The first of the 3S  terms in (9) is represented by the formula ( ,p q n≠ )  

( )
( ) ( )( ) ( ) ( )( )

per per per
part 1

3 0 0 0 0
.

p q n p n q

n V p p V q q V n
E

E E E E
∆ =

− −
∑∑          (22) 

 

 
Figure 1. The diagram is corresponding 
to the perturbation order 1N = .  

 

 

Figure 2. The diagram is corresponding 
to the perturbation order 2N = .  

 

 

Figure 3. The diagram is corresponding 
to the perturbation order 3N = , part 1.  
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The second energy term dictated by (21) originates from contraction of the 
time points 1 and 2 which are present in Figure 3. This contraction 1:2 gives a 
diagram presented in Figure 4. 

In fact the diagram in Figure 4 can be considered as representing the product 
of two terms: the first term is a time loop identical with the diagram characteris-
tic for 1N =  (see Figure 1), the other term is similar to the diagram for 2N =  
(see Figure 2). A difference from the term given in (22) is represented by the 
formula  

( )
( ) ( )( )

per per
part 2

3 120 0
.

p
n p

n V p p V n
E E

E E
∆ = − ∆

−
∑             (23) 

In effect the full perturbation energy term for 3N =  is  
( ) ( ) ( )3 part 1 part 2

3 3 .E E E∆ = ∆ + ∆                  (24) 

The problem of sign attributed to ( )part 1
3E∆  and ( )part 2

3E∆  will be discussed 
below; see Section 6. 

6. Abbreviated Formulae Applied in Calculating the Energy  
Perturbation Terms  

The abbreviated formulae for 1E∆ , 2E∆ , ( )first part
3E∆  and ( )second part

3E∆  can be 
expressed as follows:  

1 ,E V∆ =                         (25) 

2 ,E VPV∆ =                       (26) 

( )first part
3 ,E VPVPV∆ =                    (27) 

( )second part 2
3 ,E V VP V∆ = −                  (28) 

where 1E∆  is given by (17), 2E∆ —by (18), ( )part 1
3E∆ —by (22) and ( )part 2

3E∆
—by (23). 

A characteristic feature is that the case of 1N =  has no P terms entering 

1E∆ . The symbol P in (26) refers to the ratio  

( ) ( )0 0

1

n pE E−
                        (29) 

entering only once for any state p considered in the summation process in 2E∆ . 
On the other hand 3E∆  has two kinds of P terms, viz.  

 

 

Figure 4. The diagram is corresponding 
to the perturbation order 3N = , part 2.  
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( ) ( ) ( ) ( )0 0 0 0

1 1,
n p n qE E E E− −

                    (30) 

and product 2P  in (28) represents the term  

( ) ( )( )20 0

1

n pE E−
                       (31) 

entering the expression ( )part 2
3E∆  in (23). 

In general, a sum of powers P entering any energy term NE∆  should be equal 
to 1N − . 

The sign of NE∆  is dependent on the number of terms entering the product 
representing a given NE∆ : an odd number of terms in the product implies a 
positive sign before it, so it is in the case of 1E∆ , 2E∆  and ( )part 1

3E∆ ; an even 
number of terms entering the product implies a negative sign [see ( )part 2

3E∆  in 
(23)]. 

7. Contractions of the Time Points on the Scale of Time and  
the Number SN 

The number represented by NS —and the formulae for the NS  terms—can be 
obtained by considering the allowed contractions of the time points on the scale. 
An example of such contractions is given by the time points 1 and 2 represented 
by the symbol  

1:2                           (32) 

entering the time scale for 3N = . No other contractions than (32) can be ad-
mitted for 3N =  and its time scale. 

But let us consider the time scale for 5N = . In this case—beyond of the be-
ginning-end time point (b.e.)—we have the time points  

1, 2, 3, and 4                       (33) 

on the scale; see Figure 5. 
Since the point b.e. is excluded from contractions with the other time points, 

the allowed contractions to which the time points in Figure 5 can be submitted 
are:  

1: 2, 1: 3, 1: 4, 1: 2 : 3, 1: 2 : 4, 1: 3 : 4,
2 : 3, 2 : 4, 2 : 3 : 4,
3 : 4, 1: 2 : 3 : 4.

          (34) 

We see that the time points entering any contraction (34) should increase 
from smaller ones to larger ones. 

But this property does not complete the limits of contractions choice. There 
are allowed also two combined contractions:  

1: 2 and 3 : 4,                       (35) 

1: 4 and 2 : 3                        (36) 

but there are n o t allowed contractions like  
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Figure 5. The time point b.e. 
and the free time points 1, 2, 3, 
and 4 on the scale.  

 
1: 3 and 2 : 4.                         (37) 

The geometrical property which has to be satisfied for any set of contractions 
is that the lines (loops) associated with them should n o t cross. 

In effect, together with the case of a single set of points given in (33), which 
are free from any contraction on the scale (see Figure 5), we have  

51 6 5 2 14 NS S+ + + = = =                   (38) 

diagrams concerning points 1, 2, 3, and 4 when the points are submitted to con-
tractions. Expression (38) is equal precisely to the result of the formula (12):  

5 14.S =                           (39) 

The above procedure can be extended to an arbitrary perturbation order N. 
The order 7N =  having 7 132S =  terms was examined in [21] [22]. 

The diagrams representing the perturbation energies corresponding to con-
tractions (34) are as in Figure 6.  

The diagrams giving contractions (35) and (36) are as in Figure 7.  
The diagram presented in Figure 5 (having no contractions of the time points) 

gives the perturbation energy  
( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

1
5

per per per per per

0 0 0 0 0 0 0 0
p q r s n p n q n r n s

E VPVPVPVPV

n V p p V q q V r r V s s V n

E E E E E E E E

∆ =

=
− − − −

∑∑∑∑
 

(40) 

where  
, , , .p q r s n≠                        (40a) 

The energy terms represented by Figure 6 are:  

( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

2 2
5

per per per per

120 0 0 0 0 0

1: 2 or a

p q r
n p n q n r

E VP VPVPV V

n V p p V q q V r r V n
E

E E E E E E

→∆ = −

= − ∆
− − −

∑∑∑
      (41) 

( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

3 2
5

per per per per

120 0 0 0 0 0

2 : 3 or g

p q r
n p n q n r

E VPVP VPV V

n V p p V q q V r r V n
E

E E E E E E

→∆ = −

= − ∆
− − −

∑∑∑
      (42) 

( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

4 2
5

per per per per

120 0 0 0 0 0

3 : 4 or j

p q r
n p n q n r

E VPVPVP V V

n V p p V q q V r r V n
E

E E E E E E

→∆ = −

= − ∆
− − −

∑∑∑
      (43) 
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Figure 6. The diagrams representing the b.e. time points and 
contractions (34) on the time scale.  

 
( ) ( )

( ) ( )( ) ( ) ( )( )

5 2
5

per per per

220 0 0 0

1: 3 or b

p q
n p n q

E VP VPV VPV

n V p p V q q V n
E

E E E E

→∆ = −

= − ∆
− −

∑∑
          (44) 

( ) ( )

( ) ( )( )
( )

6 2
5

per per
part 1

320 0

1: 4 or c

.
p

n p

E VP V VPVPV

n V p p V n
E

E E

→∆ = −

= − ∆
−

∑
             (45) 

In the next step  
( )6 2 2
51: 4 2 : 3 E VP V VP V V′∩ → ∆ =             (45a) 

[see diagram (b’) in Figure 7] gives together with ( )6
5E∆  the result:  

( ) ( )

( ) ( )

6 6 2 2
5 5

part 1 part 22
3 3

2
3;

E E VP V VPVPV VP V V

VP V E E

VP V E

′  ∆ + ∆ = − − 
 = − ∆ + ∆ 

= − ∆

         (46) 
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Figure 7. The diagrams representing the b.e. time points 
and contractions (35) and (36) on the time scale.  

 
see (22) and (23). This implies that (46) provides us with two Schrödinger per-
turbation terms for energy. 

The remaining contractions of the time points give:  

( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
( )

27 3
5

per per per
2

130 0 0 0

1: 2 : 3 or d

p q
n p n q

E VP VPV V

n V p p V q q V n
E

E E E E

→∆ =

= ∆
− −

∑∑
          (47) 

( ) ( )

( ) ( )( )

8 3
5

per per

1 230 0

1: 2 : 4 or e

p
n p

E VP VPV V VPV

n V p p V n
E E

E E

→∆ =

= ∆ ∆
−

∑
           (48) 

( ) ( )

( ) ( )( )

9 3
5

per per

2 130 0

1: 3 : 4 or f

p
n p

E VP VPV VPV V

n V p p V n
E E

E E

→∆ =

= ∆ ∆
−

∑
           (49) 

( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
( )

211 3
5

per per per
2

130 0 0 0

2 : 3 : 4 or i

p q
n p n q

E VPVP V V

n V p p V q q V n
E

E E E E

→∆ =

= ∆
− −

∑∑
          (50) 

( ) ( ) ( )

( ) ( )( )
( )

212 3
5

per per
3

140 0

1: 2 : 3 : 4 or k

.
p

n p

E VP VPV V

n V p p V n
E

E E

→∆ = −

= − ∆
−

∑
          (51) 

The energy term represented by (a’) in Figure 7 is  
( ) ( )

( ) ( )( ) ( ) ( )( )
( )

213 2 2
5

per per per
2

12 20 0 0 0
.

p q
n p n q

E VP VP V V

n V p p V q q V n
E

E E E E

∆ =

= ∆
− −

∑∑
       (52) 

Equation (40a) should be satisfied in all summations. 

8. Summary of Results 

The main idea of the paper presented by the author—and in former his papers 
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quoted here—was to demonstrate that a rather tedious approach to the 
Schrödinger perturbation energy can be much simplified when a circular scale of 
time in classifying the perturbations events is applied. As a special case a pertur-
bation of a non-degenerate quantum state is examined. 

First the number of terms entering the calculation is in a perfect agreement 
with the number of the formulae expected by Huby and Tong. The next point is 
that an arrangement of the time points on the scale gives a ready mathematical 
access to the formulae entering the Schrödinger perturbation theory for a given 
perturbation order N. This is a convenient situation because—for example in 
applying the Feynmann diagrams—the number of the perturbation terms and 
their character are much larger and more complicated than those necessary to 
perform the proper Schrödinger calculations for a chosen 1N � . 

In references [6]-[22] are given the diagrams of the time scale and their appli-
cations corresponding to the Schrödinger perturbation terms whose orders do 
not exceed 7N = . Some philosophical repercussions concerning the shape of 
the applied time scale and its use are also presented. In [9] a rather thorough 
comparison is done between the Feynman approach based on an infinite 
(straight-linear) time scale and a circular-time approach to the Schrödinger per-
turbation theory. Another comparison done in [22] does refer to the present 
perturbation calculation to the Leibniz theory and that outlined in the Ziman 
book [23]. 

The arrangement of the perturbation events on a special, viz. circular, scale of 
time, allowed us to obtain the perturbation energies of a non-degenerate quan-
tum system without solving the corresponding perturbation equations. 
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Abstract 
A proposal for an experiment to measure the cross section of antiproton 
production in a proton-nuclear collision in a kinematically forbidden region 
for nucleon-nucleon interaction on a fixed LHC target is considered. It is 
shown that this process can be separated from the kinematically allowed 
production process using the existing detectors of the ALICE facility at a 
proton energy of 7 TeV with a fixed nuclear target. Assuming the scale de-
pendence of the cross section, the data obtained can be used to estimate the 
subthreshold cross section for the production of superheavy particles with a 
mass of several tens of TeV in the LHC lead nucleus beam. 
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1. Introduction 

Among the processes of particle production in nuclear collisions at high energy 
beams, one can highlight those where production occurs under kinematic condi-
tions that are forbidden in the nucleon-nucleon interaction. At present, this 
problem is of great importance for studying the possibility of particle production 
with beams of lead nuclei for a mass exceeding 14 TeV, which is attainable in a 
nucleon-nucleon collision at the Large Hadron Collider (LHC). Actually, the 
energy at the center of mass in the collision of lead nuclei at the LHC at a beam 
energy of 2.76 TeV per nucleon is 1150 TeV. The existence of such superheavy 
particles with a mass much less than the Planck mass is forbidden in the Grand 
Unification Theory. However, when trying to solve the problem of the hierarchy 
of interactions in models of superstrings, super symmetry and introducing addi-
tional dimensions, the creation of such particles is allowed. For example, in the 
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model of extra dimensions with a compactification radius of one Fermi, particles 
with a mass of several tens of TeV can be produced [1] [2]. 

Obviously, for the production of superheavy particles, the cross section of the 
“subthreshold” process will be very small. Theoretical estimates of this cross sec-
tion are apparently impossible at present. However, an analogy can be drawn 
with the subthreshold production of antiprotons at intermediate energies, since 
the subthreshold process is obviously associated with the correlation of nucleons 
or quarks in colliding nuclei and could be weakly dependent on energy. Never-
theless, such a study must also be carried out at higher energies. 

This investigation can be carried out in the study of the production process 
under kinematic conditions that are forbidden in the nucleon-nucleon interaction. 
However, obtaining the necessary data in the collider operation mode is impossi-
ble. In this case, the produced antiprotons have an energy of several hundred 
GeV, and the spectrometry of antiprotons at such energies with existing detectors 
does not provide the required accuracy. As first shown in this article, it is possible 
to measure the production of antiprotons in a proton beam with an energy of 7 
TeV at the LHC on a fixed target of heavy nuclei ( 114.7 GeVs = ). Such a study 
was started at the U-70 accelerator in Protvino [3] at an energy of 19 GeV 
( 6.05 GeVs = ) per nucleon on carbon nuclei. However, the measurement of 
antiproton production was carried out at small forward angles, which leads to 
large antiproton momenta and less accuracy. The measurement of the transverse 
momentum of antiprotons proposed in this article makes it possible to obtain 
better accuracy at a much higher energy. 

2. Subthreshold Production of Antiprotons in Nuclear  
Collisions 

The study of the production of antiprotons in proton-nuclear and nucleus-nucleus 
collisions at energies below the production threshold in a nucleon-nucleon colli-
sion has been the subject of a significant number of works [4] [5] [6] [7] [8]. The 
measurements were carried out with proton and nuclear beams at JINR, BNL, 
GSI and KEK. In all experiments, the values of the production cross sections 
were obtained, which significantly exceeded the estimates obtained when taking 
into account the lowering of the production threshold due to the Fermi motion 
of nucleons in the nucleus [9]. A unified phenomenological description of all 
experimental data was obtained in the generalized parton model [10] [11]. The 
model is based on the introduction of the parton distribution parameter not only 
in the target nucleus (x), but also in the incident nucleus (z). Due to the conser-
vation of the 4-momentum, we obtain the following results: 

( ) ( )2 2
1 2 1 2d izP xP P zP xP P′ ′+ − = + +                 (1) 

where P1, P2 and Pd—are the 4-momenta of the incident and fixed nucleons in 
the nuclei and of the produced antiproton respectively, and Pi is the 4-momentum 
of an additional proton for conservation of the baryon number. For the maxi-
mum values of the momentum of the produced antiproton: 
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1 2 0ip p p′ ′ ′= = =
��� ��� ���

                        (2) 

We have: ( )2 2
1P m′ =  and ( )2 2

2P m′ = , where m—is the mass of a nucleon, 1p′
���

, 

2p′
���

, ip′
���

 momenta of incident and fixed nucleons in nuclei and an additional 
proton. 

