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Abstract 

We study the Hamiltonian, path integral and Becchi-Rouet-Stora and Tyutin 
(BRST) formulations of the restricted gauge theory of QCD2 à la Cho et al. 
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1. Introduction 

In this work we consider the restricted gauge theory of quantum chromodynamics 
(QCD) in one-space one-time dimension (QCD2) à la Cho et al. [1]-[14], studied 
rather widely [2]-[23], and study its quantization using Hamiltonian [24], path 
integral [25] [26] [27] [28] and Becchi-Rouet-Stora and Tyutin (BRST) [29] [30] 
[31], formulations [24]-[31], in the usual instant-form (IF) of dynamics (on the 
hyperplanes: 0 constantx t= = ) [32] [33]. We recap the basis of this theory in 
the next section where we also highlight the motivations for the present study. 
The theory is seen to be gauge-invariant (GI) possessing a set of first-class con-
straints [14]. We quantize this theory under appropriate gauge-fixing conditions 
(GFC’s) using the Hamiltonian and path integral formulations [24] [25] [26] [27] 
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[28]. 
However, in the usual Hamiltonian and path integral quantization [24] [25] 

[26] [27] [28] of a theory under some GFC’s, the gauge-invariance of the theory 
gets broken because of the gauge-fixing. In view of this, in order to achieve the 
quantization of the theory such that the gauge-invariance of the theory is main-
tained even under gauge-fixing, we go to a more generalized procedure called 
the BRST quantization [29] [30] [31], [27] [28] [29] [30] [31], where the ex-
tended gauge symmetry of the theory (called the BRST symmetry) is maintained 
even under gauge-fixing. In fact, this also necessitates a study of the BRST quan-
tization of the theory to achieve a kind of complete quantization of the theory. 

The paper is organized as follows. In the next section, we briefly recap the ba-
sics of the so-called restricted gauge theory of QCD2 à la Cho et al. [1]-[13]. In 
Section 3, we study its Hamiltonian and path integral formulations. Its BRST 
formulation is studied in Section 4. Finally the summary and discussion is given 
in Section 5. 

2. Restricted Gauge Theory of QCD2 à la Cho et al.: A Recap of  
Basics 

In this section, we recap the basics of the restricted gauge theory of QCD2 à la 
Cho et al. [1]-[14] and others [1]-[23]. The theory makes use of the so-called 
“Cho-decomposition“, which is, in fact, the gauge independent decomposition 
of the non-Abelian potential into the restricted potential and the valence poten-
tial and it helps in the clarification of the topological structure of the 
non-Abelian gauge theory, and it also takes care of the topological characters in 
the dynamics. 

The non-Abelian gauge theory has rich topological structures manifested by 
the non-Abelian monopoles, the multiple vacua and the instantons and one 
needs to take into account these topological characters in the non-Abelian dy-
namics. Since the decomposition of the non-Abelian connection contains these 
topological degrees explicitly, it can naturally take care of them in the 
non-Abelian dynamics. 

An important consequence of the decomposition is that it allows one to view 
QCD as the restricted gauge theory (made of the restricted potential) which is 
coupled to a gauge-covariant colored vector field (the valence potential). The re-
stricted potential is defined in such a way that it allows a covariantly constant 
unit isovector n̂  everywhere in space-time, which enables one to define the 
gauge-independent color direction everywhere in space-time and, at the same 
time, allows one to define the magnetic potential of the non-Abelian monopoles. 
Furthermore it has the full SU(2) gauge degrees of freedom, in spite of the fact 
that it is restricted. Consequently, the restricted QCD made of the restricted po-
tential describes a very interesting dual dynamics of its own, and plays a crucial 
role in the understanding of QCD. 

On the other hand, the restricted QCD is a constrained system, due to the 
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presence of the topological field n̂  which is constrained to have the unit norm. 
A natural way to accommodate the topological degrees into the theory is to in-
troduce a topological field n̂  of unit norm, and to decompose the connection 
into the Abelian projection part which leaves n̂  a covariant constant and the 
remaining part which forms a covariant vector field:  

2

1 ˆˆ ˆ ˆ

ˆ

ˆ 1

A n n n A
g

A n

n

µ µ µ µ µ µ

µ µ

= − ×∂ + = +

= ⋅

=

A X X

A               (1a) 

where Aµ  is the “electric” potential and the Abelian projection Aµ  is precise-
ly the connection which leaves n̂  invariant under the parallel transport and 
makes n̂  a covariant constant:  

ˆˆ ˆ ˆ ˆ 0D n n gA nµ µ µ= ∂ + × =                       (2) 

Also, under the infinitesimal gauge-transformation:  

1 1 1ˆ ˆˆ  ,    ,  

ˆ ˆ  ,  

D A n A D
g g g

n n

µ µ µ µ µ µ

µ µ

δ α δ α δ α

δ α δ α

= = ⋅∂ =

= − × = − ×

  

 

A

X X
          (3) 

This shows that Aµ  by itself describes an ( )2SU  connection which enjoys 
the full ( )2SU  gauge degrees of freedom. The restricted potential Aµ  is de-
fined by the Abelian projection and the connection space (the space of all gauge 
potentials) forms an affine space. Indeed the affine nature of the connection 
space guarantees that one can describe an arbitrary potential simply by adding a 
gauge-covariant piece X µ  to the restricted potential. 

The above mentioned decomposition is known as the Cho-decomposition or 
the Cho-Faddeev-Niemi decomposition. It was introduced [2]-[23] in an attempt 
to demonstrate the monopole condensation in QCD. The decomposition itself and 
the importance of this decomposition in clarifying the non-Abelian dynamics in 
QCD2 has been studied by many authors and for further details we refer to the 
work of Refs. [2]-[23]. 

The restricted potential Aµ  actually has a dual structure and the field 
strength made of the restricted potential is decomposed as:  

( ) ( )ˆ ˆ,  F F H n F A Aµν µν µν µν µ ν ν µ= + = ∂ − ∂             (4a) 

( ) ( )1 ˆ ˆ ˆ H n n n C C
gµν µ ν µ ν ν µ= − ⋅ ∂ ×∂ = ∂ − ∂              (4b) 

where Cµ  is the “magnetic” potential. Further, following the work of Refs. 
[2]-[23], it is possible to introduce the magnetic potential as above (at least lo-
cally section-wise) in view of the following identity:  

10,  
2

H H Hµ µν µν µνρσ ρσ∂ = =                      (5) 

which allows one to identify the non-Abelian monopole potential by:  
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1 ˆ ˆn n
gµ µ= − ×∂C                         (6) 

in terms of which the magnetic field is expressed as  
1 ˆ ˆ ˆg n n H n
gµν µ ν ν µ µ ν µ ν µν= ∂ − ∂ + × = − ∂ ×∂ =H C C C C          (7) 

With the above connection (-albeit decomposition) one has:  

( ) ˆ ˆˆ

ˆ 0
ˆˆ 0

F H n D D g

n

n D

µν µν µν µ ν ν µ µ ν

µ

µ ν

 = + + − + × 
⋅ =

⋅ =

F X X X X

X

X

          (8) 

and for the Yang-Mills Lagrangian density one has: [1]-[15]:  

( ) ( )

( ) ( )

2

2 2 2

1 1ˆ ˆ ˆ ˆ ˆ
4 4 2

ˆ ˆ       1
4

gF F D D F

g n n

µν
µν µ ν ν µ µν µ ν

µ ν µ µλ λ

= − − − − ⋅ ×


− × + − + ⋅ 


 X X X X

X X X
       (9) 

where λ  and µλ  are the Lagrange multiplier fields and  
( ): 1, 1g g diagµν

µν= = + − . The Lagrangian density of the so-called restricted 
gauge theory made of the Abelian projection without µX  is therefore defined 
by [2]-[14]:  

( )21 ˆ ˆ ˆ 1
4

F F nµν
µν λ = − + −  

                   (10) 

The theory defined by the above Lagrangian density has a full ( )2SU  gauge 
invariance and it describes the dual dynamics of QCD with the dynamical de-
grees of the maximal Abelian subgroup U(1) as the electric component and the 
topological degrees of SU(2) as the magnetic component. It therefore represents 
an important model in the QCD theory namely, in QCD2 and deserves to be stu-
died more properly. One of the important steps in this direction is to construct 
the quantum theory corresponding to this classical theory of QCD2 by quantiz-
ing the theory. This provides motivation for the present studies and in fact, ne-
cessitates our presents studies. In the next section, we consider the Hamiltonian 
and path integral formulations of this constrained theory. 

3. Hamiltonian and Path Integral Formulations 

We now study the Hamiltonian and path integral quantization of the above re-
stricted gauge theory of QCD2 (made of the Abelian projection without µX ) 
defined by the Lagrangian density [2]:  

( ) ( )

( )( ) ( )

( )

2 2

2

2

1 1ˆ ˆ ˆ ˆ1   1
4 4
1 ˆ 1
4
1 1 1 ˆ 1
4 2 4

F F n G G n

F H F H n

F F F H H H n

µν µν
µν µν

µν µν
µν µν

µν µν µν
µν µν µν

λ λ

λ

λ

   = − + − = − + −      
 = − + + + −  
 = − − − + −  



        (11) 

In the instant-form (IF) of dynamics, the above Lagrangian density reads:  
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( ) ( ) ( )2 2 2
0 1 1 0 0 1 1 0 2

1 1 1 ˆ 1
2 2

A A A A n
g g

λ
 

= ∂ − ∂ + ∂ − ∂ Φ + Φ + − 
 

    (12a) 

( )0 1ˆ ˆ ˆn n nΦ = ∂ ⋅ ×∂                         (12b) 

Here Φ  is another topological scalar field constructed out of the topological 
field n̂  (of unit norm) and its space derivative ( 1n̂∂ ) as well as its time deriva-
tive ( 0n̂∂ ), as defined above. The canonical momenta obtained for the above 
theory are:  

( ) ( )
0

0 0 0

0,  0
Aλ λ

∂ ∂
Π = = Π = =

∂ ∂ ∂ ∂
                (13a) 

( ) ( ) ( )1
0 1 1 0

0 1

1:E A A
A g

∂
= Π = = ∂ − ∂ + Φ

∂ ∂
            (13b) 

( ) ( )( )ˆ 0 1 1 0 1
0

1ˆ ˆ ˆ
ˆn A A n n
n g

∂
Π = = − ∂ − ∂ ×∂

∂ ∂
             (13c) 

Here λΠ , 0Π , ( )1:E = Π , and ˆ
ˆ

nΠ  are the momenta conjugate canonically to 
λ , 0A , 1A , and n̂  respectively. The above equations however, imply that the 
theory possesses three primary constraints:  

1 0λχ = Π ≈  
0

1 0Ω = Π ≈  

ˆ1
ˆˆ 0nnψ = ⋅Π ≈                         (14) 

The symbol ≈  here denotes a weak equality in the sense of Dirac [24]. The 
canonical Hamiltonian density of the theory c  is:  

( )2 2
1 0

1 ˆ 1
2

N
c E E A nλ = + ∂ − −  
                (15) 

After including the primary constraint 1χ , 1Ω , and 1ψ  in the canonical 
Hamiltonian density c  with the help of Lagrange multiplier field ( ),u x t , 
( ),v x t  and ( ),w x t  which is treated as dynamical, the total Hamiltonian den-

sity of the theory T  could be written as:  

( )2 2
1 0 1 1 1

1 ˆ 1
2

N
T E E A n u v wλ χ ψ = + ∂ − − + +Ω +  
          (16) 

The Hamilton’s equations of motion of the theory that preserve the con-
straints of the theory in the course of time could be obtained from the total Ha-
miltonian: 1dT TH x= ∫  and are omitted here for the sake of brevity. De-
manding the preservation of the primary constraints 1χ  and 1Ω  for all time 
leads to the secondary Gauss-law constraints 2χ  and 2Ω  respectively:  

( )2
2 ˆ 1 0nχ = − ≈  

2 1 0EΩ = ∂ ≈                         (17) 

The preservation of 1ψ  for all times does not lead to any secondary con-
straint. The preservation of 2χ  and 2Ω  also does not lead to any new con-
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straints. The theory is therefore seen to possess a set of five constraints:  

( )

0
1 1

2 2 1

3 1

2
4 2

ˆ5 1

0
0

0

ˆ 1 0

ˆˆ 0n

E

n

n

λ

ρ
ρ
ρ χ

ρ χ

ρ ψ

= Ω = Π ≈
= Ω = ∂ ≈
= = Π ≈

= = − ≈

= = ⋅Π ≈

                    (18) 

Matrix Rαβ  of the Poisson brackets of the above constraints iρ  among 
themselves is clearly singular implying that the set of these constraints iρ  is 
first-class and that the theory under consideration is GI. In fact, the theory is 
seen to be invariant under the local vector gauge transformations:  

0

0
ˆ

1 1 1ˆ ˆ ˆ ,  , 0

ˆ 0n u v w

A n n n
g g g

E

µ µ µ

λ

δ α α δλ α δ α

δ δ δ δ δ δ δ

= ⋅∂ = ∂ = ∂ = × =

Π = = Π = Π = Π = Π = Π =

 

       (19) 

where gauge parameter ( ),x tα  is an arbitrary function of its arguments. The 
components of the vector gauge current ( )0 1,J J Jµ ≡  are:  

0 0 1 0 0 1
1 0 1 1 0

1 0 1 1 0 1
0 0 1 1 0

1 1d d d d

1 1d d d d

J x x j x x A A
g g

J x x j x x A A
g g

α

α

  
= = ∂ ∂ − ∂ + Φ  

  
  

= = − ∂ ∂ − ∂ + Φ  
  

∫ ∫

∫ ∫
     (20) 

The theory is clearly gauge-invariant and could now be quantized under appro-
priate gauge-fixing conditions (GFC’s), which could e.g. be chosen as (which by 
no means is an unique choice):  

1 2 1 3 00,  0,  0A Aζ λ ζ ζ= ≈ = ≈ = ≈               (21) 

It may be important to mention here that any set of GFC’s could be chosen here 
such that the resulting set of constraints of the theory (including the set of GFC’s) 
becomes a set of second-class constraints so that the matrix of the total set of 
constraints becomes non-singular and consequently could be inverted. 

The total set of constraints of the theory under these GFC’s then becomes:  
0

1 1 1 0ξ ρ= = Ω = Π ≈                   (22a) 

2 2 2 1 0Eξ ρ= = Ω = ∂ ≈                  (22b) 

3 3 1 0λξ ρ χ= = = Π ≈                   (22c) 

( )2
4 4 2 ˆ 1 0nξ ρ χ= = = − ≈                 (22d) 

ˆ5 5 1
ˆˆ 0nnξ ρ ψ= = = ⋅Π ≈                  (22e) 

6 1 0ξ ζ λ= = ≈                      (22f) 

7 2 1 0Aξ ζ= = ≈                     (22g) 

8 3 0 0Aξ ζ= = ≈                     (22h) 

The non-vanishing matrix elements of the matrix Mαβ  of the Poisson Brack-
ets’s among these above constraints iξ  are:  
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( )18 81M M x yδ= − = − −                  (23a) 

( )27 72 1M M x yδ= + = −∂ −                 (23b) 

( )36 63M M x yδ= − = − −                  (23c) 

( )2
45 54 ˆ2M M n x yδ= − = + −                (23d) 

The above matrix Mαβ  is clearly non-singular implying that the constraints iξ  
form a set of second-class constraints. The theory could therefore be quantized 
using the Dirac’s Hamiltonian Formulation as well as using the path integral 
formulation. The square root of the absolute value of the determinant of this 
matrix Mαβ  is:  

( ) ( )( ) ( )
1

322
1ˆ2det M n x y x yαβ δ δ   = − ∂ −    

          (24) 

The non-vanishing equal-time Dirac brackets (DB’s) of the theory are [24]:  

( ) ( ){ } ( ) ( )ˆ ˆ ˆ ˆ2

1, , ,
ˆ

a b a b a b
n n n nDB

x t y t n n x y
n

δΠ Π = Π −Π −        (25a) 

( ) ( ){ } ( ) ( )ˆ ˆ ˆ2

1,  , ,
ˆ

a b a b a b
n n nDB

n x t y t n n x y
n

δΠ = Π −Π −        (25b) 

( ) ( ){ } ( ) ( )ˆ ˆ ˆ2

1,  , ,
ˆ

a b a b a b
n n nDB

x t n y t n n x y
n

δ−
Π = Π −Π −        (25c) 

Here one needs to remember that while making a transition from equal-time 
Dirac brackets to the equal-time commutation relations using the Dirac quanti-
zation rule, one needs to take in to account the problem of operator ordering 
(which occurs here because the results of the equal-time commutation relations 
involve the product of the operators). Also, the roman indices a and b here, are 
the color indices of the gauge theory of QCD2. 

Also for the later use, for considering the BRST formulation of the theory we 
convert the total Hamiltonian density of the theory into the first order Lagran-
gian density IO : 

]

( ) ( )

0
ˆ0 0 0 0 1 0

0 0 0

2 2 2
0 1 1 0 2

ˆ ˆ

1 1 ˆ 1
2 2

IO n

u v w T

A E A n

u v w

A A n
g

λ λ

λ

= Π ∂ +Π ∂ + ∂ +Π ⋅∂
+Π ∂ +Π ∂ +Π ∂ −

 
= ∂ − ∂ − Φ + − 
 



             (26) 

For considering the path integral formulation, the transition to quantum 
theory is made again by writing the vacuum to vacuum transition amplitude for 
the theory, called the generating functional [ ]kZ J  of the theory, following 
again the Senjanovic procedure for a theory possessing a set of second-class con-
straints [25] [26] [27] [28], appropriate for our present theory, considered under 
the gauge-fixing conditions iξ , in the presence of the external sources: kJ  as 
follows [25] [26] [27] [28]: 
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[ ] [ ] 0 1 0
0 0 0 0 1

ˆ 0 0 0 0

d exp d d

ˆ ˆ             

k
k k

n u v w T

Z J i x x J A E A

n u v w

λµ λ = Φ +Π ∂ +Π ∂ + ∂
+Π ⋅∂ +Π ∂ +Π ∂ +Π ∂ − 

∫ ∫


    (27) 

where the phase space variables of the theory are: ( )0 1 ˆ, , , , , ,k A A n u v wλΦ ≡  
with the corresponding respective canonical conjugate momenta:  

( )ˆ0
ˆ, , , , , ,k n u v wEλΠ ≡ Π Π Π Π Π Π . The functional measure [ ]dµ  of the gene-

rating functional [ ]kZ J  under this gauge-fixing is obtained as:  

[ ] ( )( ) ( ) [ ][ ][ ][ ][ ][ ][ ][ ]

[ ] [ ][ ][ ] [ ] [ ]

( ) [ ] [ ] [ ]

32
1 0 1

0 0
ˆ 1

2
ˆ 1 0

ˆ ˆd 2 d d d d d d d d

ˆ            d d d d d d 0 0 0

ˆˆ ˆ            1 0 0 0 0 0

n u v w

n

n x y x y A A n u v w

E p p p E

n n A A

λ

λ

µ δ δ λ

δ δ δ

δ δ δ λ δ δ

 = − ∂ − Π  

    Π Π Π ≈ ∂ ≈ Π ≈    

   − ≈ ⋅Π ≈ ≈ ≈ ≈   

(28) 

This completes the Hamiltonian and path integral formulations of the theory. 
The BRST formulation of the theory is considered in the next section. 

4. BRST Formulation 

In the following, we study the BRST formulation of the theory. For the BRST 
formulation of the model, we rewrite the theory as a quantum system that pos-
sesses the generalized gauge invariance called BRST symmetry. For this, we first 
enlarge the Hilbert space of our gauge-invariant theory and replace the notion of 
gauge-transformation, which shifts operators by c-number functions, by a BRST 
transformation, which mixes operators with Bose and Fermi statistics. We then 
introduce new anti-commuting variables c and c  (Grassman numbers on the 
classical level and operators in the quantized theory) and a commuting variable 
b such that [27] [28] [29] [30] [31]:  

0 0 0 1 1 0 0
1 1 1 1ˆ ˆ ˆ ˆ, , , c A c A c u c
g g g g

δλ δ δ δ= ∂ = ∂ = ∂ = ∂ ∂           (29a) 

0
ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ 0n u v wE λδ δ δ δ δ δ δΠ = Π = = Π = Π = Π = Π =            (29b) 

ˆ ˆ ˆ ˆ ˆ ˆˆ 0, 0, , 0n v w c c b bδ δ δ δ δ δ= = = = = =              (29c) 

with the property 2ˆ 0δ = . We now define a BRST-invariant function of the dy-
namical phase space variables of the theory to be a function f such that ˆ 0fδ = . 
Now the BRST gauge-fixed quantum Lagrangian density BRST  for the theory 
could be obtained by adding to the first-order Lagrangian density IO , a trivial 
BRST-invariant function (e.g.) as follows:  

( ) ( )2 2 2
0 1 1 0 2

0 0 1 0 0 1

1 1 ˆ 1
2 2

1ˆ            
2

BRST A A n
g

c g A g A g A b

λ

δ


= ∂ − ∂ − Φ + −


  + ∂ + ∂ − ∂ +     



           (30) 

The last term in the above equation is the extra BRST-invariant gauge-fixing 
term. After one integration by parts, the above equation could now be written as:  
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( ) ( )

( )( )

2 2 2
0 1 1 0 2

2
0 0 0 0

1 1 ˆ: 1
2 2

1 1             
2

BRST A A n
g

b gb A E c c
g

λ


= ∂ − ∂ − Φ + −


 
+ + ∂ − + Φ + ∂ ∂  

  



          (31) 

The last term in the above equation is the BRST-invariant gauge-fixing term. 
Proceeding classically, the Euler Lagrange equation for b reads:  

( )0 0 1 0 0 1b g A g A g A− = ∂ + ∂ − ∂                  (32) 

which in turn (with the requirement ˆ 0bδ = ) then implies:  

0 0 0c∂ ∂ =                            (33) 

The above equation is also an Euler-Lagrange equation (ELE) obtained by the 
variation of BRST  with respect to c . We define the bosonic momenta in the 
usual manner:  

( )0
0 0

: BRST gb
A

∂
Π = =

∂ ∂
                    (34) 

but for the fermionic momenta with directional derivatives we set  

( ) ( )0 0
0 0

: ; :c BRST c BRSTc c
c c

∂ ∂
Π = = ∂ Π = = ∂

∂ ∂ ∂ ∂

 

          (35) 

implying that the variable canonically conjugate to c is ( 0c∂ ) and the variable 
conjugate to c  is ( 0c∂ ). For writing the quantum Hamiltonian density from 
the Lagrangian density in the usual manner we remember that the former has to 
be Hermitian so that:  

( )

( )

2 2
ˆ0 0 1 0

2 2
0 0 0 1 1 0

1ˆˆ ˆ 1
2

1             
2

BRST u v n

c c

u v n w E E A n

g b gb A A A

λ= Π ∂ +Π ∂ + ⋅Π + + ∂ − −
+ +Π Π − ∂ − ∂ + ∂ 


     (36) 

We can check the consistency of our definitions of the the fermionic momenta 
by looking at the Hamilton’s equations for the fermionic variables:  

0 0;BRST BRST
c c

c c∂ ∂
∂ = ∂ =

∂Π ∂Π

 

                  (37) 

We thus see that  

0 0;BRST c BRST c
c c

c c∂ ∂
∂ = = Π ∂ = = Π

∂Π ∂Π

 

            (38) 

is in agreement with our definitions of the Fermionic momenta. Also, for the 
operators 0, , c c c∂  and 0c∂ , one needs to satisfy the anti-commutation rela-
tions of 0c∂  with c  or of 0c∂  with c, but not of c, with c . In general, c and 
c  are independent canonical variables and one assumes that [25] [26] [27] [28]:  

{ } { } { } { } ( ){ }0 0 0, , 0; , 0; , 1 ,c c c c c c c c c cΠ Π = = ∂ = ∂ = − ∂       (39) 
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where { },  means an anti-commutator. We thus see that the anti-commulators 
in the above equation are non-trivial and need to be fixed. In order to fix these, 
we demand that c satisfy the Heisenberg equation:  

[ ] 0, BRSTc i c= ∂                       (40) 

and using the property 2 2 0c c= =  one obtains  

[ ] { }0 0, ,BRSTc c c c= ∂ ∂                    (41) 

The last three equations then imply :  

{ } ( ){ }0 0, 1 ,c c c c i∂ = − ∂ =                    (42) 

Here the minus sign in the above equation is nontrivial and implies the exis-
tence of states with negative norm in the space of state vectors of the theory. 

The BRST charge operator Q is the generator of the BRST transformations. It 
is nilpotent and satisfies 2 0Q = . It mixes operators which satisfy Bose and 
Fermi statistics. According to its conventional definition, its commutators with 
Bose operators and its anti-commutators with Fermi operators for the present 
theory satisfy:  

[ ] ( ) [ ] [ ]0 0 1 1, ,  , ,  ,Q c A Q c A Q cλ = − = ∂ = ∂              (43a) 

[ ] ( )ˆ ˆ0 0
ˆ ˆˆ ˆ ˆ, ,  , 2 ,n nn Q n c Q nc c = ∂ Π = −Π ∂               (43b) 

{ } ( )ˆ0
ˆˆ, nc Q nλ= Π +Π + ⋅Π                    (43c) 

{ } ( )( )2
0 1 ˆ, 1 1c Q E n∂ = − ∂ + −                   (43d) 

All other commutators and anti-commutators of the theory involving Q and 
the other phase space variables of the theory are seen to vanish. In view of this, 
the BRST charge operator of the present theory could be written as:  

( ) ( )1 2 0
ˆ1 0

ˆˆ ˆd 1 nQ x ic E n i c nλ
 = ∂ + − − ∂ Π +Π + ⋅Π ∫          (44) 

This equation implies that the set of states satisfying the conditions:  

( ) ( )0 2
ˆ1

ˆˆ ˆ0, 0, 0, 1 0, 0nE n nλψ ψ ψ ψ ψΠ = ∂ = Π = − = ⋅Π =    (45) 

belong to the dynamically stable subspace of states ψ  satisfying 0Q ψ = , 
i.e., it belongs to the set of BRST-invariant states. 

In order to understand the condition needed for recovering the physical states 
of the theory we rewrite the operators c and c  in terms of fermionic annihila-
tion and creation operators. For this purpose we consider Euler-Lagrange equa-
tion for the variable c derived earlier. The solution of this equation gives (for the 
instant-form time 0x t≡ ) the Heisenberg operators ( )c t  and correspondingly 
( )c t  in terms of the fermionic annihilation and creation operators as:  

( ) ( ) ( ) ( ) ( ) ( )† †,   c t G t F t c t G t F t= + = +                (46) 

which at the instant-form time  0t =  imply  

( ) ( ) ( ) †0 , 0c c F c t c F≡ = ≡ =                 (47a) 
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( ) ( ) ( ) ( ) †
0 0 0 00 , 0c t c G c t c G∂ ≡ ∂ = ∂ ≡ ∂ =            (47b) 

By imposing the conditions (obtained earlier):  

{ } { }2 2
0 0, , 0c c c c c c= = = ∂ ∂ =                 (48a) 

{ } ( ){ }0 0, 1 ,c c c c i∂ = − ∂ =                   (48b) 

we then obtain  

( ) { } { } { } ( ){ }22 , , 0, , 1 ,F F F F G G G F G F i= = = = = − =† † † † †      (49) 

Now let 0  denote the fermionic vacuum for which  

0 0 0G F= =                         (50) 

Defining 0  to have norm one, the last three equations imply  
† †0 0 ,    0 0FG i GF i= = −                  (51) 

so that  
† †0 0,    0 0G F≠ ≠                     (52) 

The theory is thus seen to possess negative norm states in the fermionic sector. 
The existence of these negative norm states as free states of the fermionic part of 

BRST  is however, irrelevant to the existence of physical states in the orthogonal 
subspace of the Hilbert space. In terms of annihilation and creation operators 

BRST  is:  

( )

( ) ( )

2 2
ˆ0 0 1 0

20 0
0 0 0 1 1 0

1ˆˆ ˆ 1
2

1             
2

BRST u v nu v n w E E A n

A A A G G

λ= Π ∂ +Π ∂ + ⋅Π + + ∂ − −
+ Π −Π ∂ − ∂ + ∂ + 



†

   (53) 

and the BRST charge operator of the present theory could be written as:  

( ) ( )1 2 0
ˆ1

ˆˆ ˆd 1 nQ x iF E n iG nλ
 = ∂ + − − Π +Π + ⋅Π ∫          (54) 

Now because 0Q ψ = , the set of states annihiliated by Q contains not only 
the set for which the constraints of the theory hold but also additional states for 
which  

0F Gψ ψ= =  

( ) ( )0 2
ˆ1

ˆˆ ˆ0, 0, 0, 1 0, 0nE n nλψ ψ ψ ψ ψΠ ≠ ∂ ≠ Π ≠ − ≠ ⋅Π ≠   (55) 

Now because 0Q ψ = , the set of states annihilated by Q contains not only 
the set for which the constraints of the theory hold but also additional states for 
which the constraints of the theory do not hold. However in our considerations, 
the Hamiltonian is also invariant under the anti-BRST transformations given by:  

0 0 0 1 1 0 0
1 1 1 1ˆ ˆ ˆ ˆ, , , c A c A c u c
g g g g

δλ δ δ δ= − ∂ = − ∂ = − ∂ = − ∂ ∂     (56a) 

0
ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ 0n u v wE λδ δ δ δ δ δ δΠ = Π = = Π = Π = Π = Π =        (56b) 
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ˆ ˆ ˆ ˆ ˆ ˆˆ 0, 0, , 0n v w c c b bδ δ δ δ δ δ= = = = = − =           (56c) 

with the generator or anti-BRST charge:  

( ) ( )1 2 0
ˆ1 0

ˆˆ ˆd 1 nQ x ic E n i c nλ
 = − ∂ + − + ∂ Π +Π + ⋅Π ∫       (57) 

or 

( ) ( )1 2 0
ˆ1

ˆˆ ˆd 1 nQ x iF E n iG nλ
 = − ∂ + − + Π +Π + ⋅Π ∫ † †       (58) 

We also have  

[ ]0 0, 0,   , 0BRST BRSTQ Q Q Q ∂ = = ∂ = =            (59) 

with 
1dBRST BRSTx= ∫                        (60) 

and we further impose the dual condition that both Q and Q  annihilate physi-
cal states, implying that:  

  0   and    0Q Qψ ψ= =                   (61) 

The states for which the constraints of the theory hold, satisfy both of these 
conditions and are in fact, the only states satisfying both of these conditions, 
since with  

( )† †1G G GG= −                       (62) 

there are no states of this operator with †   0G ψ =  and †   0F ψ = , and hence 
no free eigenstates of the fermionic part of BRST  that are annihilated by each 
of G, †G , F, and †F . Thus the only states satisfying 0Q ψ =  and   0Q ψ =  
are those that satisfy the constraints of the theory. 

Now because 0Q ψ = , the set of states annihilated by Q contains not only 
the set of states for which the constraints of the theory hold but also additional 
states for which the constraints of the theory do not hold. This situation is, 
however, easily avoided by additionally imposing on the theory, the dual condi-
tion: 0Q ψ =  and   0Q ψ = . By imposing both of these conditions on the 
theory simultaneously, one finds that the states for which the constraints of the 
theory hold are the only states satisfying both of these conditions. This is traced 
to the conditions on the fermionic variables c and c  which constrain the solu-
tions such that one cannot have simultaneously c, 0c∂  and c , 0c∂ , applied to 
ψ  giving zero. Thus the only states satisfying 0Q ψ =  and   0Q ψ =  are 

those that satisfy the constraints of the theory and they belong to the set of 
BRST-invariant as well as to the set of anti-BRST-invariant states. 

Alternatively, one can understand the above point in terms of fermionic anni-
hiliation and creation operators as follows. The condition 0Q ψ =  implies the 
that the set of states annihilated by Q contains not only the states for which the 
constraints of the theory hold but also additional states for which the constraints 
do not hold. However,   0Q ψ =  guarantees that the set of states annihilated by 
Q  contains only the states for which the constraints hold, simply because 

†   0G ψ ≠  and †   0F ψ ≠ . Thus in this alternative way also, we see that the 
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states satisfying     0Q Qψ ψ= =  are only those states which satisfy the con-
straints of the theory and we also see that these states belong to the set of 
BRST-invariant states as well as to the set of anti-BRST invariant states. This 
completes the BRST formulation of the theory. 

5. Summary and Discussion 

In the present work, we have considered the restricted gauge theory of quantum 
chromodynamics (QCD) in one-space one-time dimension (QCD2) à la Cho et 
al. [1]-[14]. We have summarized the basics of the theory in Section 2 where the 
motivations of our present studies have also been discussed and are being omit-
ted here the sake of brevity. The theory under our present investigation is seen to 
be GI and we have studied its quantization using Hamiltonian [24], path integral 
[25] [26] [27] [28] and Becchi-Rouet-Stora and Tyutin (BRST) [29] [30] [31], 
formulations [24]-[31], in the usual instant-form (IF) of dynamics (on the 
hyperplanes: 0 constantx t= = ) [32] [33], under appropriate gauge-fixing con-
ditions. 

The restricted gauge theory of QCD2 à la Cho et al. [1]-[14] and others [1]-[23] 
makes use of the so-called “Cho-decomposition”, which is, in fact, the gauge in-
dependent decomposition of the non-Abelian potential into the restricted po-
tential and the valence potential and it helps in the clarification of the topologi-
cal structure of the non-Abelian gauge theory. This decomposition allows one to 
view QCD as the restricted gauge theory (made of the restricted potential) which 
is coupled to a gauge-covariant colored vector field (the valence potential). The 
restricted potential is defined in such a way that it allows a covariantly constant 
unit isovector n̂  everywhere in space-time, which enables one to define the 
gauge-independent color direction everywhere in space-time and at the same 
time allows one to define the magnetic potential of the non-Abelian monopoles. 
It even has full SU(2) gauge degrees of freedom, in spite of the fact that it is re-
stricted. Consequently, the restricted QCD made of the restricted potential de-
scribes a very interesting dual dynamics of its own, and plays a crucial role in the 
understanding of QCD. This restricted gauge theory of QCD is therefore very 
important and it is important to study its quantization using the standard con-
straint quantization methods, including the Hamiltonian, path integral and 
BRST quantizations, as we have done in the present work. 
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Abstract 
We present here a realization of Hurwitz algebra in terms of 2 × 2 vector ma-
trices which maintain the correspondence between the geometry of vector 
spaces that is used in the classical physics and the algebraic foundation un-
derlying quantum theory. The multiplication rule we use is a modification of 
the one originally introduced by M. Zorn. We demonstrate that our multipli-
cation is not intrinsically non-associative; the realization of the real and com-
plex numbers is commutative and associative, the real quaternions maintain 
associativity and the real octonion matrices form an alternative algebra. Ex-
tension to the calculus of the matrices (with Hurwitz algebra valued matrix 
elements) of the arbitrary dimensions is straightforward. We briefly discuss 
applications of the obtained results to extensions of standard Hilbert space 
formulation in quantum physics and to alternative wave mechanical formula-
tion of the classical field theory. 
 

Keywords 
Hilbert Spaces, Hurwitz Algebras, Zorn Multiplication 

 

1. Introduction 

While the mathematical formalism of classical physics is based on use of real 
vector spaces, quantum physics is typically formulated algebraically. Hence, a 
structure that allows for a connection between both these descriptions is neces-
sary. Among the possible algebras relevant to this task, Hurwitz algebra plays a 
special role. It contains one-, two-, four- and eight-dimensional quadratic nor-
mal division algebras that form the only possible numerical systems. With Hur-
witz algebra, we can generate the sequence of mathematical frameworks suitable 
for the description of dispersion-free [1] classical field theories as well as quan-
tum field theories that obey Heisenberg dispersion relations that use Hilbert 
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modules, which are functional analytical structures similar to the usual Hilbert 
spaces. 

2. Matrix Treatment for Hurwitz Algebras 

Consider the subsequence of those structures with real scalar products, all of 
whose dynamic variables are mutually commuting and whose states are real-, 
complex-, quaternion- and octonion-valued [2]: 

( ) ( ), ,Rf g Tr f g≡                          (1) 

where, for example, for a quaternion-valued f and g, ( ),f g  is quater-
nion-valued as well. The same structure may be alternatively generated by the 
four-dimensional vectors: 

( ) ( ) ( ){ } ( ){ } ( ){ }1 1 2 2 3 3, , , , ,f g Tr f g e Tr f g e e Tr f g e e Tr f g e= − − −    (2) 

( ) ( ) ( ){ } ( ){ } ( ){ }1 1 1 2 2 3 3, , , , ,e f g e Tr f g e Tr f g e e Tr f g e e Tr f g e− = − + +  (3) 

( ) ( ) ( ){ } ( ){ } ( ){ }2 2 1 1 2 2 3 3, , , , ,e f g e Tr f g e Tr f g e e Tr f g e e Tr f g e− = + − +  (4) 

( ) ( ) ( ){ } ( ){ } ( ){ }3 3 1 1 2 2 3 3, , , , ,e f g e Tr f g e Tr f g e e Tr f g e e Tr f g e− = + + −  (5) 

The sum of Equations (2), (3), (4) and (5) gives us: 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 3 3
1, , , , , ,
4Rf g Tr f g f g e f g e e f g e e f g e≡ = − − −      (6) 

or in matrix notation 

( ) 1
1 2 3

2

3

1, , , ,
4R

g
ge

f e f e f e f
ge
ge

 
 
  Ψ Φ = − − − ∗   
 
 

             (7) 

Similarly, the Hilbert module with a complex scalar product is generated by 
the sum of Equation (2) and Equation (3): 

( ) ( ) ( ){ } ( ) ( )1 1 1 1, , , , ,Cf g Tr f g e Tr f g e f g e f g e≡ − = −        (8) 

In matrix notation  

( ) 1
1

1, ,
2C

g
f e f

ge
  Ψ Φ = − ∗     

                   (9) 

The Hilbert module with complex scalar products and octonion-valued states 
is generated in exactly the same manner. The usual Hilbert space obviously fits 
that procedure. This provides evidence of the existence of a uniform matrix 
treatment for all Hurwitz algebras. 

First of all, let us consider 2 × 2 matrices. We have no difficulty in representing 
reals, complex and real quaternions, but the underlying Cayley-Dickson proce-
dure prevents extending the 2 × 2 matrix to the 8-dimensional algebra of real 
octonions. In addition, the matrix obtained via Cayley-Dickson realization of 
real quaternions  
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0 3 1 2

1 2 0 3

q iq iq q
q

iq q q iq
− − − 

⇒  − + + 
                     (10) 

yields a physically erroneous mapping of space-time geometry 

( ), , ,
ct z x iy

x y z t
x iy ct z
+ − 

⇒  + − 
                    (11) 

since it violates the assumed isotropy of the space continuum. We, therefore 
modify the geometric vector matrix approach originally introduced by M. Zorn 
[3] [4] as follows: 

1) For real numbers 

0
0

0

0
0
x

X x
x

 
= ⇒  

 
                       (12) 

2) For complex numbers 

0 0 1
0 1 0

0 1 0

x x x x i
X x x i x x

x x x i x
   

= + ≡ + ⇒ =   
   







           (13) 

3) For quaternions 
3

03
10

0 0 3
1 0

0
1

i i
i

i i
i

i i
i

x x e
x x

X x x e x x
x x

x e x

=

=

=

 
    = + ≡ + ⇒ =    
 
 

∑
∑

∑







     (14) 

4) For octonions 
7

07
10

0 0 7
1 0

0
1

i i
i

i i
i

i i
i

x x e
x x

X x x e x x
x x

x e x

=

=

=

 
    = + ≡ + ⇒ =    
 
 

∑
∑

∑







      (15) 

and the multiplication rule is defined by 

0 0

0 0

0 0 0 0

0 0 0 0

x x y y
Z X Y

x x y y

x y x y x y y x x y
x y y x x y x y x y

   
= ◊ ≡ ◊   

   
+ ⋅ + + × 

=  + + × + ⋅ 

 

 

     

     

             (16) 

where  

i j ije e δ⋅ = −  

i ix y x y y x⋅ = − = ⋅
                           (17) 

ijk i j kx y x y e y xε× = = − ×
   

; 

ijkε  are structural constants in the corresponding multiplication table (see 
Appendix). For quaternions this is usual a totally antisymmetric three-dimensional 
tensor; in the case of octonions it may also be considered as a Levi-Civita tensor 
in seven-dimensional space.  

Explicitly, for quaternions we have  

( ) ( ) ( )2 3 3 2 1 3 1 1 3 2 1 2 2 1 3x y x y x y e x y x y e x y x y e× = − + − + −
         (18) 
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and for octonions 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 3 3 2 1 3 1 1 3 2 1 2 2 1 3

6 5 5 6 1 6 2 2 6 4 2 5 5 2 7

4 7 7 4 1 7 2 2 7 5 2 4 4 2 6

4 6 6 4 2 1 4 4 1 7 1 6 6 1 5

x y x y x y e x y x y e x y x y e

x y x y e x y x y e x y x y e

x y x y e x y x y e x y x y e

x y x y e x y x y e x y x y e

× = − + − + −

+ − + − + −

+ − + − + −

+ − + − + −

 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

5 7 7 5 2 5 1 1 5 6 7 1 1 7 4

6 7 7 6 3 7 3 3 7 6 3 6 6 3 7

5 4 4 5 3 3 5 5 3 4 4 3 3 4 5

x y x y e x y x y e x y x y e

x y x y e x y x y e x y x y e

x y x y e x y x y e x y x y e

+ − + − + −

+ − + − + −

+ − + − + −

      (19) 

Obviously, 

0x x× =
   and 2

i
i

x x x⋅ = −∑                    (20) 

An involution is defined by 

0
0

0

x x
X x x

x x
− 

≡ − ⇒  − 







                    (21) 

and this satisfies the standard requirement 

X X=  

(which follows immediately from (21)). 

X Y Y X◊ = ◊                          (22) 

Proof: 

0 0 0 0

0 0 0 0

x y x y x y y x x y
X Y

x y y x x y x y x y
+ ⋅ − − − × 

◊ =  − − − × + ⋅ 

     

     

           (23) 

0 0

0 0

0 0 0 0

0 0 0 0

y y x x
Y X

y y x x

x y x y x y y x x y
x y y x x y x y x y

− −   
◊ = ◊   − −   

+ ⋅ − − − × 
=  − − − × + ⋅ 

 

 

     

     

           (24) 

Now we are in the position to prove the following statement: The algebras de-
fined by Equations (12), (13), (14), (15), (16) and (17) are quadratic normal divi-
sion algebras. 

Proof:  

1) ( ) 02Tr X X X x≡ + =                                         (25) 

2) ( ) ( )
2

0 0 0
2

0 0 0

0
0

x x x x x x x
Det X N X X X

x x x x x x x
−  − ⋅   

≡ ≡ ◊ = ◊ =     − − ⋅     

 
 

 
 

 

Then  

( ) ( )

( )

2

0 0 0 2
0 0

0 0 0

2 0

X Tr X X N X

x x x x x x
x x x x I

x x x x x x

− +

     
= ◊ − + − ⋅ =     
     

  

 

  

        (26) 

From the uniqueness of the Hurwitz algebras it follows that the realization 
discussed above has the following properties:  
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1) In one-dimensional algebra of reals and in two-dimensional algebra of 
complex numbers 

X Y Y X◊ = ◊  (commutative) 

( ) ( )X Y Z X Y Z◊ ◊ = ◊ ◊  (associative)               (27) 

2) In four-dimensional algebra of real quaternions 

( ) ( )X Y Z X Y Z◊ ◊ = ◊ ◊  (associative)               (28) 

3) In eight-dimensional algebra of real octonions 

( )2X Y X X Y◊ = ◊ ◊  (left alternative)               (29) 

( )2X Y X Y Y◊ = ◊ ◊  (right alternative)              (30) 

Indeed, the validity the above statements may be demonstrated through direct 
matrix calculations. However, as they are rather cumbersome, we will only pro-
vide the useful relations for it: 

1) All Hurwitz algebras hold 

x y y x⋅ = ⋅
                            (31) 

x y y x× = − ×
                           (32) 

( ) ( ) ( )x y z z x y y z x⋅ × = ⋅ × = ⋅ ×
                      (33) 

2) For quaternions 

( ) ( ) ( )x y z x y z x z y× × = ⋅ − ⋅
                       (34) 

Using relations (33) and (34) we have 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0

x y z x y z

x y z y z x x y z y z x x y z x y z

◊ ◊ − ◊ ◊

= × ⋅ − × ⋅ + ⋅ − ⋅ + × × − × ×      
=

                  (35) 

3) For octonions 

( ) ( ) ( )x x y x y x x x y× × = − ⋅ + ⋅
                        (36) 

Using (33) for the scalar component of the alternator we have 

( ) ( ) 0x y z y z x× ⋅ − × ⋅ =
                        (37) 

Therefore, 

( ) ( )Tr x y z Tr x y z◊ ◊ = ◊ ◊                        (38) 

Thus, calculation of scalar products in the real Hilbert module with octo-
nion-valued states may be performed neglecting their non-associativity. Ob-
viously, we also have  

( ) ( )Tr x y z Tr z x y◊ ◊ = ◊ ◊                       (39) 

We have obtained the properties of associativity and commutativity which are 
both needed to formulate a dispersion-free field theory [2]. 

A detailed discussion of self-adjoint operators (dynamic variables) in those 
frameworks will be presented in a separate publication. 
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Using (36) for the vector component of the alternator we have 

( ) ( ) ( )
( ) ( ) ( ) ( ) 0

x x y x y x x x y

x x y x y x x y x x x y

⋅ − ⋅ − × ×

= ⋅ − ⋅ + ⋅ − ⋅ =

        

           

             (40) 

or 

( )2x y x x y◊ = ◊ ◊  (left alternative)                (41) 

Similarly, 

( ) ( ) ( )
( ) ( ) ( ) ( ) 0

x y y y y x x y y

x y y y y x x y y y y x

⋅ − ⋅ + × ×

= ⋅ − ⋅ − ⋅ + ⋅ =

        

           

            (42) 

or 

( )2y x y x x◊ = ◊ ◊  (right alternative)               (43) 

Then the flexibility and the Moufang identities follow  

( ) ( )x y x x y x◊ ◊ = ◊ ◊                      (44) 

( ) ( )x a x y x a x y◊ ◊ ◊ = ◊ ◊ ◊                    (45) 

( ) ( )y x a x y x a x◊ ◊ ◊ = ◊ ◊ ◊                    (46) 

( ) ( ) ( )x y a x x y a x◊ ◊ ◊ = ◊ ◊ ◊                  (47) 

Consider now matrices of arbitrary dimension with matrix elements belong-
ing to one of the Hurwitz algebras. Then the product matrix is defined by the 
usual multiplication rule: 

11 12 1 11 12 1 11 12 1

21 22 2 21 22 2 21 22 2

1 2 1 2 1 2

n n n

n n n

n n nn n n nn n n nn

Z Z Z X X X Y Y Y
Z Z Z X X X Y Y Y

Z Z Z X X X Y Y Y

     
     
     ≡ ∗
     
     
     

  

  

           

  

 (48) 

1

n

ij ik kj
k

Z X Y
=

≡ ∑ ; , 1, 2, ,i j n=                 (49) 

where 
00 0

00 0
1

0 0 0 0

0 0 0 0
1

n
kj kjij ij ik ik

ij
k kj kjij ij ik ik

n
ik kj ik kj ik kj kj ik ik kj

k ik kj kj ik ik kj ik kj ik kj

y yZ Z x x
Z

y yZ Z x x

x y x y x y y x x y
x y y x x y x y x y

=

=

    
≡ = ◊            

 + ⋅ + + ×
≡   + + × + ⋅ 

∑

∑











     

     

      (50) 

, ,ik ik ikX Y Z∀  elements of R, C, H and O algebras. 
Thus, the product matrix is defined as the usual sum of pairs of multipliers 

and the product of each pair is defined by the vector multiplication introduced 
above. The trace and determinant of the product matrix are always real and are 
defined according to the usual rules. For example, 

( ) 0

1

n

ii
i

Tr Z Z
=

= ∑                        (51) 

Therefore, the result of the calculation is unambiguous. 
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3. Conclusions 

Having discussed the geometric extension of conventional matrix multiplication 
which is uniformly valid for all quadratic normal division algebras, I would like, 
in conclusion, to emphasize that the suggested matrix realization is of crucial 
importance for quaternion and octonion extensions of standard functional anal-
ysis since the real as well as the complex Hilbert modules require the use of mul-
ticomponent states. The results obtained allow for the introduction and investi-
gation of the operators necessary for the description of the system dynamics as 
well as for the observables (self-adjoint operators) [5] [6]. In addition, the transi-
tion from the vector matrix to the standard one may provide an alternative me-
chanism for spontaneous breakdown of internal symmetries as suggested by the 
comparison of Equations (10) and (14). Historically, the multiplication opera-
tion over real numbers was first extended to physically relevant three-dimensional 
space and only later to spaces of arbitrary dimensions and signatures [7]. The 
invention of scalar matrix multiplication was an alternative to this generaliza-
tion. It seems reasonable to expect that the vector matrix multiplication sug-
gested here may be extended to additional types of algebras (Clifford, Lie, Jor-
dan, etc.), but that lies outside the scope of this investigation. 
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Appendix 

For readers who would like to verify the statements in this paper by direct calcu-
lation, I reproduce here the multiplication tables of Hurwitz algebra.  
 
Table A1. Complex numbers. 

 0e  1e  

0e  0e  1e  

1e  1e  0e−  

 
Table A2. Quaternions. 

 0e  1e  2e  3e  

0e  0e  1e  2e  3e  

1e  1e  0e−  3e  2e−  

2e  2e  3e−  0e−  1e  

3e  3e  2e  1e−  0e−  

 
Table A3. Octonions. 

 0e  1e  2e  3e  4e  5e  6e  7e  

0e  0e  1e  2e  3e  4e  5e  6e  7e  

1e  1e  0e−  3e  2e−  7e  6e−  5e  4e−  

2e  2e  3e−  0e−  1e  6e  7e  4e−  5e−  

3e  3e  2e  1e−  0e−  5e−  4e  7e  6e−  

4e  4e  7e−  6e−  5e  0e−  3e−  2e  1e  

5e  5e  6e  7e−  4e−  3e  0e−  1e−  2e  

6e  6e  5e−  4e  7e−  2e−  1e  0e−  3e  

7e  7e  4e  5e  6e  1e−  2e−  3e−  0e−  
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Abstract 
We argue that in contrast to the classical physics, measurements in quantum 
mechanics should provide simultaneous information about all relevant rela-
tive amplitudes (pure states and the transitions between them) and all rele-
vant relative phases. Simultaneity is needed since measurement changes the 
state of the system (in both quantum and in classical physics). We call that 
measurement procedure holographic detection. Mathematically, it is de-
scribed by a set of mutually commuting selfadjoint operators that are similar 
and closely related to projections. We present explicit examples and discuss 
general features of the corresponding experimental setup which we identify as 
the quantum reference frame. 
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1. Introduction 

Debates about the connection between hidden laws of nature and our ability to 
extract the information necessary to formulate these laws have a long history, 
perhaps as long as study of physics itself. This paper, while not related to the 
philosophical or metaphysical aspects of those discussions, puts forth certain 
point of view without intention to defend it or to convince the reader that it is 
only possible approach. We simply present how the process of knowledge acqui-
sition is realized within that approach. We explore the analogy to the structure 
of field theories (classical electrodynamics, general relativity and non-relativistic 
quantum mechanics) and make a distinction between unobservable kinematical 
quantities which characterize a physical system and the measurable variables 
which define its dynamics. Since the main distinction between classical and 
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quantum physics is the presence of new kinematic quantities—phases—we need 
to know how to measure the corresponding phase differences. We demonstrate 
that this measurement may be obtained by using a special experimental ar-
rangement that we call quantum reference frames. This allows for communicat-
ing the required hidden unobservable information to the instruments of the ob-
server. This simultaneously explains why the elementary unit of communication 
is given in terms of an indivisible bit. 

The notion of the eigenschaften operator was first introduced by J. von Neu-
mann [1] as a necessary ingredient of his theory of measurements. He suggested 
assigning that role to projection operators which define not only the space of 
quantum mechanical states but also the structure of that space and its complete, 
orthonormal basis. In our model, it is logically consistent to use eigenschaften 
operators that closely relate to projection operators but act on the whole space 
without distortion; that is, eigenschaften operators that are unitary. 

The main feature of the measurement process is that measurement devices are 
macroscopic, obeying the laws of classical physics, whereas the systems being 
tested belong to the microscopic world and behave quantum mechanically. In-
deed, the measurement setup should assure that the results obtained represent 
objective properties of the physical system being investigated and not the subjec-
tive imagination of the observer. Using classical physics, we complete that task 
by introducing reference frames such that the location of the detector defines 
both the frame’s origin and the set of auxiliary macroscopic devices. This allows 
for establishment of a connection between frames that are separated by a finite 
space-time interval (comparison of the empirical data obtained must always be 
performed by the same observer). Similarly, in order to measure the relevant 
quantum dynamical variable a set of auxiliary macroscopic devices should be in-
cluded in the classical setup to produce the necessary beam-splitting. Then the 
required phase differences can be measured in the usual way. This setup and re-
cording procedure may be viewed as general holographic detection.  

The organization of this paper is as follows: 
Section 2 presents a discussion of the relevant kinematics of the quantum 

theory. Section 3 introduces the unitary, self-adjoint operators which we identify 
as adequate eigenschaften operators. 

Section 4 discusses the quantum frames of reference making a close analogy to 
the inertial frames of classical physics. 

2. The Kinematics of Quantum Mechanical Theory 

We restrict ourselves to discussion of single particle states, avoiding complica-
tions introduced by special relativity. We use an orthodox kinematic approach 
based on the mathematical framework of Hilbert metric spaces. That means that 
we assume that there exists at least one self-adjoin operator that generates this 
space. That operator is supposed to describe the dynamics of a single particle 
that is completely isolated from the external world. All measurable quantities are 
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also described by self-adjoint operators. In particular, projection operators, den-
sity matrices, etc. are treated as special kinds of observables, whereas the funda-
mental quantity associated with the state of the physical system is treated as a 
wave function [2]. In contrast to operators that are geometric transformations of 
the given vector space, wave functions are vectors that form that space and are 
both unobservable and incapable of being measured directly, at least in prin-
ciple. 

The transition from the sterile situation of a single isolated particle to the 
real-life physical system is achieved through introduction of the local interac-
tions of the test particle with the fields generated by the rest of the external 
world. These interactions are introduced using the principle of local gauge inva-
riance. The required complexity emerges from the statistical nature of the envi-
ronment. This approach is identical to the conventional one that has long been 
established in the development of classical physics over the centuries except that 
the definition of (fundamental) interactions is now connected to the new phys-
ics, since we are dealing with matter waves. 

The fundamental property of the quantum mechanical states is as expressed in 
terms of the linear superposition principle is:  

If 1Ψ  and 2Ψ  are two different states of the system, then 

1 2a bΨ = Ψ + Ψ                        (1) 

is also a state of the system. Equivalently, we may write: 

1

2

0
0

a b
  Ψ

Ψ = +    Ψ   
                    (2) 

or 

1

2

a
b
 Ψ 

Ψ =  Ψ 
; 1 1 2 2 1Ψ Ψ = Ψ Ψ = ; 1 2 0Ψ Ψ =          (3) 

However, that seemingly innocent-looking mathematical expressions leads to 
a dramatic change in the physics of the described system, since the presence of 
the second orthogonal component is the necessary and sufficient condition that 
now the above function describes the extended object: 

Theorem [3]: if ˆ ˆA A+ =  and 1 2 0Ψ Ψ = ; 1 1 2 2 1Ψ Ψ = Ψ Ψ = ; 
Then 

 1 1 2Â a bΨ = Ψ + Ψ                     (4) 

1 1
ˆ ˆa A A A= Ψ Ψ = ≡                    (5) 

( ) ( )2 22 2
1 1

ˆb bb A a A∗= = Ψ − Ψ ≡ ∆               (6) 

can be decomposed.  
Proof: 

( )2 2 2 2
1 1 1 1

ˆ ˆA a A aΨ − Ψ = Ψ Ψ −  = 

( )( ) 2
1 2 1 2a b a b a bb∗ ∗Ψ + Ψ Ψ + Ψ − =  
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Therefore, what we need to reconstruct in the properly performed quantum 
mechanical measurement is a picture. Since equations of motion are intrinsically 
complex, the quantum mechanical system must be described by a two-component 
state function at least, due to the Euler relation: 

( )exp cos sini iϕ ϕ ϕ= + . 

In contrast to classical physics, quantum mechanics is the physics of extended 
objects; it is the theory of matter fields. Now, due to D. Hilbert’s spectral de-
composition theorem [4], any Â , such that ˆ ˆA A+=  may be expressed in terms 
of one-dimensional projectors: 

ˆ ˆ
n n

n
A Pλ= ∑                           (7) 

where 
ˆ ˆ ˆ ˆ ˆ ˆ ˆ; ; ;n n n m nm m nP P P P P P Iδ+ = = =∑                  (8) 

or, in Dirac notation: 

n̂ n nP ϕ ϕ= ;                         (9) 

nλ  are eigenvalues of operator Â  and nϕ  are its eigenfunctions. The set of 
eigenfunctions forms a complete orthonormal basis. Thus, the space obtained is 
the metric space suitable for physical applications, hence, Operator (9) defines a 
pure state. More generally, one introduces the density matrix 

ρ̂ ϕ ϕ=  

ˆij i j i jρ ϕ ρ ϕ ϕ ϕ ϕ ϕ= =                  (10) 

ij i jρ ϕ ϕ ϕ ϕ
∗

=  

or  

ˆ n n n
n

wρ ϕ ϕ= ∑                       (11) 

We may try to use linear algebra in order to clarify the difference between 
uni- and multi-component states. Using Heisenberg-Schrödinger notation, we 
may write: 

1

1 0ˆ
0 0

P  
=  
 

; 2

0 0ˆ
0 1

P  
=  
 

                   (12) 

1 2
ˆ ˆ ˆP P I+ =  

We consider the two-component case only for its simplicity, generalization to 
the non-generate finite dimension case is straightforward: 

Now consider the two-component wave function. Then 

1 0
0 1

1

a
a b

b

aa bb∗ ∗

     
Ψ = + =     

     
+ =

                   (13) 

The corresponding density matrix 
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ˆ aa ab
ba bb

ρ
∗ ∗

∗ ∗

 
=  
 

                      (14) 

may be obtained using Kronecker product multiplication 

( )ˆ ,
a

a b
b

ρ ∗ ∗ 
= ⊗ 
 

                     (15) 

However, equation (14) still describes a pure state, since 

ˆ ˆρ ρ+= ; 2ˆ ˆρ ρ= ; ˆ 1Trρ =                   (16) 

Let us introduce the notation 

0 00ˆ
00 0

aa
bb

ρ
∗

∗

   
= +   

  
                   (17) 

Then, 

0ˆˆ
0

ab
ba

ρ ρ
∗

∗

 
= +  

 
                      (18) 

Obviously, 

ˆ ˆρ ρ+=  ; ˆ 1Trρ =                       (19) 

But 
2ˆ ˆρ ρ≠   if 0ab ≠                      (20) 

ρ̂  is a mixture of two pure one-particle states 
0
a 
 
 

 and 
0
b
 
 
 

. Clearly, this  

cannot be treated as a single particle state. In order to demonstrate this let us 
calculate the dispersion of the projection operator ρ̂ : 

( ) ( ) ( ) ( )( )2 2ˆˆ ˆ 1 2 .Tr aa bb aa bbρ ρρ ∗ ∗ ∗ ∗≡ = + = −          (21) 

If 0ab ≠ , then  

ˆ1 0ρ> >  and 2ˆ1 0ρ> >  

Therefore, 

( ) ( ) ( )( ) ( ) ( )22 2 ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ1 0Tr Tr Tr Trρ ρ ρ ρρ ρρ ρρ ∆ ≡ − = − > 
         (22) 

which contradicts the spectral decomposition theorem. Hence, the system state 
in our example is a pure state. 

The operator ρ̂  (Equation (14)) preserves the clear geometrical meaning of a 
one-dimensional, dispersion-free projector. If one starts with a well-defined ref-
erence frame, the complete set of those projectors allows the rotation of that new 
reference frame to the new axes. However, that set does not allow the extraction 
of information about the dispersions contained in the measurements of the tran-
sition amplitudes. The next section discusses the self-adjoint operators that allow 
for doing just that. 
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3. Eigenschaften Operators 

From the logical point of view, it is natural to expect that projection operators do 
not provide an adequate means for obtaining information about all possible al-
ternatives, since they destroy the orthogonal subspace of the Hilbert space: A 
true eigenschaften operator must be unitary. Together with the requirement of 
being observable ( ˆ ˆH H+ = ), that leads to the following theorem: 

Theorem: 
If 1ˆ ˆH H+ −=  (unitary) and ˆ ˆH H+ =  (self-adjoint), 
Then 

2ˆ ˆH I= . 

Proof:  (23) 
1) Suppose 

1ˆ ˆ ˆH H H+ −= = , 

then 
1ˆ ˆ ˆ ˆ ˆH H H H I−⋅ = ⋅ = . 

2) Suppose 
2ˆ ˆH I=  and 1ˆ ˆH H+ −= , 

then 
ˆ ˆH H+ = . 

From 2ˆ ˆH I=  we have 

( ) ( )ˆ ˆ ˆ ˆ 0H I H I− ⋅ + =                      (24) 

Let us first consider the two-dimensional case. From Equation (24)  

1 1λ = ; 2 1λ = −                        (25) 

and due to the spectral composition theorem, we have 

2 1 2
ˆ ˆ ˆH P P= −                         (26) 

Since 

1 2
ˆ ˆ ˆP P I+ =                          (27) 

we finally obtain 

2
1

2
2

ˆ ˆ
ˆ

2
ˆ ˆ

ˆ
2

I HP

I HP

+
=

−
=

                         (28) 

Now in terms of matrix mechanics we have 

2 1 1 1 2 3
ˆ eiH ϕα β ∆Ψ = Ψ + Ψ ≡ Ψ  

2 2 1 2 2 4
ˆ e iH ϕβ α− ∆Ψ = Ψ + Ψ ≡ Ψ               (29) 

with 
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1 1 2 2 3 3 4 4 1Ψ Ψ = Ψ Ψ = Ψ Ψ = Ψ Ψ =  

1 2 3 4 0Ψ Ψ = Ψ Ψ =                     (30) 

Then, 

( )1 2

2 2
1
2 2
2

0

1

1

β α α

α β

α β

⋅ + =

+ =

+ =

                        (31) 

Since we are discussing here the measurement of the relevant parameters of 
quantum mechanical systems with non-vanishing dispersion, we consider only 
the 0β ≠  case. Then, 

1 2α α α= − ≡                         (32) 

or  

( )2
ˆ 0Tr H =                          (33) 

The matrix elements 

1 2 1 2 2 2
ˆ ˆH H αΨ Ψ = − Ψ Ψ =                 (34) 

and  

2 2 1
ˆ eiH ϕβ ⋅∆Ψ Ψ =                     (35) 

are all we need to know about the quantum state. Both are measurable, ( )2 11
Ĥ  

defines the spectrum and ( )2 12
Ĥ  defines the dispersion. The basis introduced 

above 3Ψ  and 4Ψ  is distinguished by the fact that it allows for simulta-
neous measurement of both spectrum and dispersion. The example of a 
two-level system should make this even clearer: 

( )
( )

1 1 2

2 1 2

2 1 1 1 2

2 2 1 2

ˆ e e e

ˆ e e e

i t i t i t

i t i t i t

H

H

ω ω ω

ω ω ω

α β

β α

− ⋅ − ⋅ − ⋅

− ⋅ − ⋅ − ⋅

Ψ = Ψ + Ψ

Ψ = Ψ − Ψ
          (36) 

Then dropping the overall phase factor, we obtain  
( )

( )

1 2

1 2

2 1 1 2

2 2 1 2

ˆ e
ˆ e

i t

i t

H

H

ω ω

ω ω

α β

β α

⋅ −

− ⋅ −

Ψ = Ψ + Ψ

Ψ = Ψ − Ψ
               (37) 

Using the relations in (31) we obtain the most general solution: 

2
cos e sinˆ

e sin cos

i

iH
ϕ

ϕ

γ γ
γ γ

− ⋅∆

⋅∆

 ⋅
=  

⋅ − 
                 (38) 

In particular, for 0ϕ∆ =  and 45γ =   we obtain the Hadamard matrix of 
lowest order (N = 2) 

2

1 11ˆ
1 12

H  
=  − 

                       (39) 

that is well-known in image processing applications. 
Now we demonstrate that the solution obtained is intrinsically consistent with 

the general statement [3] referred to above. The density matrix in our example 
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(Equation (14)) is 
2

2

cos sin cos eˆ
sin cos e sin

i

i

ϕ

ϕ

γ γ γ
ρ

γ γ γ

− ∆

∆

 ⋅ ⋅
=  

⋅ ⋅ 
           (40) 

Then  

( )2 2
cos sin eˆ ˆ ˆ cos

0 0

i

H Tr H Tr
ϕγ γ

ρ γ α
− ∆ ⋅

≡ = = = 
 

      (41) 

( )2 2
2 2

ˆ ˆ ˆ ˆ 1H Tr H Trρ ρ≡ = =                  (42) 

and 

( ) ( )22 2 2 2
2 2 2

ˆ ˆ ˆ 1 cos sinH H H γ γ ββ ∗∆ ≡ − = − = =        (43) 

Consider now the three-component case (an analog to three-level quantum 
mechanical systems). 

We prefer to explicitly discuss the three-component and the four-component 
cases, rather than the general n-dimensional situation which follows directly 
from the results obtained. 

We have 
1 2

31

32

3 1 1 1 2 3 4

3 2 1 2 2 3 5

3 3 1 2 3 3 6

ˆ e
ˆ e e
ˆ e e

i i

ii

ii

H e

H

H

φ ϕ

ϕϕ

ϕϕ

α β γ

β α µ

γ µ α

∆ ∆

∆− ∆

− ∆− ∆

Ψ = Ψ + Ψ + Ψ ≡ Ψ

Ψ = Ψ + Ψ + Ψ ≡ Ψ

Ψ = Ψ + Ψ + Ψ ≡ Ψ

       (44) 

with 

1 1 2 2 3 3

4 4 5 5 6 6

1 2 1 3 2 3

4 5 4 6 5 6

1

1

0

0

Ψ Ψ = Ψ Ψ = Ψ Ψ =

Ψ Ψ = Ψ Ψ = Ψ Ψ =

Ψ Ψ = Ψ Ψ = Ψ Ψ =

Ψ Ψ = Ψ Ψ = Ψ Ψ =

               (45) 

Then, the matrix elements of 3Ĥ  are connected by the following relations: 

( )( ) ( )

( )
( )( )
( )( )
( )( )

2 2
3 1 2 3

3

2
1 2

2
1 3

2
2 3

3 2 1

ˆ 1

ˆ 1

1 1

1 1

1 1

Tr H

Tr H

α α α

β α α

γ α α

µ α α

ϕ ϕ ϕ

= + + =

= ±

=

=

=

∆ = ∆ −∆

 

 

 

                 (46) 

Let us establish the connection between the eigenschaften and the projection 
operators here. Consider the uni-dimensional projection operators  

1 2 3

1 2 3

1 0 0 0 0 0 0 0 0
ˆ ˆ ˆ0 0 0 ; 0 1 0 ; 0 0 0 ;

0 0 0 0 0 0 0 0 1
ˆ ˆ ˆ ˆ

P P P

P P P I

     
     = = =     
     
     

+ + =

          (47) 
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Again, the most general one-dimensional projector may be written in the 
form 

( )

2

ˆ , ,

ˆ ˆ ˆ ˆ ˆ; ; 1

a
b a b c
c

Tr aa bb cc

ρ

ρ ρ ρ ρ ρ

∗ ∗ ∗

+ ∗ ∗ ∗

 
 = ⊗ 
 
 
= = = + + =

              (48) 

Then using spectral decomposition  

3 1 1 2 2 3 3

2
3

ˆ ˆ ˆ ˆ

ˆ ˆ
H P P P

H I

λ λ λ= + +

=
                      (49) 

we have 
( )

( )

( )

1
3 1 2 3

2
3 1 2 3

3
3 1 2 3

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

H P P P

H P P P

H P P P

= − + +

= − +

= + −

                       (50) 

Thus, we obtain 
( )

( )

( )

1
3

1

2
3

2

3
3

3

ˆ ˆ
ˆ

2
ˆ ˆ

ˆ
2

ˆ ˆ
ˆ

2

I H
P

I H
P

I H
P

−
=

−
=

−
=

                         (51) 

However, only two equations are linearly independent 
( ) ( ) ( )1 2 3
3 3 3

ˆ ˆ ˆ ˆH H H I+ + =                       (52) 

and form the following commutative algebra 
( ) ( ) ( )

( ) ( )

1 2 3
3 3 3

3 3

ˆ ˆ ˆ

ˆ ˆ, 0; , 1, 2,3i j

H H H

H H i j

⋅ = −

  = = 
                    (53) 

We conclude with a demonstration of the four-component case. The 4Ĥ  
operators ( 4 4

ˆ ˆH H+ =  and 2
4

ˆ ˆH I= ) have the form: 

1 2 4

3 51

3 62

5 64

1

2
4

3

4

e
e e eˆ
e e e
e e e

i i i

i ii

i ii

i ii

e e

H

ϕ ϕ ϕ

ϕ ϕϕ

ϕ ϕϕ

ϕ ϕϕ

α β γ δ
β α µ υ
γ µ α ζ
δ υ ζ α

− ∆ − ∆ − ∆

− ∆ − ∆∆

∆ − ∆∆

∆ ∆∆

 
 
 =  
  
 

            (54) 

3 2 1

5 4 1

6 4 2

ϕ ϕ ϕ
ϕ ϕ ϕ
ϕ ϕ ϕ

∆ = ∆ −∆

∆ = ∆ −∆

∆ = ∆ −∆
                      (55) 

Now we have 

( )4
ˆ 2,0, 2Tr H = −                       (56) 
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If ( )4
ˆ 2Tr H = ± , the transition amplitudes (dispersions) are related to the 

spectrum through the following equations: 

( )( )
( )( )
( )( )
( )( )
( )( )
( )( )

2
1 2

2
1 3

2
1 4

2
2 3

2
2 4

2
3 4

1 1

1 1

1 1

1 1

1 1

1 1

β α α

γ α α

δ α α

µ α α

υ α α

ζ α α

=

=

=

=

=

=

 

 

 

 

 

 

                      (57) 

Notice that these relations are universally valid and thus are subject to direct 
experimental verification. 

As in the above, we may establish relations between eigenschaften and projec-
tion operators. For example, for ( )4

ˆ 2Tr H =  we obtain 

( )

( )

( )

( )

1 2 3 4

1
4 1 2 3 4 1

2
4 1 2 3 4 2

3
4 1 2 3 4 3

4
4 1 2 3 4 4

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ2

I P P P P

H P P P P I P

H P P P P I P

H P P P P I P

H P P P P I P

= + + +

= − + + + = −

= − + + = −

= + − + = −

= + + − = −

                 (58) 

Again, we have  

( )
4

4
1

1 ˆ ˆ
2

i

i
H I

=

=∑                         (59) 

and 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 2 1 2 3 4
4 4 4 4 4 4

4 4

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ, 0; , 1, 2,3, 4i j

H H H H H H

H H i j

⋅ = + − −

  = = 
               (60) 

and so on. 
For the case ( )4

ˆ 0Tr H = , we may write 
( )

( )

( )

1
4 2

2
4 2

3
4 2 2

ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ

H I H

H H I

H H H

= ⊗

= ⊗

= ⊗

                      (61) 

since  

( )Tr A B TrA TrB⊗ = ⋅                    (62) 

Then we have 

( )

( )

( )

1 2 3 4

1
4 1 2 3 4

2
4 1 2 3 4

3
4 1 2 3 4

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

I P P P P

H P P P P

H P P P P

H P P P P

= + + +

= − + −

= + − −

= − − +

                   (63) 

and 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 3
1 4 4 4

1 2 3
2 4 4 4

1 2 3
3 4 4 4

1 2 3
4 4 4 4

1ˆ ˆ ˆ ˆ ˆ
4
1ˆ ˆ ˆ ˆ ˆ
4
1ˆ ˆ ˆ ˆ ˆ
4
1ˆ ˆ ˆ ˆ ˆ
4

P I H H H

P I H H H

P I H H H

P I H H H

 = + + + 

 = − + − 

 = + − − 

 = − − + 

                  (64) 

Again we have  
( ) ( ) ( )

( ) ( )

1 2 3
4 4 4

4 4

ˆ ˆ ˆ

ˆ ˆ, 0; , 1, 2,3i j

H H H

H H i j

⋅ =

  = = 
                   (65) 

We assume that the way to further generalization is obvious. 

4. Holographic Detection: Quantum Reference Frames 

Perhaps nobody needs an explanation of the mathematical formalism discussed 
in the previous section: we hope it speaks for itself. Nevertheless, we devote this 
section to the description of the physical “picture” behind the approach pre-
sented since that was the guideline that led us to it.  

We address the following questions: 
1) What is the difference between “on-off” and “or-and” switches in terms of 

quantum mechanical self-adjoint operators (observables)? 
2) How are transition amplitudes between stationary (pure) states naturally 

and symmetrically incorporated within the amplitudes of these states? 

3) Is it possible to measure Â  and Â∆  simultaneously and how is the re-
quired setup arranged? 

4) If it is possible, may measurements be performed using only macroscopic 
devices? 

5) What does the Heisenberg Dispersion Relation (HDR) have to do with 
those measurements? 

Our answer to the last question: almost nothing. It is well known [5] that the 
product of two noncommuting self-adjoint operators is not a self-adjoint opera-
tor and that the dispersion of their product is also not a self-adjoint operator. 
Therefore, there is no way to assign physical meaning to its numerical value. The 
theoretical importance of HDR tells us that quantum physics is the physics of 
extended objects and not the physics of material Newtonian points. The results 
of measurements are “pictures” and cannot in principle be treated as an image of 
a single point in space-time. The projection operators extensively used by J. von 
Neumann in his attempt to formulate his theory of measurements obviously play 
therole of “on-off” switches that define the basis of state vectors in Hilbert space. 
Therefore, it is reasonable to expect that “or-and” operators should be connected 
to them but in a slightly different way. Hadamard transformations [3] [6] which 
find their applications in image processing and quantum information theory 
seem to be suitable candidates. In addition, the notions of bits and qubitsnaturally 
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appear as two-component wave packets. Finally, in order to provide a laboratory 
realization of the simultaneous measurement of the relevant amplitudes (relative 
generalized coordinates) and phase differences one should assure that wave 
packets arrive at every point on the detector screen. 

Let us expose the content of our discussion to the eyes of the Schrödinger cat 
totally confused by the endless debates about its destiny. The usual justification 
for the apparent uncertainty refers to HDR. But empirical evidence tells us that 
the initial assumption that the cat may be considered as a quantum mechanical 
system containing inherent indeterminacy which then “becomes transformed 
into macroscopic indeterminacy” [7] is clearly wrong. If the state of the system 
(the “cat”) is defined, one can measure its dispersion. Now, if in that given state 
the dispersion is not zero, we are dealing with an extended object and the ex-
pected result of the measurement should be represented by a picture of an un-
fortunate cat “mixed or smeared out in equal parts” [7]; if not, the cat was and 
will remain in the pure (definite) state, hopefully alive! Now, let us remember 
that in classical physics where only measurements of amplitudes are required, 
nobody doubts that the “moon is there” and that it is the same for all inertial 
reference frames, for example (Figure 1). 

Here the lossless beam splitter is the macroscopic device which actively parti-
cipates in the detection procedure ( 2 2

ˆ ˆH H+ = ). 
By contrast, in the microscopic quantum mechanical world (quantum optics) 

we are also required to measure the phase differences in order to obtain all exis-
tent and necessary information about the original object. This may be done us-
ing a similar setup, for example, see Figure 2. 

However, in both cases the mirror and the lossless beam splitter participate 
only passively in the detection; they do not cause the wave function to collapse, 
but allow for extracting information on phase differences, since the referential 
component of the wave packet arrives a teach point of the detector screen  
 

 
Figure 1. Classical optics measurement systems. 
 

 
Figure 2. Quantum optics measurement systems. 
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together with the tested wave packet (within the inherent dispersion of the 
quantum mechanical space-time continuum). Then there is no reason to expect 
that the picture obtained would not provide an adequate image of the original 
object. It seems that now we are better equipped to formulate the dynamic (rela-
tivistic) laws of quantum physics. Ultimately that should lead to deeper under-
standing of the geometry of the space-time continuum. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] von Neumann, J. (1931) MathematischeGrundlagen der Quantenmechanik. Sprin-

ger, Berlin. 

[2] Dirac, P.A.M. (1958) The Principles of Quantum Mechanics. 4th Edition, Clarenton 
Press, Oxford. 

[3] Aharonov, Y. and Vaidman, L. (1990) Physical Review A, 41, 11. 
https://doi.org/10.1103/PhysRevA.41.11 

[4] Courant, R. and Hilbert, D. (1931) Methoden der Mathematischen Physik. Springer, 
Berlin. https://doi.org/10.1007/978-3-642-47436-1 

[5] Carruthers, P. and Nieto, M. (1968) Reviews of Modern Physics, 40, 411.  
https://doi.org/10.1103/RevModPhys.40.411 

[6] Bouwmeester, D., Ekker, A. and Zeilinger, A. (2000) The Physics of Quantum In-
formation. 

[7] Schrödinger, E. (1935) Die Naturwissenschaften, 48, 807; 48, 823; 48, 844.  
 
 

 

DOI: 10.4236/jmp.2018.914152 2390 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2018.914152
https://doi.org/10.1103/PhysRevA.41.11
https://doi.org/10.1007/978-3-642-47436-1
https://doi.org/10.1103/RevModPhys.40.411


Journal of Modern Physics, 2018, 9, 2391-2401 
http://www.scirp.org/journal/jmp 

ISSN Online: 2153-120X 
ISSN Print: 2153-1196 

 
 
 

New Discovery on Planck Units and Physical 
Dimension in Cosmic Continuum Theory 

Xijia Wang 

College of Mathematics and Statistics, Hunan Normal University, Changsha, China  

 
 
 

Abstract 

In 1899, Max Planck integrated the Planck constant h with the gravitational 
constant G and the speed of light c, discovered a set of physical constants, and 
created Planck Units System. Since 20th century, the development of physics 
made the gravitational constant, the speed of light, and the Planck constant 
the most important fundamental constants of physics representing classical 
theory, relativity, and quantum theory, respectively. Now, the Planck Units 
have been given new physical meanings, revealing the mysteries of many 
physical boundaries. However, more than 100 years have passed, Planck 
Units System not only failed to get rid of the incompatibility between the ba-
sic theories of physics, but also cannot surpass the limitations of existing 
physics theories. In Cosmic Continuum Theory, physical dimensions can be 
transformed under the principle of equivalence. Planck units system not only 
integrates into the axiom system of Cosmic Continuum Theory, but also es-
tablishes a benchmark for the unity of physical dimensions. The introduction 
of the abstract physical dimensions “JX” and “XJ” makes the physical dimen-
sion of existence quantity and dimension quantity unified respectively.  
 

Keywords 

Cosmic Continuum, Axiomatic Physics, Fundamental Constants of Physics, 
Gravitational Redshift, Planck Units, Dimensional Analysis 

 

1. Introduction 

The fundamental constants of physics are the passwords of the universe and 
important scientific discoveries. Among all the physical constants, the 
well-known gravitational constant G, speed of light c, and Planck constant h are 
the three most fundamental constants of physics. These three fundamental con-
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stants of physics represent the different epoch-making basic theory of physics 
respectively. The gravitational constant G represents classical theory, the speed 
of light c represents relativity, and the Planck constant h represents quantum 
theory. 

However, because these three basic theories of physics have different logical 
preconditions, they are regarded as three different cosmologies. There are dis-
putes between high speed and low speed, macroscopic and microscopic, conti-
nuous and discrete between the three parties, and no consensus has been 
reached so far. 

Cosmic Continuum Theory is an axiomatized physics system built on the 
mathematical continuum model. In Cosmic Continuum Theory, the universe is 
a continuum consisting of an existence continuum and an existing dimension 
continuum. The existence continuum is composed of mass bodies, energy bodies 
and dark mass bodies. The existing dimension continuum is composed of space, 
time and dark space. Mass, energy and dark mass are collectively called the exis-
tence quantity, and the quantity of space, time and dark space is called the di-
mension quantity [1] [2] [3]. 

This theory holds that a fundamental constant of physics should not only 
serve a certain physical basic theory. As cosmic codes of physics that gradually 
discovering in the course of continuous advancement, they are human’s basic 
understanding of the natural world and should be an important basis for the un-
ity of physics. 

It was Max Planck himself who tried to unify fundamental constants of phys-
ics and achieved remarkable success. In 1899, he combined the Planck constant 
h with the gravitational constant G and the speed of light c, and found a series of 
physical constants. These physical constants are the so-called Planck units, and 
the following four constants are related to the existence quantity and the dimen-
sion quantity [4]. 

1) Planck mass: 82.17651 10pm hc G −= ≈ ×  (kg). 
2) Planck energy: 5 91.9561 10pE hc G= ≈ ×  (J). 
3) Planck time: 5 445.39106 10pt hG c −= ≈ ×  (s). 
4) Planck length: 3 351.61619 10pl hG c −= ≈ ×  (m). 
They are given corresponding physical meanings, such as: the mass of the 

ground state particles cannot be greater than the Plank mass; the energy cannot 
be greater than or equal to the Planck energy, otherwise it will collapse into a 
black hole; Planck time is an observable event Minimum process time; Planck 
length is a measure of Plank’s quality black hole, unable to distinguish events 
within a distance less than Planck length; unable to describe events occurring 
within Planck time when the universe was born, etc. However, the Planck Unit 
cannot resolve the logical contradiction with the continuous space-time of the 
theory of relativity, because the space-time structure derived from Planck’s 
length and Planck’s time is discontinuous. Even for quantum field theory, 
Planck length and point particle models are in conflict [5]-[21]. 
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2. The Physical Boundaries and Their Conversion of Planck  
Units System 

In the following, we include the Planck units in the axiom system of Cosmic 
Continuum Theory for discussion.  

2.1. Fundamental Concepts and Lemmas 

This article uses the fundamental concepts and axioms system in [1]. The fol-
lowing lemmas are cited in [1], these lemmas will be used in later proofs.  

Lemma 1: The existence quantity has its elementary unit mine  (Proof see 
[1]). 

This lemma is equivalent to the quantification hypothesis. 
Lemma 2: The interaction force between the initial fields of the existences 1Z  

and 2Z  is: 2
1 2~f Z Z r , and the action direction is along the line connecting 

1Z  and 2Z , where, r is the distance between 1Z  and 2Z  (Proof see [1]). 
This lemma contains the law of universal gravitation. When the existence is a 

mass body, the theorem is the law of universal gravitation. 
Lemma 3: An existence has a maximum speed and the speed of an energy 

body is the maximum speed (Proof see [1]). 
This lemma includes the speed of light postulate. 
Lemma 4: An existence has a maximum frequency maxυ  (Proof see [1]). 
Lemma 5: When the particle reaches its maximum speed, it will be converted 

to a quantum; when the particle or quantum reaches its maximum frequency, it 
will be transformed into dark particle (Proof see [1]). 

Lemma 6: The existence quantities of mass m and energy 2E mc=  are 
equivalent: m E≡ . “≡” is the “equivalent” symbol (Proof see [1]). 

This lemmas contain mass-energy relation 2E mc= . 
Lemma 7: The dimension quantity of 1-second of time is equivalent to that of 

c-kilometer space: 1 second ≡ c km, where, c indicates the speed of light (Proof 
see [1]). 

Lemma 8: In a cosmic system A, the elementary particle, elementary quantum 
and elementary dark particle have equivalent inertia size: min min minm q d≡ ≡  
(Axiom in [1]). 

Lemma 9: A dimension quantity has its elementary units minw , and the di-
mension quantities of elementary space quantity mins , elementary time quantity 

mint  and elementary dark space quantity minw  are equivalent:  

min min min minw s t g≡ ≡ ≡  (Proof see [1]). 
Lemma 10: The existences are coupled with each other by energy, And in the 

presence of different structural levels, by the corresponding quantum from the 
role of convergence. If there is a structure at the structural level of the quantum 
of q connection, e the corresponding amount of existence, the corresponding 
structure of the particle m, dark particle d is also the amount of e: m d q e≡ ≡ ≡  
(Axiom in [1]). 

Lemma 11: There are only three basic forms of existence: particle, quantum, 
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and dark particle (Axiom in [1]). 
Lemma 12: The interaction force between the initial fields of the existences 

1Z  and 2Z  is: 2
1 2~f Z Z r , and the action direction is along the line con-

necting 1Z  and 2Z , where, r is the distance between 1Z  and 2Z  (Proof see 
[1]). 

2.2. Derivation 

1) Planck mass mp 
According to Lemma 2, the gravitational potential energy of two existing bo-

dies with a distance of r and a mass of m is 2Gm r , where G is the gravitational 
constant. 

Let the vibration period of mass body m be t, then its frequency is: 

1 tυ =                               (1) 

Also set its speed to V, then its movement distance in a period t is: 

r Vt=                               (2) 

The search for Planck unit is to define the boundaries of physical events. Ac-
cording to Lemma 3, the velocity boundary of the microscopic particles is the 
speed of light c, so the change in the gravitational potential energy between the 
two bodies of Planck mass pm  in one cycle t should be: 

( ) ( )2 2lim p pV c
Gm Vt Gm ct

→
=                     (3) 

According to Lemma 1, the quantification hypothesis, we get: 

( )2
pGm ct hυ=                           (4) 

Substituting (1) into (4) yields: 

( )2
pGm ct h t=                          (5) 

From the formula (5), we can get the Planck mass pm : 

pm hc G=                           (6) 

2) Planck energy Ep 
Planck energy pE  can be obtained from Lemma 6: 

2
p pE m c=                            (7) 

Substituting (6) into (7)) gives Planck energy pE : 
5

pE hc G=                          (8) 

3) Planck time tp 
According to Lemma 1, the Planck time pt  can be found by: 

p pE hυ=                            (9) 

where pυ  is the frequency of the Planck time pt  period: 

1p ptυ =                           (10) 

Substituting (10) into (9) yields: 
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p pE h t=                            (11) 

Substituting (8) into (11) yields: 
5

phc G h t=                          (12) 

Obtain pt  from (12): 
5

pt hG c=                          (13) 

4) Planck length lp 
Planck length pl  can be obtained from Lemma 7: 

p pl t c=                             (14) 

Substituting formula (13) into formula (14) yields: 
3

pl hG c=                          (15) 

2.3. Corollary 

Conversion is one of the core ideas of Cosmic Continuum Theory. The mutual 
transformation of mass, energy, and dark mass makes the universe colorful. 
However, these transformations are not arbitrary, but are determined by the ex-
istence boundaries of particles, quantum, and dark particles. With the mutual 
conversion between particles, quantum, and dark particles, space, time, and dark 
space also follow. 

Corollary 1: When the mass of particles reaches Planck mass pm , the par-
ticles are converted into quantum and the mass is converted into energy. 

Proof: From (3), we can see that Planck mass pm  is obtained by taking the 
speed as a variable to obtain the limit. According to Lemma 5, when the particle 
reaches the limit velocity c, it will turn into a quantum. According to the concept 
in [1], the energy body is a body composed of quantum, so when Planck mass is 

pm , the mass has been transformed into energy. Q.E.D. 
Corollary 2: When quantum energy reaches Planck energy pE , quantum is 

transformed into dark particles and energy is converted into dark mass. 
Proof: According to corollary 1, p pm E≡ . From (3), we can see that Planck 

mass pm  is obtained by taking the particle velocity as a variable and finding the 
limit. However, it is impossible for the particles to reach the limit velocity c, so 
that the mass of the particles cannot reach Plank mass pm , and thus the quan-
tum cannot reach Planck energy pE . According to Lemma 4, the quantum fre-
quency has a maximum value. As a limit value, if the quantum energy reaches 
Planck energy pE , the frequency pυ  of the quantum must reach a maximum 
value of maxυ . According to Lemma 5, when the quantum reaches the maximum 
frequency, it turns into a dark particle. According to the concept in [1], the dark 
mass is a body composed of dark particles. Therefore, when the quantum reach-
es a maximum frequency of maxυ , Planck energy pE  is converted to a dark 
mass. Q.E.D. 

Corollary 3: Planck mass pm  is equivalent to Planck energy pE : p pm E≡ . 
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Proof: From (7), we can see that Planck energy pE  is obtained from Planck’s 
mass pm  based on Lemma 6, according to Lemma 6, then p pm E≡ . Q.E.D. 

Corollary 4: When the amount of time is less than or equal to Planck time 

pt , the time is converted to dark space. 
Proof: From (9), we can see that Planck time pt  is derived from the Planck 

energy pE  and the frequency pυ  of the quantum. However, to reach Planck 
energy pE , the frequency pυ  of the quantum must reach a maximum of maxυ . 
According to corollary 2, the quantum is transformed into dark particles and the 
energy is converted into dark mass. According to the concept in [1], dark space 
is the existence dimension of dark masses. Therefore, when the amount of time 
is less than or equal to Planck time pt , the time will be converted into a dark 
space. Q.E.D. 

Corollary 5: When the amount of space is less than or equal to Planck length 

pl , the space is converted to a dark space. 
Proof: From (14), Planck length pl  is the distance traveled at the speed of 

light in Planck time pt . According to corollary 4, when time is less than or equal 
to Planck time pt , time has been converted to dark space. Therefore, when the 
amount of space is less than or equal to Planck length pl , the space will also be 
converted into a dark space. Q.E.D. 

Corollary 6: Planck time pt  is equivalent to Planck length pl : p pt l≡ . 
Proof: From (14), we can see that Planck length pl  is obtained from Planck 

time pt  based on Lemma 7. According to Lemma 7, then p pt l≡ . Q.E.D. 
The above 6 inferences fully demonstrate that Planck units do not have any 

logical contradictions and conflicts in the continuum of the universe and can 
perfectly express the physical boundaries and their transformation. 

3. Unity of Physical Dimensions 

The Planck unit system cleverly integrates the three fundamental constants of 
physics of Planck constant h, gravitational constant G, and speed of light c, and 
realized their dimensionless processing. Unfortunately, the physical significance 
of Planck units system is far from being fully reflected due to the inconsistency 
between the existing physical basic theories. 

3.1. New Understanding of the Benchmark Value of Planck Units 

The establishment of any physical dimension must be based on a certain 
benchmark. There are two kinds of benchmarks, one is the maximum, such as 
the speed of light c; the other is the minimum, such as the Planck constant h. 
There are many such benchmarks in the Planck units. 

Corollary 7: The elementary unit of energy is minq h=  J. h is Planck con-
stant. 

Proof: According to Lemma 1 and Formula E hυ= , where E refers to the 
energy of the quantum and υ  refers to the frequency of the quantum, it can be 
known that Planck constant h is actually the energy of the unit frequency. This 
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means that any energy body cannot be less than energy h, so Planck constant h is 
the elementary unit of energy. Q.E.D. 

Corollary 8: The elementary unit of mass is 2
minm h c=  kg. h is Planck 

constant, and c is the speed of light. 
According to Corollary 7, the elementary unit of energy is minq h= . Accord-

ing to Lemma 8, the inertia of elementary particles and elementary quanta in an 
universe system is equivalent: min minm q≡ . According to Lemma 6, the existence 
quantities of mass m and energy 2E mc=  are equivalent: m E≡ , so 

2
minh m c= . From this, we get: 2

minm h c= . Q.E.D. 
Corollary 9: The elementary unit of time is min pt t=  s . pt  is Planck time. 
Proof: According to corollary 4, when the time is less than or equal to Planck 

time pt , the time is converted to dark space. This shows that Planck time pt  is 
the minimum value of time. That is, the elementary unit of time dimension 

min pt t= . Q.E.D. 
Corollary 10: The elementary unit of space is min ps l=  m. pl  is Planck 

length. 
Proof: According to Corollary 5, when the length is less than or equal to 

Planck length pl , the space is converted to dark space. This shows that Planck 
length pl  is the minimum value of space. That is, the elementary unit of length 

min ps l= . Q.E.D. 
Corollary 11: The maximum value of frequency is max 1 ptυ =  Hz. pt  is 

Planck time. 
Proof: According to corollary 9, the elementary unit of time is min pt t= , pt  is 

Planck time. This means that for any vibration cycle of the existing body T: 

pT t≥ , and frequency 1 Tυ = , so for any frequency: 1 1 pT tυ = ≤ , ie. 

max 1 ptυ = . Q.E.D. 
Corollary 12: The maximum value of quantum energy is max pE E=  J. pE  

is Planck energy. 
Proof: According to Corollary 11, the maximum value of frequency is 

max 1 ptυ = , pt  is the Planck time. The energy of quantum is E hυ= , h is 
Planck constant, so max max pE h h tυ= = . By (11), we can see that p pE h t= , 
therefore max pE E= . Q.E.D. 

Corollary 13: The maximum value of particle mass is max pm m=  kg. pm  is 
Planck mass. 

Proof: According to Lemma 10, The existences are coupled with each other by 
energy, And in the presence of different structural levels, by the corresponding 
quantum from the role of convergence. If there is a structure at the structural 
level of the quantum of q connection, the corresponding structure of the particle 
m is also the amount of q: m q≡ . According to corollary 3, Planck mass pm  is 
equivalent to Planck energy pE : p pm E≡ . This shows that pm  and pE  are 
in the same structure level. According to corollary 12, The maximum value of 
quantum energy is max pE E= , pE  is Planck energy. That is, pE  is at the 
maximum structural level. Therefore, pm  is also at the structural level of 
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maximum, that is, pm  is the maximum value of particle mass: max pm m= . 
Q.E.D. 

Corollary 7-13 allows us to obtain the elementary unit of energy, the elemen-
tary unit of mass, the elementary unit of time, the elementary unit of space, the 
maximum of frequency, the maximum of quantum energy, and the maximum of 
particle mass 7 limit constants, this shows that the Cosmic Continuum Theory 
further develops the benchmark value of the Planck units. 

3.2. Equivalent Abstract Physical Dimension 

In the system of Planck units, the values of h, G, c and Planck units are all equal 
to 1, and the mass-energy equation is simplified to E m= . It looks a bit similar 
to Lemma 6: the existence quantities of mass m and energy 2E mc=  are equiv-
alent: m E≡ . In reality, it is not. The former is a numerical simplification and 
is a non-dimensionalized process, represented by the “=” symbol. The latter is 
the physical equivalent of mass and energy, and it is the unity of physical dimen-
sions, represented by the “≡” symbol. In Lemma 6, the physical dimension of m 
is kilogram, and the physical dimension of E is Joule; When it satisfies 2E mc= , 
m E≡  expresses: m kg ≡ E J.  

Corollary 14: The physical dimensions of existence quantity can be unified on 
abstract physical dimensions. 

Proof: According to Lemma 1, Lemma 8, the elementary unit of mass minm , 
the elementary unit of energy minq , and the elementary unit of dark quality 

mind  equivalence, which results in the existence of the elementary unit of quan-
tity mine : min min min mine m q d≡ ≡ ≡ . 

Set min 1 JXe = , then: 

( )2
min1 JX kgm h c≡ =                     (16) 

( )min1 JX Jq h≡ =                       (17) 

min1 JX Unitd≡                        (18) 

Due to the fact that there is no international standard unit for the amount of 
dark mass, it is temporarily replaced by “Unit”. According to Lemma 11, there 
are only particle, quantum, and dark particle three basic forms, thus we have 
unified the physical dimension of existence quantity to an abstract physical di-
mension “JX”: 

2
min min1 JX kg J Unite h c h d= ≡ ≡ ≡              (19) 

So the physical dimensions of existence quantity can be unified on abstract 
physical dimensions. Q.E.D. 

Corollary 15: The physical dimensions of dimension quantity can be unified 
on abstract physical dimension. 

Proof: According to Lemma 9, the elementary unit of space mins , the elemen-
tary unit of time mint , and the elementary unit of dark space ming  are equivalent, so 
as to produce the elementary unit of dimension minw : min min min minw s t g≡ ≡ ≡ . 

Set min 1 XJw = , then: 
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( )5
min1 XJ spt t hG c≡ = =                    (20) 

( )3
min1 XJ mps l hG c≡ = =                   (21) 

min1 XJ Unitg≡                         (22) 

Similarly, there is currently no international standard unit for the amount of 
dark space, it is temporarily replaced by “Unit”. According to Lemma 11, there 
are only three basic forms of particle, quantum, and dark particle. According to 
Concept 4, Concept 5, and Concept 6, there are also only three basic dimension-
al forms: space, time, and dark space. Therefore, we have unified the physical 
dimension of dimension quantity to an abstract physical dimension “XJ”:  

5 3
min min1 XJ s m Unitw hG c hG c d= ≡ ≡ ≡          (23) 

So the physical dimensions of dimension quantity can be unified on abstract 
physical dimension. Q.E.D. 

Corollary 16: All changes in the universe can be equivalent on abstract phys-
ical dimensions. 

Proof: All changes in the universe are changes in the quantity and dimension 
of existence. According to Corollary 14, the physical dimensions of existence 
quantity can be unified on abstract physical dimensions; and according to Co-
rollary 15, the physical dimensions of dimension quantity can be unified on ab-
stract physical dimension. According to Lemma 8 and Lemma 9, the unity of 
physical dimensions is based on physical equivalence, so all changes in the un-
iverse can be equivalent on abstract physical dimensions. Q.E.D. 

Obviously, this physical dimensions system is exactly the same as the Planck 
Units System. However, the two physical dimensions “JX” and “XJ” are essen-
tially different from our existing physical dimensions. Existing physical dimen-
sions are specific physical dimensions, including Planck units. There is no con-
nection between different specific physical dimensions. But the “JX” and “XJ” 
are abstract physical dimensions. The function of an abstract physical dimension 
is to achieve the unity of specific physical dimensions. 

3.3. A New Interpretation of Gravitational Redshift 

The following is an attempt to solve the gravitational redshift problem by apply-
ing the equivalent unified scheme of physical dimensions proposed in this paper. 

We know that the energy of a photon E is: 

E hυ=                            (24) 

h is the Planck constant and υ  is the photon frequency. According to Lemma 
6, The existence quantities of mass m and energy 2E mc=  are equivalent: 
m E≡ . Therefore: 

2E h mcυ= ≡                         (25) 

c is the speed of light. So we can get: 
2m h cυ≡                          (26) 
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According to Lemma 12, it can be seen that the photon escapes from a certain 
celestial body M to a distant place of R, and the change of gravitational potential 
energy pE  is: 

pE GMm R= −                        (27) 

G is the gravitational constant. According to corollary 14, the physical dimen-
sions of existence quantity can be unified on abstract physical dimensions. Subs-
tituting (26) into (27) gives: 

2
pE GMh Rcυ= −                     (28) 

The amount of change in the gravitational potential energy of a photon is the 
amount of energy change of this photon. According to the formula (24), if the 
photon frequency change amount is pυ , then: 

p pE hυ =                        (29) 

Substituting (28) into (29): 
2

p GM Rcυ υ= −                     (30) 

Deform (30) to get: 
2

p GM Rcυ υ = −                     (31) 

The result is consistent with the gravitational redshift formula derived by 
general relativity. This shows that the introduction of the concept of relativistic 
mass is equivalent to the unification of physical dimensions. 