From Equation (1), the mutual dependence of the parameters x and z can be 
obtained [10]. The production of antiprotons in nucleus-nucleus collisions is 
now possible not only at small values of the parton parameters, but also in the 
kinematically forbidden region for nucleon-nucleon interactions at x > 1 and z > 
1.  

In reference [11], a universal dependence of the scaling type of all subthre-
shold data on the production of antiprotons was obtained at x in the range of 1 - 
4 and at z values equal to 1 for incident protons, 1.3 for deuterons, 2 for carbon 
nuclei, and 3 for more heavy nuclei at energies from 2 to 6 GeV per nucleon: 

( ) ( )0.43 2 3 1
1 2

3

31 mb GeV c sr 0.57exp 0.158d
d

A A E x
p
σ− − − ⋅ ⋅ ⋅ ⋅ = −        (3) 

where E1 is the total energy of antiproton and A1 and A2 are the mass numbers of 
colliding nuclei. 

This dependence has an exponential form and describes the data for pro-
ton-nuclear collisions well. For nucleus-nuclear collisions, the deviations of in-
dividual data from the curve are larger, but the range of cross sections reaches 
four orders of magnitude. 

Assuming a weak dependence of the obtained dependence of the subthreshold 
production cross section on energy, the yield of superheavy particles with a mass 
of 16 TeV on the LHC proton beam in the collision of lead nuclei was estimated 
[12]. The obtained value of approximately 70 particles per year allows planning 
the corresponding experiment. However, for more reasonable estimates, it is 
necessary to determine the dependence of the production cross section on the 
scaling parameters in the subthreshold process, at values x > 1, at high energies 
closer to the LHC energies. 

In the next section, we analyse the possibility of measuring the cross section 
for antiproton production in the kinematically forbidden region on a fixed target 
of the LHC collider. 

3. Production of Antiprotons in a Kinematically Forbidden  
Region at a Fixed Target of the LHC Collider 

To determine the possibility of measuring the yield of antiprotons in the kine-
matically forbidden region on a fixed target of the LHC collider [13] the kine-
matics of antiproton production at an energy of 7 TeV on bismuth nuclei were 
calculated. In Figure 1, the magnitudes of the maximum transverse momentum 
values of antiprotons in the center-of-mass system are given for the parameters x 
= 1 and x = 2, depending on the pseudorapidity. These magnitudes differ signif-
icantly. Thus, it is possible to separate the kinematically allowed process from 
the forbidden process in the nucleon-nucleon collision. 
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The identification and measurement of the transverse momentum in the 
ALICE installation is carried out by the TPC projection camera. The fixed target 
will be located at a distance of 480 cm from the IP. The geometry of the TPC and 
the beam tube limits the range of possible angles from 5 to 28 degrees. Figure 2 
and Figure 3 show the corresponding intervals of pseudorapidity for x = 1 and x 
= 2. The required transverse momentum ranges of 3 - 20 GeV are available for 
TPC measurements [14].  

 

 
Figure 1. Dependence of the transverse momentum 
of antiprotons on the pseudorapidity in the center 
of mass. Blue line with x = 1, red line with x = 2. 

 

 

Figure 2. Dependence of the transverse momentum 
of antiprotons on the pseudorapidity in the center 
of mass. Blue line with x = 1, red line with x = 2. 
The area available with a fixed target and x = 1 is 
marked in yellow. 

 

 

Figure 3. Dependence of the transverse momentum 
of antiprotons on the pseudorapidity in the center 
of mass. Blue line with x = 1, red line with x = 2. 
The area available with a fixed target and x = 2 is 
marked in green. 
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Figure 4. Dependence of the transverse mo-
mentum of antiprotons on the pseudorapid-
ity in a laboratory system. Blue line with x = 
1, red line with x = 2. The area available with 
a fixed target is marked in yellow. 

 
Table 1. Parameter x, antiproton production cross sections and antiproton yield as a 
function of the antiproton transverse momentum. 

Pt 4 6 8 GeV 

Ed 8.5 12.8 17 GeV 

x 1.1 1.6 2.18 - 

σinv 8 × 10−3 6 × 10−4 8 × 10−6 mb·GeV−2·c3·sr−1 

Nd 25 × 103 3 × 103 50 1/hour 

 
Figure 4 shows the dependence of the transverse momentum on the pseudo-

rapidity in the laboratory system.  
When analysing the measured cross sections for the production of antiprotons, 

the parameters x and z must satisfy the following relation: 

( )( )
( )

21 cosd

d

z E E M
x

z E E m
θ⋅ ⋅ ⋅ − −

=
⋅ −

                 (4) 

where E is the beam energy, Ed is the antiproton energy, M is the antiproton 
mass, m is the nucleon mass and θ is the production angle. 

At a high energy of 7 TeV of a proton beam, the parameter x is practically in-
dependent of the parameter z and beam energy: 

( )( )1 cosdE
m

x
θ−⋅

≈                      (5) 

For the parameters of the planned experiment: θ = 280, Δp = 1 GeV, ΔΩ = 0.1 
sr, the values of parameter x, as a function of the antiproton transverse momen-
tum, are given in Table 1. The same table shows the production cross section 
calculated by formula (3) and antiproton yield at a luminosity of 1030 см−2·сек−1.  

4. Conclusion 

Investigation of antiproton production in the kinematically forbidden region in 
the nucleon-nucleon interaction on a fixed target of the LHC collider is possible 
with the existing ALICE facility detectors. The data obtained on the dependence 
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of the subthreshold production cross section on the scaling parameter x > 1 can 
be used to estimate the yield of superheavy particle production with the LHC 
lead nucleus beam. The results of the proposed measurements will allow study-
ing the dependence of the scaling effect on energy, as well as obtaining new data 
on collective effects in nuclei. 
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Abstract 
Some consequences, due to the existence of a pair of decoupled Schrödin-
ger-like but relativistic quantum mechanics wave equations, are explored. It is 
shown that one equation directly describes the quantum states of a single 
spin-0 particle, and the other one indirectly describes the quantum states of 
the corresponding antiparticle. In correspondence with the matter-antimatter 
symmetry, for a Coulomb potential, a charge conjugation operation trans-
forms the second equation in the first one. However, if a particle could inte-
ract with itself (gravitationally or electrically) due to the spread of its wave-
function, the C-symmetry could be broken; therefore, matter and antimatter 
could be distinguished. Under these assumptions, it is deducted the impossi-
bility of the existence of particles and antiparticles with a mass larger than the 
Plank mass (mP), or with the absolute value of the charge larger than the 
Plank charge (qP). It is proposed the existence of primordial antimatter elec-
trical sinks. It is also suggested that all macroscopic matter objects with a 
mass m > mP, and all macroscopic antimatter bodies with a charge |q| > qP 
should not be quantum but classical objects. It is argued that these findings 
could explain the absence of antimatter with a complicated structure and par-
tially explain the excess of charged matter in the known Universe. 
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1. Introduction 

We do not live in an antimatter world but in a matter one. The observed asym-
metry between matter and antimatter has two aspects. First, matter seems to be 
much more abundant in Nature than antimatter. Second, we are not surrounded 
by antimatter bodies with a complicated structure but by complicated matter 
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objects like matter atoms, molecules, and bulky bodies formed by them. It has 
been speculated that the second is a consequence of the first, and the first hap-
pens due to a yet unknown cause at the beginning of the known Universe [1] [2]. 
The so-called charge-parity-time reversal (CPT) symmetry justifies the current 
faith in such explanation. This is because we believe all laws of Physics should be 
CPT invariable [1] [2] [3], and because it is a general belief that the CPT sym-
metry implies that a matter world should be undistinguishable from the anti-
matter one [1] [2] [3].  

In this work, it is explored a different explanation of why we are not sur-
rounded by antimatter bodies with a complicated structure but by complicated 
matter bodies, and it is partially addressed the observed abundance of matter in 
Nature. For simplicity, only electrostatic and (Newtonian) gravitational interac-
tions are considered in this work. The author invites the reader to start our 
journey in the general Grave de Peralta (gGP) equation [4] [5]: 

2
2 .

2
i V

t µ
∂
Ψ = − ∇ Ψ + Ψ

∂
�

�                     (1) 

This is a Schrödinger-like, but relativistic quantum mechanics equation, that 
describes the quantum states of a particle moving in a scalar potential (V) with 
an effective mass μ = μ+ > 0, which depends on the parameter γ in the following 
way [4]: 

1 0.
2

mγµ+
+

= >                        (2) 

When γ = 1, then μ+ = m, the relativistic invariant mass of the particle; thus, 
Equation (1) coincides with the Schrödinger equation [6] [7]. Equation (1) is the 
Grave de Peralta (GP) equation when γ is the Lorentz factor of special theory of 
relativity [5] [8] [9] [10]. Equation (1) with μ = μ+ > 0 has been successfully used 
for extending, to the relativistic domain, the non-relativistic results previously 
obtained using the Schrödinger equation [4] [5] [8]-[15]. Equation (1) was also 
used for demonstrating the impossibility of the existence of elemental quantum 
particles with a mass larger than the Plank mass (mP ≈ 20 μg) [5]. In addition, it 
was also suggested that all matter bodies with m > mP should not be quantum 
but classical objects [5]. These results were obtained using the hypothesis that, 
due to the spread of its mass density through its wavefunction, a matter particle 
can gravitationally interact with itself [5] [16]. 

In this work, for the first time, the consequences of considering μ = μ– = –μ+ < 
0 are explored. First, it is shown that Equation (1), but with μ = μ–, indirectly 
describes the quantum states of the antiparticle that is associated to a particle. 
The quantum (particle) states associated to this particle are described by Equa-
tion (1) with μ = μ+ > 0. Second, Equation (1) is used, but with μ = μ– < 0, in 
combination with the hypothesis that a particle can electrostatically interact with 
itself, due to the spread of its charge density through its wavefunction, for de-
monstrating the impossibility of the existence of elemental quantum antipar-
ticles with the absolute value of its charge (|q|) larger than the Plank charge, qP ≈ 
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11e, where e is the charge of a proton. It is also suggested that all antimatter bo-
dies with |q| > qP should not be quantum but classical objects. 

Finally, it is proposed the possible existence of primordial antimatter electrical 
sinks, which may have formed when primordial quantum fluctuations of 
charged antimatter, with |q| > qP, occurred at the beginning of the times. The ex-
istence of such primordial antimatter electrical sinks may partially explain the 
observed excess of charged matter in the known Universe. Moreover, it is sug-
gested that we do not observe antimatter bodies with a complicated structure 
because antimatter atoms and molecules only can be formed when antimatter 
nuclei and positron clouds are quantum objects. However, they may be classical 
when |q| > qP. 

2. The gGP Equations  

Like the Klein-Gordon equation, Equation (1) can be obtained, after a formal 
first quantization procedure, from the Lorentz-invariance of the magnitude of 
the four-component energy-momentum vector corresponding to a classical par-
ticle of mass m, total energy E, and three-component linear momentum p, which 
is moving in a scalar potential V [3] [17] [18]: 

( )2
2

2 .
E V

mc
c
−

− =p                      (3) 

In Equation (3), c is the speed of the light in vacuum, and ( E V− ) is the sum 
of the kinetic energy of the particle (K) plus the energy associated to its mass 
(mc2). Solving Equation (3) for ( E V− ), we obtain two possible values of ( E V− ) 
corresponding to each value of p:  

2
2 2 2 4 2

2 2, with 1 .pE V c m c mc
m c

γ γ− = ± + = ± = +p          (4) 

It is worth noting that γ = 1 means the particle is at rest. In what follows, we 
will add the subindexes (+) and (–) to all the magnitudes related with the posi-
tive and negative values of ( E V− ), respectively. When ( E V− ) = +γmc2 > 0, 
the relation between ( E V− ) and K is:  

( )2 2 21 0.E V mc K mc K mcγ γ+ + +− = + = + ⇒ = − ≥          (5) 

However, when ( E V− ) = –γmc2 < 0, the relation between ( E V− ) and K 
should be such that K– = 0 when γ = 1; therefore: 

( )2 2 21 0.E V mc K mc K mc Kγ γ− − − +− = − = − ⇒ = − = − ≤       (6) 

Defining E′ such that:  

( )
( )

( )
( )

2 2

2 2

1 0
.

1 0
E V mc K K mc

E V E V
E V mc K K mc K

γ
γ

+ + +
± ±

− − − +

− − = = − ≥
′ ′− = ⇒ − =

− + = = − = − ≤
  (7) 

And using Equation (4) for evaluating γ2, we can obtain that K+ and K– are al-
so given by the following equations: 
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( ) ( ) ( ) ( )

( )

2
2 2 2

2

1 1 1 1

1

K mc mc
m

K
m

γ γ γ γ

γ

±

±

 + = ± + − = ± − = ± 

⇒ = ±
+

p

p
        (8) 

Therefore, combining Equations (7) and (8), we obtain: 

( )
2

.
1

E V
mγ±′ = ± +

+
p                        (9) 

Now, by making in Equation (9) the following formal first-quantization subs-
titutions:  

, .E i i
t
∂′ → → −
∂

p� �∇                     (10) 

We obtain a pair of Poirier-Grave de Peralta (PGP) equations [5]: 

( )
2 2

2
2 2

ˆˆ, with 1 .
ˆ1

i V
t m m c

γ
γ± ± ±

∂
Ψ = ∇ Ψ + Ψ = +

∂ +
p�

� ∓         (11) 

Readers familiar with high energy physics may recognize that the PGP equa-
tion for Ψ+ is related with a particular case of the spinless Salpeter equation [19] 
[20], which is a known Lorentz-covariant alternative for the Klein-Gordon equa-
tion. Like the spinless Salpeter equation, the PGP equations are Lorentz-covariant; 
thus, valid relativistic quantum mechanics equations [4] [5]. Different ap-
proaches may be used for removing the operator γ in Equation (11) and substi-
tuting it by a parameter γ [4] [5]. For instance, we could use the Poveda’s ap-
proach that considers γ as the average value of the operator γ in the quantum 
state Ψ± [5]: 

2

2 2

ˆˆ 1 .
m c

γ γ ± ± ±→ = Ψ + Ψ
p                  (12) 

Or consider, as originally was done by Grave de Peralta, that γ is just the rela-
tivity Lorentz factor associated to the corresponding classical particle [8]-[15]. 
Anyway, after substituting the operator γ by the parameter γ, we can use Equa-
tion (2) for rewriting Equation (11) as Equation (1). The case μ = μ+ = (1 + γ) 
m/2 > 0 have been intensively studied before [4] [5] [8] [9] [10] [14] [15]: 

( )
2

2 .
1

i V
t mγ+ + +
∂
Ψ = − ∇ Ψ + Ψ

∂ +
�

�                (13) 

Solving Equation (13) gives the energies E K V+ +′ = + , with K+ > 0, and the 
wavefunctions Ψ+ corresponding to a relativistic spin-0 particle of mass m, 
which is moving in the scalar potential V [4] [5] [8] [9] [10] [14] [15]. We will 
focus our attention now in the case μ = μ– = –(1+ γ)m/2 < 0:  

( )
2

2 .
1

i V
t mγ− − −
∂
Ψ = ∇ Ψ + Ψ

∂ +
�

�                 (14) 

Solving Equation (14) gives the energies – –E K V′ = + , with K– < 0, and the 
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wavefunctions Ψ– corresponding to the same relativistic spin-0 particle of mass 
m, which is moving in the scalar potential V. It should be noted that if γ is cho-
sen as the relativity Lorentz factor associated to the corresponding classical par-
ticle, then the wavefunctions Ψ∓  are the two components of the so-called 
Klein-Gordon equation in the Schrödinger form [3]. When V = –eUC, where UC 
is the Coulomb potential +Ze/(4πεor), r = |r|, and εo is the absolute dielectric 
permittivity of the vacuum, Equation (13) can be used for approximately de-
scribing (discounting the spin) the quantum states with K > 0 of the electron 
(the particle) in a Hydrogen-like atom with atomic number Z [14] [15]. On the 
other hand, Equation (14) can be used for approximately describing (discount-
ing the spin) the quantum states with K < 0 of the electron (the particle) in a 
Hydrogen-like atom with atomic number Z [14] [15]. These equations are: 

( )
2

2 , , .
1 4p p C p C p

o

Zei eU U
t m rγ ε +
∂
Ψ = − ∇ Ψ − Ψ = + Ψ = Ψ

∂ + π
�

�    (15) 

And: 

( )
2

2 .
1 Ci eU

t mγ− − −
∂
Ψ = ∇ Ψ − Ψ

∂ +
�

�                  (16) 

This pair of equations (Equations (15) and (16)) resembles the hole theory 
based on the Klein-Gordon and Dirac’s equations [3], where there is a 
one-to-one relationship between Ψ– and the positron (antiparticle) wavefunction 
corresponding to a quantum state with K > 0 (Ψa), which satisfies the following 
equation [3]: 

( )
2

2 .
1a a C ai eU

t mγ
∂
Ψ = − ∇ Ψ + Ψ

∂ +
�

�                 (17) 

Nevertheless, the pair of uncoupled equations (Equation (11), Equations (13) 
and (14), or Equations (15) and (16)) is not equivalent to the Klein-Gordon equ-
ation because, unlike the Klein-Gordon and the Dirac equations [3] [21], these 
pairs of equations describe processes where, first, the number of particles is con-
stant (one) [10], and second, the kinetic energy of the particle or is always posi-
tive or is always negative. Therefore, their use is particularly useful for studying 
relativistic processes with these characteristics. 

For instance, the following plane waves are solutions of Equations (13) and 
(14) for a free (V = 0) particle: 

( ) ( )

( ) ( )

2

2 2

e , 1 0;

e , 1 .

i E t

p

i E t

E
mc

E E
mc mc

γ

γ

+

−

′⋅ −
+

+

′⋅ −
− +

−

′
Ψ = Ψ = = − >

′ ′
Ψ = = − = −

p r

p r

�

�

               (18) 

Note that Ψ– is not a solution of Equation (17) with V = 0 because the energy 
of the antiparticle should be positive and because, if the particle has a linear 
momentum p, then the linear momentum of the antiparticle should be –p. Due 
to the momentum conservation, if Ψp = Ψ+ is given by Equation (18), then Ψa 
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should be given by: 

( ) ( )2e , 1 0.
i E t

a
E

mc
γ+′− ⋅ +

+′Ψ = = − >
p r

�                  (19) 

So that the free particle and antiparticle travel in opposite directions with the 
same energy – –aE E K E K+ +′ ′ ′= = = − = − . The wavefunction of the free antipar-
ticle (Ψa) can then be obtained from Ψ– by a charge conjugate operation [3], i.e., 
first finding the complex conjugate of Ψ– and then formally substituting –E′  in 
(Ψ–)* by –aE E E+′ ′ ′= = − . It is easy to show that this is also true for the statio-
nary states of the Equations (16) and (17) [3], i.e., if: 

( ) ( ) ( ) ( )–, e , , e .aE Ei it t

a at t
′− −

− −

′
Ψ = Ω Ψ = Ωr r r r� �           (20) 

are the stationary solutions of Equations (16) and (17), or in general of Equa-
tions (13) and (14), respectively, then: 

( ) ( )*
– and ; thus, .a a aaE E E − −+ −′ = − = Ω = Ω Ψ Ψ = Ψ′ Ψ′ r r r r   (21) 

Consequently, Equations (14) and (16) can be used for studying the spatial 
localization of the antiparticle wavefunction. This is because, due to Equation 
(21), the spatial localization of Ψ– is a necessary and sufficient condition for the 
spatial localization of Ψa.  

It is important to note that Ψ+ and Ψ– are particle (electronic) states with posi-
tive and negative kinetic energy values, respectively, while Ψa is an antiparticle 
(positronic) state with positive kinetic energy. Both particle and antiparticle in-
teract with the same external world represented by UC, which is the same in Eq-
uations (15), (16), and (17). Therefore, if UC can spatially confine the electronic 
states with negative kinetic energy (Ψ–), then the same UC can confine Ψa. The 
opposite is also true, if UC cannot confine the electronic states with negative ki-
netic energy (Ψ–), then the same UC cannot confine Ψa. For instance, Equation 
(17) describes a particle (a positron) moving with Kpos > 0 while repelled by a 
matter nucleus with Z protons. Unlike the electron wavefunction, Ψp in Equa-
tion (15), which is localized around the matter nucleus that attracts the electron, 
the positron wavefunction, Ψa in Equation (17), cannot be localized because the 
positron is repelled by the matter nucleus. Consequently, the wavefunction cor-
responding to the electron states with K– < 0, Ψ– in Equation (16), cannot be lo-
calized around the nucleus of the Hydrogen-like atom [21] [22].  

Formally, Equation (17) can be obtained from Equation (16) by changing the 
sign of the kinetic energy term in Equation (16), and then changing the sign of 
the particle’s charge without modifying UC (because UC does not depend on the 
particle’s charge but on the external charges Ze that produce UC). This is equiva-
lent to the charge conjugation operation [3]; i.e., Equation (17) is obtained by 
taking the complex conjugate of both sides of Equation (16). Finally, if the mat-
ter nucleus is substituted by the corresponding antimatter one, which concludes 
the charge-inversion of all the particles and antiparticles in consideration, then 
UC changes of sign in Equation (17). This transforms Equation (17) in Equation 
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(15). Consequently, in correspondence with the C-symmetry of quantum elec-
trodynamic [21] [22], an antimatter Hydrogen-like atom should be indistinguish-
able from the corresponding matter one. Note that quantum electrodynamics is 
independently C-symmetric and PT-symmetric; therefore, its C-symmetry implies 
its CPT symmetry.  

3. Spatial Localization of the Wavefunctions of Particles and  
Antiparticles in a Coulomb Potential 

An instance, illustrating why the C-symmetry in quantum electrodynamics im-
plies that an antimatter world should be undistinguishable from the matter one, 
is shown in Figure 1. In a Hydrogen-like matter atom (Figure 1(a)), the elec-
tron wavefunction (Ψ+ = Ψp) is spatially localized around the matter nucleus due 
to the inward acceleration of the electron, which is produced by the attractive 
electrical force between the electron and the matter nucleus. However, the elec-
tron (Ψ–) and positron (Ψa) wavefunctions are not spatially localized around the 
nucleus of the Hydrogen-like matter atom.  

In contrast, in a Hydrogen-like antimatter atom (Figure 1(b)), the positron 
wavefunction (Ψa), and thus also the electron wavefunction (Ψ–), are both spa-
tially localized around the antimatter nucleus due to the inward acceleration of 
the positron, which is produced by the attractive electrical force between the po-
sitron and the antimatter nucleus. However, the electron wavefunction (Ψ+ = Ψp) 
is not spatially localized around the nucleus of the Hydrogen-like antimatter 
atom. Let us now describe the matter and antimatter atoms, but primarily refer-
ring to the electron (the particle) and its electronic states Ψ+ and Ψ– in the Hy-
drogen-like matter and antimatter atoms.  

As illustrated in Figure 1(a), the Coulombic attraction between the matter 
nucleus and the electron spatially localizes the wavefunction of the electron (Ψ+ 
= Ψp) around the nucleus [6] [7]. In agreement with Equation (15), this happens 
because the negative potential energy associated to –eUCΨ+ in Equation (15) 
balances the positive kinetic energy associated to [5]: 

2 2
2ˆ 1ˆ , with 0.

2 2 2
pK mγµ
µ µ+ + + + +
+ +

+
Ψ = Ψ = − ∇ Ψ = >

�        (22) 

The force associated to the nucleus-electron interaction points to the nucleus 
of the Hydrogen-like atom; therefore, due to the positive effective mass of the 
electron in the state Ψ+ (μ+ > 0), this force produces an inward acceleration on 
the electron (in the state Ψ+) that tends to spatially localize Ψ+. In opposition, the 
kinetic energy of the electron tends to spread Ψ+. 

In contrast with what occurs to Ψ+, and in agreement with Equation (16), the 
same Coulombic interaction between the matter nucleus and the electron, when 
the electron is in the state Ψ–, cannot localize the electron wavefunction Ψ–, and 
thus Ψa, around the nucleus of the Hydrogen-like matter atom. This is because 
no balance can be reached between the negative potential energy associated to 
–eUCΨ– in Equation (16), and the negative kinetic energy associated to: 
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Figure 1. Illustration of (a) a matter and (b) antimatter 
Hydrogen-like atom. The arrows represent the centripetal 
acceleration of the electron and positron, respectively. 

 
2 2

2ˆ 1ˆ , with 0.
2 2 2
pK mγµ
µ µ− − − − −
− −

+
Ψ = Ψ = − ∇ Ψ = − <

�       (23) 

As it was stated above, the force associated to the nucleus-electron interaction 
points to the nucleus of the Hydrogen-like atom; however, when the electron is 
in the state Ψ–, due to the negative effective mass in Equations (16) and (23) (μ– 
< 0), the same force produces an outward acceleration on the electron that tends 
to spatially spread Ψ–, and thus Ψa. The kinetic energy of the electron in the state 
Ψ– is negative because μ– < 0, thus large negative values of K– imply large speed 
values. Consequently, the negative kinetic energy in Equations (16) and (23) still 
tends to spatially spread Ψ–; therefore, it cannot balance the spreading effect of 
the nucleus-electron interaction on the wavefunction, when the electron is in the 
state Ψ–.  

If the matter nucleus of the Hydrogen-like atom were substituted by the nuc-
leus of a Hydrogen-like antimatter atom, then the total charge producing the 
Coulomb potential would change from +Ze to –Ze; therefore, Equations (15) 
and (16) should be substituted by the following equations:  

( )
2

2 .
1 Ci eU

t mγ+ + +
∂
Ψ = − ∇ Ψ + Ψ

∂ +
�

�                (24) 

( )
2

2 .
1 Ci eU

t mγ− − −
∂
Ψ = ∇ Ψ + Ψ

∂ +
�

�                 (25) 

Now, in the antimatter atom, –UC cannot spatially localize the wavefunction 
of the electron (Ψp = Ψ+) around the antimatter nucleus. In agreement with Eq-
uation (24), this would happen because the positive potential energy associated 
to +eUCΨ+ in Equation (24) cannot balance the positive kinetic energy asso-
ciated to Equation (22). The force associated to the interaction between the an-
timatter nucleus and the electron, points in this case away from the antimatter 
nucleus to the electron; therefore, due to the positive effective mass of the elec-
tron in the state Ψ+ (μ+ > 0), this force produces an outward acceleration on the 
electron that tends to spatially spread Ψ+. Of course, the kinetic energy of the 
electron also tends to spread Ψ+. 

As illustrated in Figure 1(b), in contrast with what occurs to the electron wa-
vefunction (Ψp = Ψ+) in a Hydrogen-like antimatter atom, and in agreement 
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with Equation (25), the same interaction between the electron and the antimat-
ter nucleus could localize the wavefunction Ψ–, and thus, due to Equation (21), 
the wavefunction of the positron (Ψa), around the nucleus of a Hydrogen-like 
antimatter atom. This is because the positive potential energy associated to 
+eUCΨ– in Equation (25) could balance the negative kinetic energy associated to 
Equation (23). The force associated to the interaction points away from the an-
timatter nucleus to the electron; however, when the electron in the antimatter 
atom is in the state Ψ–, due to the negative effective mass in Equation (25) (μ– < 
0), the force produces an inward acceleration on the electron (Figure 1(b)) that 
tends to localize Ψ–, and thus Ψa. As stated above, the negative kinetic energy in 
Equations (25) and (23) tends to spatially spread Ψ–; therefore, it can balance the 
localizing effect of the anti-nucleus-electron interaction, when the electron is in 
the state Ψ–.  

It is worth noting that, in the Hydrogen-like atom, UC can localize de elec-
tronic wavefunction Ψ+ but not Ψ–, while in the Hydrogen-like antiatom –UC 
can localize de electronic wavefunction Ψ– but not Ψ+. Consequently, in agree-
ment with Equation (21), UC can localize de particle wavefunction (Ψp) but not 
the antiparticle one (Ψa), while –UC can localize de antiparticle wavefunction (Ψa) 
but not the particle one (Ψp). UC is charge-inversion-antisymmetric because UC 
changes of sign when a C-inversion is applied to the external world surrounding 
the particle. In addition, the change of sign of UC is independent of the change of 
sign of the particle that is moving through UC. 

Summarizing the above discussion, we can say the C-symmetry of Equations 
(13) and (14) indicates that a Hydrogen-like antimatter atom should be as stable 
as a Hydrogen-like matter atom. If all relevant potentials were of the form V = 
±eUC, with UC being charge-inversion-antisymmetric, we could confirm and ex-
tend the above statement to the whole matter and antimatter. However, as we 
will discuss in the next Section, we could conceive some relevant potentials that 
do not have this form.  

4. Spatial Localization of the Wavefunction of a Single Free  
Particle or Antiparticle 

Gravity potentials are not of the form V = ±eUC; however, gravity interactions 
between quantum particles are often weak when compared with electromagnetic 
interactions. Consequently, we could be tempted to discard the possible influ-
ence of gravity potentials on the observed asymmetry between matter and anti-
matter. However, at least a Newtonian-gravity potential has been previously 
suggested, as playing an important role in quantum physics [5] [16]. It has been 
hypothesized that a single free particle could interact gravitationally with itself, 
due to the spread of its mass density through the extension of its wavefunction 
[5] [16]. A consequence of this hypothesis, combined with Equation (13), is that 
no elemental quantum particle with m > mP could exist (in the state Ψ+) [5]. The 
gravitational self-interaction potential does not depend on the particle’s charge, 
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and the particle and the antiparticle have the same mass; therefore, one should 
expect that a similar requirement for existence cannot be obtained using Equa-
tion (14) for a particle in the state Ψ–. Indeed, this is the case. From Equation (1), 
the energy of a particle, which wavefunction, Ψ+ or Ψ–, is localized in a finite 
space region with radius r, could be estimated using the following equation [5]: 

( )
2 2

2

1 1, with 0 and 0.
2 2

GmE r m m
rr

γ γµ µ
µ± + −
±

+ +′ = − = > = − <
�    (26) 

In Equation (26), G is the gravitational constant. The “+” case in Equation (26) 
was used for obtaining the impossibility of the existence of quantum particles 
with m > mP (in the state Ψ+) [5]. This is because r → 0 when m → mP; i.e., the 
quantum field (Ψ+) “collapse” when m = mP [5]. In contrast to ( )E r+′ , ( )–E r′  
does not have a local extreme because, first, both the kinetic and potential ener-
gies in Equation (26) are negatives when the particle is in the state Ψ–. Second, as 
illustrated in Figure 2(b), the gravitational self-interaction force points to the 
“center” of the wavefunction Ψ–; however, due to the negative effective mass in 
Equations (14) and (23) (μ– < 0), the gravitational force produces an outward 
acceleration on the particle in the state Ψ– that tends to spatially spread Ψ–. For 
this reason, when the particle is in the state Ψ–, the gravitational force cannot 
balance the tendency of the kinetic energy to spread Ψ–. This is opposite to what 
happens for a particle in the state Ψp = Ψ+ (Equation (13)). For a particle (in the 
state Ψ+), as illustrated in Figure 2(a), the same force produces an inward acce-
leration that tends to localize Ψ+ [5]. Consequently, when the particle is in the 
state Ψ+, the gravitational force can balance the tendency of the kinetic energy to 
spatially spread Ψ+.  