4. Conclusion 

The new fundamental constants of physics often represent a new basic theory of 
physics, and the logical unity of basic physical constants is essentially the unity 
of physics. The Planck system of units profoundly reveals the physical boundary 
problem, but it has always been constrained by inconsistencies between the basic 
theories of physics. In Cosmic Continuum Theory, Planck Units System com-
pletely escapes the incompatibility of the physical basis. The axiomatization of 
Planck Units System enables the logical unity of fundamental constants of phys-
ics that represent different physical foundations to be realized. In particular, 
based on Planck unit, 7 limit constants were deduced, giving a unified bench-
mark for physical dimensions. The introduction of abstract physical dimensions 
“JX” and “XJ” to achieve unity of physical dimensions will sweep away another 
barrier for the unification of physics.  
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Abstract 

In our previous works, we suggest that quantum particles are composite 
physical objects endowed with the geometric and topological structures of 
their corresponding differentiable manifolds that would allow them to imitate 
and adapt to physical environments. In this work, we show that Dirac equa-
tion in fact describes quantum particles as composite structures that are in a 
fluid state in which the components of the wavefunction can be identified 
with the stream function and the velocity potential of a potential flow formu-
lated in the theory of classical fluids. We also show that Dirac quantum parti-
cles can manifest as standing waves which are the result of the superposition 
of two fluid flows moving in opposite directions. However, for a steady mo-
tion a Dirac quantum particle does not exhibit a wave motion even though it 
has the potential to establish a wave within its physical structure, therefore, 
without an external disturbance a Dirac quantum particle may be considered 
as a classical particle defined in classical physics. And furthermore, from the 
fact that there are two identical fluid flows in opposite directions within their 
physical structures, the fluid state model of Dirac quantum particles can be 
used to explain why fermions are spin-half particles.  
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1. Introductory Summary 

In our previous works on spacetime structures of quantum particles, we suggest 
that quantum particles should be endowed with geometric and topological 
structures of differentiable manifolds and their motion should be described as 
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isometric embeddings in higher Euclidean space. We also suggest that all quan-
tum particles are formed from mass points which are joined together by contact 
forces as a consequence of viewing quantum particles as CW-complexes [1] [2] 
[3]. Fundamentally, we show that the three main dynamical descriptions of 
physical events in classical physics, namely Newton mechanics, Maxwell elec-
tromagnetism and Einstein gravitation, can be formulated in the same general 
covariant form and they can be represented by the general equation 

M kJβ∇ =                            (1) 

where M is a mathematical object that represents the corresponding physical 
system and β∇  is a covariant derivative. For Newton mechanics,  

( )23
1

1 d d
2

M m x t Vµ
µ== +∑  and 0J = . For Maxwell electromagnetism,  

M F A Aαβ µ ν ν µ= = ∂ − ∂ , with the four-vector potential ( ),A Vµ ≡ A  and J can 
be identified with the electric and magnetic currents. And for Einstein gravita-
tion, M Rαβ=  and J can be defined in terms of a metric gαβ  and the Ricci  
scalar curvature using the Bianchi identities 1

2
R g Rαβ αβ

β β∇ = ∇ , that is,  
1
2

J g Rαβ
β= ∇ . If we use the Bianchi identities as field equations for the gravita-

tional field then Einstein field equations 1 Λ
2

T k R Rg gµν µν µν µν
 = − + 
 

, as in  

the case of the electromagnetic field, should be regarded as a definition for the 
energy-momentum tensor Tµν  for the gravitational field [4]. An interesting 
feature that emerges from Equation (1) for the gravitational field is that we can 
derive the Ricci flow g t Rαβ αβκ∂ ∂ =  for a vacuum field 0J = . Mathemati-
cally, the Ricci flow is a geometric process that can be employed to smooth out 
irregularities of a Riemannian manifold [5]. From the definition of the 
four-current ( ) 1,

2ij g Rα αβ
βρ= = ∇j  for the gravitational field, by comparing 

with the Poisson equation for a potential V in classical physics, 2 4πV ρ∇ = , we 
can identify the scalar potential V with the Ricci scalar curvature R and then ob-
tain a diffusion equation 2

t R k R∂ = ∇  whose solutions can be found to take the 
form ( ) ( ) ( )2 2 23 4

, , , 4π e
x y z kt

R x y z t M kt
− + + =  

 
, which determines the prob-

abilistic distribution of an amount of geometrical substance M which is defined 
via the Ricci scalar curvature R and manifests as observable matter [6]. It is 
worth mentioning that in fact a similar diffusion equation can also be derived 
from the Ricci flow g t Rαβ αβκ∂ ∂ =  of the form 22 RicR t R∂ ∂ = ∆ + , where 
∆  is the Laplacian defined as gαβ

α β∆ = ∇ ∇  and Ric  is a shorthand for a 
mathematical expression that we will not be concerned with in this work [7]. 
Therefore, the Bianchi field equations of general relativity in the covariant form 
given in Equation (1) can be used to formulate quantum particles as differenti-
able manifolds. For example, we showed that the Ricci scalar curvature R associ-
ated with a differentiable manifold that represents a quantum system, such as 
the hydrogen atom, can be expressed in terms of the Schrödinger wavefunction 
ψ  in quantum mechanics as  

( ) ( ) ( )( )( )23 3
1 1d d d dtR k x t m x tµ µ

µµ µψ ψ ψ
= =

= − ∂ + ∂∑ ∑ . 
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On the other hand, we have also shown that Maxwell field equations of elec-
tromagnetism and Dirac relativistic equation of quantum mechanics can be 
formulated covariantly from a general system of linear first order partial differ-
ential equations [8] [9]. An explicit form of a system of linear first order partial 
differential equations can be written as follows [10] [11]  

1 2
1 1 1

, 1, 2, ,
n n n

r r ri
ij l l

i j lj

a k b k c r n
x
ψ

ψ
= = =

∂
= + =

∂∑∑ ∑                (2) 

The system of equations given in Equation (2) can be rewritten in a matrix 
form as 

1 2
1

n

i
i i

A k k J
x

ψ σψ
=

 ∂
= + ∂ 

∑                      (3) 

where ( )T
1 2, , , nψ ψ ψ ψ=  , ( )T

1 2, , ,i i i n ix x x xψ ψ ψ ψ∂ ∂ = ∂ ∂ ∂ ∂ ∂ ∂ , iA , 
σ  and J are matrices representing the quantities k

ija , r
lb  and rc , and 1k  

and 2k  are undetermined constants. Now, if we apply the operator 

1
n

i ii A x
=

∂ ∂∑  on the left on both sides of Equation (3) then we obtain 

( )
2 2

2
1 1

2 2
1 1 2

1

2

2

n n n

i j j i
i i j i i ji

n

i
i i

iA A A A A
x xx

Jk k k J k A
x

ψ

σ ψ σ

= = >

=

 ∂ ∂
+ +  ∂ ∂∂ 

∂
= + +

∂

∑ ∑∑

∑
               (4) 

In order for the above systems of partial differential equations to be used to 
describe physical phenomena, the matrices iA  must be determined. We have 
shown that for both Dirac and Maxwell field equations, the matrices iA  must 
take a form so that Equation (4) reduces to the following equation 

2
2 2

1 12
1

2
2 2

1

n n

i
i i

i ii

JA k k k J k A
xx

ψ σ ψ σ
= =

 ∂ ∂
= + + 

∂∂ 
∑ ∑              (5) 

To obtain Dirac equation we simply set 0i j j iA A A A+ =  with 2 1iA = ± , and 
in this case the matrices iA  are the matrices 𝛾𝛾𝑖𝑖  given as [12] 

1 2

3 4

1 0 0 0 0 0 0 1

0 1 0 0 0 0 1 0
, ,

0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1
,

0 0 0 1 0 0 0

0 0 0 0 1 0 0

i

i

i

i

γ γ

γ γ

   
   
   = =   − −   
   − −   

−   
   

−   = =   −   
   −   

              (6) 

For Maxwell field equations, in order to specify the matrices iA  we need to 
use the form of Maxwell field equations established in classical electrodynamics 
[13] [14]. And the matrices iA  take the forms 
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1 2

3 4

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 1 0

, ,
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0

,
0 0 1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0

A A

A A

−   
   − −   
   −

= =   
   
   −
      
   

− 
 
 
 −

= = 
 
 
  − 

5

1 0 0
0 0 0 0 0 0

,
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

A

µ
µ

µ

 
 
 
 
 

− 
 
  
 

 
 
 
 

=  
 
 
  
 

       (7) 

Besides the covariant formulations of classical and quantum physics as de-
scribed above, we have also discussed the topological transformation of quantum 
dynamics by showing the wave dynamics of a quantum particle on different 
types of topological structures in various dimensions from the fundamental 
polygons of the corresponding universal covering spaces [15]. We presented our 
discussions in the form of Bohr model in one, two and three dimensions using 
linear wave equations. For the clarity of our presentation in terms of Bohr 
model, we want to mention here that in order to successfully construct a model 
for the hydrogen atom which predicts correctly the spectrum of the energy radi-
ated from the atom, Bohr proposed three postulates which state that the cen-
tripetal force required for the electron to orbit the nucleus in a stable circle is the 
Coulomb force 2 2 2mv r kq r= , the permissible orbits are those that satisfy the 
condition that the angular momentum of the electron equals n , that is 
mvr n=  , and when the electron moves in one of the stable orbits it does not 
radiate, however, it will radiate when it makes a transition between the stable or-
bits [16]. Furthermore, in his work on the concept of matter wave, de Broglie 
proposed that an electron has both a wave and a particle nature by regarding the 
electron as a standing wave around the circumference of an orbit, as shown in 
Figure 1 [17].  

It is seen that de Broglie’s requirement leads to the wave condition 2πr nλ= . 
This is equivalent to assuming that the standing wave around a circle, which is a 
1-sphere, is similar to a standing wave on the fundamental interval of a straight 
line which is the universal covering space of the circle 1S , where the transla-
tions taking the interval to the next images will generate the holonomy group 
[18]. If we apply de Broglie wavelength λ  defined in terms of the momentum  
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Figure 1. de Broglie waves around a circle. 

 
of a quantum particle p mv=  as h mvλ = , then using the wavelength also 
given by 2πR nλ =  we obtain 2πh mv R n= , that leads to the Bohr’s postu-
late of the quantisation of angular momentum  mvR n=  . Then the energy 
spectrum nE  can be calculated from Coulomb’s law 2 2 2mv R kq R=  as 

2 4 2 22nE mk q n= −  , where R now is the radius of the nth stationary orbit.  
In mathematics, the fundamental polygon in one dimension is an interval and 

the universal covering space is the straight line and in this case the standing 
wave on a finite string is transformed into the standing wave on a circle which 
can be applied into the Bohr model of the hydrogen atom. In two dimensions, 
the fundamental polygon is a square and the universal covering space is the 
plane and in this case the standing wave on the square is transformed into the 
standing wave on different surfaces that can be formed by gluing opposite sides 
of the square, which include a 2-sphere, a 2-torus, a Klein bottle and a projective 
plane. This may be seen as an extension of the Bohr model of the hydrogen atom 
from one-dimensional manifolds of the 1-sphere and 1-torus embedded in the 
ambient two-dimensional Euclidean space R2 into two-dimensional manifolds 
embedded or immersed in the ambient three-dimensional Euclidean space R3. In 
three dimensions, the fundamental polygon is a cube and the universal covering 
space is the three-dimensional Euclidean space. It is shown that a 3-torus and 
the manifold 1K S×  defined as the product of a Klein bottle and a circle can be 
constructed by gluing opposite faces of a cube therefore in three-dimensions the 
standing wave on a cube is transformed into the standing wave on a 3-torus or 
on the manifold 1K S× . We also discuss a transformation of a stationary wave 
on the fundamental cube into a stationary wave on a 3-sphere despite it still re-
mains unknown whether a 3-sphere can be constructed directly from a cube by 
gluing its opposite faces. In spite of this uncertainty, however, we speculate that 
mathematical degeneracy in which an element of a class of objects degenerates 
into an element of a different but simpler class may play an important role in 
quantum dynamics. For example, a 2-sphere is a degenerate 2-torus when the 
axis of revolution passes through the centre of the generating circle. Therefore, it 
seems reasonable to assume that if an n-torus degenerates into an n-sphere then 
wavefunctions on an n-torus may also be degenerated into wavefunctions on an 
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n-sphere. Furthermore, since an n-sphere can degenerate itself into a single 
point, therefore the mathematical degeneracy may be related to the concept of 
wavefunction collapse in quantum mechanics where the classical observables 
such as position and momentum can only be obtained from the collapse of the 
associated wavefunctions for physical measurements. This consideration sug-
gests that quantum particles associated with differentiable manifolds may pos-
sess the more stable mathematical structures of an n-torus rather than those of 
an n-sphere.  

The above formulation of quantum particles in terms of differentiable mani-
folds and the consideration of their intrinsic geometric and topological charac-
teristics raise the question of how the standing waves that represent quantum 
particles could be established physically. The aim of this work is to answer this 
question by showing that Dirac equation in fact describes quantum particles as 
composite structures that are in a fluid state in which the components of the 
wavefunction can be identified with the stream function and the velocity poten-
tial of a potential flow formulated in the theory of classical fluids. In this case 
Dirac quantum particles can manifest as standing waves which are the result of 
the superposition of two fluid flows moving in opposite directions. For example, 
if two opposite waves are represented by the function ( ) ( )1 , sinr t a kr vtψ = −  
and ( ) ( )2 , sinr t a kr vtψ = +  then the resultant standing wave can be obtained 
as ( ) ( ) ( ) ( )1 2, , 2 sin cosr t r t a kr vtψ ψ+ = . We also show that even though a 
Dirac quantum particle has the potential to transfer energy in opposite direc-
tions to establish a standing wave within its physical structure, for a steady mo-
tion without an external disturbance a Dirac quantum particle can be considered 
as a classical particle defined in classical physics. 

2. Two-Dimensional Hydrogen-Like Physical System 

In this work we will show that quantum particles can be described as physical 
systems in a state of fluids that can be formulated in terms of the fluid dynamics 
in two dimensions. Since such systems can be seen to have the physical structure 
of a two-dimensional hydrogen-like atom therefore in this section we will ex-
amine further how they can be described in terms of quantum mechanics. First 
we need to extend our formulation of Maxwell field equations of electromagnet-
ism and Dirac relativistic equation from a general system of linear first order 
partial differential equations to that with an external field. Such system of equa-
tions is given as follows [19]  

1 1 1 1
, 1, 2, ,

n n n n
r r r ri
ij ij j i i

i j i jj

a b V c d r n
x
ψ

ψ
= = = =

 ∂
= + + = 

∂  
∑∑ ∑ ∑           (8) 

The system of equations given in Equation (8) can be rewritten in a matrix 
form as 

1 1

n n

i i i
i ii

A i qBV m J
x

ψ σ ψ
= =

 ∂  
= − + +   ∂   

∑ ∑               (9) 
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where ( )T
1 2, , , nψ ψ ψ ψ=  , ( )T

1 2, , ,i i i n ix x x xψ ψ ψ ψ∂ ∂ = ∂ ∂ ∂ ∂ ∂ ∂  with 

iA , iB , σ and J are matrices representing the quantities r
ija , r

ijb , r
jc  and rd , 

which are assumed to be constant in this work. While the quantities q, m and J 
represent physical entities related directly to the physical properties of the parti-
cle, and the quantities iV  represent an external field, such as the potentials of 
an electromagnetic field. By applying the operator 1

n
i ii A x

=
∂ ∂∑  on the left on 

both sides of Equation (9), with the assumption that the coefficients k
ija , r

ib  
and rc  are constants, then we obtain 

1 1 1 1

n n n n

i j i j j
i j i ji j i

A A A i qB V m J
x x x

ψ σ ψ
= = = =

       ∂ ∂ ∂
= − + +         ∂ ∂ ∂       

∑ ∑ ∑ ∑     (10) 

Since the quantities iA , iB , σ, q, m and J are assumed to be constant, Equa-
tion (10) becomes 

( )
2 2

2
2

1 1

1 1

1 1 1

1 1 1

n n n

i i j j i
i i j i i ji

n n

i j j
i ji

n n n

i i j i
i j ij i

n n n
j

i j
i j i ji

A A A A A
x xx

i A qB V m
x

Ji qBV m A A
x x

V
i qA B

x

ψ

σ ψ

σ ψ

ψ

= = >

= =

= = =

= = = >

 ∂ ∂
+ +  ∂ ∂∂ 

   ∂
= − +    ∂   

  ∂ ∂  − + +     ∂ ∂    
∂ 

= − − 
∂ 

∑ ∑∑

∑ ∑

∑ ∑ ∑

∑∑ ∑ ( )2

2 2

1 1 1
2

n

i j j i i j
i

n n n

i i i i i
i i i i

q B B B B VV

Ji qmBV m i qBV m J A
x

σ σ ψ σ
= = =


+


∂  

− − − + +   ∂  

∑

∑ ∑ ∑

      (11) 

Dirac equation for an arbitrary field can be formulated from the system of 
linear first order partial differential equations given in Equation (9) by setting 

i i iB A γ= = , 1σ = , 0J =  and 0i j j iA A A A+ = . In this case, in terms of the 
operator iγ , Equation (9) becomes 

4 4

1 1
i i i

i ii

i q V m
x

γ ψ γ ψ
= =

 ∂  
= − +   ∂   

∑ ∑                 (12) 

Equation (12) can be written in a covariant form as Dirac equation for an ar-
bitrary field as 

( )( ) 0i qV mµ
µ µγ ψ∂ − − =                     (13) 

Equation (11) also reduces to the following equation 

24 4 4 4
2 2

2
1 1 1

2j i
i i j i i

i i j i ii ji

V V
i q i qm V m

x xx
γ ψ γ γ γ ψ

= = > =

  ∂  ∂∂
 = − − + −     ∂ ∂∂    

∑ ∑∑ ∑    (14) 

Even though in the following we will examine only physical states of Dirac 
quantum particles in which 0iV =  where the physical quantity iV  is assumed 
to be associated with an external field, however, if we consider quantum particles 
as differentiable manifolds which are formed by mass points joined together by 
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contact forces then we may suggest that they are endowed with intrinsic geomet-
ric and topological structures and in this case the quantity iV  may be consid-
ered as an internal field that is responsible for the stability of the physical struc-
ture of a quantum particle. As we will show below this is in fact the case when at 
least part of a quantum particle exists as a two-dimensional structure in which 
the intrinsic angular momentum can take half-integer values. The problem that 
we considered can actually be started with Dirac equation given in Equation 
(13). It can be shown that in the non-relativistic limit, Dirac equation reduces to 
the Pauli equation for stationary system as [20] 

( ) ( ) ( ) ( )21
2 2

qi q q Eφ ψ ψ
µ µ

 
− ∇ − − ⋅ + = 

 



 A B r rσ            (15) 

In the case when 0=A , 0=B , and q k rφ =  then we have 

( ) ( ) ( )
2

2

2
k E
r

ψ ψ ψ
µ

− ∇ − =
 r r r                   (16) 

Now let us examine a physical system that is described by the Schrödinger 
wave equation given in Equation (16) from the viewpoint of an observer who 
sees it as a planar system [21] [22] [23]. It is shown that if we consider physical 
systems whose configuration space is multiply connected, such as the physical 
system of a hydrogen-like atom in two rather than three dimensions, then mul-
tivalued wavefunctions can be used to describe the system [24]. In two-dimensional 
space, the Schrödinger equation in the planar polar coordinates takes the form 

( ) ( ) ( )
2 2

2 2

1 1 , , ,
2

kr r r E r
r r r rr

ψ φ ψ φ ψ φ
µ φ
 ∂ ∂ ∂ − + − =  ∂ ∂ ∂  

       (17) 

Solutions of the form ( ) ( ) ( ),r R rψ φ φ= Φ  then reduce the above equation 
to two separate equations for the functions Φ  and R 

2
2

2

d 0
d

m
φ
Φ
+ Φ =                        (18) 

2 2

2 2 2

d 1 d 2 0
dd

R R m kR E R
r r rr r

µ  + − + − = 
 

             (19) 

where m is identified as the angular momentum of the system. From the system 
of ordinary differential equations given in Equations (18) and (19), the energy 
spectrum can be found as 

( )

2

222 1 2
kE

n m
µ

= −
+ +

                  (20) 

It is seen that if the physical system is the Bohr model of two-dimensional hy-
drogen-like atom then the angular momentum m must take half-integral values. 
Hence, the topological structure of a configuration space of a physical system 
can determine the quantum nature of an observable of the system. This result 
should be expected in quantum mechanics since we know that the quantum be-
haviour of a particle depends almost entirely on the configuration of an experi-
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ment. If, in a particular experiment, the electron of a hydrogen-like atom is con-
strained to move in a plane, then the orbital angular momentum of the electron 
must take half-integral values if we use the Schrödinger equation to study the 
dynamics of the electron and want to retain the same energy spectrum as the 
Bohr model. As a consequence, it might seem possible to invoke the result to ex-
plain the Stern-Gerlach experiment without the necessity of introduction of spin 
into the quantum theory.  

3. Dirac Real Equation 

In this section we show that Dirac equation for a free particle can be used to de-
scribe the state of a fluid of the quantum particle formulated in the theory of 
classical fluids. For free Dirac quantum particles, Equation (13) reduces to 

( ) 0i mµ
µγ ψ∂ − =                        (21) 

By expanding Equation (21) using the matrices iγ  given in Equation (6), we 
obtain 

31
1 4im i

t x y z
ψψ

ψ ψ
∂ ∂ ∂ ∂

− − = − + ∂ ∂ ∂ ∂ 
             (22) 

2 4
2 3im i

t x y z
ψ ψ

ψ ψ
 ∂ ∂∂ ∂

− − = + − ∂ ∂ ∂ ∂ 
             (23) 

3 1
3 2im i

t x y z
ψ ψ

ψ ψ
∂   ∂∂ ∂

− = − + − ∂ ∂ ∂ ∂ 
             (24) 

4 2
4 1im i

t x y z
ψ ψ

ψ ψ
 ∂ ∂∂ ∂

− = − − + ∂ ∂ ∂ ∂ 
             (25) 

First, it is observed that with the form of the field equations given in Equa-
tions (22)-(25), we may interpret that the change of the field ( )1 2,ψ ψ  with re-
spect to time generates the field ( )3 4,ψ ψ , similar to the case of Maxwell field 
equations in which the change of the electric field generates the magnetic field. 
With this observation it may be suggested that, like the Maxwell electromagnetic 
field which is composed of two essentially different physical fields, the Dirac 
field of massive particles may also be viewed as being composed of two different 
physical fields, namely the field ( )1 2,ψ ψ , which plays the role of the electric 
field in Maxwell field equations, and the field ( )3 4,ψ ψ , which plays the role of 
the magnetic field. The similarity between Maxwell field equations and Dirac 
field equations can be carried further by showing that it is possible to reformu-
late Dirac equation as a system of real equations. When we formulate Maxwell 
field equations from a system of linear first order partial differential equations 
we rewrite the original Maxwell field equations from a vector form to a system of 
first order partial differential equations by equating the corresponding terms of 
the vectorial equations [9]. Now, since, in principle, a complex quantity is 
equivalent to a vector quantity therefore in order to form a system of real equa-
tions from Dirac complex field equations we equate the real parts with the real 
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parts and the imaginary parts with the imaginary parts. In this case Dirac equa-
tion given in Equations (22)-(25) can be rewritten as a system of real equations 
as follows 

31 4

t x z
ψψ ψ ∂∂ ∂

− = +
∂ ∂ ∂

                         (26) 

32 4 
t x z

ψψ ψ∂∂ ∂
− = −

∂ ∂ ∂
                         (27) 

3 2 1

t x z
ψ ψ ψ∂ ∂ ∂

− = +
∂ ∂ ∂

                         (28) 

4 1 2

t x z
ψ ψ ψ∂ ∂ ∂

− = −
∂ ∂ ∂

                         (29) 

4
1m

y
ψ

ψ
∂

=
∂

                             (30) 

3
2m

y
ψ

ψ
∂

= −
∂

                            (31) 

2
3m

y
ψ

ψ
∂

= −
∂

                            (32) 

1
4  m

y
ψ

ψ
∂

=
∂

                            (33) 

If the wavefunction ψ  satisfies Dirac field equations given in Equations 
(26)-(33) then we can derive the following system of equations for all compo-
nents 

2
2

2 0i
im

y
ψ

ψ
∂

− =
∂

                         (34) 

2 2 2

2 2 2 0i i i

t x z
ψ ψ ψ∂ ∂ ∂

− − =
∂ ∂ ∂

                      (35) 

Solutions to Equation (34) are  

( ) ( )1 2, e , emy my
i i ic x z c x zψ −= +                  (36) 

where 1ic  and 2ic  are undetermined functions of ( ),x z . The solutions given 
in Equation (36) give a distribution of a physical quantity along the y-axis. On 
the other hand, Equation (35) can be used to describe the dynamics, for exam-
ple, of a vibrating membrane in the ( ),x z -plane. If the membrane is a circular 
membrane of radius a then the domain D is given as { }2 2 2D x z a= + < . In the 
polar coordinates given in terms of the Cartesian coordinates ( ),x z  as 

cosx r θ= , sinz r θ= , the two-dimensional wave equation given in Equation 
(35) becomes 

2 2 2

2 2 2 2 2

1 1 1 0
r rc t r r

ψ ψ ψ ψ
θ

∂ ∂ ∂ ∂
− − − =

∂∂ ∂ ∂
                (37) 

The general solution to Equation (37) for the vibrating circular membrane 
with the condition 0ψ =  on the boundary of D can be found as [6] [11] 
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( ) ( )( )

( )( )

( )( )

0 0 0 0 0 0
1

, 1

, , cos sin

cos sin

cos sin

m m m m m
m

n nm nm nm
m n

nm nm nm nm

r t J r C ct D ct

J r A n B n

C ct D ct

ψ θ λ λ λ

λ θ θ

λ λ

∞

=

∞

=

= +

+ +

× +

∑

∑       (38) 

where ( )n nmJ rλ  is the Bessel function of order n and the quantities nmA , 

nmB , nmC  and nmD  can be specified by the initial and boundary conditions. It 
is also observed that at each moment of time the vibrating membrane appears as 
a 2D differentiable manifold which is a geometric object whose geometric struc-
ture can be constructed using the wavefunction given in Equation (38) as  

( )( ) ( )22 2 2
11 22 12 1 22( 1R ψ ψ ψ ψ ψ= − + +  

where xµ
µψ ψ= ∂ ∂  and 2 x xµ ν

µνψ ψ= ∂ ∂ ∂  [25]. Even though elementary 
particles may have the geometric and topological structures of a 3D differenti-
able manifold, it is seen from the above descriptions via the Schrödinger wave 
equation and Dirac equation that they appear as 3D physical objects that em-
bedded in three-dimensional Euclidean space. Interestingly, in the following we 
will show that the solution given in Equation (38) can be used to describe a 
standing wave in a fluid due to the motion of two waves in opposite directions. 
For a steady state in which the system is time-independent, the system of equa-
tions given in Equations (26)-(29) reduces to the following system of equations 

2 1 1 20, 0
x z x z
ψ ψ ψ ψ∂ ∂ ∂ ∂

+ = − =
∂ ∂ ∂ ∂

                (39) 

3 34 40, 0
x z x z

ψ ψψ ψ∂ ∂∂ ∂
+ = − =

∂ ∂ ∂ ∂
                (40) 

It is observed from Dirac equation for steady states that the field ( )1 2,ψ ψ  
and the field ( )3 4,ψ ψ  satisfy the Cauchy-Riemann equations in the ( ),x z -plane. 
We will now discuss whether it is possible to consider Dirac quantum particles 
as physical systems which exist in a fluid state as defined in the classical fluid 
dynamics as substances that retain a definite volume, have the ability to flow and 
deform continually, hence they can exhibit a wave motion. For references in the 
next section we will outline the main features in the theory of classical fluids, es-
pecially, in two dimensions. 

4. Fluid Dynamics in Two-Dimensions 

In fluid dynamics, quantities that satisfy the Cauchy-Riemann equations can be 
identified with the velocity potential and the stream function of an incompressi-
ble and irrotational flow [26] [27] [28] [29]. In two-dimensional fluid dynamics, 
a streamline is a theoretical line that is assumed to be tangential to the instanta-
neous velocity, therefore there is no flow that can cross the streamline. For a 
continuous stream of fluid, the streamlines can form continuous lines or closed 
curves. As an illustration, in the following we will consider a free or potential 
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vortex flow whose streamlines are concentric circles in the ( ),x z -plane as 
shown in Figure 2.  

In two-dimensional incompressible flow, the stream function Ψ  is defined 
as a volume flux through a curve given by 

( )d dx zv z v xΨ = −∫                    (41) 

From the definition given in Equation (41), we have d d dx zv z v xΨ = − . On the 
other hand, the total derivative of the stream function Ψ  is given by 

( ) ( )d d dx x z zΨ = ∂Ψ ∂ + ∂Ψ ∂ , therefore we obtain the following relationships 
between the velocity components ( ),x zv v  and the stream function Ψ  

,x zv v
z x

∂Ψ ∂Ψ
= = −
∂ ∂

                       (42) 

If the stream function Ψ  is defined in terms of polar coordinates ( ),r θ  as 
( ),r θΨ = Ψ , then we have ( ) ( )d d dr r θ θΨ = ∂Ψ ∂ + ∂Ψ ∂ . As shown in Fig-

ure 3, we also have ( )d d drv r v rθθΨ = − . 
 

 
Figure 2. Circular streamlines. 

 

 
Figure 3. Fluid flow in terms of stream function in polar coordinates. 
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Therefore we also obtain the following relationships between the velocity 
components ( ),rv vθ  and the stream function Ψ  

1 ,rv v
r rθθ
∂Ψ ∂Ψ

= = −
∂ ∂

                     (43) 

From the definition of the stream function we see that the radial component 
of the velocity of a vortex flow is equals to zero, 0rv = , since there is no flow 
that can cross the streamlines. In fluid dynamics, the circulation Γ  around a 
closed curve is a line integral of velocity v  defined as 

d dsv sΓ = ⋅ =∫ ∫v s
 

                      (44) 

where sv  is the tangential velocity. By Stokes’ theorem, the circulation Γ  is 
related to the vorticity = ∇×vω  as 

Γ d d
S S∂

= ⋅ = ⋅∫ ∫∫v s S


ω                     (45) 

It is seen from the above equation that the flux of vorticity is the circulation. 
In particular, for a two-dimensional flow in the ( ),x z -plane, the circulation 
becomes 

A
Γ d dxz vv x z

x z
∂∂ = − ∂ ∂ 

∫                    (46) 

A flow for which the circulation is equal to zero, 0= ∇× =vω , is called a po-
tential or irrotational flow. In two dimensions it is seen from Equation (46) that 
the condition for potential flow is  

0xz vv
x z

∂∂
− =

∂ ∂
                        (47) 

It should be mentioned that in potential flow we have Γ d 0
S∂

= ⋅ =∫ v s


 
therefore closed streamlines cannot exist in such flow. In general this result pre-
vents us from identifying the components of Dirac equation 1ψ  as closed 
stream function at the same time identifying 2ψ  as velocity potential. However, 
it is seen that the result of Γ d 0= ⋅ =∫ v s



 may not be valid if the region of 
space is multiply-connected since the velocity circulation may not be zero if the 
closed contour cannot be contracted to a point. This important feature can be 
discussed further as follows. For a two-dimensional irrotational flow given in 
polar coordinates, it can be shown that the flow velocity vθ  and the radius r 
satisfy the following relationship rv Cθ = , where C is a constant. The constant 
C can be established by using the singularity in the irrotational vortex flow 
where to velocity becomes infinite at the centre of the vortex with the vorticity is 
given by the relation ( )v r v rθ θω = − ∂ ∂ + . In this case the circulation around a 
circular streamline can be found as 

Γ d d 2πsv s rvθ= ⋅ = =∫ ∫v s
 

                  (48) 

It is also interesting to note that in the Bohr model of the hydrogen atom in 
which the electron is assumed to move around the nucleus in stationary circular 
orbits with v vθ =  then the angular momentum is quantised as mrv n=  . If 
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we now also assume that Dirac quantum particles are in fluid states whose cir-
culation Γ  is also quantised as the angular momentum then we obtain the fol-
lowing quantisation for the circulation 

2πΓ 2π n nhrv
m m

= = =


                    (49) 

Since 0rv = , the stream function ( )Ψ Ψ ,r θ=  can be obtained as follows 

( ) ( )1 1d d ln ln
2π 2π

nv r r k r k r
r mθ

Γ Γ
Ψ = − = − = − = −∫ ∫



        (50) 

where 1k  is an undetermined constant. 
In fluid dynamics, another important concept that is connected with an irro-

tational flow is the concept of the velocity potential Φ  which is defined in the 
( ),x z -plane as 

d d ds x zv s v x v zΦ = = +∫ ∫                     (51) 

It is seen from Equation (51) that the velocity components can be expressed in 
terms of the velocity potential as follows 

,x zv v
x z

∂Φ ∂Φ
= =
∂ ∂

                       (52) 

In polar coordinates ( ),r θ , the velocity potential and its relationship with the 
velocity components are given as 

d d d ,s rv s v r v rθ θΦ = = +∫ ∫                    (53) 

Φ 1 Φ,rv v
r rθ θ

∂ ∂
= =
∂ ∂

                       (54) 

Similarly, the velocity potential Φ  can also be obtained using the relation 
d d drrv v rθ θΦ = +  as  

2d d d
2π

n nrv r r k
r mr mθ θ θ θ θΓ   Φ = = = = +   

   ∫ ∫ ∫
            (55) 

where 2k  is an undetermined constant. From the relationships given in Equa-
tions (42) and (52) we then obtain the Cauchy-Riemann equations 

0, 0
x z x z

∂Φ ∂Ψ ∂Ψ ∂Φ
+ = − =

∂ ∂ ∂ ∂
                  (56) 

5. Fluid state of Dirac Quantum Particles 

By comparing Equation (56) to Dirac equations given in Equations (39) and 
(40), the field ( )1 2,ψ ψ  may be identified as the stream function and the veloc-
ity potential of one fluid flow and the field ( )3 4,ψ ψ  with another fluid flow. 
However, the main problem that we want to deal with now is whether the two 
fields ( )1 2,ψ ψ  and ( )3 4,ψ ψ  are connected and, most importantly, how such 
connection would lead to the prospect of using them to describe a Dirac quan-
tum particle as a standing wave. In the following we will show that in fact this is 
the case by using the relationships between the components of these two fields 
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given in Equations (30)-(33). For convenience we rewrite these equations as fol-
lows 

4 1
1 4,m m

y y
ψ ψ

ψ ψ
∂ ∂

= =
∂ ∂

                    (57) 

3 2
2 3,m m

y y
ψ ψ

ψ ψ
∂ ∂

= − = −
∂ ∂

                  (58) 

2
2

2 0 for 1,2,3,4i
im i

y
ψ

ψ
∂

− = =
∂

                (59) 

If the physical quantity m, which is identified with the inertial mass of a 
quantum particle, is assumed to be positive, 0m > , then it is observed that it is 
possible to describe the physical structure of a Dirac quantum particle as a spin-
ning top if we consider solutions to Equation (59) as hybrid functions of the 
form 

( )
( )

1

2

, e for 0

, e for 0

my
i

i my
i

c x z y

c x z y
ψ

−

 <= 
≥

                (60) 

For simplicity, instead of the hybrid form given in Equation (60), in the fol-
lowing we will show only for the case in which 0y ≥  since similar results can 
be obtained for which 0y < . The solutions given in Equation (60) can be re-
written in the following forms 

( ) ( )1 21 2 22, e , , emy myc x z c x zψ ψ− −= =              (61) 

( ) ( )3 23 4 24, e , , emy myc x z c x zψ ψ− −= =             (62) 

Using the equations given in Equations (57) and (58), we further obtain the 
conditions 24 21c c= −  and 23 22c c= . If we write ( )21 ,c f x z=  and  

( )22 ,c g x z=  then we have 

( ) ( )1 2, e , , emy myf x z g x zψ ψ− −= =               (63) 

( ) ( )3 4, e , , emy myg x z f x zψ ψ− −= = −              (64) 

From the above forms of solutions given to the components iψ  of the wave-
function ψ  we can show how a standing wave can be established from the su-
perposition of a wave associated with the field ( )1 2,?ψ ψ  and a wave associated 
with the field ( )3 4,?ψ ψ . Let ( )1 , e myf x zψ −=  be identified with the velocity 
potential and ( )2 , e myg x zψ −=  with the stream function of one fluid flow. Now 
we have two different descriptions that can be given to the field ( )3 4,ψ ψ . If we 
identify the component ( )3 , e myg x zψ −=  with the velocity potential and 

( )4 , e myf x zψ −= −  with the stream function of another fluid flow then we have 
the stream function of the first flow equals the velocity potential of the second 
flow, and the stream function of the second flow is a reflection of the velocity of 
the first flow. Even though this kind of identification may be used to describe a 
particular type of fluid flow of Dirac quantum particles, it does not give rise to 
the physical structure that we are looking for, that is a standing wave. However, 
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if we now identify the component ( )3 , e myg x zψ −=  with the stream function 
and ( )4 , e myf x zψ −= −  with the velocity potential of the second flow then the 
two flows are identical except for their flow directions, which are opposite to 
each other, and in fact this is what we want to obtain because they can form a 
required standing wave. It is also observed that for a steady motion a Dirac 
quantum particle does not exhibit a wave motion even though it has the poten-
tial to establish a wave within its physical structure. Therefore, without an ex-
ternal disturbance a Dirac quantum particle may be considered as a classical 
particle defined in classical physics. Furthermore, we may also speculate that the 
two opposite fluid flows associated with the physical structure of a Dirac quan-
tum particle may be related to the concept of spin-half that is introduced into 
quantum mechanics. 

6. Conclusion 

In our previous works on spacetime structures of quantum particles, we suggest 
that all quantum particles are formed from mass points which are joined to-
gether by contact forces, which is a consequence of viewing quantum particles as 
CW-complexes. Being identified with differentiable manifolds, quantum parti-
cles therefore should be endowed with geometric and topological structures of 
differentiable manifolds and their motion should be described as isometric em-
beddings in higher Euclidean space. In particular, we show that quantum parti-
cles may have the geometric and topological structures of a 3D differentiable 
manifold which can be described as standing waves which are solutions to the 
Schrödinger wave equation and Dirac equation. In this work we have extended 
our previous discussions by showing that Dirac equation can be used to describe 
quantum particles as composite structures that are in a fluid state in which the 
components of the wavefunction can be identified with the stream function and 
the velocity potential of a potential flow formulated in the theory of classical 
fluids. With this fluid composition, physically, Dirac quantum particles can 
manifest as standing waves which are the result of the superposition of two fluid 
flows moving in opposite directions. However, for a steady motion, a quantum 
particle whose physical structure is constructed in terms of Dirac equation does 
not exhibit a wave motion even though it has the potential to establish a wave 
within its physical structure. Therefore, if there are no external fields acting on 
it, a Dirac quantum particle may be considered as a classical particle defined in 
classical physics. It is also noted from the fact that there are two identical fluid 
flows in opposite directions within their physical structures, the fluid state model 
of Dirac quantum particles can be invoked to explain why fermions are spin-half 
particles as discussed in Section 2. 
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Abstract 
We propose a representation of the basic laws, namely the zeroth, first, 
second and third law, in quantum thermodynamics. The zeroth law is 
represented by some parameters ( Θ ’s) that specify respective quantum states. 
The parameters are the elements of thermodynamic state space Θ . The in-
troduction of such parameters is based on a probabilistic nature of quantum 
theory. A quantum analog of the first law can be established by utilizing these 
parameters. The notion of heat in quantum systems is clarified from the 
probabilistic point of view in quantum theory. The representation of the 
second law can be naturally described in terms of these parameters intro-
duced for the respective quantum systems. In obtaining the representation of 
quantum thermodynamics, consistency between quantum theory and classic-
al thermodynamics should have been preserved throughout our formulation 
of quantum thermodynamics. After establishing the representation of the 
second law, the third law is discussed briefly. The relationship between ther-
modynamic temperatures and the parameters in Θ  is also discussed. 
 

Keywords 
Basic Laws of Thermodynamics, Thermodynamic State Space, Probabilistic 
Nature of Quantum Theory, Notion of Heat, Entropy Principle, Adiabatic 
Accessibility 

 

1. Introduction 

Thermodynamics is one of the theories which have high universality since 
thermodynamics as itself has been unchanged even if we now have a well-developed 
quantum theory. Classical thermodynamics has been well established by 
different approaches [1] [2] [3]. Lieb and Yngvason made the mathematical 
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structure transparent by axiomatic approach [3]. Thermodynamics is a theory 
not only for classical but for quantum systems. Above all, the theoretical 
importance of thermodynamical consideration in quantum systems (quantum 
thermodynamics) is emphasized in text books [4] [5]. When we consider the 
thermodynamics for quantum systems, the important is the change in entropy 
since entropy is a constant of motion under the unitary transformation 
generated by a system Hamiltonian [6] [7]. A quantum heat engine has been 
investigated theoretically [8] [9]. Bender et al. studied a quantum Carnot cycle 
by considering a single quantum mechanical particle confined in a quantum well 
[9]. In their study, they found that the efficiency is equal to that of the Carnot 
cycle for classical case and proposed that the internal energy U  plays the same 
role as temperature. It should be however mentioned that in quantum system 
one cannot describe thermodynamic equibria in terms of a parameter like a 
temperature as in classical system [3]. 

This paper deals with the following questions that must be answered: Can 
thermodynamical laws refer to the variation of states of a system represented 
by the quantum states such as those states (eigenstates) of the Hamiltonian for 
a single quantum mechanical particle confined in a quantum well? If 
thermodynamical laws exist in quantum thermodynamic systems, how can they 
be expressed? To answer these questions, we need a representation which 
connects thermodynamic states and quantum states. 

In classical thermodynamics, states are represented by points on a state space. 
A typical example of the state space is just a collection of P (pressure) and V 
(volume), i.e., a P-V plane. In quantum mechanics, what space should be used in 
order to describe thermodynamic states for quantum systems? In quantum 
mechanics, quantum (pure) states are expressed by the elements of a complex 
Hilbert space  . However, the Hilbert space itself does not play the same role 
as the state space in classical thermodynamics since comparing one state vector 
with the others in   must be done by comparing the components of each 
vector. Thus we start with introducing a set Ψ  of the state vectors in   in 
order to obtain a suitable set which plays the same role as the state space in 
classical thermodynamics. That is, we introduce a set Θ  which plays the 
same role as the state space and derive a correspondence between Ψ  and 

Θ . After that, we will show that the first law of quantum thermodynamics can 
be described by the elements in Θ  and the internal energy of a quantum 
system can be described as a function on Θ . We will also discuss the relation 
between those parameters Θ’s in Θ  and thermodynamic temperatures. 

The first law of thermodynamics is a law of conservation of energy and states 
the equivalence of heat and work. We will discuss the equivalence between work 
and heat in quantum thermodynamics. We assume that the energy of a system 
(i.e., the internal energy) is given by the expectation value of the Hamiltonian 
H : i iiU p E= = ∑H . In this expression, iE  is the outcome of the 
expected energy state corresponding to a definite probability ip  in a specified 
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maximal test. Indeed, this probabilistic nature of quantum system plays a key 
role to establish a representation of the first law. Differentiating U  formally, 
we obtain the expression, ( )i i i iidU E dp p dE= +∑ . The first term i iiE dp∑  
implies there exists a non-mechanical source that induces a change in the 
internal energy of the system since a change in quantum states is in general 
determined by the unitary operator which does not change the definite probability 
(i.e., 0idp = ). The second term i ii p dE∑  implies a mechanical source that 
induces a change in the internal energy since we can trace the origin of idE  to an 
external parameter. As will be shown in Subsec. 3.2, the following identifications, 

i iid Q E dp′ = ∑  and i iid W p dE′ = ∑ , are justified and are ensured by the 
existence of respective parameters Θ  and L . We will show that the internal 
energy of quantum system is generally expressed in terms of parameters Θ  and 
L , respectively, describing the equivalence relation among quantum states and 
external parameters. Therefore, the first law of quantum thermodynamics can be 
uniquely represented by these parameters. Once establishing the representation of 
the first law, it is worth to investigate the remaining thermodynamical laws (the 
second and third laws) for a quantum system described by quantum states.  

In this paper, we propose a representation of the thermodynamical laws for 
quantum system in terms of the respective parameters and develop a theory     
of quantum thermodynamics based on the axiomatic theory of classical 
thermodynamics by Lieb and Yngvason [3]. In their formulation, the second law 
refers to the possible adiabatic transition of any two states in a state space. 

This paper is organized as follows. In the next section, we present a brief 
review of classical thermodynamics. In Sec. 3, we state the basic notion of our 
formulation of quantum thermodynamics, and introduce a thermodynamic 
state space Θ  and a quantum state space Ψ  and discuss the connection 
between them. In Subsec. 3.1 we show the existence of the zeroth law of 
quantum thermodynamics in the state space Θ . In Subsec. 3.2, the first law of 
thermodynamics and an adiabatic process are discussed. In Subsec. 3.3, we 
define entropy and give a representation of the second law, and discuss a relation 
among the adiabatic transitions, entropy and the term d Q′ . We refer to the 
third law in Subsec. 3.4. Finally, we give the results and discussion in Sec. 4. 

2. Classical Thermodynamics 

There are few approaches in thermodynamics [1] [2] [3]. Lieb and Yngvason’s 
approach is helpful to understand the logical structure of thermodynamics. If 
thermodynamical laws exist in quantum systems as well as in classical systems, 
there must be the same logical structure in both systems. According to    
their formulation, a structure of adiabatic accessibility on a state space 
(thermodynamic state space) is characterized by an entropy inequality, i.e., the 
second law of thermodynamics. In this section we present a brief review of 
classical thermodynamics due to Lieb and Yngvason [3]. Thermodynamics is a 
theory which discusses a transition between equilibrium states. The second law 
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refers to the feasible transitions in adiabatic process. 
We start with introducing a formulation of the axiomatic thermodynamics 

proposed by Lieb and Yngvason [3]. In their formulation, the second law of 
thermodynamics is represented by the entropy principle. 
 
Entropy principle: There is a real-valued function on all states of all systems 
(including compound systems), called entropy and denoted by S . Entropy has 
the following properties: 

• Monotonicity : When X  and Y  are comparable states1, then 

( ) ( )if and only if .X Y S X S Y≤                 (1) 

• Additivity : If X  and Y  are states of some (possibly different) systems 
and if ( ),X Y  denotes the corresponding state in the composition of the 
two systems, then the entropy is additive for these states, i.e., 

( ) ( ) ( ), .S X Y S X S Y= +                     (2) 

• Extensivity : S  is extensive, i.e., for each 0t >  and for each state X  
and its scaled copy tX , 

( ) ( ).S tX tS X=                         (3) 

It should be noted that entropy is determined by the physical (or 
thermodynamic) state of the system. In the entropy principle, X  and Y  (e.g., 
energy and volume) describe equilibrium states and are the elements of a state 
space (denoted by Γ ). A system is then represented by the state space Γ  on 
which a relation “ ” of adiabatic accessibility is defined. The definition of 
adiabatic accessibility is as follows: 
 
Adiabatic accessibility: A process whose only effect on the surroundings is 
exchange of energy with a mechanical source. This means that as a state arrives 
at new one, a state of surroundings is the same as before, in other words, the 
device returns to its initial state at the end of the process. 

Lieb and Yngvason [3] proved that existence and uniqueness of entropy are 
equivalent to certain simple properties of a relation “  ” (A1~A6) and a 
comparison hypothesis (Ch): 

A1. Reflexivity : A~X X . 
A2. Transitivity : X Y  and Y Z  implies X Z . 
A3. Consistency : X X ′

  and Y Y ′
  implies ( ) ( ), ,X Y X Y′ ′

 . 
A4. Scaling invariance : If X Y , then tX tY  for 0t∀ > . 
A5. Splitting and Recombination : For 0 1t< < , ( )( )A~ , 1X tX t X− . 
A6. Stability : If, for some pair of states, X and Y, ( ) ( )0 1, ,X Z Y Z   holds 

for a sequence of ’s tendency to zero and some states 0Z  and 1Z , then 
X Y . 

 

 

1The word “comparable” used in this paper means that any two states, X  and Y , in the same 
state space hold the relation, either X Y  or Y X , with respect to the relation “  ”. In this 
context, X  and Y  are comparable and these states are called comparable states. 
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Ch. Comparison hypothesis : The Ch holds for a state space Γ  if any two 
states X  and Y  on the space are comparable states, i.e., X Y  or Y X . 

 
In the axiom A1, the symbol A~  denotes that two states X  and Y  are 

adiabatic equivalent; It describes a situation where both of the relations, X Y  
and Y X , hold. It should be noted that the axioms, A3, A5 and A6, are 
defined on the product of state space ×Γ Γ , where ( ),X Y ∈ ×Γ Γ . The Ch 
asserts that any two states on the same state space are comparable. Generally, the 
structure on the state space Γ  is determined by the axioms (A1~A6) and the 
comparison hypothesis (Ch) under the condition of adiabatic accessibility. 

Let us consider a meaning of the entropy principle. Let , , , ,X X Y Y′ ′
  be the 

elements of the state space Γ . Imagine that we have a list of all possible pairs of 
states X , Y  such that Y  is adiabatic accessible from X . The foundation of 
thermodynamics and the essence of the second law are that this list, X  and Y , 
such as X Y , can be simply encoded by the entropy function S  defined on 
a set of all states of systems (including compound systems). This means that Y  
is adiabatic accessible from X , i.e., X Y  if and only if ( ) ( )S X S Y≤  
(entropy inequality). The entropy function should be kept consistency with the 
structure of the state space Γ  characterized by A1~A6 and Ch. Thus, we can 
characterize the structure based on the definition of adiabatic accessibility on the 
state space Γ  by using the entropy inequality. Combining the axioms (A1~A6) 
and the Equation (2), one can describe the entropy principle for systems 
including a compound system. 

Let us consider a compound system in which X , X ′  and Y , Y ′  are the 
states of system A and system B, respectively. In this case, the entropy principle 
is mathematically expressed as follows: 

( ) ( ) ( ) ( ) ( ) ( ), , if and only if .X Y X Y S X S Y S X S Y′ ′ ′ ′+ ≤ +      (4) 

Note that all states ( ),X Y′ ′  such that X X ′
  and Y Y ′

  are adiabatically 

accessible from ( ),X Y . It is then important to notice that ( ),X Y′ ′  can be 

adiabatically accessible from ( ),X Y  even if X ′  is not adiabatically accessible 

from X . In such a case, entropy increase, ( ) ( )S Y S Y′ − , in the process 

compensates for a loss, ( ) ( )S X S X′ − , so as to satisfy the statement (4). Therefore, 

the inequality, ( ) ( ) ( ) ( )S X S Y S X S Y′ ′+ ≤ + , characterizes the possible adiabatic 

transitions for the compound system even when ( ) ( )S X S X ′≥ . It means that it 

is sufficient to know the entropy of each part of the compound system in order 
to decide which transition is feasible due to the interactions between the two 
subsystems. 

For later use we write the entropy principle [the statement (4)] in terms of U  
and V , where U , V  denote the internal energy and the volume of a system, 
respectively. Putting ( )A A,X U V=  and ( )B B,Y U V= , one obtains from the 
statement (4): 
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( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )

A A B B A A B B

A A B B A A B B

, , , , , ,

if and only if , , , , .

U V U V U V U V

S U V S U V S U V S U V

′ ′ ′ ′

′ ′ ′ ′+ ≤ +



     
(5) 

It should be noted that the state of the compound system composed of system 
A and system B is described by ( )A B,U U  only in the case where the volume is 
invariant during the process. The statement (5) makes sense in the case where 
X  is an extensive variable. However, there exists a particular case in which X  

is an intensive variable. 
One of the aims in this paper is to obtain a representation of entropy 

inequality for quantum system corresponding to the statement (4). 

3. Quantum Thermodynamics 

In order to obtain the representation of the zeroth, first, second, and third laws 
for quantum thermodynamics, we have to introduce a state space in order to 
describe thermodynamic states of quantum system. In the previous section, we 
have seen that the thermodynamic states of classical system denoted by capital 
Roman letters, , , X Y Z , etc. defined as the elements of state space Γ  satisfy 
certain simple properties of the relation “


“ (A1~A6) and the comparison 

hypothesis (Ch). From the mathematical point of view, we expect that the 
thermodynamic structure of quantum thermodynamics should also have the 
same structure as that of classical thermodynamics.  

In order to develop a representation of quantum thermodynamics, we must 
introduce a thermodynamic state space for quantum system since in quantum 
theory, quantum system is described by the complex Hilbert space   and the 
states of quantum system are in general described by the elements in  : αΨ , 

βΨ , etc. Here, Greek letter (subscript) denotes the label of respective states of 
quantum system. In the following, we use a symbol Ψ  for quantum state 
space and a symbol Θ  (instead of Γ  in classical case) to represent 
thermodynamic state space for quantum system. Our aim in this section is to 
show the relation between Ψ  and Θ  in order to obtain the representation 
of quantum thermodynamics. To define the state space for quantum 
thermodynamics, namely thermodynamic state space in quantum systems, we 
have to establish the relation between Ψ  and Θ . In this section we shall 
introduce a thermodynamic state space Θ  and obtain the representation of 
the zeroth law of quantum thermodynamics. 

We first define a set Ψ  as a quantum state space : 

{ }: , , .α βΨ = Ψ   Ψ     
                     

(6) 

The set Ψ  includes those elements which are linear combinations of the 
elements in Ψ ; e.g., cγ ζΨ = Ψ + Ψ , where c  is a complex number (a 
relative phase between Ψ  and ζΨ ). The importance of this statement is 
well recognized in quantum theory [5]. All state vectors are thus found in the set 

Ψ  and they represent respective quantum states of the system. Now we would 
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like to relate each element of thermodynamic states in Θ  to those state 
vectors in Ψ . 

To find out the representation of the zeroth law associated with the property 
of A1 for quantum thermodynamics, we introduce a set Θ  as a thermodynamic 
state space. It should be noted that the elements in { }: , , ,α β γΘ = Θ Θ Θ   
have to be comparable each other in a context of the zeroth law of classical 
thermodynamics. As will be shown below, introducing these parameters Θ’s 
enables us to compare the quantum states in Ψ  in thermodynamic sense. 

We start with discussing the existence and uniqueness of Θ  for quantum 
state Ψ  representing a quantum system. Let us introduce the propositions of 
quantum theory, Q1 and Q2: [5]. 

 
Q1. A state is characterized by the probabilities of the various outcomes of 

every conceivable test. 
Q2. If a quantum system is prepared in such a way that it certainly yields a 

predictable outcome in a specified maximal test2, the various outcomes of any 
other tests also have definite probabilities. In particular, these probabilities do 
not depend on the details of the procedure employed for preparing the quantum 
system. Therefore, the quantum system so prepared yields a specific outcome in 
the given maximal test. It should be noted that the quantum system prepared in 
such a way is said to be in a pure state. 

 
Any complete orthogonal basis, i , 1, 2, , ,i i=   , represents a realizable 

maximal test. Therefore one can obtain the definite probability ip  for state i 
from a probability amplitude: [10] 

.ia i= Ψ                           (7) 

It should be noted that the definite probability is given by 2
i ip a= . 

Now we introduce a lemma (L1) on the existence of parameter jΘ  
( )j , , ,α β γ=  : 

 
L1. There exist parameters , ,α βΘ Θ   in Θ  for respective state vectors,  

, ,α βΨ Ψ 
 in Ψ . 

 
Proof of L1. We treat a case for a label α . Other cases, , ,β γ  , could be 

proved in the same way. From Equation (7), one can obtain a sequence 

{ }2 2 2

1 2, , , ,ia a aα α α          . By normalizing a state vector αΨ , the sequence 

satisfies the condition 
2

1 1ii aα
=

=∑  and it is clear that 
2

0 1iaα≤ ≤ . Then each 

element of the sequence describes a definite probability for the respective state i. 
Hereafter, we shall omit superscript α  for simplicity. Let us introduce a 
probability function ( );P xΘ  so as to satisfy ( ) 2; iP x i aΘ = =  for any i. In 

 

 

2Maximal test is defined as follows: Let N (assumed to be finite for simplicity) be the maximum 
number of different outcomes obtainable in a test of a given quantum system. Then, any tests that 
have exactly N different outcomes are called maximal (complete). Such tests are called maximal test. 
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( );P xΘ , Θ  is a parameter and x  is a random variable. Therefore, the 

parameter jΘ  ( )j , , ,α β γ=   exists for the representation of a state vector 

jΨ .                                                             
 

The L1 ensures the existence of parameters Θ ’s which correspond to 
respective state vectors jΨ ’s in Ψ  through probability functions ( )j ;P xΘ ’s. 
It is noted that a parameter is thereby found in each probability function for 
respective labels, j , , ,α β γ=  . Since Greek letters refer to the respective 
quantum states, jΨ  corresponds to jΘ  ( )j , , ,α β γ=  . In L1, we saw that 
there exists unique parameters Θ ’s assigned for every state vector in Ψ . 
However, in order to represent the zeroth law in terms of Θ ’s, the elements in 

Θ  must be mathematically comparable each other. Thus, it is required to 
utilize the same maximal test in order to obtain the equivalence relation for the 
element jΘ  from the corresponding equivalence relation for the state vector 

jΨ  for j , ,α β=  . 
Adopting this requirement, it is ensured that those elements in Θ  are 

comparable each other and the Ch holds for jΘ ’s once entropy is defined as a 
function of Θ . Therefore, the zeroth law of quantum thermodynamics can be 
uniquely established for quantum systems by making use of parameters jΘ ’s. 
In order to prove the existence of the zeroth law and to discuss the parameter 
Θ , we have to introduce a proposition of quantum theory, Q3: 

 
Q3. Ψ  describes the same state as c Ψ , where c is a complex number. 
 
Here, we discuss the parameter Θ  associated with the proposition Q3. Let us 

introduce a map : cf Ψ Ψ  , where c
Ψ  is a set defined by 

{ }: , ,c c cα βΨ = Ψ Ψ  . From the Q3, c
Ψ Ψ≡   since it is required that 

the set Ψ  is invariant under the scalar transformation f  . Therefore, the set 

Θ  is also invariant under the scalar transformation, i.e., : cf Θ Θ  . This 
can be described in terms of their elements, i.e., j j:f cΘ Θ  ( )j , , ,α β γ=  . 
Thermodynamically, this means that the parameter Θ  is an intensive variable. 
It should be noticed that the zeroth law is invariant under the scalar transformation 
of state vectors. 

Let us derive the thermodynamic state space Θ  from Ψ , where the 
elements in Θ  correspond to respective state vectors in Ψ . It should be 
noted that in order to obtain the corresponding equivalence relation for these 
elements jΘ  from the equivalence relation for jΨ , ( )j , , ,α β γ=  , we 
have to use the same maximal test. In other words, when we compare the 
quantum states, those vectors in Ψ  representing the states must be 
comparable and hence their components must be described by the same 
complete orthogonal basis. Adopting this requirement, it is ensured that the 
elements in Θ  are comparable each other and can specify the respective 
states of quantum system. Though Θ  should be written as LΘ,   , where L  
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denotes a label of maximal test, L  will be omitted when we consider a fixed L  
for the sake of simplicity. 

Now one can compare two quantum states in thermodynamic sense since 
those parameters Θ ’s can be used to describe two or more systems being 
equivalent. This leads to the zeroth law of quantum thermodynamics. 

3.1. The Zeroth Law of Quantum Thermodynamics 

Let us prepare three systems, A
Θ , B

Θ  and C
Θ , where superscripts indicate 

the labels of respective systems. The equivalence relation among quantum states 
is described by 

BAA BIf , then ,α β α βΘ = Θ Ψ Ψ

                 
(8) 

where A A
α ΘΘ ∈  and B B

β ΘΘ ∈ , respectively. In this relation, a symbol   
means that the state in the left-hand side is equivalent to the state in the 
right-hand side. Later this relation (8) reaffirm the zeroth law of thermodynamics. 

 
Proof of the zeroth law. Let A

αΘ  and B
βΘ  be the elements of A

Θ  and 
B
Θ , respectively. By L1, it is clear that A B

α βΘ = Θ  implies 
BA

α βΨ Ψ .   
 

We are now in a position to discuss some consequences obtained by 
introducing the parameter jΘ  to specify the corresponding thermodynamic 
states of quantum systems. It is clear from Equation (8) that the transitiveness 
law holds: 

CAA B B CIf and , then .α β β γ α γΘ = Θ Θ = Θ Ψ Ψ

            
(9) 

We have established a representation of the zeroth law of quantum 
thermodynamics (equivalence relation among quantum states). The zeroth law 
can be expressed in terms of parameters in Θ . 

3.2. The First Law of Quantum Thermodynamics 

The first law of thermodynamics is the law of conservation of energy and it 
assures equivalence between heat and work. It is written as 

,dU d Q d W′ ′= +                        (10) 

where dU  is a small change in the internal energy of a system, d Q′  is the heat 
transferred to the system and d W′  is the work done on the system. Though 
Equation (10) is for classical system, we will show the same expression holds for 
quantum system. 

We consider a quantum system described by Hamiltonian H . Here we only 
assume that the internal energy of the system, U , is given by the pure state 
expectation value of Hamiltonian H :3 

,i i
i

U p E= = ∑H
                      

(11) 

 

 

3The energy of an isolated system may be described by the sum of kinetic and potential energies, 
represented by Hamiltonian. 
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where ip  denotes a definite probability having the outcome iE  in a specified 
maximal test for the quantum system. Since the internal energy (11) can be 
expressed as ( ),U U L= Θ , we can obtain the representation of the first law of 
quantum thermodynamics in terms of Θ ’s and L’s in ,LΘ  (see below). 

Let us consider a small change in the internal energy. Differentiating Equation 
(11) formally, we obtain 

( ).i i i i
i

dU E dp p dE= +∑
                    

(12) 

This indicates that the change in U  is originated from the two independent 
source, i.e., an outcome iE  and a definite probability ip . The two terms in the 
right-hand side of Equation (12) can be identified with the respective terms of 
Equation (10) for the expression of the first law of thermodynamics. The first 
term i iiE dp∑  is a consequence of the change in probabilities. We shall see that 
it corresponds to the heat flow into the system. This implies that the effect of 
heat transfer is to change the definite probabilities of the various outcome of iE . 
The second term i ii p dE∑  relates to the change in the outcome idE . This term 
shows that change in the internal energy partially comes from the change in 
outcome. We shall show below that this corresponds to the work done on the 
system, i.e., d W′ . It must be emphasized that the validity of Equation (12) is 
ensured by Equations (13) and (19), i.e., existence of parameters, Θ  and L , as 
will be shown shortly. 

In order to understand that the second term corresponds to d W′ , we first 
note that the work done on the system is related to the variation of an external 
parameter (work coordinate) and the outcome should depend on the size 
(volume) of the system: ( )i iE E V= . The work done on the system is due to the 
change of the volume of the system. Accordingly, without loss of generality we 
ascribe the change of the volume to the change of the work coordinate denoted 
by L : the energy of state i , i.e., outcome iE , which is the eigenvalue of the 
system’s Hamiltonian H , depends thus on the work coordinate L : 

( )i iE E L= . This expression states that one can identify the work coordinate L  
with the label of a maximal test introduced in the last section. Since iE  is a 
function of L , we can write that the change in the outcome iE  is expressed in 
terms of the work coordinate: 

( ) .i
i

E L
dE dL

L
∂

=
∂                        

(13) 

Then 

.i
i i i

i i

Ep dE p dL
L

∂
=

∂∑ ∑
                    

(14) 

In Sec. 3, it was shown that ( );ip P x i= Θ = . This indicates that ip  is a 
function of Θ . Thus we can write Equation (14) as 

( ) .i i i i
i i

p dE p E dL UdL
L L
∂ ∂

= =
∂ ∂∑ ∑

                
(15) 
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A change in the internal energy of the system is generally related to a “force” 
defined by 

( ) ,
U L

F
L

∂
≡ −

∂                         
(16) 

so that Equation (15) and hence Equation (14) can be expressed as 

.i i
i

p dE FdL= −∑
                       

(17) 

This indicates that the term i ii p dE∑  corresponds to the work d W′  done on 
the system and it is generally expressed by4 

( ) ,i i
i

d W p dE L FdL′ = = −∑
                  

(18) 

where the definite probability ip  can then be replaced by the probability 
function ( );P x iΘ = . It is important to notice that Equation (18) expresses the 
work d W′  with respect to the change in L  (work coordinate) in a quasi-static 
process. Hence, the invariance of an external parameter L  implies 0d W′ = . 
Thereby we have dU d Q′= . Then the term i iiE dp∑  corresponds to the 
change in the internal energy of the system that occurs when no work is done; 
this is what we understand as heat flow. 

It should be emphasized that the heat entering the system, d Q′ , is expressed 
in terms of the variation of ( );ip P x i= Θ =  while the work done on the system, 
d W′ , is expressed in terms of the variation of ( )iE L . Since ( );ip P x i= Θ = , 
we can write idp  as 

 

( );
,i

P x i
dp d

∂ Θ =
= Θ

∂Θ                     
(19) 

so that d Q′  is expressed in terms of Θ : 

( );
.i i i

i i

P x i
d Q E dp E d

∂ Θ =
′ = = Θ

∂Θ∑ ∑
              

(20) 

In general, unitary operator generated by the Hamiltonian of a system does 
not change the definite probability ip . Therefore, the term i iE dp  representing 
the heat cannot be explained by the Hamiltonian itself. In the present theory, the 
effect of heat is expressed as a change in the definite probabilities having various 
outcomes iE  in the maximal test. It should be noted that an adiabatic process 
is characterized by the case where 0idp =  in the definition of heat, see 
Equation (20). After all, the representation for the heat in the present theory is 
consistent with a well-known adiabatic equivalence and the first law of 
thermodynamics for quantum systems can be represented by the elements in 

,LΘ  as seen in Equations (18) and (20). 
As a consequence of the previous section (see the proof of L1) and the 

discussion above, the following corollaries, C1 and C2, can be drawn: 
 

C1. The internal energy U  is specified by the parameter Θ  and L : 

 

 

4We note that Equation (18) is a quantum analog of the expression d W PdV′ = −  in classical case. 
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 ( ), .U U L= Θ                         (21) 

Proof of C1. Once a maximal test is chosen for a fixed L , respective outcome 

iE  ( )1, 2,i =   for the system is uniquely determined and the definite probability 

ip  is then described as ( );P x iΘ =  by the proof of L1. Therefore, it is clear that 
the internal energy is specified by the parameters Θ  and L .                 

 
We note that C1 states the internal energy U  can be specified by the 

parameters, Θ  and L . We will omit L  in ( ),U LΘ  for simplicity when we 
consider a fixed L . 

 
C2. 0d Q′ =  implies the consequence of adiabatic equivalence. 
 
Proof of C2. By the proof of L1, no change in the probability function implies 

that the absolute values of the expansion coefficients ia ’s remain the same. 
This implies ip  remains constant. Thus d Q′  is equal to zero throughout the 
operation (during the process).                                        

In the statement of C2, the consequence of adiabatic equivalence is as follows: 
if the system is isolated, the absolute values of the expansion coefficients ia ’s 
would remain constant [11]. It should be noticed that the notion of heat arises 
only when the state (internal energy) of a system changes, where dU d W′≠ . As 
in classical thermodynamics, heat in quantum systems is also defined as a form 
of energy movement. Once the internal energy of a quantum system is well 
defined, heat is also well defined. The notion of heat in quantum systems will be 
discussed further in a separate paper [12]. 

3.3. The Second Law and Entropy 

In this section we will give a definition of entropy to describe the entropy 
principle (namely, the second law of thermodynamics) for quantum systems. 
The entropy principle states that the adiabatic accessibility of any two states is 
described by an entropy inequality. Here we should refer to the adiabatic process 
since the second law treated here is defined for the process. The process is 
characterized by 0d Q′ = . This is ensured when ( );P xΘ  remains unchanged 
throughout the process (see C1 and argument below). In other words, adiabatic 
process is a process such that ( );P xΘ  remains unchanged. It should be noted 
that adiabatic process allows to change a value of L  since it only affects work 
d W′ . This is consistent with adiabatic process defined by Lieb and Yngvason 
[3]. 

Let us define an entropy function as a map from the set ,LΘ  to a real 
number R : 

,: .LS RΘ                          (22) 

We note that this general definition for entropy can describe all types of 
entropy functions including well known Boltzmann, Gibbs, and Shannon 
entropies. The entropy S  defined by the map (22) is clearly a state quantity 
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and ensures that S can be defined for all states in terms of Θ . 
In order to obtain a representation of the second law in terms of Θ  for 

quantum systems, however, it must be shown that determining a parameter Θ  
as a state variable means to determine an internal energy U  as a state quantity. 
We have already shown that U  is specified by Θ ’s and L ’s (i.e., the elements 
of ,LΘ ) as described in C1 and can be expressed by a function on ,LΘ . 
Thus the following lemma (L2) is established: 

 
L2. There exists U  specified by each element of ,LΘ . 
 
Proof of L2. Without loss of generality, one can consider a fixed maximal test, 

where outcome of the maximal test is uniquely determined: The internal energy 
is represented by ( );i i ii iU p E P x i Eα= = Θ =∑ ∑ , whereby αΘ  specifies the 
internal energy U . Therefore, U can be labeled as Uα . As in the same way, 
respective internal energies, , ,U Uβ γ  , can be specifically specified by 

, ,β γΘ Θ  .                                                        
 
Since the existence of correspondence between an internal energy U  and a 

parameter Θ  was established by L2, we can obtain one-to-one correspondence 
between ( )S X  and ( )S Θ . This keeps consistency between an entropy 
function defined in the entropy principle and the statement (22). Put U  instead 
of X  in the statement (1) in Sec. 2 and we finally obtain a representation of the 
second law of quantum thermodynamics in terms of Θ : 

( ) ( )if and only if .S Sα α α α′ ′Θ Θ Θ ≤ Θ               (23) 

This describes the entropy principle for quantum system. It should be noted that 
each Θ  can depend on different values of L . Thus, Eq. (23) is able to give the 
information as to a complete structure in ,LΘ , which enables us to compare 
Θ ’s that depend on different values of L ’s in a context of adiabatic accessibility 
(recall that one can compare state vectors when L ’s are fixed). We should note 
that two quantum states represented by αΘ  and βΘ  are adiabatic equivalent 
if and only if ( ) ( )S Sα βΘ = Θ  for a fixed work coordinate L  (cf., A1 for 
classical case and the argument therein). 

Now we consider the case corresponding to the statement (4) in Sec. 2. This 
states that the second law can refer to a possible adiabatic transition of a 
compound system consisting of system A and B when the compound system is 
thermally isolated from any other environment. From L2, we can immediately 
obtain the following relation: For a given arbitrary pair of states represented by 

( ),α βΘ Θ  and ( ),α β′ ′Θ Θ , the following relation holds: 
 

( ) ( ) ( ) ( ) ( ) ( ), , if and only if ,S S S Sα β α β α β α β′ ′ ′ ′Θ Θ Θ Θ Θ + Θ ≤ Θ + Θ

  
(24) 

where jΘ , j , ,α β=  , is the element of the state space Θ Θ×  . It should 
be noted that each Θ  can depend on different values of L. This is the entropy 
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principle expressed in terms of Θ ’s for a quantum compound system. The 
statement (24) means that ( ),α β′ ′Θ Θ  is adiabatically accessible from 

( ),α βΘ Θ . We note that this statement is useful when one considers the heat 
transfer between quantum systems, e.g., thermal contact. We will discuss 
thermal contact in a separate paper [12]. 

Now we consider a relation between parameter Θ  and thermodynamic 
temperature T . We start with introducing thermodynamic temperature T  
that is defined as a partial derivative of entropy S  with respect to U  : 

( ),1 : ,
V

S U V
T U

∂
=

∂                       
(25) 

where U  and V  denote the internal energy and volume (work coordinate) of 
a system, respectively [2] [3]. In the definition (25), differentiability of the 
entropy function S  may be ensured by a concavity of the entropy function.5 

Here, we introduce a corollary C3: 
 
C3. There exists a one-to-one correspondence between T  and Θ . 
 
Proof of C3. From the definition of thermodynamic temperature (25), the 

value of T  is defined for the respective values of U  owing to a uniqueness of 
the differential coefficient of a concave function S . Let E  be a value of internal 
energy U  ( )E= . By C1, the value E  has one-to-one correspondence with the 
value of Θ . Therefore, thermodynamic temperature T  can be determined by 
the parameter Θ  in Θ  introduced in Sec. 3.                           

 
This corollary establishes the consistency between the parameter Θ  and 

thermodynamic temperature T . Let us consider the partial derivative in the 
right-hand side of Equation (25). We note that a value of T  is determined by 
Θ  and L . This implies that an internal energy plays the same role as 
temperature in quantum system (see C1). This agrees with the proposition of 
Bender et al. [9]. Equation (25) is useful to obtain the relation between 
thermodynamic temperature and quantum states characterized by Θ . This is 
also useful to obtain a structure in the thermodynamic state space Θ . 

In this section, we have established the representation of the second law in 
terms of the entropy S  for quantum systems as a function of parameter Θ , so 
that one can define thermodynamic temperature T  as a function of a state 
parameter Θ : ( )T T= Θ . 

3.4. The Third Law 

Let us briefly discuss the third law of thermodynamics for quantum systems. The 
third law requires quantum states [1]. Therefore, it must take into account the 
probabilistic nature of quantum theory. The probability function ( )P Θ  is 

 

 

5A relation between thermodynamic temperature and concavity of the entropy function is discussed 
by Lieb and Yngvason [3]. 
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found from probability amplitudes (see L1 in Sec. 3). Accordingly we can obtain 
the representation of the third law: The entropy S  is equal to zero only when 
the probability function satisfies the condition: 

( ); 1 for arbitrary .P x i iΘ = =                   (26) 

At the absolute zero temperature, one can expect a state of quantum system 
being in a single state such as 

for arbitrary .ia i iΨ =                    (27) 

The single state here means that only one outcome is obtained with a 
probability one by maximal tests. 

4. Results and Discussion 

In this paper, we presented a representation of the basic laws in thermodynamics 
for quantum system in a pure state and investigated a relationship between 
thermodynamics and quantum theory. We obtained the representation of the 
zeroth, first, second and third laws in quantum thermodynamics, which affords 
the key to treat quantum system thermodynamically. In the derivation of the 
zeroth law that assures the existence of a property called “temperature” in 
classical thermodynamics, we proposed parameters Θ  that characterize the 
equivalence law among state vectors, leading to the zeroth law of quantum 
thermodynamics. We showed that the existence of such parameters depends on 
the probabilistic nature of quantum theory (L1). It should be however noted that 
the parameters Θ ’s introduced in our formulation make sense only when there 
exists the map Ψ Θ  , i.e., Θ  is an injection of Ψ . Therefore, in 
order to establish the representation of the zeroth law in terms of the elements in 

Θ , same maximal tests must be performed to obtain the corresponding 
elements of Θ  from the respective elements in Ψ . Though this statement 
can refer only to the case where the work coordinates are fixed, the second law 
releases this restriction. 

We established the representation of the first law, where the internal energy of 
quantum system as a state quantity is specified by the parameters in ,LΘ  (C1). 
From the first law, when the state changes from αΘ  to βΘ , heat entering the 
system is represented by ( ) ( )d Q U Uβ α′ = Θ − Θ  in the case where 0d W′ =  
(i.e., the work coordinate is fixed). Thus one can measure the quantity of heat in 
terms of Θ ’s for quantum systems. By considering the adiabatic process 
( 0d Q′ = ), one can also quantify the work done to the system in terms of Θ ’s in 
the present theory. Since the term d W′  is due to a shift of the outcomes caused 
by the variations of work coordinate, one can measure the work d W′  in terms 
of the changes in the internal energy as ( ) ( )1, ,d W U L U Lα α′ = Θ − Θ  when we 
consider an adiabatic process, where αΘ  remains constant. Here ( )1,U LαΘ  
describes the internal energy of the final state. This is useful to obtain the 
relation among { }1 2, ,, ,L LΘ Θ    and the relation gives a structure in 
thermodynamic state space ,LΘ . 
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We also obtained the representation of the second law of thermodynamics for 
quantum system. The representation depends on L2 and assures the entropy 
principle. The representation of the second law (entropy principle) proposed 
here would give some insight into the structure (order relation) in ,LΘ  for 
quantum systems. Therefore, this would afford one to investigate what 
thermodynamic structure exists in a state space describing thermodynamics of 
quantum systems in terms of those parameters in ,LΘ . 

The third law requires as a principle that entropy should be zero at the 
absolute zero temperature [1]. In our representation, entropy can take the value 
of zero when the state is described by j

jib iΨ =  (i.e., the state of the system 
is characterized by a single state for each ensemble j). Since one can see the 
existence of a unique function of Θ  that describes the thermodynamic 
temperature, there is no necessity of referring to an explicit form of the function. 
Let i  be an energy eigenstate of the system. At the absolute zero temperature, 
the state is occupied from the lower states and the state j

jib iΨ =  should 
correspond to the lowest energy level i. Therefore, we required one more 
condition to the statement Equation (26), that is, the only state i is reserved for 
the description of the lowest energy level. It should be noted that this 
requirement is consistent with Fermi and Bose statistics at the absolute zero 
temperature and the state is free from the type of Hamiltonian for quantum 
system, establishing the third law of quantum thermodynamics. By the third law 
along with the definition of entropy function (22), one can determine the 
absolute value of entropy. 

Finally we consider the problem of thermal contact. This problem makes the 
notion of heat transfer much clear. Let us consider a compound system 
comprised of subsystem A and B whose initial states are characterized by 
( ,α βΘ Θ ), respectively. Without loss of generality we could use the same value of 
the work coordinate for both systems. The compound system as itself is isolated 
from any other environment. After thermal contact the state of each subsystem 
becomes ( ,γ γΘ Θ ) due to the heat transfer between subsystems. For such a case, 
one can predict a possible value of γΘ . Since the case satisfies the inequality 
(24), we could evaluate the values of Θ  by obtaining the probability function 

( );P xΘ . Therefore one can verify the order relation among Θ ’s (i.e., whether 

( ) ( ), ,α β γ γΘ Θ Θ Θ
 is true or not). In other words, by studying the order 

relation among parameters Θ ’s through the study of respective entropies, 
thermodynamic structure hidden in quantum systems could be elucidated. 

Now we discuss again the validity of the zeroth law (8) from a viewpoint of 
the thermal contact. If the subsystem A and B are in thermal equilibrium, then 
there is no heat transfer between them. Thus one can say Θ ’s are the 
parameters which characterize respective thermal equilibrium states of 
subsystems A and B. 

By applying the quantum thermodynamics presented in this paper, 
thermodynamic nature of quantum systems could be studied in all temperature 
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without considering detailed mechanics of quantum systems. This is the 
advantage to utilize quantum thermodynamics presented in this paper. We hope 
that the present theory sheds light on further understanding a relationship 
between thermodynamics and quantum theory. 
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Abstract 
We discuss hole-induced magnetic solitons and metal-insulator transition of 
transport properties in diluted magnetic semiconductors Ga1−xMnxAs from 
the standpoint of a field theoretical formulation, and analyze experimental 
data of transport properties, using the supersymmetry sigma formula and the 
effective Lagrangian of diffusion model. 
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1. Introduction 

Diluted magnetic semiconductors (DMSs), which are formed by substitution of 
several percent of cation sites in a host semiconductor with magnetic impurities, 
are actively investigated both theoretically and experimentally, due to their po-
tential applications in new generations of semiconductor spintronic devices [1]. 
Because the carriers in DMSs are considered to mediate the magnetic interaction 
between the magnetic ions [2], these materials are very important for semicon-
ductor-based spintronic devices to control the spin degree of freedom of the car-
riers. Due to the mediation mechanism, the ferromagnetism in DMSs is called 
carrier-induced ferromagnetism. Prototypical DMS systems such as Ga1−xMnxAs 
and In1−xMnxAs show severely limited chemical solubility due to the substitution 
of divalent Mn atoms for the trivalent Ga or In sites. In order to prevent phase 
separation, these materials should be grown at low temperature (T from 200˚C 
to 300˚C), which results in an abundance of different types of crystal defects. As a 
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result, a theoretical study of DMSs is very difficult owing to two factors (strong 
disorder and exchange interaction), which must be taken into account nonper-
turbatively. 

Understanding the mechanism behind the carrier-induced ferromagnetism is 
of significance for further development of semiconductor spintronic devices. 
Several theoretical models for carrier-induced ferromagnetism in (Ga, Mn)As 
have been proposed [1]-[6]. In addition, interesting phenomena such as the 
photo-induced magnetic polaron in DMSs have been reported [7] [8] [9] [10]. 
These studies stimulate us to investigate the hole-induced magnetic solitons. It 
has been required to consider the behavior of the hedgehog-like magnetic soli-
ton and the domain wall from a viewpoint of quantum theory. Kanazawa [11] 
has discussed the hole-induced magnetic solitons in DMSs from the standpoint 
of a field-theoretical formulation. Metal-insulator transition (MIT) and large 
magnetoresistance (MR) effects in DMSs (Ga, Mn)As have been reported [12] 
[13] [14] [15] [16]. Kanazawa and coworkers [17] [18] [19] [20] [21] have dis-
cussed these anomalous properties in DMSs theoretically. 

In this study, the anomalous transport properties in DMSs are discussed using 
a field-theoretical formulation. Then we analyze some conductivity data in 
DMSs (Ga, Mn)As, using the gauge-invariant effective Lagrangian density and 
quantized magnetic solitons. 

2. A model System and Hole-Induced Magnetic Solitons  

According to the aggregation of hole-induced magnetic solitons, the non-monotonic 
temperature dependence of the transport properties of (Ga, Mn)As is qualita-
tively explained as being due to the hole localization around the Mn ions. It has 
been suggested that the ferromagnetic ordering might be due to a dou-
ble-exchange-like interaction and the remarkable change of spin exchange in-
teraction among Mn ions by the hole seems to be cooperative and non-linear 
(Yang Mills like). Kanazawa and coworkers [22] [23] [24] [25] have proposed 
that in quasi-(2 + 1) dimensions in a quantum antiferromagnet the hole-induced 
magnetic disorder leads to hedgehog-like solitons, which are composed of the 
doped hole and the cloud of SU(2) Yang-Mills fields with spin disorder around 
the hole. In addition, based on the important ideas in Refs. [26] [27] [28] [29], it 
has been proposed that the hedgehog-like soliton in a three-dimensional system 
is specified by rigid-body rotation, which is related to gauge fields of SO(4) 
symmetry for S3 [30] [31] [32] [33] [34]. 

Then the Yang-Mills fields aAµ  induced by the doped hole have a local SO(4) 
symmetry. Here we have thought that the SO(4) symmetry fields aAµ  are spon-
taneously broken around the hole through the Anderson-Higgs mechanism, in 
the III-V-based diluted magnetic semiconductors with magnetic manganese 
ion-doping. Through the spontaneous symmetry breaking 0 0 0,0,0,aφ µ= , 
the effective Lagrangian density has been introduced [11] [19]. That is, the effec-
tive Lagrangian density reveals that the ferromagnetically aligned Mn spins create 

 

DOI: 10.4236/jmp.2018.914156 2438 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2018.914156


I. Kanazawa et al. 
 

the cluster, in which the hole is trapped, with the radius 21cR m . Katsumoto 
et al. [16] have shown that the localization length cl  of the wave function of 
holes plays an important role in the metal-insulator transition in DMS (Ga, 
Mn)As. It is suggested strongly that the cl  might correspond to 21cR m . In 
III-V-based DMSs, the resistivity increases remarkably as the temperature de-
creases. In addition, in the same temperature region, the negative magnetoresis-
tance grows rapidly as the temperature decreases. To explain the electron hop-
ping and spin dynamics, we introduce an effective Hamiltonian, H, for the 
magnetic soliton ( )iO r



 [18] [20] 

( ) ( ) ( ) ( ) ( )
,

1cos 2 .
2

i j
ij i j

i ji j i j

O r O r
H J O r O r K

r r
θ

≠

⋅
= − ⋅ +

−
∑ ∑

 

  

 
 

 

      (1) 

Here the first sum ,i j∑
 

 is taken only over nearest neighbors (the distance 
between each magnetic soliton is 2 cR≤ ), while the second sum is taken over all 
pair( i j≠   means 2 ci jr r R− >

 

) [18] [20]. ijθ   is the angle between iN


 and 

jN


. Here iN


 and jN


 represent the effective spins of the solitons ( )iO r


 
and ( )jO r



, respectively. iN


 is the summation of the ferromagnetic spin, iN , 
of Mn within ( ) ( )34 3 π cR i  around the hole at the site ir . J is defined in 
Equation (2). K, which is introduced in Ref. [18], is the effective long-range in-
teraction constant. The first term shows short-range ferromagnetic ordering in-
teraction and the second one shows long-range frustration. 

1

1

2 2
12 2

1
14π 4π

m r

r
m

g geJ m e
r

−
−− = − −



                (2) 

is the short-range attractive potential, which is derived from massive gauge fields 
1Aµ , 2Aµ , and 3Aµ  exchange interaction. When the magnetic soliton, ( )iO r



, 
with the effective spin iN



 is located at the nearest-neighbor site of the mag-
netic soliton, ( )jO r



, with the effective spin jN


, holes are hopping between the 
two solitons ( )iO r



 and ( )jO r


. If iN


 is parallel to jN


, the p-d exchange 
interaction induces large reduction of the kinetic energy. The hopping term be-
tween the nearest neighbors of hedgehog-like solitons (clusters) leads to an addi-
tional term in the σ-model describing a coupling of the supermatrices, iQ



, cor-
responding to different magnetic solitons (clusters) [18]. We discuss the trans-
port properties of DMSs for connected clusters, where the radius is 21cR m , 
of DMSs. Approximately we introduce the following approximate free energy by 
using the formula for the model of granulated clusters [35] [36] 

( ) ( ) 1

,
,

4ij i j i
ii j

iF Q str J Q Q i Qω δ −
 

= − + + ∆ Λ  
 
∑ ∑   


 

        (3) 

where ( ) 1cos 2ij ij
i j

J J θ=
∆ ∆ 

 

. Then i∆   is the mean energy level spacing at  

the hedgehog-like soliton (cluster) ( )iO r


 and 0J > . The diffusion coefficient 

0D  is introduced as follows, 
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               (4) 

Here 2

1
π cRν

∆ =  and ν  is the density of states of the carriers at the Fermi  

surface. In the case of the low frequency limit of ω , the localization length locL  
is shown as follows, 

( )( )22 2 2 2
0

4π π cos 2
πloc c c ij i j

j
L R D R J r rν ν θ∝ −

∆∑   



          (5) 

We shall consider the variable range hopping conductivity and the system 
length locL L  as follows, 

( ) ( )1 1exp dA Tσ + ∝ −                      (6) 

where d is the dimensionality of the system. 
( ) ( )11

2 2
0

1 1
π

d dd d

loc c

A
L R Dν

++
  

∝   
   

                (7) 

Figure 1 shows the temperature dependence of the conductivity σ  for 
as-grown and annealed samples (experimented data) [15] and the fitting lines 
(solid lines) of Ga0.95Mn0.05As. The annealing is performed at 310˚C for 15 mins.  
 

 
Figure 1. Temperature dependence of conductivity of the diluted semiconductor 
Ga0.95Mn0.05As [15]. The anniling time is 15 min. The solid lines have been fitted to the 
measured data. 
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The as-grown sample and the sample annealed at 310˚C show insulating behav-
ior above ~30 K and ~50 K, respectively. The annealing at 310˚C increases the 
conductivity. Annealing might reduce concentration of As antisites and intersti-
tial Mn. As the conductivity σ  increases, the high-temperature structure moves 
to higher temperatures, which means cT  (Curie temperature) increases. Thus 
the concentration ρ  of mobile holes and cT  are enhanced by the annealing. 
The experimental data are fitted well with Equations (6) and (7), as shown with 
solid lines in Figure 1. Comparing the experimental data (annealing at 310˚C) 
with those (as grown), it is thought that the value of locL  (after annaealing at 
310˚C) is much larger than of those (as grown), as seen from Equation (7). 

3. Conclusion 

The hole-induced magnetic solitons and metal-insulating transition of transport 
properties in DMSs have been discussed based on a field theoretical formulation. 
We have analyzed experimental data on the transport properties of GaMnAs by 
using the effective Lagrangian of diffusion model. 
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Abstract 
There are two main theories about the origin of the Universe that show simi-
litude with the Genesis writings, though in different verses: the Big Bang1 and 
the eternal Universe2 (an eventual quantum fluctuation). However, it is possi-
ble to partially include the quantum theory in the Big Bang thanks to the na-
ture of photons, to obtain a simple model. It is assumed as the origin of the 
Universe (space, time, matter and physical laws). A subsequent enormous 
expansion has been explained by a supposed brief Inflation period, followed 
up today by a constant adiabatic expansion acceleration. This paper assumes 
that the Universe is the total Space which contains the Physical Universe cov-
ered by an external, empty Space, both expanding at a constant Hubble acce-
leration ΓH [1]. A Big Bang design is intended by a deduction of the energy 
and number of primeval photons, from the present CMB value; they would 
have reacted whether to generate the Physical Universe or to decay till the 
CMB level. It follows an approach to the Universe expansion work, based on 
the Hubble field (VH) as well as on Thermo-dynamics. They are calculated: 
the time and angular momentum required for the Physical Universe to reach 
the maximum internal velocity c as well as, simultaneously, a c tangential ve-
locity. The Universe luminosity at different periods and the adequate expres-
sions of parameters (Ω, q, k) are revised. It is proposed a modification in the 
equation of the H(t) parameter and the Ho value. The operator of convective 
derivative is applied to obtain an equation of continuity for the photonic 
energy; an adiabatic Jacobian gives similar results. This essay differs from 
others based on black box radiation, since the Universe has no walls and the 
photons energy decays continuously.  
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1. Introduction 
1.1. Previous Models 

Reference [2] describes the extensive research developed to determine the CRB 
variations, which may suggest a spectral distribution of the Big Bang original 
photons. Reference [3] is a complete text on Statistical Physics though its chapter 
on photon gas is mainly oriented to black body and cavities radiations. A pre-
vious classical book [4] mentions the Wien constant, necessary to determine the 
maximum energy density, though it is exemplified only by solar radiation. Ref-
erence [5] assumes that the photon gas is a carrier for electromagnetic waves in a 
very complex model. However, it was not found a Big Bang thermo-dynamical 
model that would, probably, exist. 

1.2. The Selected Universe Model 

The Einstein gravitational equation, including the cosmological constant Λ, was 
modified by De Sitter for an empty Universe [6]. In reference [7] the Λgμν tensor 
was substituted by a Hubble tensor (whose scalar equals 3H2); it implies a Hub-
ble positive potential field V(r) and the expansion acceleration ΓH. The photonic 
model has been selected because the Planck temperature represents an initial 
energy about 1022 (Mev), which overpasses the binding energy of any mass, from 
neutrino to Higgs particle. For simplicity it is initially assumed as a mono- 
energetic photonic source, which could later be modified as function of a proba-
ble Planck Length indetermination.  

1.3. The Light Speed in Dense Matter 

A doubt could be elicited due to the use of the c value in Planck parameters be-
cause, at that time, the linear speed of initial photons could not be higher than 
that of the space expansion. However, such an obstacle may have overcome by 
the results of a research on opaque bodies [8] which concluded that the total tra-
jectory of light through a big number of collisions per second corresponds to c. 
That would confirm the light velocity as a true constant in the Physical Universe, 
provided that the internal mean free path in the mass would be wide enough to 
admit a wavelength displacement; obviously, the c value had been confirmed in 
vacuum.  

2. Some Universe Parameters 
2.1. Previously Published Parameters 

The maximum velocity of matter into the physical Universe is c (Figure 1); the 
present time is to = 14 Gy. It has been assumed that the Big Bang duration was tbe 
= 1012 (s) [9] or 3.2 × 104 (y). Besides, the maximum velocity of matter into the 
physical Universe has been limited to c, which was freely manifest at the Un-
iverse expansion time tc = 1.1 × 1017 (s); the corresponding Universe scale factor 
Rc (Universe radius rc), where velocity expansion c freely occurred, was rc = 1.7 
× 1027 (cm). Otherwise, it has been shown [1] that the space acceleration  
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Figure 1. Universe expansion velocity as a time function. A: expansion velocity of Space, 
Equation (1). B: constant velocity of light in the Physical Universe. 
 
ΓH (cm∙s−2) is a constant, independent of mass presence. Present time is to. The 
Space expansion velocity is: 

H H t⋅=v Γ                              (1) 

The value of the Hubble parameter has been here corrected to Ho = 3.2 × 10−18 
(s−1) assuming a maximum speed of 100 (km/sMpc) in the definition equation. 
So, the intensity of the Hubble field is ΓH = 2.65 × 10−7 (cm∙sec−2) (Figure 2). 

2.2. Additional Parameters 

1) The critical condition of the Universe has been defined in two ways: respect 
to a ratio Ω [10] of present and critical densities and respect to a net acceleration 
[11] as: 

o crρ ρΩ =                            (2) 

N H G= −Γ Γ Γ                           (3) 
2 constantH H= =rΓ                        (4) 

2
G GM= rΓ                           (5) 

Though Equations (4) and (5) may be here applied, Equations (2) and (3) 
should not because of the following: Equation (2) is not adequate for the De Sit-
ter model since the vacuum density of the external empty space is ρo = 0 and, 
therefore, Ω = 0, independently of the density of the physical Universe. A critical 
point could rather correspond to the tc time, when the expansion velocity of 
Space and the internal velocity in the Physical Universe diverge; at that time, the 
gravitational acceleration is ΓG ~ 10−2 times lower than the space acceleration ΓH 
(Figure 2). Even more, the eventual numerical equality in Equation (3) occurs at 
a time tcr ~ 2tc, without any physical consequence. 

 

DOI: 10.4236/jmp.2018.914157 2445 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2018.914157


J. G. Lartigue 
 

 
Figure 2. Evolution of the Hubble (ΓH) and gravitational (ΓG) acceleration (cm∙s−2) as 
function of the radial factor (R), Equations (4) and (5). 
 

2) Another important factor is the so-called deceleration factor qu defined [12] 
by the equation: 

uq RR R= −                            (6) 

This expression was considered adequate at the time when the Universe acce-
leration was assumed negative, accordingly to the second Friedman equation 
[13]: 

2

4 3
3

R G p
R c

ρΠ  = − + 
 



                     (7) 

In these two equations R is the scale factor of the Universe, R  is the expan-
sion velocity and R  is the acceleration; as well, ρ is the Universe density and p 
is its pressure. 

To date, at a positive acceleration, the minus sign should be discarded from 
Equation (6). 

3) The curvature of an spherical Universe may be estimated by the classical 
expression k = 1/(Ru)2. If obtained from the first Friedman equation, this gives 
the following results: at early times, when the Hubble parameter was higher than 
today, k would be negative, i.e. a hyperbolic geometry; now, at the smaller mag-
nitude of Ho, the k value is still negative though in a rank of 10−40 (cm−2) that 
suggest a flat Universe. Otherwise, the FLRW equation admits 3 possible values 
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for k (+1, 0, −1) to cover all of curvature possibilities. 
4) The Laplacian for the Hubble potential was deduced [1] as ∇2VH = 0, since 

VH is not a function of the mass presence.  

3. The Hubble Parameters 

1) The original parameter was defined by H. Hubble as the relation H = v/c; 
later, it has been defined by its own units (s−1) in successive concepts: from a 
universal constant (Ho), to a single reciprocal function of time, H = (1/t) and 
even to H = 2/3t in the Einstein-De Sitter model.  

2) The Hubble time has been defined as tH = 1/H. However these equations 
have been applied for a Universe whose expansion velocity was assumed con-
stant. If the acceleration (ΓH) is the true constant, the Hubble time should be ex-
pressed as: 

( ) ( )2 sHt H t=                       (8) 

3) The Hubble Length, as known nowadays, is defined by the equation:  

( )cmH oL c H=                       (9) 

Substitution of Equation (8), gives: 

( )2 cmH oL ct=                     (10) 

Equation (9) is equivalent to that for an inertial frame: r = vt, if v had the c 
value. Equation (10) was obtained for an accelerated frame, ΓH. So, this equation 
would be valid for the case when the expansion velocity would be higher than c 
as: vH = nc, where n ≥ 1, so giving, for the present Hubble length: 

( )2 cmH oL nct=                    (11) 

4) The Hubble velocity of Space expansion may be obtained, as a function of 
time, from the above mentioned Equation (1) if vH is substituted by R , as 

H t⋅=R Γ  (1a) (cm·s−1).  

4. The c Factor 

It has been assumed [14] that the space expansion velocity could overpass c since 
the space is not in an inertial frame; rather, it contains all of reference frames. 
So, the concept of co-moving coordinates would be better applied to Space. 
From the above results, the tc time has occurred at one fourth of the Universe 
age, near after the starting of the Physical Universe formation. That means that 
the light velocity into the Physical Universe has been evidently constant during 
the last three fourths of the Space age. There is a possible explanation for that: 
the expansion velocity of Space is not limited to c though matter velocity, into 
the Physical Universe, is really limited due to the space-time curvature origi-
nated by the mass density. However, to obtain a probable image of these sub-
jects, there is no other way but to apply the available means [15] [16]. So it is 
possible to assume that, in the co-moving coordinates of Space, the expansion 
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would be referred to the Big Bang origin (t = r = m = 0).  
In order to determine the light velocity c as a function of the gravitational po-

tential Ф, at a given distance, Einstein [17] did propose the following equation: 

( ) 21o
oc

 Φ
Φ = + 

 
c c                        (12) 

co is the present, known velocity. However, when applied to a higher potential 
corresponding to a smaller radius of the Physical Universe, the increase in c re-
sults almost negligible; it would confirm the constancy of c since the tiny ob-
tained difference obeys, rather, to the imprecision of data applied in this paper. 

Therefore, there are two realities: into the Physical Universe c is a true con-
stant; in the Space, its expansion velocity pulls all matter (including photons) at 
higher velocities v > c. A possible reason for the c constancy could be the con-
servation of the angular momentum in the Physical Universe rotation that, at the 
tc time, would have had a tangential velocity c which has been necessarily de-
creasing till the present time. So, if the total angular momentum of the Physical 
Universe ( ) is calculated at the tc time, as: 

2 c U cM r ω⋅=                         (13) 

by substitution of the relation vc = ω·rc it gives: 

c U c cM ⋅ ×= r v                        (14) 

So, the constant value of the Physical Universe angular momentum at the tc time 
it results:   = 4.8 × 1094 (erg·s); then, the to date tangential velocity of the 
Physical Universe Limit (Rpu), i.e. z = 11, would be t

puv  = 2 × 1010 (cm/s). 
It has been mentioned that a low gravitational potential has a very few influ-

ence in the case of an equilibrium temperature. However, in the non equilibrium 
temperature and a higher potential case, it seems that such influence would re-
main small.  