Elemental quantum particles and antiparticles are created in pairs [3] [17] 
[21]; thus, an occupied particle state Ψ+ is always created forming a pair with an 
unoccupied particle state Ψ– [3] [17] [21]. Consequently, the impossibility of the 
existence of elemental particles (in the state Ψ+) with m > mP is a sufficient con-
dition for the impossibility of the existence of elemental particles in the state Ψ– 
with m > mP. I.e., neither elemental quantum particles nor antiparticles should 
exist with m > mP. Indeed, this is the case. 

 

 

Figure 2. Illustration of the spatial (a) localization 
and (b) spread of the particle wavefunctions Ψ+ and 
Ψ–, respectively, due to gravitational self-interaction. 
Solid arrows represent the gravitational force and 
hollow arrows represent the corresponding accele-
ration. The discontinuous-line circle indicates the 
“initial size” of the wavefunctions. 
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The situation is different for the matter bodies with m > mP that surround us. 
These macroscopic objects are formed by numerous quantum particles with 
mass mi < mP, i = 1, 2, …. It has been suggested that in this case, the collapse of 
the quantum field (Ψ+), when m > mP, means that these macroscopic objects are 
really what they look like: classical bodies [5]. Note that macroscopic matter and 
antimatter objects are not created in pairs; therefore, if macroscopic antimatter 
objects formed by numerous elemental antiparticles would exist, then from Equ-
ation (26) follows they could be massive quantum antimatter objects. This is be-
cause no collapse of the corresponding quantum field would occur no matter 
how massive the antimatter object is.  

Self-interaction Newtonian-gravitation and electrostatic potentials are very 
similar but with opposite signs. The first is attractive, the second is repulsive. 
This could tempt anyone to explore the consequences of assuming that a single, 
free, and charged particle could interact electrostatically with itself, due to the 
spread of its charge density through the extension of its wavefunction. Certainly, 
this could be considered a controversial hypothesis. However, as it is shown be-
low, the consequences of the electrical self-interaction hypothesis merit the in-
vestigation.  

As for the gravitational self-interaction, using the electrostatic self-interaction hy-
pothesis in combination with Equations (1), (13), and (14), we obtain that the 
“size” of a single, free, and charged (with a charge q) particle in the states Ψ+ and 
Ψ– should be the value of r corresponding to a local extreme of: 

( )
2 2

2
0

1 1, with 0 and 0.
4 2 2

qE r m m
rr

γ γµ µ
εµ± + −

±

+ +′ = + = > = − <
π

�   (27) 

The second term in Equation (27) corresponds to the positive potential energy 
associated to the repulsive electrostatic self-interaction of a particle with itself. 
Clearly, only ( )–E r′  can have a local extreme. This is because the potential and 
kinetic energies in Equation (27) have different signs if and only if the particle is 
in the state Ψ–. As illustrated in Figure 3, the force associated with the electros-
tatic self-interaction points away from the “center” of the particle wavefunction. 
As illustrated in Figure 3(a), this force produces an outward acceleration on the 
particle that tends to spread Ψ+ (Equations (13) and (27) with μ+ > 0), but an in-
ward acceleration (Figure 3(b)) that tends to localize Ψ– (Equations (14) and (27) 
with μ– < 0). The kinetic energy always tends to spread the wavefunction; con-
sequently, only Ψ– can be localized by the electrostatic self-interaction. Note that, 
as this will be discussed in Section 6, the potential responsible of the electrostatic 
self-interaction is not of the form V = ±qUC. Equaling to zero the derivative of 

( )–E r′  respect to r, and solving respect to r the resulting equation, we found 
( )–E r′  has a local maximum when [23]: 

2 4
01 , with , 4 , and .C P C

P

qr q c
q mc

ξ ξ ξ−= − = = π =
�

�� �     (28) 

Thus ƛC/ξ-2 → ƛC (the reduced Compton wavelength) when |q| → qP. Moreover, 
r → 0, i.e., the quantum field Ψ– and thus Ψa collapse when |q| → qP. This could  
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Figure 3. Illustration of the spatial (a) spread and (b) 
localization of the particle wavefunctions Ψ+ and Ψ–, 
respectively, due to electrostatic self-interaction. Solid 
arrows represent the electrostatic force and hollow ar-
rows represent the corresponding acceleration. The 
discontinuous-line circle indicates the “initial size” of 
the wavefunctions. 

 
be interpreted as the impossibility of the existence of quantum antiparticles with 
|q| larger than the Plank charge (qP ≈ 11e). Indeed, there are no known elemental 
antiparticles with |q| > qP. This also means that there cannot be elemental par-
ticles with |q| > qP because particles and antiparticles have the same values of m 
and |q|, and they are created simultaneously in pairs.  

Following similar arguments than the used for the prediction of the existence 
of primordial black holes with m > mP [5] [24], we could now speculate about 
what could have happened to the elemental free antiparticles with |q| > qP. Or 
they never existed or, if they existed, they electrically collapsed to a kind of pri-
mordial electrical sinks, which are hypothesized for the first time here. If there 
was a time when no elemental charged antiparticles existed, the primordial 
charge density fluctuations with |q| < qP evolved in the elemental charged par-
ticles and antiparticles existing today. However, the primordial charge density 
fluctuations of antimatter with |q| > qP could have evolved in primordial elec-
trical sinks. Interestingly, if such primordial electrical sinks formed of charged 
antimatter existed or exist; their existence would imply the existence of an excess 
of charged matter in the rest of the Universe. 

5. Absence of Antimatter with a Complicated Structure in  
the Known Universe  

Equations (27) and (28) apply to any quantum object with mass and charge. The 
quantum field (Ψ–), and thus, due to Equation (21), the antimatter quantum field 
(Ψa), both collapse when |q| > qP. This collapse could mean that charged antimat-
ter objects, formed by numerous elemental antiparticles with |qi| < qP, i = 1, 2, … 
should be classical antimatter bodies. Note that large matter and antimatter ob-
jects are not created in pairs; therefore, this conclusion does not apply to existing 
charged matter object surrounding us.  

Now we can see a possible theoretical explanation for the absence of antimatter 
with a complicated structure in the known Universe. The existence of molecules, 
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gases, rocks, planets, oceans, and live in the known Universe requires the exis-
tence of atoms. Stable atoms require the interaction of a quantum nucleus with a 
quantum electron cloud. However, an antimatter nucleus containing more than 
11 antiprotons and a cloud containing more than 11 positrons should be classical. 
Consequently, only very light antimatter atoms should be stable. Indeed, this is 
both an experimental and an everyday fact [25] [26].  

Finally, we should explore the possibility that a charged particle could interact 
with itself both gravitationally and electrically. This can be accounted for by 
modifying Equation (27) in the following way: 

( )

2
2

2
0

2

4 1 1, with 0 and 0.
2 2

q m G
E r m m

rr
γ γµ µ

µ± + −
±

−
π + +′ = + = > = − <

� 
 (29) 

Therefore, Ψ+ can be spatially localized if: 
22 2

21
0 2

C4 7.4 10 .
kg

P

P

qq G
m m

−   < π = ≈ ×  
   

               (30) 

While Ψ– can be spatially localized if: 
22

.P

P

qq
m m

   >   
   

                        (31) 

Note that Equation (29) reduces to Equation (27) when |q|/m �  qP/mP. This 
is the case, for instance, for positrons and antiprotons, that have values of |q|/m 
≈ 3.1 × 1022 and 9.2 × 1015 C2/kg2, respectively. For any neutral particle like the 
neutron, |q|/m �  qP/mP, therefore, Equation (29) reduces to Equation (26). 
From Equation (29) follows that hypothetical original antimatter fluctuations of 
mass and charge densities such that |q|/m �  qP/mP and |q| > qP, and original 
matter fluctuations of mass and charge densities with |q|/m �  qP/mP and m > 
mP could have collapsed in primordial electrical sinks and gravitational black 
holes, respectively. 

6. Discussion  

In the previous two Sections was shown that the hypothesis, of a free charged 
particle interacting electrostatically with itself, seems to imply an asymmetry be-
tween matter and antimatter like the one indeed existing in Nature. If a free par-
ticle of charge q could interact electrostatically with itself, Equations (13) and (14) 
should be modified in the following way [16]: 

( )
( )

2
2

2
2

0

,
1

,
d 0, .

4

p p si p

si p

i V
t m

r tqV V
r r

γ

ε

+

+
+ +

∂
Ψ = − ∇ Ψ + Ψ

∂ +

′Ψ
′= > Ψ = Ψ

′π −∫

�
�

             (32) 

( )
( ) 2

2 2
2

0

,
, d 0.

1 4si si

r tqi V V V
t m r rγ ε

−
− − − − −

′Ψ∂ ′Ψ = ∇ Ψ + Ψ = >
′∂ + π −∫

�
�   (33) 
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Note that the potential responsible of the electrostatic self-interaction is not of the 
form V = ±qUC. This is because q/(4πεor) is not charge-inversion-antisymmetric, 
i.e., it does not change of sign when a C-inversion is applied to the external 
world surrounding the particle.. Also, unlike UC, q/(4πεor) does change of sign 
when the particle changes of sign. As it was discussed in the previous section, 
Vsi+ in Equation (32) tends to spatially spread Ψp = Ψ+. However, the repulsive 
electrostatic self-interaction tends to spatially shrink Ψ–. Consequently, for the 
corresponding free antiparticle interacting electrostatically with itself, if Equa-
tion (21) should remain valid, Equation (17) should be modified in the following 
way: 

( )
2

2 .
1a a si ai V

t mγ −
∂
Ψ = − ∇ Ψ − Ψ

∂ +
�

�                 (34) 

So that Equation (34) can be obtained from Equation (33) as Equation (17) 
can be obtained from Equation (16); i.e., by taking the complex conjugate of 
both sides of Equation (33). Consequently, the antiparticle should interact with 
itself in a different way that the charged particle does. Equation (34) differs from 
Equation (32) in that –Vsi– does not tend to spatially spread Ψa but, like it does to 
Ψ–, –Vsi– tends to shrink Ψa. The discussion, presented in the two previous Sec-
tions, is consistent with choosing Equation (34) as the correct equation for the 
hypothetical self-interacting free antiparticle. This implies that particles interact 
differently with itself than antiparticles, thus introducing a fundamental asym-
metry between elemental charged particles and antiparticles.  

From Equation (27) follows that the wavefunction of a free electron or a free 
proton should be an extended plane wave. However, by evaluating Equation (28) 
for a positron and an antiproton, we obtain the wavefunction of a free positron 
should be confined in a spatial region of radius equal to the Bohr radius (r ≈ 0.05 
nm), while the wavefunction of a free antiproton should be confined in a region 
of radius r ≈ 29 fm. This may be verifiable predictions of the correctness of Equ-
ation (34). Experiments comparing the spectra of matter and antimatter Hydro-
gen atoms have been reported and continue being conducted [27] [28]. This may 
provide another possibility for experimentally checking the hypothesis that a 
single particle could interact with itself, due to the spread of its charge density 
through the extension of its wavefunction. If the electron could interact elec-
trostatically with itself, Equations (15) and (17) should be modified in the fol-
lowing way: 

( ) ( )
2

2 .
1p p C si pi eU V

t mγ +
∂
Ψ = − ∇ Ψ − − Ψ

∂ +
�

�            (35) 

( ) ( )
2

2 .
1a a C si ai eU V

t mγ −
∂
Ψ = − ∇ Ψ − + Ψ

∂ +
�

�            (36) 

The self-interaction term in Equation (35) is not included in a description of a 
matter Hydrogen-like atom using the Klein-Gordon or Dirac equations [3] [17]. 
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Vsi+ tends to spatially spread Ψp, due to the screening of UC by the electron wa-
vefunction. This is in reminiscence of the Lamb shift, which is explained, in a 
quantum field theory context, as produced by the screening of UC by the random 
fluctuations of the vacuum, thus lasting producing a slight spatially spreading of 
Ψp [29] [30] [31]. In contrast, –Vsi– tends to spatially shrink Ψa. Consequently, a 
small difference between the precise energy level structure of the matter and an-
timatter Hydrogen atoms should exist. However, if these subtle differences were 
experimentally discarded, this would not imply that particles could not interact 
with itself. Such negative experimental result could just mean that Equation (34) 
should be substituted by: 

( )
2

2 .
1a a si ai V

t mγ −
∂
Ψ = − ∇ Ψ + Ψ

∂ +
�

�                (37) 

So that Equation (37) can be obtained from Equation (33) by changing the 
sign of the kinetic energy term in Equation (33) without changing the sign of the 
potential term. This is not equivalent to taking the complex conjugate of both 
sides of Equation (33).  

However, if the correct equation for a free self-interacting antiparticle were 
not Equation (34) but Equation (37), then Equation (37) could still be obtained 
from Equation (33) by changing the sign of the kinetic energy term in Equation 
(33), and then changing the sign of the particle’s charge. This is because in con-
trast to –eUC in Equation (16), Vsi– is proportional to the square of the particle’s 
charge. Also, in contrast to –eUC in Equation (17), Vsi– in Equation (37) does not 
change of sign if the matter nucleus is substituted by the corresponding anti-
matter one. Consequently, if the correct equation for a free self-interacting anti-
particle were not Equation (34) but Equation (37), then particles and antipar-
ticles would interact equally with itself, and matter and antimatter would con-
tinue being theoretically symmetric. However, Equation (21) would not be valid 
for self-interacting potentials. Adopting Equation (37) as the correct antiparticle 
equation could be justified because Vsi+ and Vsi– are not, strictly speaking, scalar 
potentials due to their dependence on Ψ+ and Ψ–. Consequently, Equations (32) 
and (33) do not strictly follow from Equations (13) and (14) but they really are 
an ansatz. 

It should also be noted that the spin of the particle has not been included in 
the previous discussions. This is because the kinetic energy of a particle, which is 
in the ground state and spatially confined in a cube of size r, does not dependent 
of the particle’s spin and is proportional to ħ2/μr2 [3] [5] [6] [11], which is the 
kinetic energy expression used in Equations (26), (27), and (29).  

7. Conclusions 

A pair of decoupled Schrödinger-like, but relativistic quantum mechanics gGP 
equations were explored. One, with effective mass μ+ > 0, directly describes a sin-
gle relativistic quantum particle in a quantum state with K > 0. The other, with μ– 
< 0, indirectly describes a single relativistic quantum antiparticle in a quantum 
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state with K > 0. The simplicity and the independence of these equations facili-
tated the study of the spatial localization of the wavefunctions of particles and an-
tiparticles. 

It was studied, for the first time, a gGP equation with a negative effective mass 
value (Equation (1) with μ– < 0). The solutions of this equation are the wavefunc-
tions Ψ–, which are related to the antiparticle’s wavefunctions (Ψa) through Equa-
tions (20) and (21). The energy values corresponding to Ψ– are – – aE E′ ′= , where 

aE′  is the energy of the associated antiparticle in a quantum state with K > 0.  
It was found that the antiparticle’s wavefunction corresponding to a quantum 

state with K > 0, Ψa, can be spatially localized by a scalar potential of the form V = 
±eUC if, and only if, the related particle’s wavefunction corresponding to a quan-
tum state with K < 0, Ψ–, can be spatially localized (Equation (21)). 