5. The γ Factor 

The Space expansion velocity (vs) has really surpassed the c value after the tc 
time and S. Hawkings [18] did mention the possibility of an imaginary time. 
Without a known theory about the empty space kinematics and too far from any 
gravitational interaction, the Special Theory of Relativity can be applied to ob-
tain some expressions for a frozen and imaginary time, by means of the proper 
time (τ) equations:  

tτ γ=                            (15) 

where:  
0.52

21 1 v
c

γ
 

= − 
 

                       (16) 

i.e. 
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( )0.52 21t v cτ = −                        (17) 

So, If v = c, γ = ∞, τ = 0 (that means a time singularity). If v > c, τ has an imagi-
nary value, τ. It may be determined the precise value of this imaginary number, 
by the γ factor: If v > c, it means that v = βc, being β a real number higher than 
1, so β2 > 1; if w2 = 1 – β2, w2 < 0 and, from Equation (14),  

( )0.52
i wt w t iτ = = ⋅                      (18) 

Therefore, when the velocity of some matter reaches v = c and τ = 0, that 
would mean a singularity (a time freezing at a physical Universe radius rc), 
reached at one fourth of the present time. After that time (t > tc), at an expansion 
velocity R  > c, the proper time of space would become imaginary. Otherwise, 
as the physical Universe has maintained constant its maximum internal velocity 
c , the proper time of photons and some leptons in the Physical Universe are re-
ally constant, i.e., τ = 0; that means that they remain into a singularity. That 
would be a strange situation into the physical Universe since the tC time till to-
day. Otherwise, the General Theory maintains the c limit for photons in the 
presence of mass; this one, in its turn, generates the curvature of space-time. The 
curvature decreases as the distance to a given point increases, similarly to the 
gravitational attraction does. At this point (rc), the negative gravitational inten-
sity ΓG is 10−2 times lower than the positive expansion intensity ΓH.  

6. The Thermo-Dynamical Expansion of the Universe 
6.1. The Photonic Primeval Energy 

The Big Bang has been assumed, from the G. Lemaitre concept, as a “primeval 
atom”. Though it could not exist any type of atom at the Planck temperature, it 
really would mean a suddenly created energy accumulation, i.e. a photonic 
source; those photons applied to build the Physical Universe have generated a 
luminosity in the order of Ļpu = 1059 (erg/s) [9]. Taking into account the assumed 
duration of the Big Bang of 1012 (s) ~ 3 × 104 (y), the total energy generated in 
the Physical Universe formation would have been about 1071 (erg). However, by 
including the original energy of CMB photons, a much higher value of the ener-
gy produced in the Big Bang could be obtained. 

The original energy corresponding to the CMB can be obtained from the 
present density of such relic [19], i.e. 416 (photons/cm3). By applying the cos-
mological principle, the total quantity of CMB photons in the Universe volume 
(7.4 × 1085 cm3) should now be 3 × 1082 (photons). Since their average tempera-
ture is ~2.7 (K), it may be estimated an energy of 3.7 × 10−16 (erg/photon) which 
means a total present energy of 1 × 1067 (erg) for all CMB photons. From data of 
reference [20] it may be assumed that the z factor, for a frequency variation since 
the Big Bang to the CMB, would be ~1031, (a similar z value may be deduced 
from the temperature variation) which means a total energy in the Big Bang pe-
riod of 2 × 1098 (erg), equivalent to a luminosity ĻB = 2 × 1086 (erg/s). At the Big 
Bang end there would exist equal number of photons as they are today as CMB 
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(3 × 1082), plus a small fraction devoted to generate the Physical Universe; so, the 
average energy of each one should have been ~Ef = 3 × 1015 (erg/photon). How-
ever, the energy of just one photon whose maximum wavelength would equal 
the Planck length (as assumed here), it should have been about 1.5 × 1017 
(erg/photon). That means that the average wavelength of original photons must 
rather be ~5 times longer than Lp, which implies a lowering factor of 5 in the 
original photons energy to give now 3 × 1016 (erg/photon) and a total energy at 
the Big Bang end of 2 × 1097 (erg). So, the luminosity at the Big Bang end would 
have been Ļ ~ 2 × 1085 (erg/s). This correction factor 5 in the wavelength of 
original photons doesn’t match with the assumed Planck length. However, there 
are two possibilities for a coincidence: the first is that the “true” dimension of 
the Planck length would be 2.5 times bigger than the one here applied; the 
second possibility is that, accordingly to the quantum theory, a photonic wave is 
stable in a potential well if it displays an entire multiple of a half wavelength; that 
is a fact that permits to accept 5 different values of the (λ/2) parameter, so gene-
rating a mixture in the original energy spectrum of the Big Bang. Otherwise, the 
CMB fluctuations could have been provoked by dispersive interactions of origi-
nal photons with the subsequent condensed matter.  

Besides, the Higgs photon may have energies as high as ~150 GeV; that means 
~0.25 (erg/photon). So, it would be feasible that every one of the original pho-
tons could generate the necessary number of Higgs photons to start the immi-
nent mass condensation. 

The total energy was, apparently, applied to only two purposes: one was the 
generation of the Physical Universe mass, whose value results ~2 × 1078 (erg) if 
the mass would have a value ~2 × 1057 g [21]. It means that a minimal fraction 
(10−19) of the Big Bang energy was applied to generate the Physical Universe. 
Accordingly to reference [9] a similar fraction would have been applied to the 
Physical Universe expansion work. The rest (>99.9%) was left as the relic of the 
Big Bang. It would imply that the present electromagnetic spectrum, from radio 
to gamma and cosmic rays, as well as some leptons, would not come from the 
Big Bang but from astronomical objects such as the Sun, galaxies and quarks. 

6.2. The Expansion Work of the Physical Universe 

In this expansion, temperature, pressure and volume continuously vary, though 
entropy does not because there is not any intake or lost of heat in the Universe. 
The conservation equation for the internal energy of the Universe (E) is, from 
the 1st Law of Thermodynamics: 

( )ergE Q W= −                         (19) 

Q would be the total heat content, and W the work performed by the matter 
expansion. Initially, at a time lower than Planck’s one, the work expansion W 
may be assumed to be nil and therefore the internal energy U would be equal to 
the heat content (E = Q). After, in the non-isothermal, non isobaric and adia-
batic (though irreversible) case of the Physical Universe, the expansive work will 
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be made at expenses of a small fraction of the original internal energy: (W = 
−δE). So, E is the original internal energy of the Big Bang, which was above cal-
culated as 2 × 1097 (erg); δEM, corresponding to the mass generation, is 2 × 1078 
(erg), as previously mentioned. By derivation of Equation (19) respect to time 
and substitution of the density variable, the conservation equation for adiabatic 
expansion it results:  

23 0a p
a c

ρ ρ 
 


+ +

=



                        (20) 

where a and a  refer to the scale factor and its time derivative.  
However, additional considerations must be made: accordingly to reference 

[10] “it cannot be pressure forces in a homogeneous universe because such ef-
fects can only be generated by a pressure gradient… so, pressure does not pro-
vide a force that causes the Universe expansion. Rather, its contribution is en-
tirely through the work done during the expansion”. So, it has not sense to 
search for a pressure value in the Universe expansion process. Otherwise, the 
state equation for different types of matter has eventually been proposed as: 

2p w cρ=                           (21) 

For vacuum energy, w = −1, so assuming that an external negative pressure is 
the cause of Universe expansion. Such possibility has been discarded by both Λ 
and Hubble models.  

There are three ways to determine the work developed in the Physical Un-
iverse expansion: to apply the Hubble potential, by means of a classical ther-
mo-dynamical process, and to include a quantum criteria.  

1) The Hubble potential acts on the masses present after the decoupling time; 
so, the to-date work value could be: 

( )ergU H XW M R= Γ                       (22) 

Mu is the mass of the physical Universe and Rx is the radial function corres-
ponding to the physical Universe expansion period, tx = (to − tpu). Substitution of 
known values gives a total expansion work of the physical Universe WU ~ 10 × 
1076 (erg) that was delivered at the spherical shell Rx, i.e. during the evolution 
time of the physical Universe, which represents a luminosity of Ļ = 2 × 1059 
(erg/s), similar to that of reference [9] for the physical Universe. The negative 
external pressure would be 0 since the empty space density is 0 (different to that 
of a quantum vacuum). Anyway, the sum of the Physical Universe mass and its 
expansion work, remain in a fraction lower than 10−19 of the Big Bang energy. 

2) The classic thermo-dynamical expansion work is given by the equation: 

( )2dyne cmuW PV nkT= =                    (23) 

where, n has been calculated as 2.7 × 1082 (photons), k = 1.38 × 10−16 (erg/K·photon); 
if Tu ~ 2 × 1010 (K), when the lepton era ends, the product gives PV = 7.5 × 1076 
(erg). 
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3) The quantum method [22] applies the Wien factor b = 7.6 × 10−15 
(erg/K·cm3), obtained from statistical physics, to get the thermal pressure; how-
ever, since it was derived for an isothermal process, it may not be here applied to 
an adiabatic expansion. Anyway, the quantum method includes a correction 
factor for the classical Equation (23) that was here employed, so arriving to a re-
sult WU = 6.7 × 1076 (erg). The luminosity, in this case, is similar to that corres-
ponding to the evolution of the physical Universe: Ļ ~ 1.3 × 1059 erg/s.  

6.3. A Big Bang Design 

Before making additional calculation in the photonic gas, it must be recalled the 
classical Bose-Einstein statistics for 0 spin particles in a non-isothermal process, 
i.e. 

( ) ( )1 e 1E kTf E A= −                     (24) 

that is applied to obtain the distribution of photons as a function of temperature 
[23]; it may not be used here because it represents an equilibrium state at a given 
temperature T, when photons energies vary and most photons accumulate at the 
lowest energies; it is an ideal though opposed situation to that of the Universe 
where the photons accumulation happened at the highest temperature. There-
fore, it is possible to assume that the only reducing factors of the initial photons 
energy will be a gravitational (delaying) red-shift and, after the decoupling time, 
the normal z lowering process driving to the CMB. 

In order to prove the initial conditions for the validity of a physical law, it 
would be important to calculate the expansion velocity of the Big Bang in com-
parison to that of the Hubble acceleration. So, the general Equation (23) is as-
sumed to represent the adiabatic expansion work of the photonic nucleus; then: 

( )2
  2 puR nkT M=                        (25) 

So, R  = 5 × 106 (cm·s−1) would be the final velocity of the Big Bang period, 
while the velocity obtained from the Hubble acceleration results: =2.7 × 105 
(cm·s−1). This difference must have been much higher at shorter times, which 
means that the Hubble acceleration law was not significant before the end of the 
Big Bang period (3 × 104 y). Therefore, this period could be assumed as the one 
corresponding to inflation. Taking the Planck length Lp = 1.6 × 10−33 (cm) as the 
diameter of an spherical Big Bang, its volume would be Vp = 2.15 × 10−99 (cm3). 

In Table 1, they are shown the values of expansion velocity HR  (cm/s) and 
scale factor RH (cm) of the Space, corresponding to times (s): Planck (tp); 10−10; 1; 
Big Bang end, tbe; decoupling time td; Physical Universe formation time tpu; c 
time, tc; and present times: t11 for the Physical Universe and to for Space. Four 
values for luminosity Ļ (erg/s) are also shown for times tbe, td and to times, as well 
as to the period (tc − tbe). The present scale factor of the Physical Universe is as-
sumed as the observable Universe: the distance to the most distant object 
(GN-Z-11), R11 ~ 2 × 1027 (cm). 
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Table 1. Expansion velocity (v), and scale factor (R) of the Space, according to the Planck 
parameters (first line) and to the Hubble acceleration (next 8 lines). The luminosity Ļ 
(erg/s) of Space is shown in the fourth column for: the Big Bang end (tbe), the decoupling 
time (td), the (tc) time and the present time (to). 

t (s) R  (cm/s) R (cm) Ļ (erg/s) 

tp = 5.4 × 10−44 c Lp = 1.6 × 10−33  

t = 10−10 2.7 × 10−17 R-10=1.4 × 1027  

t = 1 2.7 × 10−7 R1 = 1.4 × 10−7  

tbe = 1012 2.7 × 105 Rbe = 1.5 × 1017 Ļbe = 2 × 1085 

td = 1.5 × 1013 3.7 × 106 Rd = 4.6 × 1019 Ļd = 6 × 1083 

tpu = 3.1 × 1016 0.3c Rpu = 3.0 × 1024  

tc = 1.1 × 1017 c Rc = 1.6 × 1027 Ļ(tc − tbe) = 4.5 × 1080 

t11 = to − tpu 3c R11 = 2.0 × 1027  

to = 4.4 × 1017 4c Ro = 2.6 × 1028 Ļo = 5 × 1079 

7. The Photonic Equation of Continuity 

The operator of the convective derivative has been usually applied to density and 
time variables such as velocity, momentum and kinetic energy. The same opera-
tor may also be applied to these parameters when they are not expressed as func-
tion of masses but of frequencies, such in the photons case. Applying the con-
vective operator to the photon energy, E = hν, if E(r, t), it gives: 

 Dh dt h t h rν ν ν= ∂ ∂ + ∂ ∂c                     (26) 

Substitution of c in r∂  drives to the equation of continuity:  

2
 

DE h
dt t

ν∂ =  ∂ 
                         (27) 

This rather unexpected result may be applied to an example with the above 
mentioned parameters if h ν∂  would be assumed as ΔE = (Ec – Ebe) and t∂  as 
Δt = (tc − tbe) to give:  

( )erg s2
 

DE E
dt t

∆ =  ∆ 
                     (28) 

where, the sub-fix be refers to the Big Bang end time (tbe) and c to the tc time. Eq-
uation (22) gives a result 804.5 10DE dt = ×  (erg/s); it would be the rate of 
outgoing energy, since the Big Bang end time till the tc time. This is the luminos-
ity (Lc) of the Universe corresponding to the period (tc – tbe). The Jacobian for 
this energy in adiabatic expansion may be expressed as: 

( ) ( )
( )

,
,

, s

J E S EJ E S
J t S t

∂ = =  ∂ 
                  (29) 

Substitution gives a similar result: 

( ) ( )804.3 10 ergsDE dt = ×                    (30) 
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8. Conclusions 

1) It has been assumed that, at the Big Bang, there were created four realities: 
time, space, matter and physical laws. Several references [24], [25], [26] ask 
about the time creation of the physical laws. If the above mentioned constancy of 
the Space acceleration ΓH is correct, it would represent the first physical law 
created at the Big Bang, respect to Space, together with the gravitational law ΓG, 
respect to matter; however, ΓH would appear evident only after the Big Bang end, 
as well as c would be freely manifest till the tc time. Additional parameters, such 
as Luminosity, are summarized in Table 1. It is also assumed that the Universe 
is the total accelerating Space that contains the Physical Universe and an exter-
nal vacuum Space.  

2) The Big Bang was not an instantaneous event; it remained for 1012 (s) or 3 × 
104 (y) [9]. Given both the length and the expansion velocity at this stage, it may 
be assumed to correspond to the Inflation period. 

3) The c time (tc) was defined as that when Space and the Physical Universe 
reached together the c value of expansion velocity; at such time, both Space and 
Physical Universe had a radius rc. In spite the gravitational law had continuously 
been opposed to the Physical Universe expansion, the Space expansion has in-
dependently occurred due to the constancy of the Hubble acceleration expressed 
by ΓH. However, inside the Physical Universe, matter velocity has kept a maxi-
mum velocity c as a universal constant, a consequence of the space-time curva-
ture. So, the furthest tangential velocity of the Physical Universe, at the tc time, 
could also have been c, an assumed data that had permitted to calculate the 
Physical Universe angular momentum as   = 4.8 × 1094 (erg∙s). 

4) According to Special Relativity, at c velocity the proper time becomes nil, 
i.e. τ = 0, which implies a time freezing, as well that matter felt in a singularity; it 
would be difficult to define the meaning and length of such singularity. Also, it 
has been mentioned [18] the theoretical possibility of an imaginary time (τi) if 
the limits of the Physical Universe overpasses the c velocity. It has been shown in 
a simplified Euclidic Space3 [26].  

5) The to-date called Hubble Length, LH = c/H, had been defined as the dis-
tance where the space expansion rate R  is just c; so, farther LH, R  > c. 
However, H is usually assumed as constant though it should rather be deter-
mined as Ho, i.e. a function of the present scale factor Ro, obtained from the con-
stant value of ΓH. Besides, the Ho value deduced in reference [1] has been mod-
ified in this paper to Ho = 3.2 × 10−18 (s−1); the value of ΓH is 2.65 × 10−7 (cm·s−2). 

6) The parameter Ω has no sense at the expanding limit of the Physical Un-
iverse since the density of the external space is 0. As well, the q parameter must 
be >0 in an expanding Physical Universe, because every one of its factors is >0. 
Respect to the Hubble parameter, it was here deduced the equation 

( ) 2H t t=  (8) for an expansive Universe.  

 

 

3The Euclidic name has been proposed by S. Hawkings for a Euclidean Space that includes an im-
aginary time coordinate [18]. 
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7) The expansive work calculation was intended by 3 ways: the Hubble poten-
tial, the thermo-dynamical process and a brief quantum concept. They gave W ~ 
7.4 × 1076 (erg). 

8) The Big Bang was a source of photons, staying for 3 × 104 years to liberate a 
total energy of 2 × 1097 (ergs) at a constant true velocity c that seemed impossible 
into the Big Bang tangle. A minimum part of this energy (~10−21) was applied to 
build and expand the Physical Universe; the rest of photons decayed necessarily 
till the present known CMB energy, without any foreseeable task.  

9) The convective operator was applied to photons energy, as a function of 
frequency, to get an Equation (27) derived from the assumption that energy is a 
function of time and distance. As well, the Jacobian obtained for the adiabatic 
expansion gave a similar result for Luminosity. 

10) The above calculated initial energy of photons is high enough to generate 
the necessary number of Higgs photons in order to produce mass condensation. 
The above mentioned totality of initial photons would not be mono-energetic; 
their variation is tied, between several factors, to the Heisenberg indetermination 
of the Planck length, which results ~5 times the proper length. Fluctuations of 
CMB photons could be originated by dispersive interactions with the Physical 
Universe matter.  

11) Some conclusions require the experimental determination of the true 
Space acceleration expansion, here deduced as ΓH = 2.65 × 10−7 (cm·s−2). 
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Abstract 
We report results from ab-initio, self-consistent density functional theory 
(DFT) calculations of electronic, transport, and related properties of chro-
mium disilicide (CrSi2) in the hexagonal C40 crystal structure. Our computa-
tions utilized the Ceperley and Alder local density approximation (LDA) po-
tential and the linear combination of atomic orbitals (LCAO) formalism. As 
required by the second DFT theorem, our calculations minimized the occu-
pied energies, far beyond the minimization obtained with self-consistency 
iterations with a single basis set. Our calculated, indirect band gap is 0.313 
eV, at room temperature (using experimental lattice constants of a = 4.4276 Ǻ 
and c = 6.368 Ǻ). We discuss the energy bands, total and partial densities of 
states, and electron and hole effective masses. This work was funded in part 
by the US Department of Energy, National Nuclear Security Administration 
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(NSF) (Award No. HRD-1503226), LaSPACE, and LONI-SUBR.  
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1. Introduction and Motivation  

Chromium disilicide, CrSi2, belongs to a list of semiconducting metal-silicides. It 
has a C40 hexagonal crystal structure, with a space group of P6222 [1] [2] [3] [4], 
as depicted in Figure 1(b). It is a highly degenerate p-type semiconductor with a 
narrow-forbidden band gap [5] [6]. CrSi2 exists in several compositions [7] [8], 
ranging from 65.7% to 67.7% silicon [9]. The compound has three (3) formula  
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Figure 1. (a) Brillouin Zone for Hexagonal CrSi2 and (b) Primitive unit cell of CrSi2. 
Large spheres represent Cr atom positions while small spheres represent Si atom posi-
tions. 
 
units per hexagonal unit cell [9]. It belongs to a group of semiconducting met-
al-silicides which have gained enormous attention in recent years, due to its 
properties and several areas of important applications. It has been the most stu-
died representative of the metal-silicides since its initial characterization as a 
0.35-eV bandgap semiconductor in the mid-1960’s [10]. Due to the semicon-
ducting nature and thermal stability of CrSi2, it has special applications in op-
toelectronic devices, infrared detectors within silicon-based microelectronics 
components [3] [9] [11] [12]. CrSi2, as a high-temperature compound, has been 
epitaxially grown on Si (111) substrate [1] [4] [13]. The preceding property of 
CrSi2 makes it a potential material in the production of thermoelectric genera-
tors as well as for photovoltaic applications, in the middle of the infrared region 
[14]. As a narrow band gap semiconductor, CrSi2 is a very good candidate in 
micro- and nano-electronics, respectively, and for photo-thermo converters and 
sensors [4] [15]. CrSi2 belongs to a group of refractory silicides with a melting 
point at 1763 K, which makes it a potential candidate for high-temperature ap-
plications. CrSi2 films are widely used in the area of new semiconductor device 
manufacturing due to their excellent electronic properties, high thermal stability, 
smooth surface and remarkable compatibility with the traditional silicon tech-
nique [12]. Krivosheeva et al. [16] reported that one of the most interesting and 
well investigated compounds is chromium disilicide which has the smallest lat-
tice mismatch, as compared to other transition metal silicides [17] [18], with 
mono-crystalline silicon. CrSi2 has a high electrical conductivity and a strong 
oxidation resistance which make it more attractive in microelectronics [12]. 
CrSi2 is a potential candidate for optoelectronic devices, photo-voltaic cells, and 
thermoelectric conversion elements operating at elevated temperatures [1] [17] 
[19] [20] [21] [22]. 

Some experimental data have been reported for hexagonal CrSi2. However, a 
consensus has not been reached, as far as its band gap is concerned; one reason 
for this situation stems from the lack of measured band gap values for bulk 
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CrSi2. Bost et al. [9], in optical studies on well characterized CrSi2 polycrystalline 
thin films, in 1988, obtained experimental results that provide evidence for the 
semiconducting nature of CrSi2. Results from their measurements showed that 
CrSi2 exhibits an indirect band gap of 0.35 eV [9]. Additionally, in a study of 
optical properties of CrSi2, Henrion et al. [23] reported a band gap of 0.50 eV for 
CrSi2 polycrystalline thin films, in 1992. Experimental studies of CrSi2 films syn-
thesized by high current Cr ion implantation resulted in band gap values of 0.7 
eV and 0.84 eV [24] for CrSi2 layers under different experimental conditions. 
Energy band gaps of 0.30 eV [25] to 0.35 eV [26] were obtained for CrSi2 from 
Hall-effect measurements. Nishida [27] measured a band gap of 0.32 eV for 
CrSi2 single crystals grown by using the floating zone melting technique. This 
author did not state whether the measured band gap was direct or indirect. Re-
sults from ellipsometry [28] suggested an indirect band gap of Eg ≤ 0.36 eV for 
CrSi2. All of the experimental band gaps reported so far for CrSi2 are indirect 
except for the work of Nishida and of Galkin et al. [29]. While the former did 
not specify the nature of the gap, the latter found a direct band gap of 0.37 eV, 
for CrSi2 epitaxial films. Clearly, results provided from past experimental works 
are not in total agreement. However, a general consensus points to a band gap in 
the range of 0.27 - 0.8 eV for various films of CrSi2. Table 1 shows experimental 
band gap values reported for CrSi2.  
 
Table 1. Results from Experimental Measurements of the Band Gap of Hexagonal CrSi2. 
Except for the one indicated to be direct, all band gaps below are indirect. These band 
gaps are for films of various thicknesses, except the 0.32 eV band gap value estimated 
from the temperature dependence of resistivity for a single crystal.  

Growth Or Measurement Method Eg (eV) 

Laser-assisted Synthesis of semiconductor chromium disilicide films 0.2a 

Polycrystalline samples grown by amorphous  
thin films of Cr and Si in double electron-gun evaporation system. 

0.27 ± 0.01b 

Hall Effect measurements of Si-doped and Mn-modified CrSi2 crystal 0.30 - 0.35c 

Single crystals of CrSi2 grown using the floating zone melting technique.  
Energy gap estimated from the temperature dependence of resistivity. 

0.32d 

Synchrotron Radiation Photoemission measurement of epitaxial CrSi2  
films prepared on Si (111) substrate at room temperature and 20K 

0.32e 

CrSi2 films prepared by molecular beam epitaxy on  
CrSi2 templates grown on Si (111) Substrate 

0.34f 

Polycrystalline thin films of CrSi2 grown on silicon substrates  
(Samples annealed at 1100˚C) 

0.35g 

Ellipsometry of polycrystalline thin films of CrSi2 ≤0.36h 

Optical absorption measurement of CrSi2 thin films 0.35 - 0.5i 

Transmittance and Reflectance Spectroscopy Study of  
A-type Epitaxial films 100nm thick grown by the Template method 

0.37j direct 

Optical Spectra measurement of CrSi2 polycrystalline thin films 0.50k 

Synthesis of CrSi2 films by high current Cr ion implantation 0.7 and 0.8l 

[a]Ref. [15], [b]Ref. [28], [c]Ref. [25] [26], [d]Ref. [27], [e]Ref. [30], [f]Ref. [31], [g]Ref. [9], [h]Ref. [28], [i]Ref. [23] 
[32], [j]Ref. [29], [k] Ref. [10], [l]Ref. [24]. 
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Several theoretical calculations have been reported for the electronic structure 
of CrSi2. While some of the calculations [31] have argued that CrSi2 is semi-metallic 
in nature, others have predicted semiconductor properties for this material. 
Dasgupta et al. [4] obtained an indirect band gap of 0.35 eV, using the aug-
mented spherical wave (ASW) method [33] [34] and the generalized gradient 
approximation (GGA) potential parameterized by Perdew et al. [35]. However, 
another calculation [20] performed with a similar method led to indirect and di-
rect band gaps of 0.21 eV and 0.39 eV, respectively. Bellani et al. [28] reported a 
theoretical indirect band gap value of 0.38 eV using the linear-muffin-tin-orbital 
(LMTO) method, within the local density approximation (LDA). Two (2) calcu-
lations [19] [36] using the same method, within the local density approximation 
(LDA), obtained indirect band gaps of 0.29 eV and 0.25 eV, respectively. Anoth-
er calculation [37], utilizing the LMTO method within the atomic spheres ap-
proximation (ASW), obtained a gap of 0.38 eV. L. F. Mattheiss [11] [38] re-
ported an indirect band gap of 0.30 eV for bulk CrSi2, using the linear aug-
mented plane wave method (LAPW) and a local density approximation (LDA) 
potential. Mattheiss [39] used a scalar-relativistic version of the linear aug-
mented-plane-wave (LAPW) method and obtained an indirect band gap of 0.30 
eV. In another DFT calculation [16], with the full-potential linearized-augmented- 
plane-wave (FP-LAPW) led to an indirect band gap of 0.30 eV. A DFT approach, 
similar to the preceding, was applied in another calculation to obtain a band gap 
of 0.30 eV [10]. Zhou ShiYun et al. [12] obtained a gap of 0.353 eV in their study 
of optical properties of CrSi2; they employed the plane-wave pseudo-potential me-
thod. Finally, recent DFT calculations performed in 2013 by Bhamu et al. [40] 
produced an indirect band gap of 0.28 eV for CrSi2. The above calculation me-
thods, potentials, and results are listed in Table 2.  

Many of the results obtained from both experimental and theoretical calcula-
tions of CrSi2 have been extensively reviewed in the preceding section. It is clear, 
however, from the contents of Table 1 and Table 2 that these results do not to-
tally agree. While the disagreement can be seen among theoretical results, on the 
one hand, and between experimental results, on the other hand, there exists also 
a disagreement between experimental and theoretical results. This disagreement 
between theoretical results can be partly attributed to differences in computa-
tional methods. These disagreements strongly suggest that the correct band gap 
of bulk CrSi2 is yet to be established unambiguously. This situation is a key mo-
tivation for our work. Also, the many current and potential applications of CrSi2, 
as discussed at the beginning of this section, also motivated this work. These two 
motivations are supported by the fact that our method, to be discussed below, 
has led to the correct band gaps of well over 30 semiconductors. This method 
correctly predicted the band gap and related properties for more than three (3) 
semiconductors. Our aim, therefore, is to obtain accurately, through our 
BZW-EF, ab-initio self-consistent calculations, the true band gap as well as other 
electronic, transport and related properties of CrSi2. Our BZW-EF ab-initio, 
self-consistent method has been successfully applied in several calculations  
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Table 2. Results from previous theoretical calculations of the band gap of hexagonal CrSi2. 
except for the one indicated to be direct, all the gaps in the table are indirect.  

Computational method Potentials Eg (eV) 

Augmented-Spherical-Wave (ASW) LDA 0.21a 

Linear-Muffin-Tin-Orbital (LMTO) LDA 0.25b 

Linear Combination of Atomic Orbitals (LCAO) LDA 0.28c 

Semi-relativistic Linear Muffin-Tin-Orbital LDA 0.29d 

Linear Augmented-Plane-Wave (LAPW) LDA 0.30e 

Scalar Relativistic Linear Augmented-Plane-Wave LDA 0.30f 

Plane-Wave Pseudopotential Theory LDA 0.353g 

Full-Potential-Linearized-Augmented-Plane Wave (FL-APW) LDA 0.35h 

Semi-linear theory of relativity of the linear-muffin-tin-orbital (LMTO) LDA 0.38i 

Linear Muffin Tin Orbital (LMTO) LDA 0.38j 

Linear Augmented Plane Waves (LAPW) GGA 0.30 (direct)k 

Full-Potential-Linearized-Augmented-Plane Wave (FP-LAPW) GGA 0.30l 

Augmented Spherical Wave (ASW) GGA 0.35m 

[a]Ref. [20], [b]Ref. [19], [c]Ref. [40], [d]Ref. [36], [e]Ref. [11] [38], [f]Ref. [39], [g]Ref. [12], [h]Ref. [37], [i]Ref. [28], 
[j]Ref. [28], [k]Ref. [10], [l]Ref. [16], [m]Ref. [4]. 

 
[41]-[52] in the past and has proven to produce accurate properties of semicon-
ductors. Therefore, this work is expected to follow in the same light. 

2. Our Distinctive Method and Computational Details 

Our computational method has been extensively discussed in previous publica-
tions [41]-[49], [53] [54] [55]. Two components of this method are commonly 
utilized in most calculations, i.e., the choice of a density functional potential 
(LDA or GGA) and the linear combination of atomic orbitals (LCAO). Our 
software package actually employs the linear combination of Gaussian orbitals 
(LCGO). We selected the LDA potential of Ceperley and Alder, as parameterized 
by Vosko et al. [56] [57].  

The distinctive feature of our method consists of our utilization of successive, 
self-consistent calculations, with augmented basis sets, in order to minimize the 
energy content of the Hamiltonian. This process ultimately leads to the absolute 
minima of the occupied energies (i.e., the ground state), as required by the 
second theorem of density functional theory. This feature in our calculations is 
known as the Bagayoko, Zhao, and Williams (BZW) method [41] [58]-[63], as 
enhanced by Ekuma and Franklin (BZW-EF) [47] [48] [49] [54]. Unlike the 
BZW method, where orbitals representing unoccupied states are added in the 
order of increasing energies (in atomic or ionic species), the enhanced version 
(BZW-EF) adds, for a given principal quantum number, p, d and f orbitals, 
when applicable, before adding the corresponding s orbital. An orbital is appli-
cable if it is occupied in any of the atomic species in the system. The BZW-EF 
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method reflects the realization [46] that polarization orbitals, for valence elec-
trons, have primacy over the spherically symmetric s orbital [46] [47] [48] [49] 
[53] [55]. We describe below the actual implementation of the method using the 
program package developed at the Ames Laboratory of the US Department of 
Energy (DOE), Ames, Iowa [64] [65]. 

Our calculations for CrSi2 started with a small basis set that was not smaller 
than the minimum basis set. This first self-consistent calculation was followed by 
Calculation II whose basis set was that of Calculation I as augmented with one 
orbital representing an excited state. Every augmentation of the basis set in-
creases the dimension of the Hamiltonian by 2, 6, 10, or 14, depending on the s, 
p, d, or f character of the added orbital, respectively. We compared the self- 
consistent eigenvalues of the two calculations, graphically and numerically. 
Some occupied energies from Calculation II were lower than corresponding ones 
from Calculation I, as expected. After augmenting the basis set of Calculation II, 
Calculation III was performed self-consistently. The comparison of the occupied 
energies of Calculations II and III showed that some occupied energies of Calcu-
lation III were lower than corresponding ones from Calculation II. This process 
continued until three (3) consecutive calculations led to the same occupied ener-
gies, within our computational uncertainty of 5 meV, indicating that the ground 
state was reached. The first of the three (3) consecutive calculations was selected 
as the one providing the DFT description of the material; the basis set of this 
calculation is referred to as the optimal basis set [49]. As shown in the Section on 
results, this calculation was Calculation IV that produced the same occupied 
energies as V and VI. The selection of the optimal basis set in the BZW-EF me-
thod is based on the crucial fact that the charge density from this calculation is 
the same one obtained in the calculations following it. Hence, the Hamiltonian 
for this calculation, in light of the first theorem of DFT, is the same as those cal-
culations following it, even though the Hamiltonian matrices will be different, 
given their different dimensions. Bagayoko [53] explained the reason the calcu-
lation with the optimal basis set is the one providing the DFT description of the 
material. Self-consistent iterations, up to the calculation producing the optimal 
basis set, yield eigenvalues that are due to interactions in the Hamiltonian. Cal-
culations with basis sets larger than the optimal one and that contain the optimal 
one do not change the Hamiltonians or the occupied energies from their respec-
tive values obtained with the optimal basis set. However, these calculations can 
produce unoccupied energies that are lower than their corresponding values ob-
tained with the optimal basis set. Given that the Hamiltonians of these calcula-
tions are the same as that obtained with the optimal basis set, the unoccupied 
energies lowered below their values obtained with the optimal basis no longer 
belong to the spectrum of the Hamiltonian, a unique functional of the charge 
density [53].  

Computational details for this work follow. Chromium disilicide (CrSi2) has a 
hexagonal C40 structure. It is in the space group of P6222 ( )4

6D  [1] [2] [3] [4]. 
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Its primitive cell contains a total of three (3) CrSi2 formula units with individual 
atoms arranged as shown in Figure 1(b). The space group is non-symmorphic,  

containing non-primitive translations (
3
cτ =  and 

2
3
c

) which interchange  

individual CrSi2 layers [11] as in Figure 1(b). Each Cr and Si atom in each of 
hexagonal layers of CrSi2 has six (6) nearest neighbors at d = 2.557 Å. Each Cr 
and Si atom also has four (4) interplanar neighbors which are tetrahedrally 
coordinated. The hexagonal Bravais lattice for the primitive cell of CrSi2 is gen-
erated from the primitive vectors: t1, t2 and t3, each described in Equation (1) as  

( )( )1 2 3
ˆˆ ˆ ˆ3 ,2 ,a i j aj ck= − = =t t t                 (1) 

where a and c are the lattice constants. The internal atom position coordinates 
(ξ, ζ, η) for the primitive unit cell of CrSi2 are in the units of the primitive vectors 
in Equation (1). These position coordinates of Cr and Si, within the hexagonal 
C40 primitive unit cell of CrSi2, are given in Table 3, where x is the Si-atom po-
sition parameter. The position parameter of the Si-atom does not have an exact 
value. However, a value of 1 6x =  [64], corresponding to an ideal geometry 
[11], is normally used. In the ideal geometry, each Cr and Si atom has six nearest 
neighbors (d = 2.55 Å) [11], within each hexagonal CrSi2 layer. 

The standard hexagonal Brillouin zone for CrSi2, as shown in Figure 1(a), was 
generated from the reciprocal-lattice vectors that correspond to Equation (1). 
These reciprocal-lattice vectors are described by Equation (2) as given below. 
 
Table 3. Position coordinates (ξ, ζ, η) of Cr and Si atom within the primitive unit cell of 
hexagonal C40 CrSi2 in units of primitive vectors. 

Atom Site ξ η ζ 

Cr 3d 

1
2

 0 1
2

 

0 1
2

 1
6

 

1
2

 1
2

 1
6

−  

Si 6j 

x 2x 1
2

 

−x −2x 1
2

 

2x x 1
6

 

−2x −x 1
6

 

x −x 1
6

−  

−x x 1
6

−  
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( ) ( )( ) ( )1 2 3
ˆ4π 2π 2πˆ ˆ ˆ3 , 3 3 , ,a i a j kci= = + =b b b       (2) 

where a and c are the lattice constants. 
Our non-relativistic, self-consistent calculations were performed using room 

temperature (293K) experimental lattice constants [4] of a = 4.4284 Å and c = 
6.36805 Å. We first performed ab-initio calculations for the ionic species, Cr2+ 
and Si−, to generate input orbitals for the solid calculation. Our program package 
expanded the radial part of the atomic wave functions in terms of Gaussian 
functions by utilizing a set of even-tempered Gaussian exponents. For Cr2+, our 
computations utilized 18, 18 and 16 even-tempered Gaussian exponents for the 
s, p, and d orbitals, respectively. For Si1−, we utilized 18, 18 and 16 even-tempered 
Gaussian exponents for the s, p, and d orbitals, respectively. Our maximum ex-
ponent for Cr2+ is 1.1 × 105, while the minimum exponent is 0.317. Similarly, our 
maximum exponent for Si− is 9.85 × 105, while the minimum exponent is 0.4045. 
Our computations utilized a mesh of 24 k-points in the irreducible Brillouin 
zone. However, in the band structure calculation, we utilized a total of 141 
weighted k-points while a total of 144 weighted k-points was used in generating 
the energy eigenvalues for the electronic density of states. Self-consistency was 
reached after 60 iterations; then, the difference in potentials from any two con-
secutive calculation was equal to (or less than) 10−5. 

In the next section, we present results from our calculation of the band struc-
ture, density of states (DOS) and partial density of states (pDOS), and hole effec-
tive masses, respectively, using the LDA BZW-EF method. 

3. Results  

We list below, in Table 4, the valence orbitals in the successive calculations de-
scribed above, along with the resulting band gaps. The orbitals in bold are the  
 
Table 4. Successive, self-consistent calculations for CrSi2, along with the valence orbitals 
and the resulting, indirect band gaps. The utilized room temperature lattice constants are 
a = 4.4284 Å and c = 6.36805 Å. Calculation IV, whose number is in bold in the first 
column, provided the DFT description of the material, with the corresponding, calculated, 
indirect band gap of 0.313 eV.  

No 
Chromium (3Cr2+) 
(1s2 2s2 2p6 ~ Core) 

Silicon (6Si1−) 
(1s2 ~ Core) 

No of  
Valence 

Functions 

Indirect Energy 
Gap (eV) 
[L – M] 

I 3s2 3p6 3d4 4p 2s2 2p6 3s2 3p3 168 0.121 

II 3s2 3p6 3d4 4p 2s2 2p6 3s2 3p3 4p 204 0.162 

III 3s2 3p6 3d4 4p 4d 2s2 2p6 3s2 3p3 4p 234 0.295 

IV 3s2 3p6 3d4 4p 4d 4s 2s2 2p6 3s2 3p3 4p 240 0.313 

V 3s2 3p6 3d4 4p 4d 4s 2s2 2p6 3s2 3p3 4p 4s 252 0.314 

VI 3s2 3p6 3d4 4p 4d 4s 5p 2s2 2p6 3s2 3p3 4p 4s 270 0.318 

VII 3s2 3p6 3d4 4p 4d 4s 5p 2s2 2p6 3s2 3p3 4p 4s 5p 306 0.310 
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ones representing excited states. Calculation IV was the first one to produce the 
minima of the occupied energies; the same occupied energies were obtained with 
Calculations V and VI, signifying that these minima are the absolute ones and 
represent the ground state, as opposed to being local minima. Figure 2 shows 
the electronic energy bands for chromium disilicide, along with the bands from 
Calculations IV and V. As explained above, the two calculations result in the 
same occupied energies. 

Figure 2 shows the electronic band structure of CrSi2 as obtained with Calcu-
lation IV. The same figure shows the band structure from Calculation V. As 
stated above, the occupied energies from these calculations are identical. How-
ever, for conduction band energies above 4 eV, the two band structures are dif-
ferent, as explained in the Section on our distinctive, computational method.  

Given the large number of bands immediately below and above the Fermi lev-
el, in Figure 2, a clear appreciation of their features is difficult. The magnified 
bands between −3 eV and +3 eV are shown in Figure 3 that provides a clearer 
view of the features of the DFT band structure in the vicinity of the Fermi level. 
In this figure, the valence band maximum (VBmax) is clearly at the L point, while 
the conduction band minimum (CBmin) is at the M point. The LDA BZW-EF 
calculated indirect band gap, from L to M, is 0.313 eV, while the smallest direct 
band gap, at L, is 0.517 eV. This value is only slightly smaller than the L to H and 
L to K indirect band gaps of 0.533 eV and 0.537 eV, respectively. The values of 
these gaps can be simply read in Table 5.  

Table 5 lists the eigenvalues between −2.748 and +6.094 eV. We expect its 
content to be useful in comparisons of future experimental findings with our 
results. Such findings could include optical transition energies and band widths, 
among others.  
 

 
Figure 2. Graphical comparison of Calculations IV and V. Solid line represents Calcula-
tion IV while dotted lines represent Calculation V. The Fermi energy level is set at the 
zero point as denoted by the dashed line at the top of the valence band. 
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Figure 3. Electronic band structure of CrSi2, as obtained from our ab initio calculations, 
using ours LDA BZW-EF optimal basis set of Calculation IV. 
 
Table 5. Calculated electronic energies (in eV) of CrSi2, between −2.748 and +6.094 eV, at 
the high symmetry points in the Brillouin zone, as obtained from Calculation IV. The 
Fermi energy is set equal to zero. Our calculated indirect band gap is 0.313 eV. 

Γ-point M-point K-point A-point L-point H-point 

3.229 5.197 5.426 4.025 5.625 6.094 

3.149 4.666 5.003 3.908 4.833 4.036 

3.149 4.568 4.985 3.908 4.364 4.036 

2.630 4.470 3.752 3.221 4.270 3.425 

2.472 4.066 3.752 2.698 3.712 3.424 

2.472 3.793 2.819 2.698 2.866 3.339 

2.437 2.477 2.819 2.034 2.821 3.193 

2.437 2.194 2.756 2.034 1.914 1.780 

2.401 2.150 2.096 1.788 1.365 1.780 

2.009 1.411 2.096 1.751 1.090 1.496 

1.766 0.774 0.810 1.751 1.056 1.063 

1.765 0.609 0.810 1.644 0.934 1.063 

1.284 0.313 0.537 1.176 0.517 0.533 

−0.383 −0.251 −0.411 −0.396 0.000 −0.260 

−1.934 −0.563 −0.475 −0.397 −0.663 −0.782 

−2.103 −0.711 −0.475 −1.874 −1.117 −0.782 

−2.103 −1.266 −1.645 −2.155 −1.912 −1.024 

−2.615 −1.339 −1.859 −2.155 −1.921 −1.024 

−2.616 −1.943 −1.859 −2.394 −1.931 −2.481 

−2.748 −2.061 −2.086 −2.557 −2.149 −2.516 

 

DOI: 10.4236/jmp.2018.914158 2466 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2018.914158


S. O. Mathias et al. 
 

The total density (DOS) and partial densities (pDOS) of states, shown in 
Figure 4 and Figure 5, respectively, provide further insight on the electronic 
structure. We employed the linear tetrahedron method [66] for the calculations 
of these densities of states, using the energy bands obtained with the optimal ba-
sis set, as shown in Figure 2. The broad peak features of the total density of 
states reflect the presence of three formula units per primitive cell. While both 
Cr and Si contribute to this feature between −5 and +5 eV, Si contributions 
clearly dominate outside this range, as per the partial densities of states. The 
calculated total width of the valence is 14.38 eV. The inset in Figure 4 shows a 
detailed view of the boundaries of the band gap.  

We have calculated the electron effective masses, in the immediate vicinity of 
the minimum of the conduction band, at the M point and the hole effective 
masses, at the maximum of the valence bands, at M. Our calculated electron ef-
fective masses along MΓ, MK, and ML directions are 0.81, 0.77, and 1.38, respec-
tively, in units of free electron mass (m0). The calculated hole effective masses  
 

 
Figure 4. Results from the calculation of the density of states (DOS) for CrSi2, as obtained 
using the bands from Calculation IV. 
 

 
Figure 5. Results from the calculation of partial density of states (pDOS) for CrSi2, as de-
rived from the bands resulting from Calculation IV. 
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along LA, LH, LM, and LΓ axes are 1.3, 1.25, 1.19, and 1.07, respectively, in units 
of free electron mass. The electron and hole effective masses have been pre-
viously calculated by Mattheiss [11] who found that the components of the hole 
effective mass along LA, LH, and LM axes are 1.2 m0, 1.3 m0, 0.9 m0, respectively. 
This author also reported electron effective masses of 0.7 m0, 0.7 m0, and 1.4 m0, 
respectively. While our results for the electron effective masses are only slightly 
larger than or equal to the corresponding findings of Mattheiss, our hole effec-
tive masses, in the LA and LH directions, are much larger than those reported by 
Mattheiss. Our values somewhat are similar to those found by Mattheiss who 
used a completely different method (LAPW). Our calculated values for the effec-
tive masses are substantially smaller than the corresponding, empirical values of 
~3 m0 and ~20 m0 for hole and electron effective masses, respectively, as deter-
mined from an analysis of transport data [25]. Clearly, more experimental mea-
surements of effective masses in CrSi2 are needed.  

4. Discussion 

There is a clear need for additional experimental studies of bulk CrSi2. Indeed, as 
per the content of Table 1, only one (1) of the 11 experimental values for the 
band gap is for bulk CrSi2. The author who reported this value of 3.2 eV did not 
specify whether the gap was direct or indirect. The other results are indirect 
band gaps for films of various thicknesses, fabricated by diverse growth tech-
niques. In light of issues of quality of these films and in particular, the well- 
known quantum confinement effect, which tends to enlarge the gaps of films as 
compared to bulk materials, there is not much merit in comparing the calculated 
values for the bulk to these film gaps. The theoretical band gaps in Table 2 are 
generally around 3.0 or 3.5 eV, except for the lower value of 0.21 eV and the 
negative one of −0.35 eV. Even though most of these theoretical results are not 
too far from the experimental one of 3.2 eV, the fact remains that our finding of 
0.313 eV is the closest to this experimental finding. This agreement is partly ex-
plained in the Section on our method. Indeed, the BZW-EF method strictly ad-
heres to the conditions of validity of a DFT calculation, i.e., keeping the total 
number of particles constant and, verifiably, attaining the absolute minima of 
the occupied energies (the ground state) [53]. The latter condition is imposed by 
the second DFT theorem. As already noted, this condition is generally far from 
being met by results from self-consistent iterations with a single basis. A single 
basis set leads to a stationary solution among an infinite number of them. The 
relatively better agreement between our calculated band gap and the only expe-
rimental one for the bulk stems from the fact that our results possess the full 
physical content of DFT.  

5. Conclusion 

We have reported results for the ground state electronic structure and related 
properties of CrSi2, using the BZW-EF method. Our LDA BZW-EF calculated 
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band gap of 0.313 eV is indirect. Our results for the band gap, total and partial 
densities of states, and the electrons and hole effective masses are expected to be 
confirmed by future experimental studies.  
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Abstract 
It is commonly assumed that a wire conducting an electric current is neutral 
in the laboratory frame of reference (the rest frame of the lattice of positive 
ions). Some authors consider that the wire is neutral only in a symmetrical 
frame of reference, in which the velocities of electrons and protons have equal 
norm and opposite direction. In this paper, we discuss the Lorentz transfor-
mation between different frames of reference in the context of the special 
theory of relativity for a current-carrying conducting wire and a probe charge 
in motion with respect to the wire. A simple derivation of the Lorentz force in 
the laboratory frame of reference for the assumed neutrality in a symmetrical 
frame of reference is presented. We show that the Lorentz force calculated 
assuming neutrality in the symmetrical frame of reference and the one as-
suming neutrality in the laboratory frame of reference differ by a term cor-
responding to a change in the test charge speed of one half the drift velocity 
of the electrons. 
 

Keywords 
Special Theory of Relativity, Current-Carrying Wire, Neutral Frame,  
Symmetrical Frame, Lorentz Force, Drift Velocity 

 

1. Introduction 

The Lorentz force between a current-carrying wire and a charge in motion in the 
laboratory frame of reference, where the conductor is at rest, is often expressed as: 
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q= ×F v B                          (1) 

where B is the magnetic flux density generated by the wire current, which can be 
calculated by using Biot-Savart’s Law [1]. B depends only on the current magni-
tude regardless of the physics of the motion of the charge carriers in the wire. In 
(1), q is the charge and v is its velocity. Equation (1) is correct only under the 
assumption that the wire is neutral in the laboratory reference frame. Otherwise, 
a second component of the force due to the electric field should also be consi-
dered.  

The question of the frame of reference, in which the current-carrying wire is 
neutral, has been the subject of debate in the past years [2]-[10]. Some authors 
suggest that a neutral wire corresponds to the rest reference frame of the lattice 
of positive ions (e.g., [2] [6] [7] [8]), considering that electrons are a free ensem-
ble and, therefore, their distances do not change upon acceleration [3]. Others 
(e.g., [4] [9]) assume that the distances between electrons are also subject to the 
Lorentz contraction and, therefore, the wire is neutral only in a symmetrical 
frame of reference in which both electrons and protons have the same speed but 
move in opposite directions. Although they are conceptually important, to the 
best of our knowledge none of these theories has been experimentally proven 
since the drift velocity of the electrons is small and, hence, the effects are neglig-
ible. It is therefore necessary to investigate the mechanisms involved in the tran-
sition process from no-current wire to current-carrying wire to answer the ques-
tion of the neutral frame. A more detailed discussion about the issue of the de-
termination of the reference frame in which the current-carrying wire is neutral 
can be found in [2] and [3]. 