As expected, it was found that matter and antimatter are indistinguishable if UC 
in Equations (15), (16), and (17) is Coulombic and produced by the external 
world where the particle or antiparticle exists. When this happens, UC change of 
sign under a C-transformation is applied to the external world where the particle 
exists, but it does not change of sign when the sign of the particle’s charge 
changes. It was shown that in this case, both gGP equations are C-symmetric, and 
matter and antimatter are undistinguishable. 

However, if the potential is not produced by the external world surrounding 
the particle (or antiparticle) but by the interaction of the particle (or antiparticle) 
with itself, and Equations (21) and (34) are valid, then matter and antimatter 
could be distinguished because both gGP equations are not C-symmetric.  

Finally, it was shown that if a quantum particle (or antiparticle) could interact 
with itself, due to the spread of the charge and mass densities through its wave-
function, and Equations (21) and (34) are valid, then there should not be elemen-
tal particles and antiparticles with m > mP or |q| > qP. It was proposed the possible 
existence of primordial antimatter electrical sinks. These hypothetical antimatter 
objects could be partially responsible for the observed excess of charged matter in 
Nature. It was also suggested that all macroscopic matter bodies such that |q|/m 
�  qP/mP and m > mP, and all macroscopic antimatter bodies such that |q|/m �  
qP/mP and |q| > qP, should be classical objects. This could explain the absence of 
antimatter with a complicated structure in the known Universe. 

The author is aware that the results presented in this work could be used in two 
opposite ways. Those convinced that elemental particles are mathematical points, 
and convinced of the universality of the CPT symmetry, could argue that this 
work reinforces their belief. Others, that are perplexed by the fact that in contrast 
with these beliefs, Nature seems to be mostly made of matter, could argue that 
this work points to a plausible explanation of why Nature is as it seems to be.  
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Abstract 
Previous models of the free electron using classical physics equations have 
predicted attributes that are inconsistent with the experimentally observed 
attributes. For example, the magnetic moment has been calculated for the 
observed spinning electric charge. For the calculated moment to equal the 
observed moment, the electron would either have to spin at two hundred 
times the speed of light or have a charge radius two hundred times greater 
than the classical radius. A similar inconsistency results when the mass de-
rived from the spin angular momentum is compared with the observed mass. 
A classical model is herein proposed which eliminates the magnetic moment 
inconsistency and also predicts the radius of the electron. The novel feature of 
the model is the replacement of a single charge with two opposite charges, 
one on the outer surface of the electron and the other at the center. 
 

Keywords 
Classical Electron Model, Free Electron, Electron Structure, Electron Charge, 
Electron Radius, Electron Spin, Electron Shape, Electron Compressibility 

 

1. Introduction 

Some attributes of the electron that have been measured are charge, mass, angu-
lar momentum, and magnet moment. Angular momentum has been assumed to 
result from the spinning of the mass. Magnetic moment has been assumed to 
result from the spinning of the charge. Previous classical models of the electron 
have attempted to relate these attributes using classical physics equations. The 
result has been inconsistent on the order of two orders of magnitude. Attempts 
to resolve the inconsistencies have predicted very large radii or rotation speeds 
greatly exceeding the speed of light. As a consequence, many have concluded 
that the classical laws of physics do not apply in the quantum domain of the 
electron. 

The following article proposes a novel model of the free electron using classic-
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al physics equations. The model has the following features: 
• replaces the single charge in previous models with two opposite charges, one 

on the outer surface of the core and one at the center; 
• eliminates the inconsistency between the observed charge radius and the 

charge radius deduced from the spin magnetic moment; 
• assumes a spin rotation speed that is close to, but does not exceed, the speed 

of light; 
• predicts a radius that is close to the calculated classical and experimentally 

measured radii; 
• suggests that the core shape might be a ring rather than a sphere; 
• does not rely on tensile strength of the electron material to hold it together; 
• there is no compression or tensile force on the electron core material at the 

equator; 
• predicts a force holding the electron together greater than the nuclear Strong 

Force. 
Except where otherwise noted, all constants, such as those in Table 1, and 

equations in this article are expressed in cgs units.  

2. Magnetic Moment and Spinning Charge 
2.1. Background 

Consider a model of the electron wherein the charge q is distributed across the 
surface of a sphere of radius R. Assume the sphere rotates very near the speed of 
light c. 

The magnetic dipole moment M of a spinning charged spherical shell is: 

2

3
qM rω=  [MKS] [2] 2

3
qM r
c
ω=  [cgs] 

where q = uniformly distributed charge; 
r = radius; 

2
T

ω π
= , where T = period of rotation. 

 
Table 1. Electron constants. 

constant symbol value [cgs] 

charge q ‒4.8032 × 10−10 

mass m 9.1094 × 10−28 

classical radius R 2.82 × 10−13 

spin angular momentum S 9.1329 × 10−28 

magnetic dipole moment M ‒9.284764 × 10−21 

Planck’s constant h 6.6261 × 10−27 

speed of light c 2.99792458 × 1010 

These constants were measured or derived from experimental observations [1]. Spin an-

gular momentum S was derived from the equation 3
4
hS =
π

. 
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Assuming the electron model has a spherically charged shell of radius R, its 
spin magnetic moment M can be expressed as: 

22
3

qM R
Tc
π

=  

rotation speed at the eq 2 3 205.a 6u tor R Mc c
T qR
π

== =  

To generate the observed magnetic moment by spinning the observed charge, 
the electron equator would have to spin at more than 200 times the speed of 
light. Since mass cannot spin faster than the speed of light, an alternative expla-
nation for the large observed spin magnet moment might be a radius larger than 
R. Now assume that the rotation speed is less than but very close to the speed of 
light c. The required radius r can be calculated as follows: 

22
3

qM r
Tc
π

= ,  

where 
2T r
c
π

=  

115.799 10 2053 .6r RM
q

−= == ×  

The value calculated for r is close to that calculated in [3], which is 3.86 × 10−11. 
The difference could be attributed to [3] assuming the charge is concentrated in 
a ring, rather than distributed across a sphere. 

The classical model of an electron with a spherical charge shell predicts a spin 
rotation speed of more than 200 times the speed of light. Or, if the spin speed is 
limited to the speed of light, the radius of the shell would be more than 200 
times the classical electron radius. If the charge is assumed to be uniformly dis-
tributed throughout the interior of the sphere, the speed or charge shell radius 
would be even greater. Such large inconsistencies have caused many to believe 
that classical mechanics and electrodynamics cannot be used to model the elec-
tron. 

2.2. Proposed Charge Model 

A model is proposed wherein the electron is comprised of two opposite charges. 
The spinning outer charge q+ creates the observed magnetic moment. The inner 
charge q− located at the center has a very small radius, such that it does not sig-
nificantly contribute to the magnetic moment. The electric fields from the inner 
and outer charges combine such that the net electric field of the electron appears 
to be created by a negative charge q of the observed value. 

q q q+ −= +  

The cgs unit for charge is cm3/2 g1/2·s−1. Length, mass, and time all change on a 
speeding platform relative to a stationary platform according to Einstein’s Spe-
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cial Relativity equations. However, when combined within the unit for charge, 
the three changes all cancel each other out. Therefore, charge is invariant under 
speed. A value of charge is the same whether observed on a stationary platform 
or a platform moving near the speed of light [4]. 

Magnetic dipole moment M of a spinning charged spherical shell: 

2

3
q rM

c
ω+

= ,  

where q+ = positive charge; 

r = radius; 
2
T

ω π
= , where 2period of rotation .T r

c
= =

π  

For sign consistency, the value of M for the electron is considered to be nega-
tive, corresponding to a negative charge. Since M is actually being generated in 
the dual-charge model by a spinning positive charge, instead of a negative charge 
in the single-charge model, the spin direction in the dual-charge model must be 
reversed from that in the single-charge model. M after reversing the spin rota-
tion: 

3
M rq+

= −  

For M = electron magnetic dipole moment: 

3Mq
r

+ = −  

3Mq q q q
r

− += − = +  

3. Mass and Spin Angular Momentum 

The angular momentum of a rotating ring is 

S mrv= , 

where m = mass of the ring; 
v = speed of rotation; 
r = radius. 

The speed of rotation of the ring is: 

v S
mr

=  

Let the ring have an angular momentum equal to the spin angular momentum 
S of the electron, a mass m equal to that of the electron and a radius r equal to 
that of its classical radius R: 

123.555 10 118.6v c= × =  

Special Relativity tells us that the speed of a mass must be less than that of 
light. Limiting the ring speed v to slightly less than the speed of light c, the ring 
mass m′  would have to be slightly greater than: 
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Sm
rc

′ =  

Consider a non-rotating sphere having a uniformly distributed mass 
throughout its volume. Slice the sphere into many concentric cylinders, each 
having a mass nm . Now spin the sphere about the cylinder axes at a speed v. 
The relativistic mass nm′  of each cylinder spinning at a speed vn is given by the 
Special Relativity equation: 

2

1

n
n

n

m
m

v
c

′ =
 −  
 

 

The total mass m′  of the rotating sphere is n
n

m m′ ′= ∑ . 
An approximation using ten cylinders and a rotation speed of the outer cy-

linder very near the speed of light shows that almost all of the mass m′  is con-
centrated in the outer cylinder, or ring, to within about 1%. Therefore, for the 
following calculations, the relativistic mass m′  of a rotating sphere will be con-
sidered to be uniformly concentrated along a ring of radius r at the equator. For  

the purposes of modeling the electron, the equation Sm
rc

′ =  will be assumed to 

be a very close approximation for m′ . 

4. Radius 

An electron can be modeled as originating from a spherical shell of charge q+  
having a very large radius. At the center of the shell is a charge q− . The electron 
radius to be calculated is R′ . The two charges are: 

3

3

Mq
R

Mq q
R

+

−

= −
′

= +
′

 

The charge increments on the shell tend to repel each other. Each increment 
at distance r from the center sees the remaining increments as a point charge at 
the center. 

Coulomb’s law for force f between two charges separated by a distance r: 
1 2

2 .q qf
r

=  

The total repulsive force for all electron charge increments on the spherical 
shell is: 

2 2

2

3 1q M
r R r

+   =   ′  
 

The attractive force between q+  and q−  is: 
2

2 2

3 3 1q q Mq M
R Rr r

+ −  
− 

= +  
  

′ ′ 
 

The sum of the repulsive and attractive forces is a net inward force of: 
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2

3 1Mq
R r

F− −=
′

 

The outer charge shell will collapse under the inward force F. The electrostatic 
potential energy lost when the shell’s radius contracts from infinity to r is: 

2

3 1 3 1d
r Mq Mqx

R R rx
E

∞
= =

′ ′
−∫  

The energy E lost is transferred to the spinning electron energy E′ : 

2' ScE m c
R

′= =
′

 

The electron radius R′  is the solution r to the equation E' E= . 

133 4.886 10 1.734MqR R
Sc

−= = =×′  

The radius for the proposed dual-charge electron model with a spherical core 
is 73% greater than the classical radius R. 

5. Internal Forces 

In this section, the internal forces of the electron model are calculated as a func-
tion of radius r, given that charge q, magnetic moment M, and spin angular 
momentum S are constants. 

The outward forces tending to push the electron apart are: 
• centrifugal force on the spin mass ring associated with the spin angular mo-

ment S; 
• mutual repulsion of the charge increments on the outside charge shell; 
• outward repulsion of the charge moving through its own magnetic field; 
• compression force of the electron core material. 

The inward force is the attraction of the spherical charge shell to the opposite 
charge at the center of the electron. 

The model assumes that the spin speed v at the electron equator is slightly less 
than the speed of light c: 

2 2

2centrifugal force m v m c Sc
r r r

=
′ ′

≅ =   

( )2

4mutual repulsion of the outer charge sh ll
3

e
M
r

=   

magnetic repulsion of outer charge shell— 
A charge increment on the outer shell spins through the magnet field created 

by all of the other spinning charge increments. To simplify calculations, the 
spinning sphere was approximated by a spinning ring at the equator of the elec-
tron. To calculate the magnetic force on the ring, the ring was split into two 
rings very close to each other. Each ring had one half the total charge. Each ring 
spins in the magnetic field of the other. The two rings attract each other. The 
force on each ring was calculated. The net force on the ring pair was then calcu-
lated. By comparison, the magnetic outward force was found to be about ten 
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thousand times weaker that the electric outward force. It is therefore not signifi-
cant in the following force calculations. 

( )2

2 3 4inward for
33ce
Mq q Mq

r r r

−+

− −==  

Note that positive forces are repulsive (outward) and negative forces are at-
tractive (inward). 

The total internal force F is the sum of the centrifugal, repulsive, and inward 
forces: 

2 3

3Sc Mq
r

F
r

− = −  

For 3Mqr
S

R
c

= =′ , the sum of all the internal forces F is zero. 

For r R= ′ , the internal forces are balanced. Unfortunately, the balance is 
unstable. A small change in radius will cause the force to increase such that it 
causes a greater change in radius, and so forth. The forces within the electron 
must always be balanced for it to have stable attributes, such as radius. 

A stable internal force balance can be achieved by introducing an incompres-
sible or compressible core. An inward force—F will be counteracted by an out-
ward force F ′  from the compressed core. The force balance will be stable 
when  

d d
d dr
F F
r
≥
′

. 

For d d
d dr
F F
r
>

′
, a small decrease in radius will cause the outward force F ′   

from the core to increase more than the inward force F, resisting the change in 
radius. A small increase in radius will cause the outward force F ′  to decrease 
more than the inward force F. The net force change will be inward, resisting the 
radius change. 

For d d
d dr
F F
r
=

′
, a small change in radius will cause the outward and inward 

forces to change by the same amount, so the net change in force will be zero. 

For d d
d dr
F F
r
<
′

, a small decrease in radius will cause the net inward force F to 

increase more than the resisting compression force F ′ , resulting in a net force 
imbalance. 

Up to this point, the model of the electron core has been spherical and con-
sisting of an incompressible material. The force components at the surface of the 
sphere are not uniform in magnitude. The electrical forces are, but the centri-
fugal force is not. The centrifugal force is greatest at the equator and decreases 
very rapidly away from the equator. It is zero along the spin axis. The rapid de-
crease is mainly due to the concentration of mass m′  at the equator. 

For an incompressible core, it is obvious that d d
d dr
F F
r
>

′
. The total force bal-
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ance is stable. 
The stability of a compressible core is considered in the following: 
The compressibility constant K for a sphere is defined by: 

1 d
d
V

V
K

P
−= , where 3volume 4

3
V r=

π
=  

                    
pressure FP

A
′

= = , where 

                        F ′  = total force on the area A 

       
24A r= π  

( )2d 4 dV r rπ=  

1 1 dd d FP V
K V A

′
= − =  

d 12
d
F r
r K
′
= −

π  

3 4

d 2 9
d
F Sc Mq
r r r
= −  near the equator 

 
4

d 9
d
F Mq
r r
= −  away from the equator 

For a stable force balance, d d
d dr
F F
r
≥
′

: 

4 3

12 9 2Mq ScR
K R R

′ ≥ −
′ ′

π  near the equator 

4

12 9MqR
K R

′ ≥
′

π  away from the equator 

6. Electron Shape, Size, and Charges 

The modeled shape of the electron is a function of the compressibility of the 
electron material. For incompressible material, K = 0 and the shape can be 
spherical. The upper limits to the values of K for electron radius R′  are ap-
proximately: 

 

5
3212 7.85 10

9 2

RK
Mq ScR

−′
= = ×

′−

π
 near the equator 

5
324 2.62 10

3
RK

Mq
−′

= = ×
π  away from the equator 

For 0K > , the core is compressible and not a perfect sphere. The shape will 
tend toward that of a ring. It will bulge outward at the equator. For 

5
324 2.62 10

3
RK

Mq
−′

= ×
π

> , the core will be collapsed along its spin axis. As K in-

creases further, the core will become a ring spinning around the axis. 
All of the above equations containing the constant M assume M was calcu-

lated for a sphere. 
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The magnetic moment for a spinning ring is 

2

2
qM Rω=  [MKS] [5] 2

2
qM R
c
ω=  [cgs] 

Therefore, for a spinning ring, M in the equations assuming a spherical core 

must be replaced by 2
3

M  and the equations recalculated. The equations for the 

radii of the spherical core and the ring core are: 

( ) 133sphere 4.886 10 1.734MqR R
Sc

−= =×′ =  

( ) 132ring 3.257 10 1.16 6MqR R
Sc

−= =×′ =  

The radius of the ring core is very close to the calculated value R [6] and the 
approximate value measured by X-ray diffraction [7]. This correlation provides 
some evidence that the electron core is better modeled as a ring rather than a 
sphere, as suggested in [7]. 