In this paper, we will first present a simple derivation for the Lorentz force by 
assuming the Lorentz contraction of distances between electrons and assuming 
that the wire neutrality occurs in a symmetrical frame of reference (as in [4] [9]). 
This assumption leads to a modification of (1). The Lorentz force will depend on 
the physics of the motion of the charges. In Section 2, we will derive the Lorentz 
force for the classical example of a charge moving parallel to a current-carrying 
wire [10] (see Figure 1 for the geometry of the problem), for a symmetrical 
frame of reference. In Section 3, we will derive the same force considering a la-
boratory frame of reference (at rest with respect to the lattice of positive ions), 
by transforming the force from the symmetrical frame of reference. Conclusions 
will be given in Section 4.  

2. Symmetrical Frame of Reference 

Let us first examine the theoretical model from [10]. Figure 2 shows the prob-
lem considering two different reference frames moving with respect to each oth-
er at a speed v. The first one (left panel) will be labeled S, and the second (right 
panel) S'. 

Let us imagine that in the symmetrical frame of reference S, we have a straight, 
infinitely-long wire containing positive and negative charges, characterized by  
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Figure 1. Force between a current-carrying wire and a charge q at a distance r. The 
charge is moving in the direction parallel to the wire with a speed v. 
 

 

Figure 2. Frame of reference S (left panel) and frame of reference S' (right panel) for |v| > 
|v0|. Probe charge q. λ+ and λ− are the line charge densities in S. λ+′  and λ−′  are the line 
charge densities in S’. 
 
linear charge densities λ+ and λ−. The positive wire charges move with a constant 
velocity v0 in the positive x direction, while the negative wire charges move with 
a constant velocity-v0. These two charge densities are measured in the S frame of 
reference (Figure 2, left panel), with respect to which the positive and negative 
charges are moving. If we assume that both charge densities are equal in absolute 
value (|λ+| = |λ−|), the wire is electrically neutral. Now, let us examine a probe 
charge q at a distance r moving with a velocity v along a line parallel to the wire 
in S. In what follows, we will refer to q as the probe charge and to the charges 
composing the linear charge densities as wire charges.  

Let us calculate the force on the probe charge q. Frame S' is moving with a 
speed v relative to S so that the probe charge q is not in motion in S'. The veloci-
ties of the positive and negative line charges in S' can be calculated from the ve-
locities in S by way of the Lorentz transformation: 

( )
( )

00

0 0
2 2

,
1 1

v vv v
v v

vv v v
c c

+ −

− −−′ ′= =
−− −

                    (2) 

Clearly, if v is not equal to zero, v+′  and v−′  will have different values. Con-
sequently, the distance between the individual positive charges will experience a 
different contraction compared to the distance between the individual negative 
charges. We therefore expect different line charge densities λ+′  and λ−′  in S’. 
As a result, the wire will not be neutral in S'. 

Let us introduce the following parameters [10]: 

2

1,
1

v
c

β γ
β

= =
−

                       (3) 

0
0 0 2

0

1,
1

v
c

β γ
β

= =
−
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2
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1
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c

β γ
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±
± ±

±

′
′ ′= =
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                     (5) 
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By dividing (2) by c, we can now rewrite β+′  and β−′  as [10]: 

0 0

0 0

,
1 1
β β β β

β β
β β β β+ −

− +′ ′= = −
− +

                 (6) 

Let us now consider two other frames of reference: 1) the rest frame of refer-
ence of the positive wire charges S+ moving with respect to S with velocity v0 in 
the positive x axis direction, and, similarly, 2) the rest frame of reference of the 
negative wire charges, S− moving with respect to S with a velocity –v0. Since the 
linear charge densities are the same in S and since their rest reference frames, S+ 
and S−, are moving with the same speed with respect to S, they experience the 
same contraction. As a result, the linear charge density of the negative charges in 
S− will be the same in magnitude as the linear charge density of the positive 
charges in S+. If we label the magnitude of the linear charge density in S as λ (λ = 
|λ+| = |λ−|), the linear charge density in the rest frame of reference is simply 
±λ/γ0, where the sign depends on the wire charge polarity. Now, transforming 
from S to S', the linear charge density in terms of λ can be expressed as: 

0 0

,λ λλ γ λ γ
γ γ+ + −−′ ′ ′ ′= = −                       (7) 

From Equation (7), the overall charge density in S' can be expressed as [10]: 

2 2
0 0 0

2 2

0
0 22 2

0

1 1

1 1

21 1 2
1 1

overall
v v
c c

vv
c

λ λ λλ λ λ γ γ
γ γ γ

λγλ λββ γ
γ β β

+ − +

+ −

+

−

−

 
 
 ′ ′ ′ ′ ′= + = − = − ′ ′ − − 
 

 
 = − = − = −
 ′ ′− − 

       (8) 

The electric field from a uniform line charge in S' at the position of the probe 
charge is given by: 

( )
02π

overall
yE r

r
λ′′ = −


                      (9) 

As mentioned before, no magnetic force is exerted on the charge since its 
speed is zero. The total force can therefore be calculated as  

( )
02π

overall
y

q
F r

r
λ′′ = −


                     (10) 

Making use of the Lorentz transformation, the force in reference frame S is 
[10]: 

( ) 0
2

0π
y

y

F q vv
F r

c r
λ

γ

′
= =


                   (11) 

Now, considering that 

( )( ) ( )0 0 0 2
0

2 and
2π

II v v v B r
c r

λ λ λ= + − − = =


          (12) 

and plugging these relations into (11), we obtain the more familiar equation: 
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( )yF r qvB=                         (13) 

This classical example is often used to show the relativistic background of eq-
uation (1). In the following section, we will use this derivation to get an expres-
sion for the Lorentz Force in the laboratory frame of reference. 

3. Laboratory Frame of Reference (Rest Frame of Reference  
of a Lattice of Positive Charges) 

Let us now consider the same case of an infinitely-long current-carrying wire in 
a laboratory frame of reference. If there is no applied voltage, the random mo-
tion of the charges is described with quantum mechanics [11]. If we apply a vol-
tage on the wire, the motion of the electrons will be a superposition of their 
random motion and that caused by the applied electric field. To a first approxi-
mation, the motion can be described as if all electrons were moving with a con-
stant drift velocity [12]. Positive charges are stationary (in lattice) in the consi-
dered frame of reference, referred to as the laboratory frame of reference (shown 
in Figure 3). It is assumed that a voltage is applied between the wire ends at in-
finity, with the left end at a higher potential. The charge q is at a distance r to the 
wire and it moves with a constant velocity vqlab in the positive x direction, paral-
lel to the wire.  

We will now calculate the force applied on the charge in this frame of refer-
ence. First, we will transform to the symmetrical frame S (in which the wire is 
assumed to be neutral) where we will call the speeds of the positive and of the 
negative charges v+ and v− such that: 

ov v v+ −= − =                         (14) 

In this frame of reference, the force is given by Equation (11), in which the 
value of v, which will be calculated below, is the velocity of the test charge (vqlab 
in the laboratory frame of reference) with respect to the symmetrical frame of 
reference. The Lorentz transformation of the positive and negative wire charge 
velocities to S from Slab is given by 

( )
( )

2

,
1

D S
S

S D

v v
v v v

v v
c

+ −

− −
= − =

−
−

                   (15) 

in which vs is the velocity of the frame of reference S with respect to Slab. 
Substituting Equation (15) in (14), we obtain: 

 

 

Figure 3. Laboratory frame of reference. Electrons are moving with the drift velocity vD 
and positive ions are stationary. The rectangle above the wire represents a differential 
wire segment illustrating the speeds of the positive and negative charges. 
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2
2 2 0D

S S D
v v v v
c

− − =                      (16) 

Since the drift velocity vD is in the order of a few mm/s and vS is even smaller, 
to a first approximation we can neglect the first term in Equation (16) and ob-
tain the classical Galilean transformation: 

2
D

S
vv = −                          (17) 

In the symmetrical reference frame S, the velocity of the charge is, therefore: 

2

2

21

D
qlab

D
qlab

vv
v

v v

c

 − − 
 =

 − 
 −

                     (18) 

Using Equation (11), the force in the reference frame S becomes: 

2
0

2
π

D

y

vq v
F

c r

λ
=


                       (19) 

In which λ is the magnitude of the positive or the negative charge density in 
the symmetrical frame of reference in the same way as it was defined in the pre-
vious section (λ = |λ+| = |λ|). The Lorentz transformation of this force to the la-
boratory frame of reference Slab can be expressed as: 

2
022

2

22 1 π1

D

y
ylab

DD

SS

vq vF
F

vv vv
c r

cc

λ

γγ

= =
    −    

  +   −
        



            (20) 

where: 

2

2

1

1
S

sv
c

γ =

−

                         (21) 

The negative charge density in Slab is: 

lab x
S

λλ γ
γ− = −                         (22) 

in which 

2

1

1
x

Dv
c

γ =
 −  
 

                      (23) 

Let us now define: 

2 2

1 1and

2 21 1
D D

qlab
v vv v

c c

α δ= =

+ +

               (24) 
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Plugging (18) into (20), expressing λ  in terms of labλ −  from (20), and us-
ing (23) and (24), the Lorentz force in Slab is: 

( )S

2
S 0

2
0

2
2

π

2 2
2 π

D
qlab

D
lab

ylab
x

D D
qlab qlab

xx

vv vq

F
c r

v vq v I q v B

c r

γ λ
α

γ γ δ

γ δαγ δα

−

 + 
−  

  
 =

   + +   
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



            (25) 

where B and I are defined for the laboratory frame of reference, and where the 
current is only due to the motion of the negative charges. 

Since Dv c , the relativistic coefficient in Equations (23) and (24) is ap-
proximately equal to one and (25) can be written as: 

2
D

ylab qlab
vF q v B ≈ + 

 
                   (26) 

In the laboratory frame of reference (rest frame of the lattice of positive 
charges), the negative wire charges are moving, as opposed to the positive 
charges that are stationary. Therefore, they have a higher linear charge density 
than the stationary positive charges. The overall wire is negatively charged and it 
produces an electric force in the direction of the magnetic force in the examined 
case. If the probe charge is moving in the positive direction of the x axis as in 
Figure 3 (opposite to the drift of the electrons), force in (1) is increased by 
qvDB/2 in (26). 

It is worth noting that in opposite case when drift velocity of negative wire 
charges is positive, the sign of force due to probe charge movement will change 
due to change of sign of current and consequently of magnetic field. However, 
contribution of this half drift velocity correction term will remain to be directed 
toward the wire due to change of sign in (17). This is because wire will again be 
negatively charged in laboratory frame. There will be also change in denomina-
tor of two terms in (24), but these terms can be neglected as in (26). 

Figure 4 shows comparison of forces calculated in the laboratory frame of 
reference assuming neutrality in Slab and in the symmetrical frame of reference S 
for the case of B = 1 T and q = 1 C. As the charge velocity increases, the differ-
ence between the forces becomes negligible. The drift velocity [12] is very small, 
making these effects hard to measure since they are hidden by some other 
real-scenario forces, such as the zero-order effect of the electrostatic force 
created by an image charge inside the conducting wire, the first-order force re-
sulting from the resistive nature of the wire, and second-order forces originating 
for example from the curvature of the wire [4] [13]. In order to mitigate the do-
minant effect of the zero-order effect force, one may exploit the fact that this 
force will decay as 1/r2 while (26) exhibits a slower 1/r decay. 
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(b) 

 
(b) 

Figure 4. Force applied on the charge calculated assuming neutrality in the laboratory 
frame of reference given with Equation (26) (dashed red curve) and in the symmetrical S 
frame of reference given by Equation (1) (solid blue curve). For low values of the vqlab/vD 
ratio (a) and for high values (b). For the case of vD < 0 and vqlab > 0. 

4. Conclusion 

In this paper, we presented a derivation of the Lorentz force in the laboratory 
frame of reference for the case of a metallic, current-carrying wire under the as-
sumption of neutrality in the symmetrical frame of reference. The Lorentz force 
is a combination of the electric and the magnetic forces and, depending on the 
physics of motion of the charges, the electric field will also be present. We 
showed that the Lorentz force calculated assuming neutrality in the symmetrical 
frame of reference and the one assuming neutrality in the laboratory frame of 
reference differ by a term corresponding to a change in the test charge speed of 
one half the drift velocity of the electrons. The derived equations make it in 
principle possible to experimentally test the hypotheses of neutrality. The drift 
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velocity being usually in the order of mm/s, an accurate measurement of these 
effects might be, however, very challenging, compared to other forces that are in 
play. 
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Abstract 
The paper is concerned with the history of the spherically symmetric static 
problem solution of General Relativity found in 1916 by K. Schwarzschild [1] 
[2] which is interpreted in modern physics as the background of the objects 
referred to as Black Holes. First, the modern interpretation this solution 
which does not exactly coincide with original solution obtained by K. 
Schwarzschild is discussed. Second, the basic equations of the original 
Schwarzschild solution are presented in modern notations allowing us to 
compare existing and original solutions. Finally, a modification of the 
Schwarzschild approach is proposed allowing us to arrive at the exact solu-
tion of the Schwarzschild problem.  
 

Keywords 
General Relativity, Spherically Symmetric Problem, Schwarzschild’s Solution, 
Black Holes 

 

1. Spherically Symmetric Static Problem of General  
Relativity 

Spherically symmetric problem is one of the most discussed problems of General 
Relativity Theory (GRT) widely described in the literature [3] [4] [5] [6] [7]. 
This paper is concerned with the analysis of the original Schwarzschild solution 
of this problem in association with its modern interpretation and possible gene-
ralization. 

The line element for the spherically symmetric problem is traditionally taken 
in the following form: 

( )2 2 2 2 2 2 2 2 2 2d d d sin d ds g r h c tρ θ θ ϕ= + + −              (1) 

Here , ,r θ ϕ  and t are space spherical and time coordinates, , ,g hρ  are the 
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metric coefficients that depend on the radial coordinate r only. The basic equa-
tions of the General Relativity Theory (GRT) link the Einstein tensor i

iE  with 
the metric coefficients as [3]  

1
1 2 2

1 1 2hE
hg

ρ ρ
ρ ρρ
′ ′ ′ 

= − + 
 

                   (2) 

2 3
2 3 2

1 h h g g hE E
h h g ghg

ρ ρ
ρ ρ

 ′′ ′′ ′ ′ ′ ′ ′ 
= = − + + − −  

  
           (3) 

2
4
4 2 2

1 1 2 2 gE
gg

ρ ρ ρ
ρ ρ ρρ

 ′ ′′ ′ ′ 
= − + −  

   
               (4) 

where ( ) ( )... d ... dr′ = . The components of the Einstein tensor are proportional 
to the energy tensor i

iT , i.e. 
i i
i iE Tκ=                           (5) 

where 
48π cκ γ=                         (6) 

is the GRT gravitational constant depending on the Newton constant γ  and 
the velocity of light c. Finally, the energy tensor (and the Einstein tensor which is 
proportional to it) must satisfy the following conservation equation:  

( ) ( ) ( )1 2 1 1 4
1 2 1 1 4

2 0hT T T T T
h

ρ
ρ
′ ′′ − − + − =                (7) 

We use mixed components of the tensors E and T because for the problem 
under study they coincide with the corresponding physical components. The 
energy tensor depends on the space structure. Particularly, for the empty space 

( )0, 1,2,3,4i
iT i= =                        (8) 

and Equations (2)-(4) are homogeneous. Inside a solid sphere with radius a , 
1 2 3 4 2

1 2 3 4, ,rT T T T cθσ σ µ= = = =                  (9) 

where rσ  and θσ  are the radial and the circumferential stresses and µ  is 
the material density.  

Consider the external space ( )r a≥ . Taking 4
4 0E = , we can reduce Equa-

tion (4) to the following form:  

( )2

2

d
d

e e
e

er g
ρ ρ

ρ
 ′

′  =
  

                     (10) 

Equation (10) can be readily integrated to give 

( )2
2

1

e e
e

e

g
C

ρ ρ
ρ

′
=

+
                       (11) 

where 1C  is the integration constant and the functions with subscript “e” cor-
respond to the external space. Substituting this result in Equation (2), taking 

1
1 0E =  and integrating, we get 
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2 1
2 1e

e

Ch C
ρ

 
= + 

 
                          (12) 

It looks like substituting Equations (11) and (12) into Equation (3) in which 
2
2 0E = , we can determine the function ( )e rρ . But this is not the case—under 

such substitution, Equation (3) is satisfied identically for any function ( )e rρ . 
This result can be predicted—since the components of the Einstein tensor i

iE  
satisfy Equation (7), Equations (2)-(4) are not mutually independent and any 
solution of two of them identically satisfy the third equation. 

Thus, we have only two Einstein equations for three unknown functions 
( )g r , ( )rρ  and ( )h r . The fact that the set of GTR equations is not complete 

and must be supplemented with some coordinate conditions was first mentioned 
by D. Hilbert [8]. By now, the general form of these conditions has not been de-
veloped, though some particular forms (e.g., the so-called De-Donder-Fock 
harmonic coordinate conditions) have been used in spherically symmetric prob-
lem [9]. 

Not knowing the function ( )e rρ , we can make some qualitative conclusions 
about its behavior. It is natural to suppose the for r →∞  we should have 

e rρ →  and Equations (11) and (12) should reduce to the corresponding results 
of the Newton gravitation theory, according to which [10] 

2 2
2 2

2 21 , 1g h
c c
ϕ ϕ

∞ ∞= − = +                     (13) 

where m rϕ γ= −  is the Newton gravitational potential and m is the mass in-
ducing the gravitation field. Equations (13) allows us to determine the constants 
in Equations (11) and (12) and to present the result as 

( )2
2 2, 1

1
ge

e e
g e e

r
g h

r
ρ

ρ ρ
′

= = −
−

                   (14) 

Here,  
22gr m cγ=                          (15) 

is the so-called gravitational radius sometimes referred to as the Schwarzschild 
radius (though K. Schwarzschild did not use this term). 

Consider the internal space ( )0 r a≤ ≤ . For an elastic sphere with known 
density, we have totally four equations, i.e., Equations (2)-(4) in which the 
left-hand parts are specified by Equations (5) and (9) and Equation (7) in which 
the energy tensor should be expressed with the aid of Equation (9). These equa-
tions include five unknown functions—the metric coefficients , ,g hρ  and the 
stresses rσ  and θσ . To solve the problem, we must supplement the GRT equ-
ations with the equations for stresses similar to the compatibility equations of 
the Theory of Elasticity. Such equations can be derived [11], but we restrict our-
selves to a particular solution obtained by K. Schwarzschild for a sphere consist-
ing of a perfect incompressible fluid. In this case, ( )r p rθσ σ= = −  in which p 
is the pressure in the fluid and the fluid density 0µ  does not depend on p and r. 
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Taking 4 2
4 0E cκµ=  in Equation (4), we can reduce it to the form [12] 

( ) ( )2 2
02

d 1
d

i
i i i

i

c
r g

ρ
ρ κµ ρ ρ

 
′ ′= − 

 
                  (16) 

Equation (16) can be readily integrated to give 

( )2
2

2 2
31i

i i

g
C

ρ
λ ρ ρ

′
=

− −
                     (17) 

where 

2 2
0

1
3

cλ κµ=                          (18) 

and the functions with subscript “i” correspond to the internal space. We do not 
know the function ( )i rρ , but can make some reasonable prediction concerning 
its behavior. Particularly, it is natural to suppose that at the sphere center 

0i rρ = = . Then, in accordance with the symmetry condition at the sphere cen-
ter, we should take 3 0С =  and Equation (17) becomes 

( )2
2

2 21
i

i
i

g
ρ
λ ρ

′
=

−
                        (19) 

Continue the derivation and consider Equations (2) and (7). Taking 1
1E pκ= −  

and 1 2
1 2T T p= = − , 4 2

4 0T cµ= , we arrive at 

( )2
02 2

21 , 0i i i i

i ii i i

h h
p p p c

h hg
ρ ρ

κ µ
ρρ ρ

′ ′ ′ ′ 
′− − = − + + = 

 
        (20) 

Consider the first Equation. Substituting Equation (19), express the time me-
tric coefficient ih , i.e., 

2 2 2

d d 1 1
2 1

i i i

i ii i

h
p

h
ρ ρ

κ
ρλ ρ ρ

  
= + −  

−   
             (21) 

and rewrite the second equation of Equations (20) as 

( )2
0

d
d 0i

i

h
p p c

h
µ+ + =                    (22) 

Substituting Equation (21) and using Equation (18), we arrive at the following 
equation for the pressure: 

( ) ( )
2

2
0 22 2

0

d 3d 1 0
2 1

i i

i

pp p c
c

λ ρ ρ
µ

µλ ρ

 
+ + + = 

−  
           (23) 

The solution of Equation (23) that satisfies the boundary condition on the free 
sphere surface r a=  according to which ( ) 0i ap ρ ρ= =  is 

2 2 2 2
2

0 2 2 2 2

1 1

1 3 1
i a

i a

p c
λ ρ λ ρ

µ
λ ρ λ ρ

− − −
= −

− − −
             (24) 

where ( ) ( )a i er a r aρ ρ ρ= = = = . To determine ih , integrate Equation (22) to 
get ( )2

0 4ih p c Cµ+ =  in which 4C  is the integration constant that can be 
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found from the boundary condition on the sphere surface r a=  according to 
which ( ) ( )e e a i i ah hρ ρ ρ ρ= = = . Using the second equation in Equations (14), 
we finally have 

( )2 2 2 2
02 2

1
3 1 1

2 1
g a

i i

a

r
h

ρ
λ ρ λ ρ

λ ρ

−
= − − −

−
            (25) 

It should be noted that substitution of the obtained solutions ( ) ( ),i i i ig hρ ρ  
and ( )ip ρ  in the Einstein Equation (3) where 2

2E pκ= − , does not allow us to 
find the function ( )i rρ  because Equation (3) is identically satisfied for any 
function ( )i rρ . The situation is similar to the external space and for the same 
reason—since the right-hand parts of Equations (2) and (3) satisfy Equation (7), 
only three of Equations (2)-(4) and (7) are mutually independent.  

Thus, Equation (1) which specifies the metric forms of the external and inter-
nal spaces of the fluid sphere can be presented as 

( ) ( )
2 2

2 2 2 2 2 2 2d
d d sin d 1 d

1
ge

e e
g e e

rr
s c t

r
ρ

ρ θ θ ϕ
ρ ρ

′  
= + + − − −  

       (26) 

( ) ( )

( ) ( )

2 2
2 2 2 2 2

2 2

2
2 2 2 2 2 2

2 2

d
d d sin d

1
1

3 1 1 d
4 1

i
i i

i

g a
a i

a

r
s

r
c t

ρ
ρ θ θ ϕ

λ ρ
ρ

λ ρ λ ρ
λ ρ

= + +
−

−
− − − −

−

        (27) 

To fulfill the solution, we need to find two functions ( )e rρ  and ( )i rρ  such 
that allow us to satisfy the boundary conditions at the sphere surface r a= , i.e., 

( ) ( ) ( ) ( ),e i e ia a g a g aρ ρ= =                  (28) 

However, the equations allowing us to determine these functions are missing 
in GRT. The same problem exists in the general case—as known, the set of Eins-
tein equations is not complete. In the four-dimensional Riemannian space, this 
set consists of 10 equations 

ij ijE Tκ= −                         (29) 

for ten components of the metric tensor ijg . However the Einstein tensor satis-
fies equations which are analogous to Equations (7). As a result, only six of Equ-
ations (29) are mutually independent and to determine the metric tensor we 
should supplement Equations (29) with four coordinate conditions for ijg . 
Some authors declare that these conditions cannot be covariant because there 
forms depend on the particular coordinate frame [3] [8]. Consider some partic-
ular cases. 

2. Modern Interpretation of the Schwarzschild Solution 

Traditional description of the Schwarzschild solution can be found elsewhere 
[3]. The coordinate condition mentioned in the closure of the previous section is 
taken in the form  

( ) ( )e ir r rρ ρ= =                          (30) 
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though K. Schwarzschild did not use directly this relationship. Applying Equa-
tions (30) to Equations (14) and (19), we can specify the metric coefficients for 
this case and present the metric form in Equation (1) as 

( )
2

2 2 2 2 2 2 2dd d sin d 1 d
1

g
e

g

rrs r c t
r r r

θ θ ϕ
 

= + + − − −  
          (31) 

( )

( ) ( )

2
2 2 2 2 2

2 2

2
2 2 2 2 2 2

2 2

dd d sin d
1

1
3 1 1 d

4 1

i

g
i

rs r
r
r a

a c t
a

θ θ ϕ
λ

λ λ ρ
λ

= + +
−

−
− − − −

−

          (32) 

To fulfill the solution, we need to satisfy the boundary conditions (28) on the 
sphere surface r a= . The first condition is satisfied automatically, whereas the 
second one yields 

2 3
gr aλ=                              (33) 

However, the parameters gr  and 2λ  are specified by Equations (15) and 
(18) and are known. So, Equation (33) cannot be satisfied in the general case and 
the second boundary condition in Equations (28) is violated. Substituting for-
mally Equations (15) and (18) in Equation (33), we arrive at the following ex-
pression: 

3
0

4 π
3em m aµ= =                         (34) 

which specifies the mass of a homogeneous solid sphere in the Euclidean space. 
However, the space in GRT is not Euclidean and the mass of the sphere with the 
metric coefficients corresponding to Equations (19) is  

2 1 2 2
0 02

0

2 2

2 14π d π sin 1

151
128

a

i

e

m g r r a a a
a

m a

µ µ λ λ
λλ

λ

− = = − − 
 

 ≈ + + ⋅⋅⋅ 
 

∫
      (35) 

As can be seen, the obtained result does not coincide with Equation (34) and 
the second boundary condition in Equations (28) is not satisfied. The reason for 
this discrepancy is associated with Equations (30). Equation (4), being originally 
of the second order, under transformation in accordance with Equation (30) re-
duces to the equation of the first order. As a result, the solution does not contain 
the proper number of integration constants allowing us to satisfy the complete 
set of the boundary conditions. 

Thus, the coordinate conditions in Equations (30) do not look suitable for the 
problem under study. 

3. Original Schwarzschild’s Solution 

In 1916 K. Schwarzschild presented the solution of the external spherically 
symmetric problem [1]. He did not use the final version of the Einstein equa-
tions, however the field equations that he applied can be now associated with 
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Equations (2)-(4). We can suppose that he understood that only two of these 
equations were mutually independent because he attracted for the analysis only 
two equations, i.e. Equations (2) and (4), and ignored Equation (3). The third 
equation which is necessary to solve the problem, was obtained under the fol-
lowing condition imposed on the determinant of the metric tensor: 

1mng =                              (36) 

Introducing this equation, K. Schwarzschild followed A. Einstein who used it 
in general theory to specify the coordinate frame [13]. Governing equations of 
GRT contain symbols k

ijΓ  which include derivatives of the determinant and 
become zero under condition (33) thus simplifying the equations. However, Eq-
uation (33) cannot be directly applied in spherical coordinates in which the vo-
lume element in the three-dimensional Euclidean space is 2d sin d d dv r rθ θ ϕ= . 
To overcome this problem, K. Schwarzschild introduced new variables ix  such 
that 

3
1 2 3 43, cos , ,x r x x x tθ ϕ= = − = =                (37) 

In new coordinates, the volume element becomes 1 2 3d d d dv x x x=  and the line 
element takes the form 

( )
2

2 2 2 2 22
1 1 2 2 3 4 42

2

d
d d 1 d d

1
xs f x f x x f x
x

 
= + + − − − 

           (38) 

Three functions 1 2 4, ,f f f  can be found from Equations (2) and (4) supple-
mented with equation 2

1 2 4 1f f f =  which follows from Equation (36). The final 
solution is 

( )
( )

3
1

4 3

1 31
3

1

3

1 3

x
f

x

β

α β

−

−

+
=

− +
, ( )3

2 1

2 3
3f x β= + , ( )4 1

33 11 3f xα β −= − +  (39) 

in which α  and 3β  are the integration constants. As stated in the Schwarz-
schild paper, this solution identically satisfies Equation (3) (which should be the 
case). 

The final part of the paper can hardly be understood. Directly following K. 
Schwarzschild, consider the function 1f  which can be a source of singularity. 
Equating the denominator to zero and using Equation (37) for 1x  we get 

( )3 3 1 3
1rα β

−
+ =                       (40) 

Let singularity take place at the origin 0r = . Then, Equation (40) yields 
β α= . Introducing the new variable 

( )1 33 3R r α= +                        (41) 

and using Equations (38) and (39), K. Schwarzschild arrived at the following fi-
nal result of his paper: 

( ) ( )
2

2 2 2 2 2 2 2dd d sin d 1 d
1

Rs R R с t
R

θ θ ϕ α
α

= + + − −
−

          (42) 
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This form formally coincides with Equation (31), but it should be taken into 
account that R is not the radial coordinate r. The constant α  is declared to de-
pend on the mass located at the origin, but is not found. 

As can be seen, the first term in Equation (42) becomes singular if R α=  or 
0r = . Thus, the original Schwarzschild solution has only one singular point— 
0r = .  

However, it looks like Equation (42) is not correct. To show this, change R to r 
in Equation (42) with the aid of Equation (41) to get 

( )
( )

( ) ( )

( )

4 3
2 3

3 3 4 2
2 3 3 2 2 2

3 3

3 3

1 3

2 21 3

d
d d sin d

1

1 d

r r r
s r

r

r с t

α
α θ θ ϕ

α α

α α

−

−

−

+
= + + +

− +

 − − +  

       (43) 

As can be proved, the first term of this equation becomes zero at 0r =  
which cannot be true. The origin of the mistake is in Equation (40) from which 
it follows that β α= . 

To demonstrate the alternative approach, substitute Equations (39) in Equa-
tion (38) and return to spherical coordinates with the aid of Equations (37). The 
resulting equation is 

( )
( )

( ) ( )

( )

4 3
2 3

3 3 4 2
2 3 3 2 2 2

3 3

3 3

1

2

3

21 3

d d sin d
1

1 d

r r dr
s r

r

r с t

β
β θ θ ϕ

α β

α β

−

−

−

+
= + + +

− +

 − − +  

        (44) 

As can be seen, the first term has the proper behavior at 0r =  if we take 
0β =  (not β α=  as in the Schwarzschild solution). The resulting expression  

( )
2

2 2 2 2 2 2 2dd d sin d 1 d
1

rs r с t
r r

αθ θ ϕ
α

 = + + − − −  
           (45) 

completely corresponds to the modern interpretation of the Schwarzschild solu-
tion in Equation (31), if we apply the asymptotic Equations (13) which give 

grα = . 
Consider the solution of the internal problem that was published by K. 

Schwarzschild in 1916 [2]. This solution was not supported by A. Einstein [14] 
because the concept of an incompressible fluid involves infinitely high velocity 
of the wave in the fluid which does not correspond to the basic GRT concept. 
However, the solution for compressible fluids does not demonstrate qualitative 
deviation from the Schwarzschild solution [15] which is discussed below 

The method of the solution is the same that for the external problem, i.e., the 
new variables in Equations (37) are introduced and the field equations are sup-
plemented with Equation (36). Further, another variable χ  is introduced in 
accordance with the following equation: 

( )3 3 1 3
sin rχ λ η= +                       (46) 
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where λ  is specified by Equation (18) (in the original equation 1с = ) and 3η  
is the integration constant. The final original result for the space part of the me-
tric form is 

( )
2

2 2 2 2 2 2 2 21 3 1d d sin d sin d cos cos d
2 2i as с tχ χ θ θ ϕ χ χ

λ
  = + + − −    

 (47) 

where ( )a r aχ χ= = . 
To discuss the result obtained by K. Schwarzschild, change χ  to r using Eq-

uation (46). Then, Equation (47) becomes 

( )
( )

( ) ( )

( ) ( )

3 3 4 2
2 3 3 2 2 2

2

4 3
2 3

2 3

2 3

3 3

2
2 3 3 2 23 33 2 2

d
d d sin d

1

1 3 1 1 d
4

i

r r r
s r

r

a r с t

η
η θ θ ϕ

λ η

λ η λ η

−
+

= + + +
− +

 − − + − − +  

 

The first coefficient becomes zero at 0r = , which cannot be true. To obtain 
the realistic metric, we must take 0η =  and arrive at the expression 

( ) ( )
2 2

2 2 2 2 2 2 2 2 2 2 2
2 2

d 1d d sin d 3 1 1 d
41i

rs r a r с t
r

θ θ ϕ λ λ
λ

= + + − − − −
−

 (48) 

In the closure of his paper, K. Schwarzschild analyzed the obtained solution. 
Particularly, the sphere mass was found in the form 

6π 1 sin 2
2a am χ χ

κλ
 = − 
 

                  (49) 

which coincides with Equation (35) after transformation with the aid of Equa-
tion (46). The first term in Equation (48) becomes singular at some critical 
sphere radius 1ga λ= . This radius coincides with the gravitational radius gr  
only under the condition imposed by Equation (33). If this equation is valid, the 
metric form in Equation (48) coincides with Equation (32). But then, the sphere 
mass is specified by Equation (34) which corresponds to the Euclidean space. 
However, the mass found by K. Schwarzschild is given by Equation (49) and 
corresponds to the Riemannian space. Thus, the radius gr  cannot be called the 
Schwarzschild radius.  

Now return to Equation (44) which specifies the Schwarzschild solution for 
the external space. Taking r →∞ , and performing asymptotic analysis, we can 
prove that the metric coefficients in Equation (44) reduce to Equations (13) if we 
take grα = . Then Equation (44) becomes 

( )
( )

( ) ( )

( )

4 3
2 3

1 3

1

3 3 4 2
2 3 3 2 2 2

3 3

3 3 2 23

d
d d sin d

1

1 d

g

g

r r r
s r

r r

r r с t

β
β θ θ ϕ

β

β

−

−

−

+
= + + +

− +

 − − +  

      (50) 

In contrast to the traditional Equation (31), this equation contains one more 
integration constant— β . This result looks natural because K. Schwarzschild did 
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not use Equations (30) and, hence, did not reduce the order of Equation (4). 
Considering the space with a point mass, we took 0β =  because of the beha-
vior of the first coefficient in Equation (50) at 0r =  and reduced Equation (44) 
to Equation (45). But now we study the external space of a fluid sphere for which 
r a≥ . So, we can try to use this constant to obtain the continuous solution in 
Equations (48) and (50) at the sphere surface. However, matching equations (48) 
and (50), we can conclude that the second terms can be continuous only if 

0β = . Thus, the final form of Equation (50) for the external space of a fluid 
sphere  

( )
2

2 2 2 2 2 2 2dd d sin d 1 d
1

g

g

rrs r с t
r r r

θ θ ϕ
 

= + + − − −  
          (51) 

coincides with the traditional Equation (31). The first and the third coefficients 
of Equations (48) and (51) are continuous at r a=  if 2 3

gr aλ=  which coin-
cides with Equation (33). Thus, Equation (36) applied by K. Schwarzschild is not 
the proper coordinate condition and actually gives the same results that the con-
ditions in Equations (30). The original Schwarzschild solution, as well as it 
modern interpretation, does not provide the solution which satisfies GRT equa-
tions and all asymptotic and boundary conditions for a fluid sphere. 

4. New Model of Space and Spherically Symmetric Problem 

Traditionally GRT is associated with Riemannian geometry which describes the 
so-called curved space. A three-dimensional curved space can be hardly im-
agined. This space can be formally embedded into traditional Euclidean space. 
However such space has six dimensions which do not provide better under-
standing of the problem. The proposed interpretation of the Riemannian space 
is based on the following assumptions. First, we assume that the space is not an 
object of geometry, but is a material substance (ether, physical vacuum or what-
ever else). Second, we think that the curved space does not exist in reality and 
the Riemannian geometry is only a mathematical model of a special Euclidean 
space. This space is not homogeneous and is characterized with so-called space 
density that is a function of the coordinates to which the space is referred. The 
space density d dR Ed v v=  is the ratio of the three-dimensional volume ele-
ments corresponding to the Riemannian and to the Euclidean geometries in the 
same coordinate frame [16] [17]. For spherical coordinates and the metric form 
in Equation (1), we have 2d sin d d dRv g rρ θ θ ϕ=  and 2d sin d d dEv r rθ θ ϕ= , 
so that ( )2d g rρ= . Using Equations (14) and (19), we get for the external and 
internal spaces 

2 2 2 2

2 22 2 2 2
,

1 1
e e e e i i i i

e i
g e i

g g
d d

r rr r r

ρ ρ ρ ρ ρ ρ
ρ λ ρ

′ ′
= = = =

− −
       (52) 

The space densities in Equations (52) are characterized with some specific 
properties. Consider the total density of the external and internal spaces for the 
fluid sphere with radius a 
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( ) ( )
2

24π d 4π , d , ,
1

e e
e e e e e e

a a g e

D d r r F r F
r

ρ ρ
ρ ρ ρ ρ

ρ

∞ ∞ ′
′ ′= = =

−∫ ∫        (53) 

( ) ( )
2

2

2 2
0 0

4π d 4π , d , ,
1

a a
i i

i i i i i i

i

D d r r F r F
ρ ρ

ρ ρ ρ ρ
λ ρ

′
′ ′= = =

−
∫ ∫        (54) 

Consider the variational equations providing the minimum values of the 
functional in Equations (53) and (54), i.e., 

0F F
rρ ρ

∂ ∂ ∂
− =

′∂ ∂ ∂
                        (55) 

As can be readily proved, Equation (55) is satisfied identically for both func-
tions F in Equations (53) and (54). Thus, the space densities in Equations (52) 
provide the minimum total density of the space. However, the space density is 
caused by gravitation and is minimum in the absence of gravitation, i.e., if the 
space geometry is Euclidean or if 1d =  which means that the space tends to 
become homogeneous with respect to the space density d. The condition 1d =  
looks slightly similar to Equation (36) applied by K. Schwarzschild. It has a sim-
ple physical and geometrical meaning—gravitation, changing the space geome-
try, does not affect the space volume.   

Taking 1ed =  and 1id =  in Equations (52), we arrive at two differential 
equations for functions ( )e rρ  and ( )i rρ , i.e., 

2 2 1e e g er rρ ρ ρ′ = − , 2 2 2 21i i irρ ρ λ ρ′ = −              (56) 

Consider the second equation. Since 2 2 1i i id g rρ= = , the sphere mass be-
comes 

2 2 3
0 0 0

0 0

44π d 4π d π
3

a a

i im g r r r aµ ρ µ µ= = =∫ ∫  

and coincides with the Euclidean mass in Equation (34) which means that the 
condition in Equation (33) is valid and 2 3

gr aλ = . Then, the second equation 
in Equations (56) reduces to 

2 2 2 31i i g ir r aρ ρ ρ′ = −                       (57) 

The solution of Equation (57) which satisfies the boundary condition 
( )0 0i rρ = =  is [12] 

( )1 2 31 2sin 1
3i g i g i g

g

r r r r
r

ρ ρ ρ− − − =               (58) 

where  
,r r a aρ ρ= =                         (59) 

Recall that at the sphere surface ( )i ar aρ ρ= = . Taking 1r =  and i aρ ρ=  
in Equation (58), we get 

( )1 21 2sin 1
3a g a g a g

g

r r r
r

ρ ρ ρ− − − =                (60) 

The general solution of the first equation in Equations (56) is [12] 
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( ) ( )2 2 3 3
5

1 5 5 5 1ln
3 12 8 8 3e g e g e e g g e e gr r r r r r Cρ ρ ρ ρ ρ ρ + + − + + − = + 

 
(61) 

The integration constant can be found from the boundary condition on the so 
here surface according to which ( )1e arρ ρ= = . Then, 

( ) ( )2 2 3
5

1 5 5 5 1ln
3 12 8 8 3a g a g a a g g a a gC r r r r rρ ρ ρ ρ ρ ρ = + + − + + − − 

 
 (62) 

Thus, the functions ( )i rρ  and ( )e rρ  are specified by Equations (58) and 
(61). The first boundary condition in Equations (28) according to which 

( ) ( )i e aa aρ ρ ρ= =  is satisfied which follows from Equations (60) and (62). 
The second boundary condition in Equations (28) according to which 

( ) ( )i eg a g a=  is satisfied because the obtained solution is based on the condi-
tion 2 2

i i e eg gρ ρ=  from which it follows that if the function ( )rρ  is conti-
nuous at r a= , the function ( )g r  is also continuous. For low levels of gravi-
tation, i.e. for 1gr  , Equations (58) and (61) yield i e rρ ρ= = . 

Consider Equations (60) and (62) which allow us to satisfy the boundary con-
ditions, i.e., to solve the problem that turned out to be critical for the solutions 
discussed above. As follows from Equation (62), the solution exists if a grρ ≥ . 
Otherwise, the solution becomes imaginary. The minimum possible value of aρ  
is gr . Assume that this minimum value corresponds to the sphere radius ga . 
Then, substituting a a g g ga r aρ ρ= =  in Equation (60), we get 

3

1 2
sin 1

3
g g g g g g

g g g g g g

a r r r r r
r a a a a a

−
   
  − − =      

          (63) 

The solution of Equation (63) is 1.115g ga r= . Thus, the critical radius is 
larger than the gravitational radius. For ga a= , the solution is not singular and 
gives finite values for the metric coefficients. Particularly, for aρ ρ=  we get 

1.243e ig g= =  and 0.8968e i aρ ρ= = . For ga a< , the solution becomes im-
aginary which means that GRT is not valid for such high level of gravitation. For 
the sphere with radius ga , the escape velocity is equal to the velocity of light 
and such sphere is invisible [18]. More results concerning the discussed solution 
can be found elsewhere [12]. 

5. Conclusion 

As follows from the foregoing analysis, the Schwarzschild solution after some 
minor correction and reconstruction coincides with the traditional [3] interpre-
tation of this solution. Both solutions do not satisfy the boundary condition on 
the fluid sphere surface for the radial space metric coefficient. A proposed model 
of the Riemannian space as the Euclidean space of variable density allows us to 
obtain the solution which satisfies equations GRT and all boundary conditions 
for the spherically symmetric problem for a fluid sphere. In future, the authors 
plan to generalize the approach discussed in Section 4 to the axially symmetric 
problem of GRT.  
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Abstract 

“πα ντα χωρει′   = everything flows”, Eraclitus, (Ephesus, 535-475 B.C.). If 
really in Nature everything changes and progresses, then at least two ques-
tions arise: 1) how can be these changes entropic but nonetheless somehow 
predictable without risk of oxymoronic behavior; 2) how can Science conform 
itself to follow this requirement of the Nature. To attempt an answer to these 
questions, the present paper introduces an ab initio theoretical model aimed 
to show that physical information is actually nothing else but straightforward 
quantum and relativistic implication of the concept of evolution.  
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1. Introduction 

Many physicists have emphasized the unreasonable effectiveness of mathematics 
in describing the physical world; among them the most authoritative one is 
Wigner [1]. An anecdote clarifies Wigner’s perplexity. Two students were dis-
cussing the ability of describing the statistical distribution of hungers in the 
world through the Gauss function, which involves the number π . Strictly 
speaking, it is hard to realize what has to do the geometrical ratio between cir-
cumference and radius of a circle with the distribution of hungers; even in lack 
of a rational explanation, though, nobody could doubt about the ability of scien-
tists to contribute to the advancement of science introducing π  in the frame of 
sophisticated mathematical algorithms. 

Even Bertrand Russel was concerned about the link between mathematics and 
physics [2]. In his book “Study of Mathematics” he says: “Mathematics, rightly 
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viewed, possesses not only truth, but supreme beauty, a beauty cold and austere 
like that of sculpture, without appeal to any part of our weaker nature, without 
the gorgeous trappings of painting or music, yet sublimely pure, and capable of a 
stern perfection such as only the greatest art can show. The true spirit of delight, 
the exaltation, the sense of being more than Man, which is the touchstone of the 
highest excellence, is to be found in mathematics as surely as in poetry.” 

Nevertheless, the outcomes of the natural sciences are subjected to experi-
mental tests: what is false or true is definable regardless of hungers and geome-
trical distresses. On the one hand, abstract numbers express reliable physical 
laws describing properties and predicting behavior of Nature. On the other hand, 
however, this epistemological shortcut in fact leaves unexplained the link be-
tween science and reality, calculation and experiment, mental ideas and actual 
story of the Universe. Quoting Einstein “the most incomprehensible thing of the 
Universe is that it is comprehensible”. 

Paradoxically, it is easy to understand the correlation between mathematical 
algorithm and natural event assuming first deterministic evolution of systems 
according to the old classical physics: once having selected properly the initial 
conditions, the successive evolution is in principle uniquely determinable. In 
practice any deterministic model requires a suitable number of descriptive pa-
rameters exactly known of a whole system, whose time evolution is codified and 
described via appropriate functions of these parameters; the mathematical defi-
nitions valid at a given time 0t t= , remain also valid, if correctly chosen, at 

0t tδ+ . Extrapolating this reasoning, the outcomes of such a model hold at any 
times 0t n tδ+  even for n →∞ : everything exactly known at 0t t=  remains 
exactly knowable forever. This should be true in principle also for a classical 
Universe, regarded as a whole physical system. 

Actually however the problem is much more complicated. 
The task of guessing the evolution of a physical system from a given initial 

condition must settle up with the probabilistic frame of the quantum theory: 
uncertainty relationships imply the impossibility of knowing simultaneously 
couples of conjugate dynamical variables. This constrain at the time 0t  pre-
vents the possibility of their exact knowledge at any later time as well. Worse still, 
an initial energy uncertainty 0δε  compels a subsequent range δε  of possible 
values that depends itself upon the choice of tδ . As a matter of fact, however, 
the fundamental laws of quantum physics are successful in conceiving correctly 
and designing operatively transistors and lasers. 

The predictive ability of science becomes further at stake considering also the 
relativistic theory, according which tδ  and δε  have meaning only relatively 
to the particular reference system where they are initially defined: e.g. the twin 
paradox exemplifies that the time is not an absolute parameter, as the reciprocal 
motion of their reference systems R and R′  implies anyway admitting different 
time lapses tδ  and tδ ′  for a given event to occur and even for their aging. 
The necessity of specifying both reference systems to describe physical events 
explains why the physical laws must be formulated in a covariant way. 
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Moreover the link between quantum and relativistic theory is still a hard chal-
lenge even today. 

To approach gradually the epistemological problem raised by these short con-
siderations, suppose preliminarily that a given event K is allowed to occur in a 
given R at the arbitrary time 1t , waiving for the moment whether or not actual-
ly this time is exactly determinable; in this R are also defined the initial time ot  
and the pertinent boundary conditions. Let K be for example the motion of a 
classical system of N particles, described by a total number J of descriptive pa-
rameters jf : e.g. position coordinates ( ), , 1r i r ix x t= , momentum components 

( ), , 1r i r ip p t= , energies ( )1i i tε ε=  and so on of each i-th particle with 
1,2,3r = . Of course jf  can include also mutual interactions, presence of ex-

ternal fields and anything else. Shortly, 
1 ,t jf  symbolize in general the j-th dy-

namical variables significant to define the state of each particle at the time 1t , in 
principle all measurable. Moreover let be known also the experimental value of 
the observable ( )1 1V V t=  of a given property V characterizing the event K at  

the time 1t  and reproduce this value as a linear combination 
11 ,

1

J

j t j
j

V A f
=

= ∑  of  

its descriptive parameters via appropriate coefficients jA . A simple example 
clarifies this point. Consider a one dimensional system of two interacting par-
ticles having initial coordinates 1ox  and 2ox  at the time ot ; concerning first 
the initial boundary condition, write  

*
1 ,1 2 ,2 3 ,1 4 ,2 5 6o o o o o o oV A x A x A A A A tε ε ε= + + + + +  

being all dynamical variables known by definition, regard the coefficients jA  
as parameters that fit the initial value oV  of total energy of the system; also, are 
experimentally measured the space and time coordinates and the energies 1oε  
and 2oε , upon which depends the interaction energy *

oε  assumed known as 
well. Repeat this reasoning, but considering now the total energy 1V  of the sys-
tem at the arbitrary time 1t ; it is in principle possible that the same equation 
links 1V  to the new space and time coordinates 1,1x  and 1,2x , energies 1,1ε  
and 1,2ε , and interaction energy *

1ε . Assuming experimentally known all these 
quantities, the new linear combination involving the same dynamical variables 
reasonably determining 1V  experimentally known as well reads  

*
1 1 1,1 2 1,2 3 1,1 4 1,2 5 1 6 1.V A x A x A A A A tε ε ε= + + + + +  

In principle it is possible that the coefficients jA , with 1 6j≥ ≥  in this exam-
ple, fit not only the initial boundary condition but also this further equation. In 
practice, however, neither the former equation nor the latter are calculable be-
cause two equations do not define uniquely the six unknowns jA ; the system of 
equations is actually undetermined. But it is possible to measure all dynamical 
variables also at the subsequent arbitrary times 2t  or 3t  and so on, which yields  

*
1 1, 2 2, 3 1, 4 1, 5 6 .k k k k k k kV A x A x A A A A tε ε ε= + + + + +  

It is clear that further sets of six experimental data obtained measuring the 
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same quantities at five additional times with respect to the initial condition, yield 
a system of six equations with six unknowns. Now the system admits a unique 
solution for all jA  fulfilling by definition also the boundary condition. In prin-
ciple this empirical procedure is possible no matter how complex is the system 
and how many its freedom degrees might be; a suitable number J of experimen-
tal measurements allow to obtain coefficients jA  that fit by definition all values 
of the observable kV  of interest at any time between ot  and Jt . The various 

,kt jf  are therefore not only the respective kx  but also any other dynamical va-
riable that concur with all kε  and *

kε  to the resulting value of the observable 

kV ; it is clear why one of the dynamical variables must be just the pertinent time 

kt . Note that, owing to the empirical character of the linear combination, even 
the higher powers of some descriptive parameters, e.g. 2

,r ip  are in principle 
admissible with their own jA  among the terms contributing to kV . 