The upper limit of K for a ring core of radius R′  is: 

5
326 1.5505 10

3

RK
Mq ScR

−′
= ×

′−

π
=  

For K greater than the upper limit, the ring core will collapse. 
The positive and negative internal charges are the same for both the spherical 

and ring core shapes, and are: 

( ) ( ) ( ) ( )
8

3 2sphere ring
sphere ring

5.7004 10 118.7

M Mq q
R R

q

+ +

−

= − = = −
′ ′

= × =

 

( ) ( ) ( ) ( )
8

3 2sphere ring
sphere ring

5.7484 10 119.7

M Mq q q q
R R

q

− −

−

= + = = +
′ ′

= − × =

 

For the dual-charge model of the electron, the tensile force on the core ma-
terial is zero. By comparison, the tensile force on the core for the single-charge 
model is: 

2
8

2 3.5 10Sc q
RR

 + = × 
 

 

The internal binding force for the dual-charge model with a ring core is quite 
large: 

( )
( )
( )

2
10

3 4

22 3.1 10
MMq

R R
×=

′
+

′
 

The nuclear Strong Force, which binds the nucleus of atoms together, is: 2.5 × 
109 [8], so the binding force in the dual-charge electron is about ten times 
stronger than the Strong Force. 
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7. Summary 

A model of the electron has been proposed which has two opposite electrical 
charges. The positive charge q+ resides on the outer surface of the electron. The 
negative charge q− resides at the center of the electron. It has a radius small 
enough so that the spinning negative charge does not significantly contribute to 
the net magnetic moment. The shape of the electron can be spherical, a ring, or a 
shape in between the two. The charges are the same for shapes within this range: 

85.7004 10 118.7q q+ −= × = , 85.7484 10 119.7q q− −= − × =  

The radius depends on the shape of the electron core: 

( ) 13sphere 4.886 14 10 .73R R−′ = =× , ( ) 136ring 3.257 1 60 1.1R R−′ = =×  

The radius of the ring core is very close to the calculated and experimental 
values, suggesting that the electron is better modeled as a ring rather than a 
sphere. 

The single-charge model has a large inconsistency between the observed spin 
magnet moment and the calculated moment due to the spinning classical charge. 
Eliminating the inconsistency would require a radius of more than 200 times the 
classical radius or a spin rotation speed of more than 200 times the speed of light. 
The proposed dual-charge model eliminates the inconsistency with a radius 
close to the classical radius and a spin rotation speed slightly less than the speed 
of light c. 

Most of the relativistic spinning mass is concentrated in a ring around the 
electron equator, even for the spherical core shape. 

The classical single-charge electron model implicitly depends on great tensile 
strength of the electron material to hold the electron together. The dual-charge 
model does not require any tensile strength. The model depends on an incom-
pressible or compressible core to provide a stable internal force balance. For a 
spherical core, there will be compressive pressure on the core, except at the 
equator. For a ring core, there is no compressive force. The maximum compres-
sibility constant for stable internal force balance is 321.5508 10K −×= . 

The internal binding force that holds the electron ring core together is one 
order of magnitude greater than the nuclear Strong Force. 
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Abstract 
The genesis of physical particles, a foundational aspect of physics, is still a 
mystery. Quantum field theory creation operators provide an abstract me-
chanism to bring particles into existence. The assumption of a primordial 
field underlies the Standard Model (SM), yet the forces have failed to con-
verge to such a field. Current treatments of a superfluid-based universe 
[Huang, Volovik, and Svistunov, Babaev, Prokof’ev] focus heavily on vortices 
and Yang-Mills theory, so we analyze self-interaction of the primordial field 
in the context of Yang-Mills. We show that a self-stabilizing higher-order 
self-interaction interpretation of the Yang-Mills non-Abelian term yields a 
stable quantum gravity explanation of the mass-gap. In future we will address 

the spin- 1
2

 and conserved charge aspects in terms of this fundamental theory 

of particle creation. 
 

Keywords 
Self-Stabilized Field, Self-Organizing Structure, Nth-Order Dynamics,  
Heaviside Equations, Solitons 

 

“The invention of Yang and Mills was not the first non-Abelian gauge field 
known to physicists; the gravitational field has that honor.” Bryce DeWitt. 

1. Introduction 

Particle creation is still a mystery. Since 1954 the Yang-Mills gauge field theory 
of self-interaction has been believed to be the appropriate framework in which to 
formulate the problem, but it has so far been impossible to explain the “mass- 
gap” issue. The mass-gap is the finite value of the lowest particle mass above the 
vacuum energy state. The insurmountability of this problem has inspired a mil-
lion-dollar Millennium Prize, but the prize has been unclaimed for two decades. 
In this paper I analyze the Yang-Mills formalism and propose a reinterpretation 
of the non-Abelian self-interaction term that is dynamic in nature. I show that 
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this interpretation leads to a stable state for particle mass with finite energy 
above the vacuum state. In the next section I summarize the Quantum Field 
Theory approach and contrast this with the approach taken herein. 

2. Quantum Field Theory Approach to Particle Creation 

Quantum field theory (QFT) provides a bookkeeping system with symbolic cre-
ation operators bringing particles into existence while annihilation operators 
subtract particles from the ledger. The operators operate on particle-specific 
quantum fields. In QFT the quantum fields are more fundamental than the par-
ticles, which are viewed as excited states of the fields. For quanta such as photons, 
the oscillations in the field were viewed as arising from oscillators, which exist at 
every potential minimum. Zee [1] presents QFT as a mattress, idealized as a 2D 
lattice of mass points connected to each other by springs, a series of harmonic 
oscillators. He remarks that, even after a century has passed, the whole subject of 
QFT remains rooted in this harmonic paradigm; unable to break from the basic 
notions of oscillations and wave packets. He hopes to get beyond this conception, 
yet the math formalism fit the oscillator ladder so beautifully with “raising” and 
“lowering” operators promoted to “creation” and “annihilation” operators. The 
idea then extended to particles as excited states of quantum fields, with each par-
ticle arising from a specific field—the electron field, the muon field, etc. such 
that, when Feynman [2] developed a quantum field theory of gravity he treated 
gravity as the “31st field”. Instead of a “field per particle”; we assume a “field per 
universe”, a primordial field existing at the Big Bang, and ask how the field pro-
duces a known particle spectrum based on a “mass gap”, or finite energy above 
the vacuum state. The Standard Model assumes all forces converge to such a 
primordial field, but such has not yet been shown.  

Physics is largely based on formulating interactions as changes induced by 
sources, represented as = jψ∇ , where ∇  is a change operator that generates 
changes in the field ψ  induced by source j , separate from field ψ . For pri-
mordial field ψ  nothing is separate from ψ ; only field ψ  exists. Thus, any 
change operator operating on field ψ  must be equivalent to ψ  interacting with 
itself. This Self-Interaction Principle [3] is represented by self-interaction eqn: 

ψ ψψ∇ =                            (1) 

To be meaningful, field ψ  and operator ∇  must depend on some variable 
parameter ξ , so we extend our formalism via ( )ψ ψ ξ→  and ξ∇ → ∂  with 
two formal solutions—for scalar ξ  and for vector ξ . 

( ) 1ψ ξ ξ −= − , ( ) 1ψ −=ξ ξ                      (2) 

We assign physical meaning to these terms; if scalar ξ  = time, then 1ξ −  is 
frequency; if vector ξ  = location in space, then 1−ξ  is inverse distance. Cor-
responding operators are t t∇ = ∂ ∂  and ∇ = ∂ ∂r r  so we attempt to solve 
self-interaction Equation (1). Almeida [4] noted: “choice of a particular algebra 
is irrelevant from the point of view of the mathematical validity of the equation, 

https://doi.org/10.4236/jmp.2022.137065


E. E. Klingman 
 

 

DOI: 10.4236/jmp.2022.137065 1130 Journal of Modern Physics 
 

but it may make a significant difference to the perception and comprehension of 
the physics behind the equation.” If so, the question arises as to the optimal al-
gebra for solution of the self-interaction equation. Einstein and Wheeler viewed 
physics as geometry, with differential geometry the optimal algebra. Quantum 
physicists evolved Hilbert-space algebra and group theory symmetry represented 
by matrix algebra. In 1965 Hestenes evolved Clifford algebra to Geometric Alge-
bra; the only mathematical framework in which every term has both an algebraic 
and a geometric interpretation [5]. For 3-spatial-dimensions-plus-time the terms 
include scalars, vectors, bivectors, trivectors, and pseudoscalars, interpreted as 
duality operators represented by i, that transform an entity into its dual. The 
new relation is geometric product = ⋅ + ∧uv u v u v . Bivector ∧u v  is a di-
rected area representing rotation of u  into v . Duality operator i transforms 
this bivector into an axial vector: i∧ = ×u v u v . Substituting the vector deriva-
tive for u  the geometric product is: 

/ | \
gradient div curl

= ⋅ +

= +

∧v v v∇ ∇ ∇
                     (3) 

No other math formalism has this relation. When ( ) ( ), ,t i tψ = +G r C r  and 

t∇ = + ∂∇ , then Equation (1) takes the form 

( )( ) ( )( )t i i i+ ∂ + = + +G C G C G C∇                (4) 

Expansion of (4) in terms of geometric products and grouping of like terms 
yields: 

Self-Interaction equations      Heaviside equations 

⋅ = ⋅ − ⋅G G G C C∇             ρ⋅ = −G∇                        (5a) 

2i i⋅ = ⋅C G C∇                0⋅ =C∇                         (5b) 

t∂ − × = × ± ×G C G C C G∇      tρ× = − + ∂C v G∇                  (5c) 

0ti i× + ∂ =G C∇              t× = −∂G C∇                     (5d) 

The equations on the left-hand side of (5) derive from (4) in straightforward 
fashion. With physical meaning assigned to field ψ , one obtains the equations 
on the right side, derived in 1893 by Heaviside [6], wherein G  is gravity and 
C  is the gravitomagnetic field. Decades later the eqns were erroneously labeled 
the weak field approximation to Einstein’s non-linear field equations.  

Self-interaction Equation (6a) yields the Heaviside-Newton equation. The 
Poynting-like ×G C  terms are momentum density and can be transported in 
opposite directions, based on initial and boundary conditions imposed locally; 
hence the ± in (5c); they are represented as ρv  in Heaviside (5c), while field 
energy density terms, ⋅C C  and ⋅G G , are represented by ρ  in (5a). The 
time independent gravitational field in (5d) is irrotational, shown by Michael-
son-Gale in 1925. 

If local field density accelerates, then local gravitomagnetic circulation alters 
appropriately; the moving density drives the local field. If local density decele-
rates, change in circulation induces a gmf, a gravito-motive force d dt= −F p  
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to drive the particle forward. In the vacuum state (the local ether) this Lenz- 
law-like behavior explains conservation of momentum, which Feynman claimed 
was inexplicable. In (5b), 0⋅ =C∇ , we use of vector identity 0⋅ × =A∇ ∇  to 
replace C  with a potential vector × A∇ . Compatible with Equation (5) are the 
gauge field equations: 

= ×C A∇ , tφ= − − ∂G A∇ , 0tφ∂ + ⋅ =A∇             (6) 

The first two Equations in (6) define the fields in terms of the four-potential A, 
while the last equation specifies the Lorenz gauge condition, 0Aµ

µ∂ = . The 
scalar potential m rφ = − , and vector potential =A v . In analogy with Max-
well’s equations, we formulate gauge field four-potential { },A φ= A . Since 

tφ= − + ∂G A∇  if φ  is constant then t= ∂G A , but since G  is the accelera-
tion of gravity, then d dt= ⇒ =G v A v . Since = ×C A∇  then = ×C v∇  is 
dimensionally correct; 1~ t−C . With gravitational potential M rφ = −  the 
G -field has spatial dependence 2~ r−G ; correct for Newtonian mass. For the 
primordial field, as shown in several of the references, 1~ r−G . Physically, all 
Newtonian mass is treated as entirely within the sphere of radius r, whereas the 
mass of the primordial gravitational field is based only on the portion of the field 
within the sphere. In all cases, with local mass density ρ  the interaction energy 
density of the field is ⋅j A  where ρ=j v . Heaviside current density j  is 
momentum density ρ=p v ; the interaction density of the field is  

2vρ⋅ = ⋅ =p A p v . The field strength matrix constructed from the above [7] is 
shown: 

0
0

0
0

x y z

x z y

y z x

z y x

G G G
G C C

F
G C C
G C C

µν

 
 − =
 −
 

−  

                  (7) 

A full unification of gravitation, electromagnetism, the strong and weak nuc-
lear forces, has not yet been derived. Nevertheless, the four fundamental interac-
tions are generated by a single principle, the gauge principle [8]. Weyl, in 1929, 
derived the conservation laws and expressed the Riemann tensor in the tetrad 
form: ,

aa a a a c a c
b b b c b c bb

R D D A A A A A Aµν µ ν µ ν ν µ µ ν ν µ= = ∂ − ∂ + −   . For Yang-Mills, ex-
pression of field strength ,F D Dµν µ ν =    as commutation was not common at 
the time; direct expression as a curl was so simple: Weyl’s equation is expressed 

[ ],R A A A= ∂ ∧ + . Yang stated that, when they presented their theory, they had 
no idea it might be related to gravitation: 

“…when Mills and I worked on non-Abelian gauge fields, our motivation was 
completely divorced from general relativity, and we did not appreciate that 
gauge fields and general relativity are somehow related.” 

Little surprise that, in search of a generalization of isotopic spin for applica-
tion to the nuclear physics of the “50’s, Yang and Mills, as particle physicists, did 
not have tetradic formulations of general relativity in mind, nor the fiber bundle 
approach developed through differential forms. Today our preferred framework 
is Hestenes” Geometric Calculus. 
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3. Aspects of Isospin 

Initially Pauli added spin to the Hamiltonian based on energy ⋅Bµ  in mag-
netic field B  where magnetic moment µ  is proportional to spin s  of the 
charge, conceived classically. The equation of motion = ×s B s  results [9] in 
spin precessing about the B -field lines of force in two stable configurations, 
± ⋅Bµ . Pauli invented 2 × 2 matrix operator σ̂  to satisfy ˆ s sσ = ±  for  

state 
up
dn
 

=  
 

s , with 
0 1
1 0xσ
 

=  
 

, 
0

0y

i
i

σ
− 

=  
 

, 
1 0
0 1zσ
 

=  − 
.  

Heisenberg conceived of the known nucleons, proton and neutron, as a single 
particle with two states, ignoring electric charge. Instead of up or down spin 
state he formulated the nucleon state with internal “isospin” symmetry to allow  

Pauli’s σ  matrix to switch between internal symmetry states, 
proton
neutron

ψ
 

=  
 

.  

Matrices are representations of group symmetry, yet isospin is not an exact 
symmetry; it is only approximate since the masses of the proton and neutron are 
not equal. The matrices { }, ,x y zσ σ σ  represent the 2 × 2 Pauli spin matrices of 
quantum mechanics. Hestenes constructs an equivalent orthonormal basis of 
three bivectors { }, ,x y zβ β β  satisfying x y ziβ β β= − . The algebras (with Kro-
necker delta jkδ  and Levi-Civita alternating symbol jkl ) are written:  

Pauli matrix algebra      Hestenes bivector algebra 

j k jk jkl liσ σ δ ε σ= − − ,     j k jk jkl liβ β δ ε β= − −            (8) 

Bivector algebra is identical to spin matrix algebra, by inspection. Since the 
algebras are identical, their physical implications should be the same; our ex-
pressed preference is for the geometric algebra formulation with geometric ele-
ments providing visible structures. Attempts to make gauge fields visible in dif-
ferential geometry center around fiber bundles, with cartoon-like representa-
tions of the type shown in Huang’s Fundamental Forces of Nature [10]. As Pe-
nrose has remarked [11] Yang-Mills isospin fields don’t exist in the physical 
world as far as we know. They are non-physical abstractions. 

Systems coupled to the electromagnetic field possess global gauge invariance be-
fore the coupling is turned on, so Schrödinger’s equation is invariant under a con-
stant phase change eiαψ ψ→  where α  is constant, since ( ) ( )e ei iα αψ ψ∂ = ∂ . 
Global phase has no physical consequence. Based on Noether, global gauge inva-
riance guarantees existence of a conserved current that yields charge conserva-
tion, and Yang and Mills hoped to find such gauge conservation principles in 
their treatment of isospin. But the system is not invariant under local transfor-
mation ( )ei xβψ ψ→  since Schrödinger’s equation is not invariant:  

( )( ) ( ) ( )e ei x i xβ βψ ψ∂ ≠ ∂ . Global gauge invariance is extended to local gauge inva-
riance by replacing derivative ∂  with covariant derivative D: 

D∂ → , iqAD →∂ +


.                     (9) 

In quantum mechanics qA is combined with momentum p therefore qA   
has dimension 1/length, appropriate to the derivative term. Such derivatives in 
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physics typically represent translations or rotations in local space, parallel 
transport along a path. A U(1) rotation through angle θ  can be represented by 
eiθ  phase factor, which, for infinitesimally small angles, reduces to 1 iθ+ . An 
arbitrary rotation about a fixed axis can be constructed from successive infinite-
simal rotations about that axis. For three axes there are three possible infinite-
simal rotations: 1 11 i Lθ+ , 2 21 i Lθ+ , 3 31 i Lθ+ . While the U(1) group of trans-
formations about one axis is Abelian (commuting), continuous transformations 
about 3 axes form a non-Abelian Lie group satisfying [ ],a b abc cL L i Lε= , (see bi-
vector algebra of Equation (8)). The iL  cannot be numbers since they do not 
commute. Since any 2 × 2 matrix is a linear combination of the Pauli spin ma-
trices; a generator of rotations about 3 axes can thus be represented 2a aL σ= ,  

with general transformation exp
2 a a
iU ω σ =  

 
 where aω  are real numbers.  

The 2 × 2 unitary matrix U has symmetry group SU(2) so isospin is an “internal” 
symmetry with SU(2) symmetry by construction; operation on any two-component 
wave function [ ]T1 2,ψ ψ ψ=  with rotation U satisfies Uψ ψ→ . In this way the 
geometry of classical physics is applied to abstract internal symmetry such as 
isospin. 

Yang and Mills, in terms of the infinitesimal charge generator aL  of SU(2), 

replaced derivative ∂  by covariant derivative a a
igD L A= ∂ +


 in equation of  

motion ( ) 0igA ψ∂ − =  where aA  is a 4-vector gauge field with three internal 
components corresponding to the generation of the gauge group of isospin rota-
tions. D generates a coupling between the particle and the gauge field with inte-
raction energy density a aj A  where aj  is conserved isotopic spin current den-
sity. “But in the real world, isotopic spin is not conserved; the gauge symmetry is 
not exact.” Yang and Mills next guessed that adding quadratic terms to the field 
strength would represent self-interaction of the gauge field: 

,F A A ig A Aµν µ ν ν µ µ ν = ∂ − ∂ +                   (10) 

Yang-Mills gauge theory is based on an abstract, non-physical, idea of ap-
proximate isospin symmetry. Yang-Mills theory does not explain the mass gap 
that is the key to particle physics, so we switch to the exact symmetry derived 
from the fundamental principle of self-interaction: 

ψ ψψ∇ =  ⇒  Heaviside equations ⇒  Einstein field equations. 
Whereas general relativity is derived from an approximate principle, the 

Equivalence Principle, the Heaviside equations are derived from an exact prin-
ciple, the Self-Interaction Principle. There are several consequences of these facts, 
treated in [12] [13] [14] [15]. Two key facts: 1) Heaviside theory is equivalent to 
curved space theory, and 2) Heaviside’s equations hold at all scales, from Planck 
scale to Cosmic Microwave Background. 

4. Details of Yang-Mills Theory 

Yang & Mills [16] formulate Bµ  with 12 independent components: 4 × 4 less 
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diagonal elements. For a two-component wave function, ψ , describing a field  

with isospin 1
2

, the isotopic gauge transformation Sψ ψ ′=  where S is a 2 × 2  

matrix with determinant unity, and all drivatives of ψ  appear in combination 
( )i Bµ µ ψ∂ −   where Bµ  are 2 × 2 matrices for 1,2,3µ = . Invariance requires 

( ) ( )S i B i Bµ µ µ µψ ψ′ ′∂ − = ∂ −  . 

The Yang-Mills isotopic gauge transformation on Bµ , corresponding to 

1A A
e xµ µ

µ

α∂′ = +
∂

 is 

1 1i SB S B S S
xµ µ
µ

− − ∂′ = +
∂

                    (11) 

with the last term like the gradient term in the gauge transformation of electro-
magnetic potentials. To obtain gauge invariant field strengths they define the 
analog of the electromagnetic case 

( )B B
F i B B B B

x x
µ ν

µν µ ν ν µ
ν µ

∂ ∂
= − + −
∂ ∂

  with 1F S F Sµν µν
−′ =        (12) 

Yang and Mills next introduce isotopic spin “angular momentum” matrices 

( )1,2,3i iτ =  which correspond to the isotopic spin of the field ψ  under con-
sideration. The B field is then defined as 2B bµ µ τ= ⋅  where both bµ  and τ  
are 3-component vectors in isotopic space. Interaction with any field ψ  of ar-
bitrary isospin requires replacing ordinary derivative of ψ  by ( )i bµ µ τ ψ∂ − ⋅  
with τ  representing isotopic spin “angular momentum” as above. The isotop-
ic-gauge covariant field strengths Fµν  are expressible F fµν µν τ= ⋅  where 

2
b b

f b b
x x
µ ν

µν µ ν
ν µ

∂ ∂
= − − ×
∂ ∂

                   (13) 

and fµν  transforms like a vector under an isotopic gauge transformation. The 
field equations derive from the total Lagrangian density 

1
4

f fµν µν= ⋅ .                      (14) 

Finally, they define 

2J b fµ µ ν µνℑ = + ×                     (15) 

with equation of continuity 0xµ µ∂ℑ ∂ =  and the supplementary condition 
(corresponding to the Lorenz gauge) 0b xµ µ∂ ∂ =  which eliminates the scalar 
part of the field in bµ . Equation (15) shows that isotopic spin arises from both  

spin 1
2

 field ( Jµ ) and from the bµ  field itself, thus making the field equations  

for the bµ  field nonlinear. This is as far as we will carry Yang and Mills theory 
in its original form. Writing for the Clay Mathematics Institute, Jaffe and Wit-
ten: 

“There is no known way of deriving the mass gap from the original theory.” 
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5. Angular Momentum and Yang-Mills 

Linking to our primordial field iψ = +G C  we identify gravitomagnetic gauge 
field v  with the Yang-Mills bµ  field. The problem is to create a mass-gap that 
has evaded physicists since the introduction of the theory. The gravitomagnetic 
field has also evaded physicist’s standard model of particle physics, suggesting a 
need to reinterpret non-linear fields. 

Yang and Mills introduce and discuss isotopic spin “angular momentum” in 
quotes and are unsure what it means physically. They adapt Pauli’s SU(2) spin 
matrices to Heisenberg’s isospin; a mathematical formalism applied to an ab-
stract internal symmetry. The nature of spin, at least classically, is rotation, and 
rotation in 3D space entails angular momentum. Exactly what is entailed in the 
space of internal symmetry, represented by gauge field bµ , is unknown. How-
ever, the nature of this gauge field is captured by the curl operation, so it must 
somehow entail an analog of angular momentum, as Einstein and deHaas [17] 
showed to be possessed by the magnetic field. Yang and Mills “define isotopic 
gauge as an arbitrary way of choosing the orientation of the isotopic spin axis at 
all space-time points.” 

The matrix 1 SS
xµ

− ∂
∂

 appearing in Equation (11) is a linear combination of  

isotopic spin “angular momentum” matrices iτ  ( 1,2,3i = ) corresponding to 
isotopic spin of the field we are considering. The Bµ  matrices contain a linear 
combination of matrices ( ) ( )1

n a
aaB x b xµ µ τ

=
= ∑  or 2B bµ µ τ= ⋅  where bµ  

and τ  are 3-component vectors in isotopic space. In Heaviside isotopic space, 
the bµ  vector is the vµ  velocity vector determining the linear combination of 
the bivector angular momenta. 

Although there is no well-defined idea of isotopic spin “angular momentum”, 
gravitomagnetic C-field possesses angular momentum; and is proportional to 
angular momentum: ( )2g c= ×C r p  with dimension 1 3t l− . For Fµν  de-
picted in Figure 1 we pair yC  with yC− , and cyclical iterations, where the in-
dex represents the axis about which these components of the field rotate. In oth-
er words, the formalism contains the angular momentum aspect of the compo-
nents. The C-field components are compatible with the three bivectors shown in 
the 3-space representation at the right, defined by the x, y, and z axes. The na-
ture of C-field circulation, from every perspective, is angular momentum.  

Consider Yang-Mills term ,A Aµ ν   . The   corresponds to the isospin 
charge analogous to electric charge q that interacts with electromagnetic gauge 
Aµ  in the Hamiltonian, appearing as qAµ , the momentum term. For the C-field, 
  corresponds to mass, hence m→A v , the field momentum (actually ρv  
the momentum density). In the original Yang-Mills the 1µ =  term interaction 
with the 2ν =  term concerns the x ymA A  term. The geometric algebra prod-
uct ( )x y x y x yA A A A i A A= ⋅ + × . The scalar product vanishes while the curl is 
proportional to zA . The curl is antisymmetric, so we have 

2x y y x zA A A A A− = .                     (16) 
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SU(2)         ≥          SU(3) 

Figure 1. The circulating field, the C-field, can be labeled by the (row, col) component or 
by the orthogonal axis about which the (row, col) component circulates. For example, the 
(x,z) element is labeled yC  and the (z, x) element is labeled yC−  since both of these 

terms rotate about the y-axis; similarly for the other components. These rotations are 
shown abstractly in the representation of the field strength Fµν  matrix on the left. The 

right-hand illustration maps the three bivector diagrams into 3-space. Colors are used for 
visual convenience and for suggested correlation with SU(3) × SU(2) × U(1) symmetry.  

 
Isotopic gauge covariant field equations fµν  are expressible in terms of 

Yang-Mills gauge field µνb  

2
mv

C

m
x x

µν
µν

µ ν
µν µ ν

ν µ

∂ ∂
= − − ×
∂ ∂

b b
f b b





                  (17) 

In this case the kinetic term of the Lagrangian, 1
4 µν µν= ⋅f f , will contain a  

product term proportional to ( )( )C mvµν µν  and a quadratic term ( )2
mvµν . 

The scalar multiplier ( )2g c  has dimension length massl m =  hence  
( )( ) ( )22 2 lengthg c mv mvµν ⇒ ⋅ . The product term corresponds to  

2mµν µν×f v  which, in Equation (15), shows up as a new source term. In other 
words, our treatment of the gravitomagnetic gauge field matches Yang-Mills’ 
original treatment. 

If it were obvious how to achieve mass gap at this point, it would have been 
solved in 1954. 

6. Higher-Order Self-Interaction 

The Yang-Mills ,A Aµ ν    term covers all gauge field component interactions, 
discussed above in terms of the original Yang-Mills paper. Yet neither mass gap 
nor quark confinement can be formulated successfully in this approach, so we 
examine a different self-interaction framework. The gravitomagnetic C-field has 
energy density, hence mass density, and circulates or rotates about an axis in 
space. The motion of the field, at any local point, results in momentum density 
at that point. But momentum density is the source current generating C-field 
circulation to begin with. Thus, the field itself induces more field and these fields 
interact; exactly what the Yang-Mills non-Abelian term is supposed to represent. 
Therefore, we should investigate the real physical field interacting with itself in-
stead of an abstract “internal” symmetry. The mass density of the second order 
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induced circulation field is not equal to the mass density that induced the first 
circulation. The self-induced circulation is iterative; the first induced field in-
duces a second order field circulation, and this, at any local point, induces a 
third order circulation, etc.  

Physical spin is associated with circulation of the C-field; ×C∇  represents 
bivector circulation, a spinning region of field such as a cross-section through a 
vortex, possessing angular momentum. Figure 2 illustrates first and second or-
der induced fields caused by source momentum density, 0p . Higher order in-
ductions of C-field circulations can be illustrated successively.  

The first conclusion is that successive orders do not interact to any degree; the 
force ×p C  is always orthogonal to the velocity, hence the work done is zero: 
Work d 0= ⋅ =∫F x . Alternate orders, on the other hand, do interact, as they are 
parallel or anti-parallel. To schematically illustrate this, we take the tangent vec-
tors to the circulation loops at the nearest and farthest points and “square the 
circle”, using the straight lines as heuristic devices to facilitate the expression of 
forces involved via analogy with electromagnetic forces between parallel currents 
(Figure 3).  

 

 

Figure 2. Momentum density 0p  (red) induces C-field circulation at position r . The 
C-field circulation at r  yields momentum density 1p  (green) orthogonal to 0p . Mo-

mentum 1p  induces the C-field at distance δ  from 1p . This induced C-field yields 
momentum density 2p  (red) with components parallel and anti-parallel to 0p . 

 

 

Figure 3. Focusing on (blue) loop1 and loop3 of the structure; source current and second 
order induction, loop2, are shown as red dashed lines. Since the loop3 bottom current is 
parallel to the rightmost current of loop1, the currents exert attractive forces upon each 
other, while top of loop3 is parallel to the current at the left of loop1 so the currents at-
tract each other. The attractive force lines are shown in green. Similar same arguments 
apply to anti-parallel currents which exert repulsive forces (not shown). 

https://doi.org/10.4236/jmp.2022.137065


E. E. Klingman 
 

 

DOI: 10.4236/jmp.2022.137065 1138 Journal of Modern Physics 
 

The self-linking field formalism of Figure 2 shows that second-order induc-
tion reinforces the primary inducing agent, i.e., local momentum density ρv . 
The electromagnetic force ijF  between two current elements d ij  and d jj  a 
distance ijr  apart guides us to write the gravitomagnetic equivalent.  