Anyway take for granted that, by definition, all coefficients jA  fit correctly 
the known values of the experimental parameters ,kt jf  of all particles concur-
ring to the required value kV . 

On the one hand, is comprehensible the interest to describe the system at 
subsequent times after that of the initial condition for completeness of informa-
tion. On the other hand, however, since in general the descriptive parameters are 
functions of time, e.g. the dynamical variables of the various particles, the evolu-
tion of the system during a given time range becomes in fact essential require-
ment for the mathematical approach: repeating the same numerical procedure at 

1J −  subsequent times kt  after the initial ot , one can define a set of J equa-
tions and thus a square matrix of coefficients jA  whose lines fit exactly by de-
finition the experimental values kV  of the observable V in the given time range. 
Write therefore  

( ),
1

, 1 , ,
k

J

k j t j k k j k
j

V A f k J V V x t
=

= ≤ ≤ =∑             (1.1) 

the system of equations removes the indeterminacy inherent a unique observa-
tion time and contextually describes how a given observable of the system 
changes at various times 1 k Jt t t≤ ≤ , although without rational or heuristic va-
lence. Nonetheless the following evolution matrix represents the minimal condi-
tion able to characterize mathematically one property V of one event K of the 
system, although waiving any chance of physical explanation:  

1,1 ,2 ,

,1 ,2 ,

,1 ,2 ,

, , , ,

too o o

tjk k k k

J J J J tJ

t t t J

t t t J

t t t J

VAf f f

VAf f f

f f f A V

   
   
   
   = = = =    
   
             

KA V K A V




   



   
 



 (1.2) 

Every column of the matrix K  represents the values of each descriptive pa-
rameter governing V at various times, every line concerns the values of all possi-
ble descriptive parameters contributing to the value kV  at the particular time 

 

DOI: 10.4236/jmp.2018.914161 2498 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2018.914161


S. Tosto 
 

kt  regardless of explaining how it was at the past 1kt −  or will be at the future 

1kt + . The matrix elements defined by a set of successive measurements fit there-
fore “a posteriori” the evolution of the observable V, i.e. simply reproducing 
mathematically what is experimentally known in the considered time range. This 
empirical procedure, in principle non-predictive, is to be repeated at all times 
and extended to each observable of any event K of interest to characterize the 
whole system. 

Moreover K  implies neither past nor future: exchanging two lines, the 
change of sign of K  is canceled by that of A  concurrently necessary, i.e. V  
remains unchanged. 

On the one hand this procedure, seemingly sterile, deserves attention as it 
shows that the link between numerical representation of the reality and physical 
events is in fact plausible: mathematics has its own rules to elaborate numbers; if 
these rules are implemented to reproduce the results of measurements, then the 
efforts of scientists are addressed to convert this empirical analysis of data, cor-
rect by definition, into rational information to be understood. So Wigner’s 
doubts are bypassed regarding in fact the empiricism as an intermediate step 
between mere observation and profound knowledge of the reality, which how-
ever remains implicitly hidden in the raw data. 

On the other hand all previous considerations evidence three key require-
ments necessary for any theoretical attempt to bridge abstract numbers and in-
formative interpretation of results: 1) it must be holistic, 2) it must have space 
time structure, 3) it must inherently have evolutionary character. These three 
points prospect the non-trivial heuristic worth of K : despite its pragmatic cha-
racter, the coefficients of each line of the matrix and thus the matrix itself fulfill 
by definition these requirements and have thus physical valence. Also, K  de-
monstrates the inherent rationality of Nature, without which no best fit tech-
nique could provide sensible outcomes. By consequence, no conceptual doubt 
exists about the effectiveness of a rational approach in describing mathematically 
the reality. 

In principle is difficult to discern, on the basis of a linear combination of pa-
rameters only, whether for example two arbitrary time ranges tδ  and tδ ′  
differ because they refer to different reference systems in reciprocal motion or 
because of the presence of a gravity field or even because the quantum uncer-
tainty implies corresponding energy ranges δε  and δε ′ . Is evident thud the 
necessity of overcoming the mere empiricism hitherto preliminarily proposed, 
while acknowledging that the predictive ability of any theory is nothing else but 
its ability to reproduce the values of the aforesaid coefficients via rational path as 
general as possible, i.e. starting from first principles. In particular, it appears also 
necessary to identify rationally one by one the parameters jf  in fact concur-
ring to describe exhaustively any physical event K. 

The idea is at this point to bypass the best fit approach, valid by definition, by 
introducing a general function  
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( ) ( )
( ) ( )

, , , , , ,

, , , ,

, , , , , , , ,

, , ,

r j r j j r j r j r j r j

j j r j r j r j r j

x p t p p x t

x t x t

ψ ψ ε

ε ε

= ⋅⋅⋅ Φ =

= Φ = Φ
        (1.3) 

the index r stands for the set of three space coordinates and related vector com-
ponents of all dynamical variables characterizing the system, e.g. possible inter-
nal and external vector fields ,r jΦ  suitable to affect the evolution of all its con-
stituting particles, the dots indicate any further j-th descriptive parameter addi-
tional to ,r jp  and jε  possibly necessary. The last three positions allow writing 
implicitly and simply ( ), ,r j kx tψ ψ=  via the various ,r jx  of all j-th descriptive 
parameters contributing to the k-th line of K  at the time kt . For example 

( ), ,j r jx tε  is itself a shortcut of ( ), ,, ,j j r j r j kx tε ε= Φ ; indeed jx  at various 

kt  are somehow determined themselves by the strengths of the fields possibly 
acting on the system. So the Equation (1.3) can be shortened without loss of ge-
nerality writing ψ  as  

( ), ,, , , , ,r j k r j j j jX t X x y zψ ψ= =                (1.4) 

having nested into X all possible descriptive parameters implicitly governing the 
physical state of the system. 

It is clear that the strategy of implementing the form (1.4) as a starting point, 
requires to extract successively from ,r jX  information about the possible ex-
ternal fields concurring to the internal interactions in defining ,r jΦ  previously 
quoted. But how could the primordial function ψ  summarize the variety of 
phenomena symbolized by every possible observable kV  for all possible physi-
cal events K? 

Try to simplify the problem: although in principle the following considera-
tions hold even for 3r > , as postulated in some physical theories [3], assume 
for simplicity and without conceptual limitation a two dimensional space time, 
with the time coordinate and one space coordinate only. In this assumed one 
dimensional space 1r =  can be omitted, whereas the space coordinates and re-
spective vector components are represented by the unique index j that now re-
fers to the various particles of the system. Accordingly, it is eventually possible 
to write more shortly ( ),j kx tψ ψ=  intending now j extended to the freedom 
degrees of all particles of a given physical system at the time kt . So any physical 
effect determining the behavior of the system is described via one dimensional 
approach with two space time coordinates only for each freedom degree; this 
bypasses the difficulty of guessing one by one the descriptive parameters that ef-
fectively govern case by case the event K. Compare now the early empirical ex-
pression (1.1) with the series expansion of ψ  around arbitrary initial coordi-
nates ojx  and ot , which reads  

( ) ( ) ( )
1 1

,

1 , ,
!

j oj k o

i
J I

k o j oj k o j
j i j

x x t t

V V x x t t x t
i x t

ψ ψ ψ
= =

= =

 ∂ ∂
= + − + − =  ∂ ∂ 

∑∑  (1.5) 

the summation over i accounts for the arbitrary number I of terms of the series, 
that on j reproduces the same number of terms of the linear combination (1.1), 
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the index k  still represents the time at which the descriptive parameters j are 
expressed when defining the time change of an appropriate function ψ  of all 
the necessary parameters. The notation indicates that the derivatives of ψ  are 
calculated at arbitrary j ojx x=  and ot t=  defining oV  in a given R, e.g. the 
laboratory. So each term j of (1.1) takes the form  

( ) ( ), ,
1 1

,

0

1
!j k j o

j oj k o

J I i i i i
t j t j j oj k o oj o

j i

i i i
i
oj o i i i

j k x x t t

i

i

i
A f A f x x t t

ii

x t

ψ

ψ ψ

′ ′− ′

= =

′ ′−
′

′ ′−

= =

′=

 
= + − − ∂ ′ 

∂ ∂
∂ =

∂ ∂

∑∑ ∑
     (1.6) 

the additive term is assumed known, being the initial boundary condition of the 
problem. Each j-th term is still related to the respective parameter jf  of the 
best fit procedure at the time kt , although with a small difference. Previously 

,kt jf  were selected quantities implied by the physical event K (all measurable 
dynamical variables, among which jx  and kt ) tentatively introduced one by 
one; the best fit procedure aimed to calculate the respective coefficients jA  re-
producing the known values of kV  (the specific physical property of interest) at 
the time kt . Here instead the series expansion yields numerical coefficients 

i
j oj oA ψ′= ∂  given by derivatives of a unique unknown function ψ  calculated 

once for all at prefixed space and time coordinates initially set. The descriptive 
parameters are ( ) ,,

k

i i i
t j j ki i f x tδ δ′ ′−′ = , i.e. combinatorial factors times various 

products of space time ranges j j ojx x xδ = −  and k k ot t tδ = − : the dynamical 
variables previously tentatively introduced via the respective descriptive para-
meters ,kt jf  correspond now to the space coordinates of all particles that still 
represent space and time experimental inputs. If these latter are known, then 
(1.6) and (1.1) are equivalent as concerns the best fit approach, defined again by 
a linear system of equations with best fit unknowns i

oj oψ∂ . Yet, as by definition 
the coordinates depend upon all fields possibly acting on the system, summa-
rized by ,r jΦ  at given kt  and nested like in (1.4) and (1.3), further calcula-
tions are necessary to go back from these coordinates experimentally measured 
to the strength of the fields hidden in ψ . Nonetheless there is more information 
in (1.6) than in (1.1): the correlation of the actual experimental data to the initial 
conditions is not simply reasonable, it is required by the concept of space time 
ranges themselves. 

The next step to overcome the legitimate Wigner doubts is just the time cor-
relation (1.5), which does exist indeed and involves space time ranges as they 
appear in (1.6), not the local ,j kx t  and ,oj ox t . 

The worth of this information appears just from these equations comparing 
the particular cases where 1i =  and 2i =  in (1.6). Since in the former case 

0,1i′ = , the summation on i′  yields for each j term x j t kx tδ δ∂ + ∂ , where x∂  
and t∂  are mere numerical coefficients corresponding to the respective i

oj oψ′∂ . 
Whatever the numerical values of these coefficients might be, the space and time 
ranges appear separately: all jxδ  on the one side and ktδ  on the other side 
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can be put independently equal to zero to describe local or simultaneous events. 
The case 2i =  is conceptually different and more interesting, as the j-th term 
of (1.6) reads 2 2 2x j t k x t j kx t x tδ δ δ δ′ ′ ′ ′∂ + ∂ + ∂ ∂ , being x′∂  and t′∂  new numerical 
coefficients; the space and time ranges appear together in the mixed term 

j kx tδ δ  with mixed coefficient x t′ ′∂ ∂ . In general all higher order terms of the 
sum over 1i >  imply mixed space time ranges. 

Hence the first order and second order terms of the series do not imply mere-
ly two different degrees of numerical approximations in calculating kV  of the 
Equation (1.5). It is clear that 1i =  is the classical case: a glance to this equa-
tion indicates that space and time terms are in fact separate dynamical variables 
like in (1.1). In the linear combination (1.1) the time is an independent input 
parameter, arbitrarily set, as a function of which the x-coordinate is next calcul-
able consistently with any event occurring in the system, e.g. the interaction be-
tween particles. But in general the mixed terms modify strongly this point of 
view; for example it is no longer possible to put 0ktδ =  independently of jxδ : 
simultaneity and locality are in general conflicting concepts. 

Moreover the Equation (1.6) introduces contextually the concept of evolution 
regarding in the same way also the initial configuration of the system through 
products of ranges oj ox tδ δ . So (1.6) shows that the local space and time coor-
dinates separately measured and purposely introduced to carry out best fit cal-
culations are actually mere mathematical parameters useful for empirical calcu-
lations only; the space time ranges of coordinates are instead physical parame-
ters collecting together sets of local space coordinates jx  included within jxδ  
that define the evolution of allowed states of physical systems during a finite 
time lapse ktδ . Without this correlation, the system would be that of the matrix 
(1.2), i.e. describable as if it would consist of a list of mathematical terms unre-
lated and disconnected each other at various times. 

This is the first hint to reproduce the coefficients jA  of (1.1) from first prin-
ciples, thus overcoming both empiricism and Wigner’s doubts. 

In effect it will be found in the following that j kx tδ δ , not the local j kx t , is a 
sensible definition of space time compatible with quantum requirements. This 
shows that (1.6) lays prospectively the basis of both relativity and quantum 
physics: the necessity of a space time frame defined via sets of local coordinates 

j kx tδ δ  is in principle also consistent with the quantum lack of determinism 
based on local coordinates both exactly knowable. 

Anyway, apart from mathematical details, the known value of any kV  in (1.2) 
is still reproducible in principle solving once more a set of linear equations of the 
unknown i

oj oψ∂ . The expected rationality inherent the best fit calculation ap-
pears now through the mathematical properties of ψ . With a correct choice of 
this function, the coefficients i

oj o jAψ′∂ ↔  describe conceptually and not only 
mathematically the evolution of physical systems; in practice this function still 
maps the systems like the mere empirical approach (1.2) and makes plausible the 
numerical representation of the reality. The key point is the underlying link with 
the concept of time evolution of physical systems with respect to their initial 
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conditions. 
Thus the basic idea is that a general function, ψ , must exist able to describe 

specific events of interest implementing the holistic concept of system evolution: 
if it is true that the Nature is a complex system under continuous modification, 
then the physical laws should also conform themselves to this principle. Accor-
dingly, space and time should appear as inseparable properties in this evolutio-
nary scenario that also implies the holistic view previously outlined as actual 
mathematical requirement. 

On the one hand if the function ψ  would be known, then there would be no 
necessity of determining in advance via best fit approach the power series (1.6) 
of the dynamical variables, which in fact would be calculable themselves through 
ψ  and its derivatives; this chance exemplifies in principle the starting question 
of this section, i.e. to show why the rational knowledge of phenomena allows 
mapping the reality into numbers regardless of speculations about the geome-
trical origin of π . On the other hand this conclusion introduces the aim of the 
present paper, i.e. to understand how an appropriate function representing the 
physical phenomena through the concept of holistic evolution in fact prospects a 
conceptual path alternative to empirical best fit calculations; in this way ψ  also 
removes the necessity of knowing in advance case by case the specific event to be 
described. Therefore the previous question about the mathematical structure of 
the reality overlaps to the following ones: “how all information codified in phys-
ical formulas is in fact deducible from ψ ?” and also “are the current results of 
such theoretical basis susceptible of predictive outcomes prospecting the possible 
future Universe”? 

Clearly the second question concerns the development of science and has 
heuristic valence in describing anything effectively allowed to happen in a 
changing Universe. 

The purpose of the present paper is to highlight some straightforward hints 
towards this aim, i.e. how in principle could a single function ψ  describe all 
variety of phenomena occurring in the Universe. 

For simplicity and brevity of exposition the model is deliberately one dimen-
sional: this choice does not represent a conceptual limit, it merely aims to simpl-
ify the theoretical approach with mathematical formalism as simple as possible. 
Also, the model purposely considers scalar quantities: for example v is the com-
ponent of the velocity vector v ; analogous consideration holds for the compo-
nent p of the momentum p . These positions allow writing only ( ),x tψ ψ=  
without subscripts. The time evolution of this function in a given R is therefore 
given by ( ) ( ), ,x x t t x tδψ ψ δ δ ψ= + + − . 

To add a further step forwards, consider more closely the particular space 
time interval introduced by (1.6)  

( )( )st j oj k o j kx x t t x tδ δ δ= − − =                 (1.7) 

as stδ   consists of two ranges, the first problem is how to define position and 
size of both jxδ  and ktδ  in an appropriate reference system R. For example 
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the coordinates ojx  and ot  can be defined in order to fix the distances of one 
boundary of jxδ  and ktδ  on the respective axes, e.g. ojx  and ot , from their 
common origin O of R, imagined as a two dimensional space time plane with the 
time on the vertical axis and the length on the horizontal axis; so jx  and kt  
fix the sizes of the ranges. However a better chance exists in this respect: it is 
possible to introduce the following average values calculated via the boundary 
coordinates themselves of the ranges only  

, .
2 2

oj j o k
j k

x x t t
x t

+ +
= =                   (1.8) 

To describe self-consistently size and position of jxδ  and ktδ  in the space 
time plane, these mean values are defined on the respective axes of R as follows  

,c k j c k jv t x v t xδ δ′′ ′= =                    (1.9) 

the first definition relates jxδ  to the average time kt  needed for a hypotheti-
cal particle to travel through the whole range size, whatever it might be, the 
second definition relates ktδ  to the displacement rate of its average coordinate 

jx  related to the position of both range boundaries only. Clearly these defini-
tions need introducing two velocities cv′  and cv′′  compliant with the strategy 
of having defined mean values characteristic of both ranges only; if indeed just 
these definitions characterize size and position of both ranges in a self-consistent 
way, then any reference to O, and thus to R, is lost. In other words, replacing 
(1.9) into (1.7) neither ojx  nor ot  appear anymore explicitly in 

( )st c c k jv v t xδ ′ ′′= : these mean values of coordinates are in effect identically 
compatible with different ojx′  and ot′ , i.e. with any other O′ . Multiplying now 
side by side (1.9), one finds ( )2 2 2 2

c c k o j ojv v t t x x′ ′′ − = −  i.e.  
2 2 2 2 2 2 2 2, .jk c k j c o oj c c cv t x v t x v v vδ ′ ′′= − = − =            (1.10) 

The actual value of cv  does not require in principle any specific hypothesis; 
is however interesting its particular value, necessarily constant without contra-
dicting (1.10), consistent with ( )2

ktδ  and ( )2
jxδ  regardless of the reference 

system R where are defined jxδ  and ktδ ; the expression at the right hand side, 
formally identical to that at the left hand side, can be referred indeed to another 
reference system oR . It is significant that a unique constant 2

cv  fits different 
time and space coordinates and that this equation implies different time and 
space ranges in different inertial reference systems R and oR  even in reciprocal 
motion. 

However, the fact that space time terms i i
j kx tδ δ ′  more complex than that of 

(1.7) also appear in (1.6), suggests that a more complex space time metric is to 
be expected too. Since now all of these hints seem a reasonable step towards the 
special and general relativity. This also suggests that a model prospectively 
aimed to account someway for these suggestions should consider since the be-
ginning not only tδ  and xδ  but also, at least, ( ) 2t t t tδ δ δ δ δ ′= = −  and 
( ) 2x x x xδ δ δ δ δ ′= = − . Thus the problem is how to handle methodically both 

changes δψ  and 2δ ψ , rather than ψ  itself, to describe systematically the 

 

DOI: 10.4236/jmp.2018.914161 2504 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2018.914161


S. Tosto 
 

physical properties of any system concerned by ψ . Despite ψ  is not known, 
are essential and enough to this purpose the general definitions  

( ) ( ) ( ), , , ,x x t t x t x tδψ ψ δ δ ψ ψ ψ= + + − =          (1.11) 

and, increasing again x xδ+  by xδ  and t tδ+  by tδ ,  

( ) ( ) ( ) ( )2 2 , 2 2 , ,x x t t x x t t x tδ δψ δ ψ ψ δ δ ψ δ δ ψ= = + + − + + +   (1.12) 

the former defines δψ δ  , the latter 2 2δ ψ δ  . Note that being by definition  

( ) ( )0 0, ,ψψ ψ δ δ∂
= + + ⋅⋅⋅ = −

∂
     



 

where 


 is any descriptive parameter of a physical system in the sense pre-
viously introduced, it is possible to put at the first order of approximation  

( ) ( )0

0

ψ ψ δψ ψ
δ

− ∂
= ≈ + ⋅⋅⋅

− ∂

 

   

 

neglecting the higher order terms. 
Here and in the following x and xδ  symbolize the r-th space coordinate of 

each j-th particle of the system and its change as a function of tδ  upon which 
depend possible changes of all dynamical variables and their x-components, e.g. 

jδε  and jpδ ; the same holds for ( )jpδ δ  and ( )jδ δε , and so on. Although 
is considered for brevity and simplicity of notation one dimensional space coor-
dinate only, from a conceptual point of view the number of actual coordinates is 
not necessarily limited to the usual three currently accepted. 

The remainder of the paper concerns these points through an “ab initio” 
theoretical model whose exposition aims to be as self-contained as possible. Such 
model aims to deduce both well known results, as a validation, and new 
achievements, as innovative implications: in both cases, however, the assessment 
benchmark is its conceptual root in the Equations (1.11) and (1.12) only. 

Despite for sake of brevity and clarity of exposition physical properties like 
energy and momentum have been taken for granted and explicitly mentioned as 
well acknowledged concepts in this introductory section, actually all of them will 
be inferred self-consistently themselves uniquely through (1.11) and (1.12); this 
holds also for quantities like charge and mass that apparently have nothing to do 
with the concept of evolution defined by these equations. Although seemingly 
trivial and innocuous, these two equations are unique source of information and 
unique input enough to infer all considerations exposed below in a consequen-
tial way, while overcoming Wigner’s doubts and renouncing to any hints from 
physics theories currently existing. For completeness, when necessary, are also 
shortly sketched some results previously published to emphasize their connec-
tion with the present conceptual frame. 

2. The Model 

To infer information of physical interest from the initial positions (1.11) and 
(1.12), the simplest idea is to relate appropriately xδ  and tδ , and possibly 
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even 2 xδ  and 2tδ , to δψ  and 2δ ψ  in an arbitrary R. In principle this 
correlation can be expressed implementing δψ  to obtain two identities 

( ) ( )x x t tδψ δψ δ δ δψ δ δ= =  that merge into  

.x t
t x

δ δψ δ
δ δψ δ

=                         (2.1) 

The ratio at the left hand side introduces a new concept implied by δψ , the 
velocity v; this dynamical variable, not evident nor necessary in (1.11) and (1.12), 
is defined by the identity  

1 , .xv
x v t t

δψ δψ δ
δ δ δ

= =                      (2.2) 

The significance of this result, which follows the Equation (1.11) only, appears 
rewriting both sides according to the Equation (1.12) i.e. implementing likewise 
the identity 2 2δ ψ δ ψ= . Dividing both sides by 2xδ  still via x v tδ δ=  just 
introduced, an analogous reasoning yields the further identity  

2 2

2 2 2

1 .
x v t

δ ψ δ ψ
δ δ

=                         (2.3) 

The explicit physical meaning of these identities appears when δ → ∂ , i.e. 
when the range sizes described by δ  tend to zero. On the one hand this is 
possible because no restrictive hypothesis has been introduced about the ranges, 
on the other hand 0xδ →  and 0tδ →  do not necessarily imply equal limits 

xψ∂ ∂  and tψ∂ ∂  of the Equations (1.11). As written, the left hand side of 
(2.3) reads ( ) ( ) ( ) 22 , 2 , ,x x t x x t x t xψ δ ψ δ ψ δ+ − + +   , whereas the right 
hand side reads ( ) ( ) ( )2 2, 2 2 , ,v x t t x t t x t tψ δ ψ δ ψ δ− + − + +   . The limits of 
these expressions for δ → ∂  are indeed 2 2xψ∂ ∂  and 2 2 2v tψ− ∂ ∂ ; as such, 
they are defined in general by the local analytical dependence of ψ  upon either 
dynamical variable. 

All this makes sense, as in fact the symbols δ  indicate arbitrary changes not 
only of ψ  but also of x and t; just for this reason, therefore, nothing can be “a 
priori” inferred from the ratios between δψ  and xδ  or tδ  since both these 
latter are arbitrary, unknown, unrelated and thus implementable separately and 
independently each other. Instead, despite (2.3) is trivial identity,  

( )
2 2

2 2 2

1 , ,x t
x v t
θ θ θ θ∂ ∂
= =

∂ ∂
                 (2.4) 

has physical meaning while the aforesaid limits imply contextually ψ θ→ ; the 
notation remarks that θ  yields in particular the local analytical form of ψ  
resulting from the specific correlations of δψ  with xδ  and tδ  (2.2) and 
(2.3). So the local behavior in the infinitesimal space range dx  and time range 
dt  fulfills at any ,x t  just the Equation (2.4). All quantities concerned by δ  
are arbitrary and finite by definition; thus they have been handled, and will be 
again handled also in the following, according to standard algebraic rules like-
wise any finite dynamical variable. Instead the limits δ → ∂  imposed to them 
define a further local condition/constrain that in fact eliminates their total arbi-
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trariness and thus implies the mutual interdependence of both sides of (2.3) 
around a common limit: the initial analytic form of ψ , whatever it might be, 
turns locally into that, θ , fulfilling both local limits. In this specific case one has 
found the D’Alembert equation describing the dynamics of a homogeneous elas-
tic string vibrating with fixed extremities and with constant propagation rate v of 
the perturbation around the equilibrium position of the string. Obviously the 
local dependence of θ  upon x and t is found by solving the resulting differen-
tial equation. 

This first example has emphasized how to infer information about one specif-
ic physical system through the local extrapolation θ  of ψ  as a function of 
both 0tδ →  and 0xδ → . Although the Equations (2.3) and (2.4) have iden-
tical analytical form, they remark the transition from non-local to local descrip-
tion of the concerned physical system: the former is in fact non-calculable, being 
mere identity, the latter takes physical meaning because is calculable and com-
parable with the experience. Otherwise stated, it is reductive to regard (2.3) as 
intermediate algebraic step towards (2.4); it actually describes a non-real and 
non-local world that does not have identifiable physical properties of the real 
and local world accessible to the experiment. Non-locality and non-reality are 
concurrent features of a further world, the quantum world, that can be not only 
guessed but also implemented to understand the microscopic properties of mat-
ter. 

It is easy to generalize this result to the case where the string is 
non-homogeneous simply considering another possible chance of defining the 
link between δψ  and both xδ  and tδ  via the trial positions 1x kδ  and 

2t kδ , i.e. introducing two different proportionality factors 1k  and 2k  con-
cerning separately the previous xδ  and tδ . In this case δψ  is defined via 
these generalized increments, both still unknown and arbitrary of course, where 
however the functions 1k  and 2k  prospect a new result even more general 
than (2.3). Now let us repeat the previous steps. To modify the correlation of 
δψ  upon xδ  and tδ  via the respective factors 1k  and 2k , multiply first 
both sides of (2.2) by 1k , still keeping the definition x v tδ δ=  although with a 
different expectation value of the resulting local v. So the identity  

( )1
1 1 1, ,

kk k k x t
x v t

δψ δψ
δ δ

= =                 (2.5) 

yields the further identity according to (1.12)  

1
1

kk
x v t

δψ δψδ δ
δ δ

   =      
                   (2.6) 

and thus, dividing both sides by xδ ,  

1
1 ,

kk x v t
x x v t v t
δ δψ δ δψ δ δ
δ δ δ δ

   = =      
             (2.7) 

formally the Equation (2.7) results from two steps, taking first the changes (2.6) 
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of the quantities at both sides of (2.5), which are subsequently related to xδ  
and tδ  to obtain (2.7). Of course the limit δ → ∂  is not implemented at this 
intermediate step, as this would mean differentiating the quantities at both sides 
before having introduced the second function 2k ; instead it is convenient to 
keep still finite changes of xδ  and tδ , which again can be further worked out 
regarding them like any finite physical variable, to introduce 2k  too. Write 
thus without loss of generality  

( )1 2
1 2 2 2

0 0

1 , , , ,
k kk k k k x t

x x v v t t v v
δ δψ δ δψ
δ δ δ δ

   = = =   
   

     (2.8) 

being 0v  a constant velocity by definition; therefore  

2 2 1
1 2 0 02

2

1 , .
kk k v v v v

x x t t kv
δ δψ δ δψ
δ δ δ δ

    ′= = =   ′   
        (2.9) 

Now it is possible to infer from the Equation (2.9) the pertinent differential 
equation once more via the position δ → ∂  that implies thus a new local func-
tion ψ ϑ→ , i.e.  

( ) ( )1 22

1 , , , , .k k x t v v x t
x x t tv

ϑ ϑ ϑ ϑ∂ ∂ ∂ ∂    ′ ′= = =   ′∂ ∂ ∂ ∂   
   (2.10) 

The particular result with 2k const= , which thus can be included in ( )1 ,k x t  
at left hand side, yields the well known equation of the wave propagating 
through a non-homogeneous string with one fixed extremity. Obviously the 
functions θ  and ϑ  fulfilling the respective local limits implied by (2.4) and 
(2.10) are different; is indeed different the local behavior of either function cor-
respondingly to the respective differential equations. The notation emphasizes 
that θ ϑ≠ : these functions describe different physical systems because of the 
different correlation of δψ  with xδ  and tδ . 

The outcomes (2.4) and (2.10) highlight the strategy of the present paper: the 
arbitrary function ψ  initially introduced according to (1.4) to describe in prin-
ciple the physical properties of any system is implementable in various ways, 
depending on how is expressed the possible correlation between its change δψ  
with respect to that of its dynamical variables xδ  and tδ . In other words the 
crucial point is not the analytical form of ψ , but how it changes as a function of 

xδ  and tδ : whatever ψ  might be, in fact this procedure identifies itself the 
possible kind of problem and outlines its mathematical solution as well via the 
resulting differential equation. 

These results are not accidental outcomes inherent the explanatory examples 
just carried out; in effect no “ad hoc” hypotheses have been made on the con-
cerned systems, e.g. homogeneous or non-homogeneous string, having simply 
introduced two different ways of describing the local change, i.e. the evolution, 
of ψ . 

Let us exemplify further possible ways to handle δψ  and 2δ ψ  to confirm 
further the general worth of this strategy. To this purpose multiply both sides of 
(2.9) by 2v′  so that  
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1 2
0 ,

k kv v
x x t t

δψ δψδ δ
δ δ δ δ

   =   
   

               (2.11) 

which suggests the following definitions according to (2.8)  

( )0
0 1 2, , .

pvpv v p k k
x t t x t

δδ δε δψ δψε
δ δ δ δ δ

= = = =        (2.12) 

As the unique Equation (2.9) cannot specify both 1k  and 2k , which are still 
undefined, nothing excludes in principle the chances 2 1k k≠  or 2 1k k= . Yet, 
even so, it appears that the positions (2.12) are not merely formal. To under-
stand the physical meaning of the “new” quantities p and ε , note that the first 
equation implies  

( )0 0 1 2, . . , .pv i e pv const k kδ δε ε= = + ≠         (2.13) 

By definition 2 1δε ε ε= −  and ( )0 2 0 1 0pv p v p vδ = − = , whereas 

1 2ε ε ε≤ ≤  and 1 0 0 2 0p v pv p v≤ ≤ ; of course all quantities labeled “1” and “2” 
are arbitrary. As it possible to multiply side by side these equations, write  

( )0 0pv pv constδ εδε δε= + . Intuitively εδε  should read ( )2 2δ ε  with nota-
tion that avoids confusion between ( )22

2 1δε ε ε= −  and ( )2 2 2
2 1δ ε ε ε= − : in 

effect if ε  is specifically regarded as mean value within its own allowed range 
δε  of variability, i.e. ( )2 1 2ε ε ε= + , one finds  

( )( ) ( )2
2 1 2 1 2 2εδε ε ε ε ε δ ε= + − =  whatever 2ε  and 1ε  might be. The 

same reasoning for ( )0 0pv pvδ  yields ( )2
0 2pvδ . The idea of local variables 

ε  and 0pv  allows an interesting implication noting that in general 
( )constδε δ ε≡ ± ; so merging (2.13) one finds  

( ) ( ) ( )2 2
0

1 1
2 2

pv constδ δ ε δ ε= +              (2.14) 

i.e. ( )2 2
0 2pv constε ε= + . Also, since ( )22 22const const constε ε ε+ = + − , 

then  

( )22 2
0 , .pv const constε ε ε′ ′= + = +           (2.15) 

To examine either chance, calculate with the help of (2.12), (2.2) and (2.9)  

( ) 1
2 1 1 2

2 0

1 1 .
kx vpv k k k k

t x t t k v
δψ δψ δ δψε ε ε
δ δ δ δ

  
+ = + = + = + = +  

   
(2.16) 

Regarding separately the addends at the initial and final left and right hand 
sides, this chain of equations is consistent: ε  and pv at the left hand side cor-
respond respectively to ε  and ( )0v v ε ; in effect 0p vε=  is nothing else but 
(2.13) with 0const = . This justifies regarding p and ε  of (2.16) as momen-
tum and energy in agreement with (2.23). Yet another chance also consistent 
with 1 2k k≠  is  

1 2 ,k k= −                        (2.17) 

i.e. 0pvε + =  so that 0v v= − : in effect v is actually velocity component de-
fined by xδ  during the time range tδ . 

The well known Equation (2.15) will be inferred again later; these short notes 
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aim to justify preliminarily the positions (2.12) according which, regarding from 
now on 0v c=  with usual notation, p and ε  are nothing else but momentum 
and energy of a relativistic free particle. Simply regarding p and ε  as local 
random values in their allowed ranges pδ  and δε , i.e. anticipating here the 
concept of quantum uncertainty, it also appears in (2.14) why 0v  must be upper 
bound: if not, then p necessarily finite in its finite range pδ  could be consistent 
with an infinite energy ε ′  allowed by diverging δε  once multiplied by a val-
ue of 0v →∞ . 

So the finite value of c follows as a corollary. 
Also, it is not surprising that the energy is defined an arbitrary constant apart; 

it will be shown shortly, however, that the constant has in this context a peculiar 
physical meaning. If 1 2k k= , then 0v v=  and thus 2pvε ε+ =  i.e. pcε = . 
The implications of this chance will be examined in the following. 

2.1. Diffusion Equations 

With 0v v c= = , according to (2.8), the Equation (2.11) reads  

( ) ( )
2

2 2
1 2, , , , ;

c k k k x t k x t
x x t t

δψ δψδ δψ ψ
δ δ δ δ

  ′
′= = = 

 
     (2.18) 

since it is certainly possible to introduce an arbitrary function g such that 
gδψ τδψ ′= , being τ  a time dimensional constant, this equation reads  

( )2 2
0, , , , .

k gD D v g g x t
x x t g
δ δψ δψ τ δψ δψ
δ δ δ τ

′ ′  ′= = = = 
 

  (2.19) 

Whatever the function 2k g  might be, D has physical dimensions of diffu-
sion coefficient; in effect with the position δ → ∂ , which implies the local be-
havior of ψ ′  described by ψ β′→ , the last equation reads  

( ) ( ), , , , .D D D x t x t
x x t

β β β β∂ ∂ ∂  = = = ∂ ∂ ∂ 
        (2.20) 

This is just the general form of diffusion equation in a homogeneous and iso-
tropic medium in the absence of internal sources or sinks. But diffusion of what? 
Although β  is by definition dimensionless function, two relevant examples are 
reported below. To this purpose are anticipated here for clarity the concepts of 
mass and energy kT; both concepts will be inferred later self consistently in the 
frame of the present theoretical model. 

It is possible to multiply β  at both sides by a constant mass per unit volume 

0 0m V ; so the equation  

( ) 0

0

, , ,
mC CD C C x t

x x t V
β∂ ∂ ∂  = = = ∂ ∂ ∂ 

            (2.21) 

where C is an appropriate function describing the local value of mass density, 
concerns the matter transport function under non-equilibrium concentration 
gradient. It is known that other important phenomena fulfill (2.20); in fact the 
extension to these cases, e.g. the Fourier heat diffusion, is also possible in an 
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analogous way. Implementing a different dimensional factor to the local func-
tion β , i.e. multiplying both sides by an appropriate constant energy 0 , one 
finds the famous equation  

( ) ( ) ( )0 0 0K , , , K K , , ,x t kT x t T T T x t
x x t

β β β∂ ∂ ∂  = = = = = = ∂ ∂ ∂ 

 
   (2.22) 

where now with usual notation K replaces D to express the heat diffusion coeffi-
cient simply identifying ( ),x t kT≡ . 

Note that the present strategy to infer information about physical systems re-
veals unexpected links between seemingly different laws: it is significant the fact 
that elementary manipulations of the equation of vibrating string lead to the 
diffusion equations. 

2.2. Energy and Momentum 

The Equation (2.8) reads according to (2.9)  

1 1 1 22

1 , , , ,p p k k k k v c
x t x tc

δ δε δψ δψε
δ δ δ δ

= = = = =     (2.23) 

because of course the positions (2.12) still hold also in this particular case. This 
equation can be implemented in two ways. 

The first way is  

2

1 1p t p
x v c

δ δ δ
δ δε δε

= =                     (2.24) 

and thus the second equality yields  

2 .vp
c

δ δε=                         (2.25) 

Here v still appears because the ratio x tδ δ  is explicitly present in (2.24). 
The ranges explicitly written as 2 1p p pδ = −  and 2 1δε ε ε= −  by definition, 
where of course the quantities labeled with subscripts 1 and 2 are arbitrary, yield  

2 2 1 12 2 ;v vp p
c c
ε ε− = −  

this result reads therefore  

1 2 1 22 , , ,vp p p p
c
ε ε ε ε= ≤ ≤ ≤ ≤              (2.26) 

where p and ε  are random values by definition included within the respective 
ranges. 

The second way is highlighted rewriting (2.25) as  

( ) ( )
,

pc c
x t

δ δ ε
δ δ

=  

which yields  

, , ;o o o op x t const n p pc
c
εδ δ δε δ ε= = = = =

        (2.27) 

the constant n , required to fulfill products of different variables, will be justi-
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fied soon below; the notation emphasizes that op  and oε  are not constants. 
Thus, in agreement with (2.2), one also finds  

, .o o
xv p v
t

δδε δ
δ

= =                   (2.28) 

A few remarks help to simplify the notations in the following: 
− the subscripts of opδ  and oδε  will be omitted as both ranges are arbitrary, 

so they actually symbolize any sizes of the respective pδ  and δε ; 
− the velocities v and c are profoundly different, as the former is defined as ra-

tio of two range sizes whereas the latter is a universal constant of the Nature; 
− the definitions of two “new” quantities, momentum p and energy ε , have 

been guessed in (2.23) by dimensional reasons according to the constant  , 
once having defined dimensionless the coefficients 1k  and 2k . 

The lack of specific assumptions on p and ε , e.g. about the sizes of their al-
lowed ranges, implies their physical definition on mere dimensional basis. At the 
moment n has been formally introduced in (2.27) as mere proportionality factor 
of a constant,  ; dimensional reasons are enough to justify this position. In the 
following, see next Equations (3.1) and (3.2), it will be shown that n is actually 
an arbitrary integer, whereas the pertinent reasoning will also explain why the 
physical laws need quantization. The Equation (2.27) is particularly interesting 
as it correlates the products x pδ δ  and tδεδ  of four ranges of different dy-
namical variables, regardless of the necessity of the position δ → ∂  and re-
gardless of the range sizes; despite all changes of dynamical variables are arbi-
trary, the fact of having introduced a relationship between xδ  and tδ  im-
plies the general and non-local character of this connection. 

Consider now the Equations (2.28) and (2.26): the former concerns ranges, 
the latter local values. Let us show that relevant physical information is obtaina-
ble merging these equations. Multiplying side by side  

2

, cv p p
v

δε δ ε= =                   (2.29) 

one finds  
2 ;c p pεδε δ=                       (2.30) 

thus (2.30) is compatible with  

( )2 2 2 .const c p constε ′ ′′+ = +               (2.31) 

So follow three relevant equations  

( )22 2 2 2
02 , ,vp pc const const const v const

c
ε ε ′′ ′= = + = −  (2.32) 

Introduce now the boundary condition 0p =  to which corresponds 

0 0ε ε= ≠ , because in general the third equation is different from zero; strictly 
speaking, in effect, there is no reason to expect that 0ε  is necessarily null too. 
So this boundary condition yields 0 constε = ± ; moreover it implies defining a 
“new” quantity m not yet explicitly mentioned hitherto although implicitly 
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inherent the physical dimensions of p and ε , i.e.  

0
20

lim
v

p m
v c

ε
→

= =                      (2.33) 

so m is the rest mass. Calling c the constant velocity 0v , with usual notation, the 
last result reads thus  

( ) ( )222 2
2 , .vp pc mc

c
ε ε= = +              (2.34) 

Clearly the particular case pcε =  corresponds to v c= , which however re-
quires 0m =  in the second (2.34). It is immediate to verify that the two Equa-
tions (2.34) are consistent for 0m ≠ , as they imply the Lorentz factor 

2 21 v c− , whereas it also follows 

( )
( )

( )
( )

22 2
2 2

2 2, .
1 1

mc mv
p

v c v c
ε = =

− −
             (2.35) 

The second equation is compatible with p± ; this is not surprising because 
actually the component of p along an arbitrary direction can have both signs. 
Much more interesting is the analogous conclusion for ε± , which implies states 
of negative and positive energy separated by a gap 2ε . 

Note that in addition to the concepts of mass, momentum and energy, follow 
from (1.11) and (1.12) the constancy of light speed and Lorentz transformations 
of energy and momentum. 

A problem however arises now about why the first (2.34) is consistent with 
pc ε=  for v c=  whereas both (2.35) and the second (2.34) itself do not. A ra-

tional answer to this question will be given in the next Section 4.3. Note at the 
moment that the factor 2c v  of (2.34) yields 2c v lengthν = , being ν  an ar-
bitrary reciprocal time; so, calling “wavelength” the new length λ  defined in 
this way and multiplying both sides of the first (2.34) by 1ν − , one finds 

const pε ν λ= = . Thus  
2

, , ,const cconst p
v

ε λ
ν λ ν
= = =              (2.36) 

where obviously const h= ; so cν λ=  is defined even for v c= . These posi-
tions, here reasonably guessed, are easily verified starting again from (2.34) re-
written as 2p x c tεδ δ= . With the help of (2.27), trivial manipulation turn 
equivalently this result into both forms  

( ) ( ) ( ) ( )
, .

pc pc c c
energy momentum

t p x
δ ε δ ε
ε δ δ

= = = =
   

In both cases, dimensional considerations confirm the validity of the three 
positions (2.36), regarding in particular xδ λ↔ : i.e. the range size xδ  cor-
responds to one or more momentum wavelengths, the range size tδ  corres-
ponds to one or more frequency quanta. This suggests that actually onλ λ= , 
with n integer= , which formally is compatible with the constant appearing in 
(2.36) as const n=   as in effect it has been guessed in (2.27). Therefore it is 
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possible to write, in agreement with (2.2),  

1 1 2π, 2π , , .p
t t x xω ωε ν

δ δ δ δ λ
= = = =
            (2.37) 

It is interesting the fact that the Equations (2.36), pillars of quantum mechan-
ics, are obtained contextually to the relativistic expressions of momentum, ener-
gy and rest mass. 

2.3. Lagrange and Hamilton Equations  

Write (2.28) as  

;p
t x

δ δε
δ δ

=  

rewriting left hand side via (2.27) with 1n =  for simplicity, this equation reads 
then according to (2.23)  

t x t x t x
δ δ δε δε
δ δ δ δ δ δ

   = =  
   

  

and thus  

, .xx
t x x t
δ δε δε δδ
δ δ δ δ

  = = 
 





 

Also now the general concept of energy takes physical meaning via the limit 
δ → ∂ , which implies ε φ→  as well; hence the result is  

( ), , .x x
t x x

φ φ φ φ∂ ∂ ∂  = = ∂ ∂ ∂ 




                (2.38) 

So φ  is the particular local energy resulting from ε  whose local behavior is 
described just by this equation. It is easy to realize that the resulting φ  turns 
out to be Lagrangian energy. The most intuitive interpretation of φ  compatible 
with both sides of (2.38) is indeed  

, , ;pp p F p
x x t
φ φ∂ ∂ ∂
= = = =

∂ ∂ ∂
 



              (2.39) 

as all of this is coherent with φ  equal to energy, these equations define φ  
reasonably consistent with the Lagrangian T Uφ = −  of a physical system. In 
effect defining  

US d , ,t F
x

φ ∂
= = −

∂∫  

one finds  

S S, d dpt t p
t x x t

φφ∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂∫ ∫               (2.40) 

in agreement with the well known definition of action S. Moreover, the second 
(2.39) yields  

( )T UU = , 2Tp x xp
x x x x
φ φ∂ −∂ ∂ ∂

= = − = =
∂ ∂ ∂ ∂

  



         (2.41) 
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owing to Euler’s theorem of homogeneous functions. Hence  

H T U.x
x
φ φ∂
− = = +

∂




                   (2.42) 

It is immediate to conclude that (2.42) yields the Hamilton function. 
As the Equations (2.3) and (2.9) have sensible implications, (2.4) and (2.10), 

whereas (2.39) and (2.42) allow describing correctly the dynamics of any particle, 
the present approach appears significant: a relationship between space and time 
ranges xδ  and tδ  has been established even without knowing anything 
about the initial ψ , simply admitting possible relationships between arbitrary 
( )xδ δ  and ( )tδ δ . Once more, however, it is worth emphasizing that every-

thing follows via (2.27) from (1.11) and (1.12) only. 
Instead of attempting to explain some particular physical event on the basis of 

the intuition about its presumed theoretical foundation, we started from arbi-
trary changes of an introductory function, ψ , which is not “a priori” specified 
but rather is “a posteriori” identified case by case depending on its possible local 
change described by the analytical form of the pertinent differential equation. 

2.4. The Group Velocity 

In (2.2) v is defined by the time range tδ  necessary for a particle to travel 
ideally the range size xδ . Note now that (2.1) reads formally  

, , k ,
k

x
t t x

δ δω δψ δψδω δ
δ δ δ δ

= = =  

where ω  and k are two “new” quantities called frequency and wave vector re-
spectively; in this case the concept of velocity at the left hand side is different 
from that of (2.2). These definitions introduce a further concept of velocity, be-
cause at the local limit δ → ∂  one finds  

.
k

x
t

ω∂ ∂
=

∂ ∂
                         (2.43) 

It is immediate to show that also the positions (2.36), in particular the third 
one, allow calculating consistently the group velocity of a matter wave packet 
through the following simple chain of equations. Implementing δε  and pδ  
with the help of (2.28) one finds  

1
1 1

2π , 2π , 2π
2π

v
p

δε δν δ ν δ κ λ ν
δ δκδλ δ λ

−
− −

Ω
= = = = = Ω =      (2.44) 

whatever const  might be. This suggest a possible quantum definition of veloc-
ity additional to the direct ratio between space range xδ  and time range tδ . 
Once more the position δ → ∂  implies the local definitions ωΩ→  and 

kκ → , whereas v turns to the first equality into local group velocity gv , i.e.  

.
kgv ω∂

=
∂

                        (2.45) 

Eventually, note that the third Equation (2.36) alone is enough itself to con-
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firm this result. Write  

n , n = , n ;
k

c cc
v

ωλ λν
ν

= = =               (2.46) 

as ncδ λδν νδλ= + , trivial manipulations yield  

2
1

n n n ,c c cδ δν δνλ λ
δλ δλ δλ−= + = −  

whence  
2

1

n nn n .c c c c
v

δν δ δλ λ
δλ δλδλ−

 = = − = − 
 

 

Therefore  

nn

cv
δλ
δλ

=
−

 

yields for δ → ∂  the local dispersion equation  

,
nn

g
cv
λ

λ

=
∂

−
∂

                      (2.47) 

i.e. the well known group velocity of a matter packet wave.  
In summary, relevant equations of physics are simply inferred and described 

through various chances of changing an arbitrary function ψ  of time and space, 
regardless of its early specific physical meaning and without need of introducing 
initial hypotheses. This concerns crucially the functions 1k  and 2k  introduced 
in general in (2.8) and (2.9), whose specific analytical form determines the cor-
relation of δψ  with xδ  and tδ : as it has been just highlighted, if 1 2k k=  
in (2.9) then one obtains the diffusion Equation (2.10), if instead 1 2k k≠  then 
one obtains further results concerned later thanks to the additional freedom de-
gree allowed to 2k . 

2.5. The Relativistic Velocity  

The starting point is the first Equation (2.34), which must be rearranged in order 
to find a sum rule between two arbitrary velocities 1 2v v+  and their corres-
ponding 1v′  and 2v′ , e.g. in two different inertial reference systems R and R′ . 
As 1 2v pcε− = , calculate first  

1 2 1 2
2 2

1 2 1 21 2

1 1 1 , ;o
o

v vv
v v v v vp c p c

ε ε
+ = + = =

+
 

in this way one has introduced 1 2v v+  through the invariant momentum. It is 
necessary now to define in general ov  in a form suitable to relate 1 2v v+  and 

1 2v v′ ′+ , e.g. in another reference system. A reasonable position is the following 
linear combination that does not involve neither 1 2v v  nor 1 2v v′ ′ , i.e.  

2 2

1 2 1 2

,o
c cv

v v v v
= −

′ ′+ +
 

so that the sought result is  
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1 2
1 2 2

1 2

.
1

v vv v
v v c

+′ ′+ =
+

                    (2.48) 

Accordingly any v summed to or subtracted from c still yields c. 

3. Preliminary Implications of the Model 

The results so far obtained are enough to get four relevant consequences, ex-
posed below. 