3

d d
d j i ij

ij
ijr

   × ×   =
p p r

F .                    (18) 

Since 3d d ij
i i

ijr
= ×

r
C p  where d ip  is the mass current element inducing the  

field then d dj i×p C  and Equation (18) is seen to be compatible with the Lo-
rentz force law = ×F p C  for the force on momentum p  in gravitomagnetic 
field C . In Figure 2, first-order C-field induction from momentum source 
density 0p , is used to derive second order C-field induction from the momen-
tum of the first-order field, 1 1 1~ ⋅p C C . Figure 3 focuses attention on loop1 
and loop3 of the structure, showing the source current, and second order induc-
tion, loop2, as dashed lines. The bottom current in loop3 is parallel to the 
rightmost current of loop1, and therefore the currents exert attractive forces 
upon each other. Similarly, the current at the top of loop3 is parallel to the cur-
rent at the left of loop1 and the two currents attract each other. The same argu-
ments apply to the anti-parallel currents which exert repulsive forces. The above 
follows from 

01 1 0d d d 0= × =F p C  since 0 1||C p                (19) 

02 2 0d d d 0F = × ≠p C  since 0 2⊥C p               (20) 
The force between 0p  and 1p  is zero since these mass density current flows 

are orthogonal to each other. On the other hand, the force acting between 0p  
and 2p  is maximal or minimal according to whether these flows are parallel or 
anti-parallel. 

This schematic organization guides calculation of the forces involved in the 
self-interaction of a turbulent primordial field. We seek first a qualitative under-
standing of dynamic behavior. All squares in the diagrams represent extensions 
of the tangent vectors depicted in Figure 3 and restore the dashed red loop2 to 
its true circular form. With this revision current loop3 should rotate about loop2, 
under the influence of the forces, eventually rotating into the xy-plane as de-
picted in Figure 4. 

Loop3, shown in blue above loop1, is simply a slice through a torus sur-
rounding loop2. It has no independent existence such that it can be pulled down 
into the plane. Nevertheless, if a “slice” is pulled into the plane, the field that 
replaces that slice will experience the same forces; the net result is a dynamic 
tension that tends to shrink the system of circulations into a lower energy con-
figurational state. The final state of an arbitrary slice is depicted in Figure 5. 

Despite having higher order constructions, the behavior is almost certainly 
governed by interactions between 1st and 3rd order induced circulations, as 
shown in Figure 4, consisting of the loop1 currents into and out of the page and 
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the two loop3 circulations, each with parallel currents into and out of the page. 
To formalize these interactions, we define the interaction between momentum 
density currents ip  and jp  as [ ] [ ],f p i p j    divided by the absolute dis-
tance between the currents and construct the interaction matrix over all six rele-
vant currents, shown numbered in Figure 5.  

7. Path Integrals over the Lattice 

In Figure 3 a (blue) loop3 is vertically aligned over one leg of loop1. Figure 4 is 
a snapshot of loop3 rotating about loop2 from the initial vertical state ( 0θ = ) to 
the horizontal state in the loop1 plane ( 2θ = −π ). The loop is symmetric and 
supports an inverse image behavior from another loop3 on the left side of the 
diagram. To proceed from the initial state to the final state, we step through a 
sequence of rotations. The paths through the local space surrounding loop1 are 
traced out by rays originating on loop1 and rotating by d iθ  rotations from 

0θ =  to 2θ = −π . Two paths are traced—the lower leg of loop3, and the up-
per leg of loop3 as loop3 rotates from vertical to horizontal. This lattice of points 
defines the points at which we want to calculate forces between loops. Four 
snapshots of such lattice-based dynamics are shown in Figure 6. 

 

 

Figure 4. Cartoon snapshot depicting third-order loop (blue) dynamics 
interacting with first order loop (blue) of C-field circulation induced by 
(red) source momentum 0p . 

 

 

Figure 5. The result of dynamic forces acting on slices of higher order 
loops whose currents are numbered as shown. In this progression the con-
figuration shown exerts attractive forces (green) between higher order 
loops and lower order loops, and repulsive forces (orange) between dis-
placed higher order loops. This behavior follows at all orders.  
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Figure 6. Shows positions and directions from initial vertical state represented 
by parameter 0θ = , successively transforming to parameter 2θ = −π . At-
tractive forces are shown as solid lines, with repulsive forces represented by 
dashed lines. Black lines represent forces to be calculated, while green lines 
represent symmetric forces; identical to forces corresponding to black lines. 

 
A time-sliced adaptation of Figure 4 shows the relevant portions of the cur-

rent loops directed into the page (red) and out of the page (blue). Attractive 
forces are shown as solid lines, repulsive forces by dashed lines. Black lines 
represent forces to be calculated, while green lines represent symmetric forces, 
identical to forces corresponding to black lines. Thick lines correspond to one 
power factor α  while thin lines are interactions with factor 2α . Figure 6 
shows positions and directions from initial vertical state (parameter 0θ = ) suc-
cessively transforming to 2θ = −π . 

Calculations of work done by the forces have the form ( ) ( ) ( )dij ij iW θ θ θ= ⋅F x  
where indices i and j vary from one to six as shown in Figure 5 and θ  varies 
from 0 to –π/2 as currents 3 and 6 move from initial vertical position into the 
xy-plane. The displacement ( ) ( ) ( )d di i iθ θ θ θ= − +x x x . Examination shows 
that 5dx  and 6dx  are greater than 4dx  and 3dx  for the same dθ . 

In Figure 6, for example, when currents 5 and 6 come together in the plane 
from initial vertical position, they oppose each other and the field between them 
increases, hence the energy density of the field increases, representing positive 
work shown by 56W . Currents 3 and 5, on the other hand, are parallel and at-
tract each other, minimizing their joint field between them and reducing the 
energy, thus representing negative work, shown by 35W  in Figure 7.  

The forces and displacements are calculated for every step of travel along the 
lattice path. The current force ( )ij θF  applied over ( )d i θx  describes the work 
done for that step. The inner product ( ) ( )dij iθ θ⋅F x  is maximum when 

( )ij θF  and ( )d i θx  are parallel. Since we began calculations at 0θ = , the ini-

https://doi.org/10.4236/jmp.2022.137065


E. E. Klingman 
 

 

DOI: 10.4236/jmp.2022.137065 1141 Journal of Modern Physics 
 

tial ( )1d 0x  is ( )d ,0,0x−  while the initial force ( ) ( )0 , ,0ij x yα= − −F . The 
two vectors are not parallel. They become parallel when ( ) ( )|| dij k i kθ θF x . Thus, 
in Figure 8 the energy is seen to peak at ~ 6kθ −π . From that point onward, 
each successive step will lead to a lower energy state, and mass-energy density of 
the field structure becomes more “locked-in”. In this way particles emerge with 
mass-energy greater than the vacuum state.  

8. Brief Summary of Physics 

The above physics is based on vorticity as the ubiquitous aspect of turbulent su-
perfluid. Energy flows from large vortices to smaller vortices, which are circu-
lating regions in the ultra-dense gravitomagnetic gauge field, with positive ener-
gy over a small region. The motion of the local field circulation induces further 
circulation and this in turn induces even higher order circulation. The topology 
is such that orders differing by one do not interact, whereas orders that differ by 

 

 

Figure 7. The work ( )ijW θ  representing the interactive force ( )ij θF  between mo-

mentum currents i and j at angles θ . The horizontal axis runs from 0θ =  to 
2θ = −π  while the vertical axis represents work ( ) ( ) ( )dij ij iW θ θ θ= ⋅F x . At 2θ = −π  

all displacements are down while all forces are horizontal, so no work is done at the final 
angle. 

 

 

Figure 8. Summing all the (arbitrarily scaled) works involved, we find that the net energy 
decreases, thus the self-interaction of the field leads to a more stable configuration. 
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an even number do interact. We have employed a fractal structure and defined a 
path based on the relevant self-interactions. The forces act to move the induced 
flows into the primary circulation plane while shrinking the boundary of the 
field. This movement drives the system to a lower, but still positive, energy 
which is denser than the initial vortex energy. This ultra-dense stabilized spin 
energy is the “mass-gap” that yields particle mass greater than the vacuum state. 
We have thus shown that the primordial field “condenses” to a positive energy 
structure that we identify as a fundamental particle. We know that this particle 
will have quantized spin and quantized charge, and these aspects must be in-
cluded to calculate the actual mass of the particle. This is in progress.  

9. Discussion of Results 

The years 1954 and 1964 witnessed revolutionary mathematics introduced into 
physics—Yang-Mills non-Abelian gauge theory and Hestenes’ geometric calcu-
lus, supporting physical intuition relevant to Yang-Mills theory wherein the 
non-Abelian term , ~A A A Aµ ν µ ν  ×   represents the interaction of the gauge 
field with itself. This term ,A Aµ ν    is supposed to cover all the gauge field 
self-interactions, yet neither mass-gap nor confinement has been formulated 
successfully in this approach. “Free” gauge field propagation through space can 
conceivably self-interact, but nothing stable arises from such interactions. It is 
intuitively obvious that a “mass gap” can arise only locally, which seems to imply 
either a boundary or a local potential well. Alternatively, a local circulation may 
be invoked, almost certainly the reason for the focus on “angular momentum” in 
isospin space, which is abstract, based on approximate symmetry. As Weinberg 
states [18]: “Many symmetries…were approximate because they weren’t funda-
mental symmetries at all; they were just accidents.” Despite their approximate 
nature, there has been much focus on symmetry aspects in Yang-Mills. In 
“Yang-Mills Origin of Gravitational Symmetries” [19] many gravitational sym-
metries are derived linearly, including general covariance, two-form gauge inva-
riance, local supersymmetry, and local chiral symmetry, following flat-space 
Yang-Mills theory. They remark that an important improvement would address 
the issue of dynamics as well as symmetry. Finally, “we might speculate that the 
supergravity µφ , the left Yang-Mills ( )iV L , the right Yang-Mills ( )iA Rµ

′  and 
the spectator ii′Φ  live in different worlds with their own Lagrangians.” By con-
trast, our approach begins with one primordial world and nothing else, with an 
implicit self-interaction equation, the solution of which leads straightforwardly 
to higher order self-interactions. The stability of these interactions yields a mass 
gap that failed to appear from prior symmetry analysis. 

In our derivation of Yang-Mills from the Self-Interaction Principle, the Hea-
viside C-field circulation is proportional to classical angular momentum. Equa-
tion (16) shows bivector-based ( ), , 2A A m A A mvµ ν µ ν µν  ⇒ =  . The Yang-Mills 
non-Abelian term is proportional to angular momentum of the gravitational 
gauge field, rather than some isotopic “angular momentum” in abstract space; 
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our approach is based on a real physical field, with real angular momentum, 
formulated in terms of bivector rotations in real 3-space. ,A Aµ ν    represents 
different interacting flows of the same field, locally distributed over space. The 
key Heaviside equation involving mass current density ρv  induces local circu-
lation ρ× = −C v∇  of the C-field with local energy density ~ ⋅C C  energy 
circulating with velocity v′  in the medium. This momentum density  

( )ρ ′= ⋅v C C v  will, in turn, induce second-order C-field circulation. 
This is Self-Interaction; if stable, it will lead to a mass gap. Our approach de-

monstrates stability via iterative self-induction and shows that, while alternating 
inductions do not interact, even-order self-induced structures do interact, and 
do so in a manner that increases the stability of the locally circulating field 
structure. In this calculation the scale is unknown, and the coupling parameters 
are not rigorously specified, but the dynamical behavior of the model is correct. 
The forces between points on the lattice represent gauge field flows in and out of 
the plane of the paper which are time-linked. The dynamical energy exchange is 
a function of flow topology and distances. Global scale parameters will not 
change the direction of the energy evolution, only the magnitude of the effect. 
The resulting self-interactions lead to a lower energy and a greater density state. 
Like a skater pulling in her arms, a decreasing radius leads to increased angular 
velocity. For simplicity we have suppressed this “shrinkage” of the structure, but 
in reality we expect the radius of the circulating field to decrease and the local 
velocity v′  to increase, such that m v r′ ′ ′  is the conserved angular momentum, 
where v′  is the increased rotational velocity, m′  is the relativistic mass  

( ) ( )( )0 ~m v m vγ γ′ ′ ′= ⋅C C  and r′  is the reduced radius. Quantized angular 
momentum ( ~  ) should prevent this circulation from shrinking to an infinitely 
dense “point” particle, and therefore should evolve to a finite sized toroidal field 
structure whose mass spectrum is based on parameters to be specified, but 
whose existence as a stable field structure has been demonstrated. Following pa-
pers will address half-integer spin and electric charge aspects of the particle, 
however they will inevitably trace back to this re-interpretation of the Yang- 
Mills term representing non-Abelian self-interaction: ( ) ( )2,i iA Aµ ν

+ 
   where (i) 

refers to induction order.  

10. Summary 

Our goal has been to formulate higher-order self-interaction of the gauge field 
and re-interpret the non-Abelian term based on this, to derive fermions from the 
gravitational gauge field. Previous papers have shown the derivation of Heavi-
side’s equations from an exact principle, the Self-Interaction Principle, is equiv-
alent to Einstein’s nonlinear field equations derived from the Equivalence Prin-
ciple, and have treated general relativity-based problems such as Quasi-Local 
Mass. Key is that the Heaviside derivation is field-strength independent, whereas 
Einstein’s derivation erroneously implies that Heaviside is a “weak field ap-
proximation”. 
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A mass-based understanding of gravity, as well as the weak field approxima-
tion misunderstanding, causes physicists to generally ignore gravity in particle 
physics. A mass-density-based understanding of gravity leads to a gravitational 
basis for particle physics. Burinskii [20] has suggested that particles arise from 
gravity with the structure of the Kerr black holes, while Christian and Diether 
[21] suggest particle radii on the order of the Planck length. In other words, 
mass densities associated with the big bang are effectively limitless. Huang [22], 
Volovik [23], and others view the primordial field as a superfluid. Circa 2006 
physicists at the LHC were expecting a quark gas from heavy-ion collisions but 
instead [24] 

“It is well known that the properties of the Yang-Mills plasma turned out to be 
unexpected…the plasma is similar rather to an ideal liquid than to a gluon gas 
interacting perturbatively.” 

They conclude with an analogy between phenomena in Yang-Mills theory 
with physics of superfluidity. Our underlying premise has been the superfluid 
nature of the primordial field, with ultra-dense fields, in which we identify high-
er-order self-induction modes. 

Einstein (1919) asked “Do gravitational fields play an essential part in the 
structure of the elementary particles of matter?”, suggesting the possibility of a 
theoretical construction of matter out of gravitational field and electromagnetic 
field alone. From’t Hooft’s perspective: “Einstein’s theory of general relativity 
has a mathematical structure very similar to Yang-Mills theory.” And Zee re-
marks: “there is increasing evidence that the Einstein theory of gravity is just 
Yang-Mills squared.” Yet the Millennium prize declares that: 

“Yang-Mills theory is now the foundation of most of elementary particle 
theory, but the mathematical foundation is still unclear.”  

Physical ideas may have been the source of Yang-Mills failure on key issues, 
not mathematical ideas. Density-based gravity may open realms of physics to 
gravitational phenomena that have been overlooked since Newton. This paper 
has presented a density-based re-interpretation of Yang-Mills gauge field self- 
interaction leading to stable gravitational gauge field structures to explain the 
mass gap. Future papers will explore half-integer spin and genesis of electric 
charge. These two issues should allow derivation of mass of fermions whose 
mass-gap was derived herein.  
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