3.1. Statistical Formulation of Quantum Uncertainty  

Write (2.27) as  

x p n const tδ δ δεδ= × =                   (3.1) 

being n an arbitrary integer. The reason of this definition is to make (2.27) in-
dependent of a specific reference system. Suppose that (3.1) holds for ranges de-
fined in R whereas x p n constδ δ′ ′ ′= ×  holds for that defined in any R′ , with 
n′  arbitrary integer as well; the prime symbols account for the respective Lo-
rentz transformations of range sizes. Actually the reference systems are indis-
tinguishable because neither n nor n′  are specific numbers, they instead sym-
bolize by definition whole sets of allowed integer numbers: so any specific n of 
the first set that turns into a new specific n′  of the primed set does not imply in 
fact distinguishable sets of the respective reference systems. This point is better 
understood introducing appropriate measure units , , ,Pl Pl Pl Plx p tε  to express 
the respective range sizes; for example it is possible to express the size of xδ  as 

*
x Pln x× ; i.e. *

xn  is a dimensionless length expressing the actual range size in 

Plx  units.  
Is evident the hint to the well known Planck units, whose choice implies 

Pl Pl Pl Plx p tε= =  by definition. Without having introduced the gravity con-
stant yet, this explicit reference appears here premature; it is enough to emphas-
ize that the Planck units fulfill this equation by definition. The crucial fact is that 
introducing the dimensionless lengths * * * *, , ,x p tn n n nε , the couples ,Pl Plx p  and 

,Pl Pltε  fulfill the condition Pl Pl Pl Plx p tε= . In this way, dividing side by side 
with the Equations (3.1), one finds  

, .Pl Pl Pl Pl
Pl Pl Pl Pl

x p tn const x p t
x p t
δ δ δε δ ε

ε
= = = = =  

It implies that with this choice of measure units, the statistical formulation of 
quantum uncertainty reads simply  

* * * *
x p tn n n n nε= =                        (3.2) 

the stars indicate arbitrary real numbers, n is instead an arbitrary real integer 
number. This reasoning shows that in fact the Equations (2.27) hold regardless 
of any reference system; otherwise stated, the problem of specifying the refer-
ence system where are defined the four uncertainty ranges is physically mea-
ningless, provided that the local dynamical variables are systematically replaced 
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by respective uncertainty range totally unknown in any physical problem. This 
holds also for the derivatives, which are defined in the present model as mere ra-
tios of uncertainty ranges arbitrary, unknown and conceptually unknowable: for 
example is meaningless to inquire whether xδ  refers to Cartesian or curvili-
near or cylindrical reference frame. What is crucial in this reasoning is that the 
four starred numbers be not specifiable and unspecified in any physical problem 
formulated via the Equations (2.10); in short, the quantization of n is necessary 
to make (3.1) independent of any specific R. For clarity and self-contained expo-
sition, this is shortly sketched in the next subsection. The results quoted here for 
completeness are reported more in detail elsewhere [4] [5]. 

3.2. The Old Quantum Mechanics 

It is usually assumed that the quantum problems are tackled via the operator 
formalism of wave mechanics, introducing operators and wave equations. For 
comparison purposes, this section sketches very shortly results concerning one 
case where the wave equation can be exactly solved: the non relativistic hydro-
genlike atom. The aim is to show that identical information is obtainable via a a 
“corpuscular approach”, which does not require solving any wave equation; it is 
enough to replace x xδ→  and p pδ→ , instead of i x− ∂Ψ ∂ , and proceed 
via elementary algebraic manipulations. These results help understanding how 
the relativity fits the conceptual frame so far outlined. 

The starting point is the classical component of = ×M r p  along an arbitrary 
direction defined by the unit vector w  is wM = × ⋅r p w . Consider thus  

( ) ( ) , ,wM = ∆ ×∆ ⋅ = ×∆ ⋅∆ = ∆ ⋅∆ ∆ = ×∆r p w w r p W p W w r  

which introduces a range of possible values for wM  included in wM∆ . If ∆p  
and ∆W  are orthogonal, then 0wM = ; else, rewriting ∆ ⋅∆W p  as 
( )W W∆ ⋅∆ ∆ ∆p W  with W∆ = ∆W , the component Wp W±∆ = ∆ ⋅∆ ∆p W  
of ∆p  along ∆W  yields w WM W p= ±∆ ∆ . Thus, according to Equations (3.1), 

wM l= ±  , being l the usual notation for the integer quantum number of angu-
lar momentum. So wM  is effectively a multi-valued quantized function because 
of the uncertainties initially postulated for r  and p . One component of M  
only is actually knowable; the same considerations for the y and x components 
would trivially mean changing w . 

Just this conclusion on the physical uniqueness of wM  suggests that the av-
erage values 2

xM , 2
yM  and 2

zM  should be equal; so the quantity of 
physical interest to describe the properties of quantum angular momentum is l, 
as a function of which M2 is now inferred as well. The components averaged 
over the possible states summing ( )2l  from −L to +L, where L is an arbitrary 
maximum value of l, yield ( ) ( )22 2 1i

i

l L
i l LM l L=

=−
= +∑   i.e.  

( )
3

2 2 2

1
1 , .i w

i
M M L L M l

=

= = + =∑                  (3.3) 

Consider the quantum system formed by a particle in a central force field, e.g. 
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an electron around a nuclear charge; the concept of force will be justified in the 
conceptual frame of (1.12) and (1.11). Assuming the origin O of R on the nuc-
leus, let 2 22p m Ze rε = −  be the classical electron energy, where m is the 
electron mass. As 2 2 2 2

rp p M r= + , putting again r rp p→∆  and r r→∆ , 
one finds  

2 2 2

2 .
2 2

rp M Ze
m rm r

ε
∆

= + −
∆∆

                    (3.4) 

Two numbers of states, i.e. two quantum numbers, are expected because of the 
radial and angular uncertainties. In effect the Equations (2.1) and the quantum 
M2 yield ( )2 2 2 2 2 22 1 2n m r l l m r Ze rε = ∆ + + ∆ − ∆  , which reads  

( ) ( )222 2 4

2 2 2

1
, , .

22 2o o o o

n r Ze m nl l Z e mE E
mm r n

ε ε ε
∆ −+

= + − = =
∆

 





  (3.5) 

Minimize ε  putting 0oε = , which yields  
12 2 2

2 , ,C C
n Z er n

n mc cZe m
α λ λ α

−
 ∆ = = = = 
 

 



        (3.6) 

and thus ( ) 2 2
min 1 1 ol l n E nε  = + −  ; so 1l n≤ −  in order to get 0ε < , i.e. 

a bound state. The reason of both ways to express r∆  will be explained in the 
section 6. Here are of interest the electron energy levels and rotational energy of 
the atom as a whole around O  

( )22 2 4

min 0 0 02 4 2

1
, , .

2 2el rot el rot

Z l lZ Ze e mE E E
rn n

ε ε ε ε ε
+

= + = − = − = =
∆ 

  (3.7) 

The physical meaning of r∆  is related to the early Bohr radius, i.e. elε  is 
due to charges of opposite sign delocalized within a diametric distance 2 r∆  
apart. So n and l are properties of the phase space, i.e. numbers of allowed 
quantum states. 

Consider now the identity r n r nω ω∆ ≡ ∆  . So it is consequently true that  
2π 1 , , ,r v v r n
nh p

ω ω∆
= = = ∆ = 


 

where the last equation of the chain introduces the momentum p by dimensional 
reasons and reads  

2π , .hr n pλ
λ

∆ = =                       (3.8) 

It shows the link between De Broglie momentum, Planck energy and condi-
tion 2πn rλ = ∆ , according which an integer number of steady electron wave-
lengths λ  is defined along a circumference of radius r∆  along which the 
electron wave propagates at rate v. For such electron waves one finds  

2 2

.
2 2el

Z pc Z mc
n n

αε α  = − = − 
 

                (3.9) 

The first chain of equalities will be explained in the next section 6, in particu-
lar as concerns the evident link of pc and 2mc  with 0E . Note here that intro-
ducing α  to express the quantum energy levels implies defining the De Broglie 
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momentum as a corollary, in agreement with (2.36) and (2.37): appears inter-
esting that the energy levels elε  of the system are linked to the kinetic energy 
pc of the electron moving along the circumference of radius r∆  via the coeffi-
cient 2Z nα . On the one hand, this result emphasizes the electromagnetic cha-
racter of the interaction between electron and nucleus; comprehensibly r∆  is 
proportional to 1α− , as the coupling constant determines the force exerted in 
an interaction, i.e. the greater α  the smaller r∆ . On the other hand, it also 
appears that the key role of the quantum uncertainty in determining the allowed 
energy levels (3.7) also evidences the kind of interaction itself. 

These results confirm that the operator formalism and the uncertainty equa-
tions are equivalent in describing the quantum systems. As concerns the spin, 
the paper [6] [7] has shown that it can be inferred without additional hypotheses 
from the quantization itself. Simply rewriting identically  

( ) ( )2 22 21 2 2M l= + −  , one finds  

( )22 2 2 21 1 12 1
2 2 2

M l M l l      + + + = = + + +            
  

     (3.10) 

after having added ( ) 21 2l +   at both sides. Trivial manipulations of the initial 
M  exposed in the quoted paper show that  

( )2 2 11 , ,
2or s sJ J J l l l= + = + =             (3.11) 

and that in general these consideration introduce the spin component 2l′  ; 
being of course l′  an arbitrary integer, the quantum uncertainty implies itself 
the existence of bosons and fermions. No information is necessary about r∆  
and rp∆ , which in effect are unknown and unknowable because of the quantum 
uncertainty. 

Besides its inherent worth, the hydrogenlike model has been explicitly quoted 
here because it also provides useful information about the characteristic lengths 
in the atom, the first of which is of course the Bohr radius inferred in (3.7). The 
first powers of α  scale further significant lengths starting from this radius, 
whose essential form reads 2 2

Br e m=   as a function of the fundamental con-
stants. One infers the following lengths  

2 2 8
2 3

2 2 3 5, , ,B B C B e B N
e er r r r r r

mce m mc mc
α λ α α= = = = = = =

 



  (3.12) 

whose values are  
9 11

13 15

5.3 10 cm, 3.6 10 cm,

2.8 10 cm, 2.4 10 cm.
B C

e N

r

r r

λ− −

− −

≈ × ≈ ×

≈ × ≈ ×
 

the Bohr radius scales Br  down to Cλ , electron Compton length, and then to 

er , classical electron radius. Further lengths, shorter and shorter, will be intro-
duced later to extend these definitions and sketch short range nuclear forces. 
Indeed the fact of having found these well known specific lengths suggests that 
even the fourth position should reasonably have its own physical meaning at the 
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smaller 3α  scale too; if so, Nr  can be related to nothing else but the scale of 
lengths within the atomic nuclei, whose sizes in effect are known to fall between 

1310 cm−  (proton of hydrogen) to 1210 cm−
  (heavier nuclei). 

3.3. Velocity Dependence of Mass 

Owing to (2.28), 2 1 2 1vp vpε ε− = −  reads 2 2 1 1vp const vpε ε− = = − ; so (2.35) 
yields  

2 2

2 2
.

1

mc mvvp const
v c

ε −
− = =

−
 

This result is more expressively rewritten in the form 2 2 21mc v c const− =  
fulfilled by  

( )2 2 2
0 0, 1 , .m c const m m v c m m v= = − =          (3.13) 

The physical meaning of this result, the dependence of m on v via the constant 

0m , will be clarified soon below. In the following are introduced three interest-
ing ways to implement further the Equations (2.25) and (2.34), to show in par-
ticular how results of special relativity are obtainable regarding the local dynam-
ical variables ε  and p as random and unknown values defined in the respective 
quantum uncertainty ranges δε  and pδ . 

3.4. Quantum Correction to Special Relativity 

The strategy is still that followed to find (2.15) and to infer (2.31) and (2.32) 
from (2.29). Consider the Equation (2.25) and (2.26) rewritten in the particular 
case v c=  as  

* * * * *
1 2 1 2, , , ;c p pc p p pδε δ ε ε ε ε= = ≤ ≤ ≤ ≤         (3.14) 

the former equation defines the maximum energy range *δε  allowed to the lo-
cal *ε  consistently with the given momentum range pδ  allowed to any local 
p. Here energy and momentum ranges are linked each other, whereas in fact 
they were independent in the Equation (2.28) owing to the arbitrariness of v; so, 
the upper limit allowed for v implies an upper limit to the size of *δε  com-
pliant with any possible pδ . Anyway this latter is arbitrary; thus both energy 
and momentum ranges are in fact arbitrary as well, but now correlated. The 
second position emphasizes the local dynamical variables *ε  and p allowed in 
the respective ranges. The fact that (3.14) is not mere formal way of rewriting 
(2.25) but contains additional physical information, is easily proven: multiplying 
side by side both (3.14) one finds ( ) ( )

2 2* 2c pδ ε δ=  i.e., as in (2.14), 
( )22 const pc constε ∗ ′ ′′+ = + . So the second (2.34) is instantly inferred via the 

correlation between pδ  and *δε  through c. 
However just the fact that the (3.14) appears suitable to be directly linked to 

(2.34) rises a quantum problem. Replace (2.36) in the Equation (2.34) via the po-
sitions * *hε ν=  and thus *p h λ= , being * *cλ ν=  in fact implied itself by 
the third (2.36) for v c=  too. Then ( ) ( ) ( )2 2 2* * 2h hc mcν λ= +  requires 
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0m = . On the one hand nothing hinders in principle to express (2.34) via the 
corresponding quantum energy and momentum, in agreement with the dual 
wave/corpuscle character of matter. On the other hand (2.34), as written, seems 
inadequate to allow both 0m ≠  and (2.36). It is reasonable to expect that fur-
ther terms to be included in (2.34) could overcome this difficulty: the attempt to 
generalize the standard result of the early special relativity is not only legitimate 
but also necessary. 

The subsection 3.2 has been explicitly enclosed in the present exposition to 
emphasize that the quantum eigenvalues leave out any information about the 
range sizes; the Equations (3.3) to (3.12) elucidate this assertion. In other words 
the previous results obtained implementing 2 1p p pδ = −  could have been 
identically obtained considering any other 2 1p p pδ ′ ′ ′= − , as the range boundary 
coordinates are inessential as concerns the quantized eigenvalues of angular 
momentum and energy. The same holds of course even implementing a linear 
combination of momentum ranges, e.g. 2 1p p p a p b pδ δ δ′′ ′′ ′′ ′= − = +  via the 
constant arbitrary coefficients a and b. This means that the local value p defined 
by 1 2p p p≤ ≤  could be identically replaced by any p′  defined by 

1 2p p p′ ′ ′≤ ≤ ; the same holds of course for any p′′  defined by  

1 1 2 2ap bp p ap bp′ ′′ ′+ ≤ ≤ + : the only essential requirement is that any range sizes 
xδ  and pδ  fulfill (3.1), whatever the boundary values might be. Now let us 

introduce in the relativistic domain this peculiarity of the quantum world. This 
means that the local values of pc  and *ε  defined the respective ranges (3.14) 
can be replaced by linear combinations of momentum and energy. 

The chance of demonstrating the actual effectiveness of this reasoning has 
heuristic worth in demonstrating the close connection between quantum and 
relativistic theories. 

In practice, to generalize the standard relativistic result (2.34), implement 
again the first (3.14) with the same steps from (2.29) to (2.31) and then to (2.32), 
but rewriting the third and fourth positions as  

2 2
1 0 2 1 0 2,o p opp p p p pε εε ε σ ε σ ε ε σ σ∗ ∗ ∗ ∗≤ + + ≤ ≤ + + ≤  

εσ  and pσ  are dimensionless arbitrary constants, a and b are arbitrary con-
stants having physical dimensions 1mass−  and expressing conveniently the oσ  
coefficients. The equations to be implemented are thus  

2 2
2, ,p a

bc p pc ap
cεδε δ σ ε ε σ∗ ∗ ∗= − = − +            (3.15) 

where in fact 0a b≠ ≠  extend the previous procedure simply introducing ad-
ditional 2ε ∗  and 2p  terms with respect to (3.14) while however keeping a 
physical meaning still compliant with that of ranges *δε  and pδ , as it appears 
via dimensional considerations. In other words, the second (3.15) still has the 
usual form ( )* c constδ δ= +  . Repeat therefore exactly the same procedure 
just outlined to merge (3.14), i.e. multiply side by side the second and first (3.15) 
with the a and b terms exchanged of place; omitting for simplicity of notation 
the asterisk, one finds  
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( )2 2 ,p aap bp p pc p pcεσ εδε δε εδ σ δ δ+ = + +            (3.16) 

which yields  

( ) ( )( ) ( )22 21 1
2 2 p apc ap bp p pcεδ σ ε δ σ δε εδ δ= − + +   

and then  

( ) ( )( ) ( ) ( )22 21 1 , 2 .
2 2 p apc ap pc b aεδ σ ε δ σ δ ε δ= − + = −      3.17) 

Hence, reasoning as before, this result implies:  

( )22 2
1 22 .p aconst pc const ap const pc constεσ ε σ ε′ ′′+ = + − + + +   (3.18) 

As hold for (3.18) the same considerations carried out for (2.34), because also 
the new terms 2ap ε  and a pc  vanish for 0p → . Merging the constants, one 
finds  

( ) ( )
( )

222 2 2 2
0

22 2
2 1 0

2

, .

p apc ap pc mc

const const mc const const

εσ ε σ ε= − + + +

′′ ′− = + =

 


            (3.19) 

The notation ( )22mc  has been kept resulting from the primed constants like 
in (2.32), in order that this equation reduces to (2.34) in the particular case 

0a =  and 0a = . Of course the constants εσ  and pσ  can be included in 
the respective energies; i.e. with the positions  

( )22 2 2
0

, , ,

,

p
p

a
a

p

ap p a

m c mc

ε
ε

σ ε σ ε
σ σ

σ

′ ′ ′= = =

′ ′= = +


 
 

(3,19) reads  

( )22 2 2 2( ) 2 .ap c m c a p p cε ε′ ′ ′ ′ ′ ′ ′ ′= + − +               (3.20) 

As expected, thanks to the higher order terms 2ε  and 2p  in (3.16) one 
finds again an equation like the second (2.34) plus two additional terms 

22a p ε′ ′ ′−  and a p c′ ′  not present in the standard special relativity. The quan-
tum correction terms are negligible in (3.20) if 2 22 aa p p cε ε′ ′ ′ ′ ′ ′− +  , i.e. if  

2

2

12 1, ,a a
a

p m p c
m

aε ε
′ ′ ′

− + =
′ ′′




               (3.21) 

then a  and am  fix the scale where the quantum correction plays a significant 
role. Moreover, if in particular 2a a p cε′ ′ ′ ′

 , then is effective only the term 
22a p ε′ ′ ′−  in (3.20). These points deserve attention. 

First of all, replace hε ν′ ′=  and p h λ′ ′= ; being again ( ) ( )2 2h hcν λ′ ′= , 
(3.20) reads  

( )
22 222 2

2 2 22 2 2

,
2

a
a a a a

a
a a

a

h hc hm c a h h a h m c

h m
m c

λ
ν ν ν

λλ λ λ

λ

  
′ ′ ′ ′ ′ ′ ′ ′ ′= − = − = −  ′′ ′ ′   

= ≥

  


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hence (3.20) is compatible with the quantum condition (2.36) even for 0m′ ≠ , 
whereas 0m′ =  is also possible if in particular vanishes the quantity in paren-
thesis. The last inequality holds for aλ λ′ = , because in general aλ λ′ ≥ , what-
ever λ′  might be. 

Moreover rewrite the second (3.15) with the help of (2.36) as  

( )
2

2
2 2

2 , .p a
a a

h ch h h
m c mεσ ν ν σ ν ν

λλ
+ = − + =           (3.22) 

To recognize the physical meaning of this equation under the condition that 

am  is the constant mass defined by the Equation (3.21), useful positions are:  
22

2 2
2 2 , , , .a

a a a
a

h m c h rm c n r n
m ε

λ
ν λ λ σ

λ λ
′= = = =         (3.23) 

The first one is an identity, whose left hand side is simply rewritten introduc-
ing the Compton length aλ  of am . The second one is a formal way to link hν  
and 2

am c  via the parameter r to be defined. The third one regards λ  of (3.22) 
as an integer multiple of aλ ; in fact the conceptual difference between p defined 
by (2.23) and p h λ=  is that xδ  is a mere space range that can take in prin-
ciple any value, the wavelength λ  requires introducing quantized lengths nλ , 
which explains why anyway the quantization must be introduced via h in 
n xδ  of (3.1). Although this idea is introduced here as a reasonable input, a 
previous paper [6] has shown that in effect a huge amount of interesting results 
is accordingly obtainable. The fourth one will be explained after having replaced 
the first three (3.23) into (3.22), which reads  

2

2

1 .
2 2 2

a a
p

m chrh r
nε

νν σ σ + = − + 
 


               (3.24) 

For sake of generality the notation emphasizes that n′  defining r is not nec-
essarily coincident with n defining the ratio aλ λ . Is attracting the fourth posi-
tion (3.23) with n′  arbitrary integer that expresses the left hand side as εσ  
times the harmonic oscillator energy; indeed (3.24) becomes  

2

2

1 .
2 2 2

a a
p

m chn h n
n εε

νν σ
σσ

 
′ ′+ = − + 

 

  

Now it is necessary to express the fact that am  is a constant, which in fact 
means regarding the quantum numbers n and n′  as proportionality factors 
linking 2

am c  and hν . The limit n′ → ∞  yields ( ) 22p an h n m cν σ′ ′=  and 
thus, by comparison with the second and fourth positions (3.23), 2p εσ σ= ; so 
the last equation reads  

2

2

12 , 2 .
2 2 2

a a
p

m chn h n
nε ε

εε

νν σ σ σ
σσ

 
′ ′+ = − + = 

 

       (3.25) 

It appears that if 0am = , then 2a εσ  is the energy of harmonic oscillator 
of frequency ν . Analogous conclusion holds if ( )22 1 2 n nεσ ′= , in which case 

0 02 2a n h hν ν′= +  with 0 2n nν ν ′= ; as both n and n′  are arbitrary integ-
ers, n n′  must be regarded as a new arbitrary integer itself and thus anyone 
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among the numbers already implied by 2n  and 2n′ . So ν  is an arbitrary 
multiple of the fundamental frequency 0ν . The fourth position also allows ex-
pressing (3.24) as a function of quantum numbers only  

2 2
2 2

1 1 12 ,
2 2

a

a

n
n n

n m c
ε

ε ε
εε

σ
σ σ

σσ
 ′

′ ′+ = − + 
 

  

which yields  

2
2 2

1 1 .
2

a

a

n
m c nεσ

 ′= + 
 


                    (3.26) 

Next, inserting the positions (3.23) in (3.24) trivial manipulations yield  
2

2 2 2

2 3 1
22

a

a a

m n n n
m n m c nε ε εσ σ σ

  ′  ′ ′ ′= − = −    
    


 

Clearly ν  appearing in (3.24) implied by 0a′ ≠  and 0a ≠  is different 
from *ν  previously found consistent with 0m =  only; (3.20) skips this re-
striction. 

It is known that (3.20) is a valuable equation of quantum gravity able to solve 
three cosmological paradoxes [8]. It is hard to guess what has to do the cosmol-
ogy in this conceptual frame; but in fact this is not the correct way to regard this 
equation. Rather it is correct to say that the additional terms due to 0a ≠  and 

0b ≠  add a quantum correction to the standard relativistic formula, actually 
having quantum character itself being inferred from (2.30) and (2.31); then, once 
having acknowledged this result, further studies also acknowledge that this cor-
rection has valuable cosmological implications as well. 

3.5. Operator Formalism 

The subsection 3.2 has shown that the corpuscular approach to quantum me-
chanics provides sensible results in agreement with the wave formalism. This 
subsection shows that also the wave formalism enters in the conceptual frame 
hitherto exposed. Implement the quantum relativistic Equation (3.20), noting 
that  

( ) ( ) ( )( )
2 22 2 2 2 2 2, 2 .amc pc mc ip mc ip c ap pcε ε ε ε ε′′ ′′= + = + − = + −  (3.27) 

Admitting that even the single factors at the right hand side have physical 
meaning, it is possible to introduce imaginary momentum   and energy   
in agreement with the early positions (2.9) and (2.12); the momentum and 
energy equations take indeed the forms  

2 2, , ,i i
x t

δψ δψ ε
δ δ

′′= = ± =                 (3.28) 

being simply required  

1 0 2 0 0, , .k ik k ik k= = ± =   

The correct correspondence of signs in (3.28) is indeed such that 1 2 0k k+ =  
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and thus 0v + =  , in agreement with (2.17). Whatever the specific form of 
ψ  might be, replacing p and ε ′′  of (3.27) with the new definitions (3.28) one 
finds  

2

;mc mc
x x c t

δψ δψ δψ
δ δ δ

    + − = −    
    



 
           (3.29) 

in this way the Equation (3.27) turns again into a real form. Introduce now the 
positions  

2 22 2

2 2, ,
t xt x

δ ψ δψ δ ψ δψ
δ δδ δ

   = ± = ±   ′′   
             (3.30) 

being  

,x c tδ δ′ =                         (3.31) 

which are justified soon below. In principle the positions (3.30) are compatible 
each other because tδ  and xδ ′  are arbitrary finite ranges that can be deter-
mined in order to fulfill both equations. Note that the more general positions 

( )22 2t q tδ ψ δ δψ δ=  and ( )22 2x q xδ ψ δ δψ δ= , with q arbitrary factor, 
would have been in principle reasonable and possible; however q could be in-
cluded in m of (3.29), so its specific value is inessential; more important are in-
stead the signs of q, as it will appear shortly. Taking the upper signs (3.30), (3.29) 
reads as follows  

2 2 2 2 2

2 2 2 2 2 2 2

1 1 1 .mc
x c t v t v t

δ ψ δ ψ δ ψ δ ψ
δ δ δ δ

  = − − + 
 

 

The addend 2 2 2v tδ ψ δ  has been summed and subtracted at the right hand 
side in order to split this equation as follows  

22 2 2 2
2 2 2

2 2 2 2 2 2

1 10, ,mc x v t
x v t c t x

δ ψ δ ψ δ ψ δ ψ δ δ
δ δ δ δ

 − = = − + = 
 

   (3.32) 

the first equation is still the precursor (2.3) of the D’Alembert Equation (2.4) and 
is clearly an identity 0 0=  owing to x v tδ δ= ; the second equation only in-
volves explicitly m through its reciprocal Compton length. To show why, and 
how to implement further these equations, note that the first couple of Equa-
tions (3.32) merged together yields  

( )
( )

22 2 2
2 2 2 2

2 2 2 2, ,
1

mcv
v

t x t v c
δ ψ δ ψ δ ψ
δ δ δ

= =
−

    

so that one finds  

( )
( )
( )

( )
( )

22 22 2
2 2

2 2 2 2, ;
( )1 1

mc mv
ctx c v c v c

δ ψ δ ψ
δδ

= =
− −

          (3.33) 

then the position 

xt
c
δδ ′ =                          (3.34) 

yields by consequence  
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( )
( )

( )
( )

22 22 2
2 2

2 2 2 2, .
1 1

mc mv
t xv c v c

δ ψ δ ψ
δ δ

= =
′ ′− −

             (3.35) 

Reasonably therefore the positions (3.30) imply (3.32), which yield (3.35) in 
agreement with (2.35). Hence  

( )
( )

( )
( )

22 22 2
2 2

2 2, .
1 1

mc mv
t xv c v c

δψ δψ
δ δ

   ± = ± =   ′   − −
        (3.36) 

It is useful to introduce now the local limit δ → ∂  of the Equations (3.30); 
once more, the resulting equations take then physical meaning via this limit 
condition, which introduces an appropriate function ( ),x tχ χ=  defined by 
the local properties of ψ ; also now indeed the consequent position ψ χ→  
turns the Equations (3.30) into the respective differential equations that 
represent the actual behavior of the particle. So  

( )
2 22 2

2 2, , ,x t
t xt x

χ χ χ χ χ χ∂ ∂ ∂ ∂    ′= ± = ± =   ′′∂ ∂∂ ∂   
       (3.37) 

obtained equating the left hand sides of (3.35) and (3.36), are both fulfilled by  

( )( )( )
0 0

1log , ,o ot t x x
t x

χ ξ η ζ ξ
δ δ

′= − − + + =          (3.38) 

being ξ , ζ  and η  three arbitrary constants. The second equation remarks 
through the constants 0x  and 0t  that the physical dimensions of ξ  are 
( ) 1space time −× . This equation, which emphasizes the space time range 
( )( )o ot t x x′− −  already found in (1.7), will be also implemented in the short-
ened form  

( )log .txχ ξ η ζ′= + +                   (3.39) 

An interesting corollary of (3.38) follows from  
( ) ( )( )0 0log logt t x xχ ζ δ δ δ δ= +  valid for 0η = . As  

0 0 0x x m x m x C Cδ δ δ δ= = , strictly speaking C m xδ=  and  

0 0C m x constδ= =  are linear mass densities in the present one dimensional 
model; of course in a realistic four dimensional space time C and 0C  must be 
intended as usual mass densities, as emphasized in (2.21) and in the next (4.13). 
Consider χ  during a fixed time range, so that 0t tδ δ  is regarded as a time 
constant; then  

( ) ( )0 0log , log .const C C const t tχ ζ δ δ= =          (3.40) 

Although χ  is dimensionless, appropriate units clarify its physical meaning: 
multiplying for example both sides by the energy kT already introduced preli-
minarily in (2.22) but to be defined shortly later, one finds  

( ) ( )0 0 0, log , .kT kT C C constkTχ µ µ µ µ= + = =      (3.41) 

Hence χ  is proportional to the chemical potential µ  an arbitrary space 
time constant 0µ  apart. 
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Eventually note that xδ ′  and tδ ′  defined in (3.31) and (3.34) fulfill 
x t x tδ δ δ δ′ ′= ; this equation is also fulfilled putting x xδ δ γ′ =  and 
t tδ γδ′ =  with γ  arbitrary factor, in which case it reduces to identity. In partic-

ular γ  could be the Lorentz factor, in fact introduced in (2.34); so one infers that  

.x t x tδ δ δ δ′ ′=                        (3.42) 

is a relativistic invariant in different inertial reference systems. Moreover, divid-
ing both sides by ν , write the identity  

1, , , .x x
t t

δ δ ν γν ν ν
γν ν γ δ δ

′
′ ′= = = =

′ ′ ′
             (3.43) 

With γ  equal in particular to the Lorentz factor 2 21 v c− , as suggested by 
tδ  and tδ ′ , it is possible to regard the frequency ν ′  as that related to ν  in 

different inertial reference systems R′  and R. Moreover it is also possible to 
regard ν  as the frequency recorded by an observer moving in R at rate v with 
respect to the frequency oν  emitted by the source. Noting that o oc vν ν> , let 
ν  be such that o oc v cν ν ν= +  so that ( )1o v cν ν= − . Thus replacing in the 
second (3.43) one finds  

1 .o
v cν ν
γ
−′ =  

This equation is nothing else but the Doppler shift of frequencies reciprocally 
moving at rate v along their sight line. 

As (3.39) shows that both signs of (3.30) are admissible, consider now sepa-
rately either sign of the Equations (3.36). 

1) The negative sign yields  

( ) ( )

2

2 2
, , , ,

1 1

mc mvi i p p
t x v c v c

δψ δψε ε
δ δ

± = = = =
′ − −

     (3.44) 

which of course confirm (3.28); so, for δ → ∂  and thus ψ ϕ→ , the local lim-
its read  

( ) ( ), , , , , .p
p pi i p x t x t

t x
ε

ε ε

ϕϕ
ε ϕ ϕ ϕ ϕ

∂∂ ′ ′± = = = =
′∂ ∂

       (3.45) 

In these equations the physical meaning of p±  is immediately evident: p is 
actually a component of the vector p along the x axis on which is defined xδ . 
Instead ε±  is more interesting, as it indicates the existence of states of negative 
energy. 

Note that holds for (3.44) and (3.45) the same remark carried out for (2.3) and 
(2.4): also now the left hand side of (3.44) are in fact not calculable explicitly be-
cause are indeterminate not only δψ  but also xδ  and tδ . However are in 
principle calculable their limits for δ → ∂ . Now also the relativistic quantities 
(3.45) come from and are compliant with the non-real and non-local (3.44). In 
effect even the Equations (3.45) bring back to the early postulates of the old 
quantum mechanics, despite obtained from the relativistic (3.27): this is imme-
diately evident via the following positions:  
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( ) ( )0 0log , , , .i ii p x t x t
x x t
ϕϕ ε∂ ∂Ψ ∂Ψ ′= Ψ = = ± = Ψ = Ψ
′ ′∂ Ψ ∂ Ψ ∂

 

  
 (3.46) 

In this case Ψ  has the same analytical form of χ . This point deserves fur-
ther attention. 

The relativistic equations (3.44) are implied by the invariant xt of (3.39), as 
shown in (3.42); obviously, replacing xt with another function nrψ χ≠ , the 
Equation (3.37) would not hold. By consequence, in this case p and ε  in (3.44) 
would be reasonably replaced by non relativistic quantities nrp  and nrε  nu-
merically different but having however an analogous physical meaning by di-
mensional reasons: the notation emphasizes the non-relativistic character of 
their classical approximation. Replace thus x t′  of χ  in Equation (3.39) with 
any function ( ),nr nr x tψ ψ= , putting for example ( ) ( )nr x tx tψ ψ ψ= : with this 
Newtonian position where time and space are independent entities defining dis-
tinct dynamical variables of classical mechanics, the Equations (3.39) turn re-
spectively into  

( )log , ;nr nr nr x tχ ξψ η ζ ψ ψ ψ= ± + + =  

for simplicity of notation, the symbols of the constants have been kept un-
changed. Hence the first two Equations (3.44) turn into  

, ;nr nr
nr nr

nr nr

i i p
t x

δψ δψ
ε

ξψ η δ ξψ η δ
= ± =

+ +
 

  

Put eventually 0η = , for example assuming η  proportional to 1c− ; as c is 
infinite in classical physics, these equations take the well known form  

, , , .nr nr
nr nr nr nr nr nr nr nri i p p p

t x
δψ δψ

ε ψ ψ ξ ε ξε
δ δ

′ ′ ′ ′± = = = =  
 

Clearly these expressions, suggested by the outcomes (2.23), agree with (3.28) 
and specify via the limit δ → ∂  which function is actually involved by the 
change symbol δ . Hence  

, , , ;ef ef
ef efi i p p p

t x
ψ ψ

ε ψ ψ ξ ε ξε
∂ ∂

′ ′ ′ ′± = = = =
∂ ∂

        (3.47) 

these results are the well known equations of the old quantum theory; the sub-
script “ef” stands for “eigenfunction”. The modern quantum physics was born 
postulating these crucial equations, whence the importance of having found 
them as corollaries: the present theoretical approach brings back just to early 
formulation of quantum mechanics and its basic assumptions. 

2) Consider now also the plus sign of (3.36), which yields  

( ) ( )

2

2 2
, .

1 1

mc mv
t xv c v c

δψ δψ
δ δ

= ± =
′− −

               (3.48) 

The Equations (3.64) correspond to the Equations (3.28), whereas the Equa-
tions (3.48) read ( ) ( )t p xεδ δ± = ±  , i.e. t p xεδ δ± = ± ; this expression is a 
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particular case of the Equations (3.1) regarding 0p pδ = ± −  and 0δε ε= ± − , 
where the reference boundaries of these ranges coincide with zero momentum 
and zero energy. Considering indeed the particular case 0 0t p xε δ δ± = ±  and sub-
tracting side by side one finds again the expected more general result 
( ) ( )0 0t p p xε ε δ δ± − = ± −  in agreement with (3.1) as 0δε ε ε= −  and 

0p p pδ = − . So (3.48) link the operator formalism (3.28) and (3.67) to the un-
certainty equations (3.1) and their relativistic implications (3.44). 

Note eventually that the Equations (3.37) are well known in the operator for-
malism p̂ i x= − ∂ ∂ , where in effect it is taken for granted that  

2 2 2 2p̂ x= − ∂ ∂ ; indeed (3.37) express nothing else but  
( )22 2 2 2p̂ i x x= − ∂ ∂ = − ∂ ∂   previously inferred from (3.30). 

In conclusion this simple approach has found the operator formalism and 
contextually the uncertainty equation, both compatible with relativistic concepts. 
These outcomes have several further corollaries, the most relevant of which are 
shortly summarized in the following. Final remark to close this section. The 
range products x pδ δ  and tδεδ  characterize the quantum uncertainty (3.1), 
whereas the product x tδ δ  characterizes the invariant space time (3.38): the 
connection between quantum physics and relativistic physics is comprehensible 
corollary if space and time are mixed in either way. In this respect, what about 
the other mixed term pδεδ  also possible in alternative to x pδ δ  of (3.1)? 
According to (3.1) it yields  

p F
x

δεδεδ
δ

= = 
                   (3.49) 

the “new” quantity F, so far not explicitly concerned but only anticipated in Sec-
tion 3.2 for exposition purpose only, takes in this way justification and physical 
meaning, it is usually known as force. The concept of pressure and energy den-
sity also follow from this result dividing both sides by the arbitrary surface 2x∆   

2 2 .F
x x x
δε

δ
=

∆ ∆
 

                    (3.50) 

4. Some Classical Corollaries 

Are concerned in this section several interesting outcomes still hidden in the 
approach hitherto outlined. 

4.1. The Fermat and Maupertuis Principles 

The key equations are (3.1) and (2.25). Consider an arbitrary time range t∆  
during which one particle moves between two coordinates 1x  and 2x  defining 
the total path x∆ . It is possible to write  

2 1, 0;t t t tδ∆ = − ∆ =  

the second position expresses that the time interval is arbitrary but fixed by defi-
nite time boundaries within which hold the following considerations. Since x∆  
traveled by the particle can be imagined as the sum of elementary ranges xδ  
corresponding to elementary time steps ktδ , write kt tδ∆ = ∑ . Being both time 
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and space steps arbitrary, it is possible to replace the sum with an integral and 
write the following chain of equations with the help of (2.25)  

2 2 2 2

1 1 1 1

.
t t t t

t t t t

n p x xt t
v

δ δ δδ
δε δε

∆ = = = =∫ ∫ ∫ ∫


 

Hence, integrating along an element dx  of trajectory for δ → ∂ ,  
2

1

d0
t

t

xt
v

δ δ∆ = = ∫  

so the Fermat principle, also expressible identically as nd 0xδ =∫  with n c v= , 
is actually a straightforward corollary of the uncertainty equation. 

In an analogous way one finds the Maupertuis principle. Calculate p xδ δ  for 
dx xδ →  and tδεδ  for dt tδ → ; in this way, even considering vanishingly 

small range sizes still holds the concept of local velocity lv , i.e.  
d d lx t x t vδ δ → = . Considering the coordinates ( )1 1x x t=  and ( )2 2x x t=  

and integrating both sides, one finds according to (3.1)  
2 2

1 1

d d .
x t

x t

p x tδ δε=∫ ∫  

The right hand sides involves ( )1 1tδε δε=  and ( )2 2tδε δε= . Suppose now 
that 0δε =  because ε  is constant itself; then, being 2 1=p p pδ −  by defini-
tion, one finds  

2 2 2

1 1 1

1 2d d d 0,
x x x

x x x

p x p x p xδ = − =∫ ∫ ∫  

i.e. 
2 2

1 1

1 2d d
x x

x x

p x p x=∫ ∫  and thus 
2

1

d
x

x

p x const=∫  for any 1 2p p p≤ ≤ . Hence, 

along an element dx  of trajectory,  
2

1

d 0, .
x

x

p x constδ ε= =∫  

4.2. Further Considerations on the Group Velocity 

The reasoning already carried out for a beam of particles, see (2.46), is extended 
here considering a light beam propagating in a dispersive medium at rate v c< . 
The Equations (2.37) and (2.36) yield  

( ) ( )
1

1 , n , ;
nn
c cv

p c v v
δε δν δν νλ

δ νδ δ νδλ
δν

−
−= = = = = =        (4.1) 

of course gv  of a light wave packet is found through the local limit δ → ∂ , i.e.  

( )
.

ng
cv
ν
ν

=
∂
∂

                         (4.2) 

It is instructive to examine closer the Equation (4.2) in order to evidence that 
a further aspect of the motion of a corpuscle of mass m is describable by a wave 
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packet moving as a whole with at rate gv ; the reasoning involves explicitly its 
energy ε  to describe the propagation of the overall shape of the wave packet 
amplitude through the space. Differentiating the Equation (2.34)  

( )2
2 ;p pc v

vv
δδ ε δ= − +  

and replacing p h λ=  in this equation, trivial calculations yield  

( )2
2 .h vc

vv
δδ ε λ δλ

λ
 = − + 
 

 

Require now purposely 0δε = , i.e. the wave transports a fixed amount of 
energy; for example constε =  could be just that of one free particle. So  

,m
m

vvδ ν
δλ λ

= − = −                       (4.3) 

being mv  the particular value of v fulfilling the given condition; the frequency 

mν  is then formally implied by dimensional reasons too. Hence  
1,m mvδν δλ−− = −  

so that  

( ) ( )1 , n ;
n

m m
m m

m mm m m

m

c cv
v v

δν δν
δ νδ νδλ
δν

−= = = =  

then, for δ → ∂  once more, m gv v= . 
The key step of the reasoning is the well defined amount energy ε  trans-

ported at the rate gv , by consequence of which results defined the frequency 

mν  corresponding to the unique mv . The different definitions of λ  in (2.36) 
and in (4.3) are significant; their comparison yields  

2 1.m mv v
c

ν
ν

= <  

Think now one Planck frequency (2.37) as that included in a packet of waves 
of different wavelengths propagating in a dispersive medium with different 
λ-dependent velocities: in effect, the Equations (3.1) regard hν  and h λ  as 
random values within energy and momentum ranges that in turn define various 
frequencies and momenta corresponding to δλ  and δν . Both statements 
agree with the fact that the propagation of the particle or its related wave cor-
respond to gv  and not to the single phase velocities λν . Just for this reason 
from (3.1) can be inferred the corpuscular and wave aspects of quantum physics. 

The equations now obtained directly from the Equation (2.34) emphasize a 
new implication: neither ωε  nor pω  show explicit reference to the mass, 
which now becomes mere dimensional parameter inherent the definition of  . 
Appears thus the necessity of explaining how and why the mass is apparently 
waived from the quantum Equation (2.37) of momentum and energy. In other 
words, a valid reason is required to replace m with m m′− , being m′  a new 
mass even compliant with 0m m′− =  as a limit case. Tentatively this implies 

 

DOI: 10.4236/jmp.2018.914161 2532 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2018.914161


S. Tosto 
 

defining m as a velocity dependent variable, as in effect it has been already found 
in the Equation (2.33) and more specifically in (3.13). On the one hand this 
strategy seems at least in principle adequate to highlight why a moving mass m 
could turn into an immaterial wave. On the other hand further confirms should 
be provided next to validate the following way of describing this subtle point. 

4.3. The Refractive Index 

According to (3.64) and (2.35), if 0m ≠ , then p and ε  are calculable for 
v c<  only; however even v c→  is admissible if contextually 0m → . Imple-
menting concurrently both limits, p and ε  tend to the indeterminate forms 0/0, 
which admit in principle finite values. Let p′  and ε ′  be these limit values, 
assumed existing by definition: the reverse question rises now, i.e. whether or 
not v c<  requires 0m ≠ . The answer is negative: as the speed of photons in 
dispersive materials is lower than that in the vacuum, it is possible in principle 
that photons travel in a dispersive medium at the same v allowed to a beam of 
massive particles. The fact that v c<  is compatible with both 0m =  and 

0m ≠ , suggests that the kinetic mass m should actually be function of v itself: if 
so, then the separate correspondences 0m v c≠ → <  and  

( )0, 0v c m m< ↔ = ≠  merge into the unique correspondence  
0 0m v c m≠ ↔ ≤ ↔ =  provided that an appropriate function of ( )m m v=  

does exist. In other words it should be true that both 0m ≠  and 0m =  are 
compatible with a unique v c≤  via ( )nm m= . In fact this conclusion has been 
already inferred in (2.33), where the concept of mass was introduced in the 
present model as rest mass. The following reasoning represents the extension of 
this concept to the kinetic mass. 

Regard m of (2.33) as a particular case of a general dynamical variable related 
to p through v and examine how the new concept of mass could tend to zero 
correspondingly to v c→ ; is interesting in this respect the position  

2 21 , ,m m v c m m′ ′= − ≥                    (4.4) 

which regards m as a constant mass while introducing a new mass ( )m m v′ ′= . 
The Equation (2.33) has anticipated this conclusion in the particular case where 
m m′=  for 0v → , whereas a further hint to the concept of rest mass has been 
provided by (3.13). Replacing formally m of (4.4) in both (3.64) one obtains 
p m v′ ′=  while contextually 2m cε ′ ′= ; then, eliminating m′  from these re-

sults, one still finds 2p v cε′ ′=  in agreement with (2.34). So m′  fulfills the 
same relativistic formula of p with initial mass m, despite now the limit for 
v c→  corresponds to the finite value p cε′ ′=  implemented in (3.14) and 
(3.15); this relationship between energy and momentum is expected in general 
for a wave, see Equation (2.24). Hold for m′  all steps from (3.14) to (3.20). The 
wavelike implication of (4.4) is further acknowledged considering c pδε δ′ ′=  
of (2.14). 

In conclusion, according to the quantum uncertainty the behavior of a cor-
puscle of mass m should inherently have a wave-like propagation too, whereas 
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the fact that m m′=  for 0v =  shows that m and m′  are rest and kinetic 
masses. So the Equation (4.4) in fact generalizes the concepts of m and v  in-
troduced in (2.33): m′  is the particular value pertinent to m at the specific 
speed v. As a consequence note that 2p v c pε ε′ ′= =  define a pure number  

n , n c
pc p c v
ε ε ′

= = =
′

                    (4.5) 

that introduces the refractive index of the medium where propagates an elec-
tromagnetic wave at velocity v c≤ ; owing to the Equation (6.2) in fact n 1≥ , 
as it has been already introduced in (2.46) and (4.1). Moreover the position (4.4) 
also agrees with (2.45); indeed  

2

2 2 , ,v h v h c cp n
vc c

ε ν λ λ λ
λ ν ν

′ ′
′ ′ ′= = = = = =

′ ′
 

takes into account that nλ λ′=  depends on the refractive index of the medium 
through which propagates the electromagnetic wave or the De Broglie pilot wave. 
The position (4.4) introduces thus the first step to explain how and why the 
concept of mass does not explicitly appear in (2.45): once having introduced the 
refraction index, v is in fact eliminated from the equations being replaced by n. 
Formally this means expressing the displacement rate v of the particle in c units; 
yet v appears subsequently also as the rate λν  at which a single wave phase 
propagates. This fact encourages thinking that somehow it should be possible to 
infer a formula that specifically emphasizes what the Equations (3.64) and (2.45) 
already show themselves, i.e. the way m and λ  replace each other in defining p 
and ε . The mathematical approach to this task proceeds noting that  

( )2 2 2 211 1 i.e. ,
2

m m m v c m c m m vδ δ′ ′ ′= − = − − ≈ +     (4.6) 

so that the right hand side represents kinetic energy. On the one hand m′  cor-
responds to the classical mass defining the kinetic energy, although for v c

 
the deviation of m′  from m is irrelevant for practical purposes. On the other 
hand it is possible to write  

22

2

11 1, 1.
n

gvm m m
m m c

 ′ −  + − = + =  ′ ′   
          (4.7) 

The second equation is direct consequence of the first one; it emphasizes that 
the concerned velocity v is actually gv  of (2.45), because in general this latter 
and not v of (2.3) is related to and describable by n. This confirms that m′  is 
the effective value of m when the particle velocity takes up just the specific value 

gv  pertinent to the group velocity at which propagates the wave packet. As ex-
pected m m′=  for 0v = , whereas 0m =  for n 1= ; in effect according to 
(3.13) m m′  is definable even for v c→ , so (2.33) and (4.4) are compliant 
with these limits. Regard thus the addends of (4.7) as probabilities, whose sum 
represents the certainty of concerning the existing particle through its mass dis-
placement velocity or wave propagation rate. The first addend describes the 
probability for the particle to loose its classical kinetic mass, till to become an 

 

DOI: 10.4236/jmp.2018.914161 2534 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2018.914161


S. Tosto 
 

immaterial propagation wave; the second addend, previously introduced to ex-
press the actual velocity gv  of the particle, takes the meaning of reciprocal re-
fraction index n of the resulting wave, being it in effect still related to the propa-
gation rate of the wave/particle. The addends account therefore for the dual be-
havior of matter in a probabilistic way correspondingly to the probability of 
energy fluctuation, thanks to which the particle effectively displaces with velocity 
dependent mass or with frequency dependent propagation rate of a wave packet: 
indeed, one must also expect an appropriate energy fluctuation to balance the 
chances of mass energy loss. Obviously to this mass change correspond different 
p and ε  and thus different λ , whence the necessity of linking m with a group 
of waves that spread with collective gv  given by (2.45). So the worth of (4.7) is 
that of having emphasized the quantum probabilistic meaning of the relativistic 
position (4.6). 

These considerations rise however three questions. 
The first one can be formulated as follows: as (4.7) is made by mass and mass-

less terms, what determines either property of matter? Obviously the immediate 
answer points to the kind of experiment made on the particles constituting the 
body of matter. Also this is the non-real essence of quantum mechanics, which 
actually regards the matter neither as a packet of waves nor as a cluster of cor-
puscles, but as an undefined state of probabilistic mixing of both states until 
some experiment “creates” either state. The electron diffraction in the two slit 
experiment and the Thomson experiment inspired by the Millikan result eluci-
date the physical meaning of the addends of (4.7). To this equation is also related 
the physical meaning of the EPR thought paradox, showing that the quantum 
properties are not pre-definable outcomes according to some principles of clas-
sical mechanics, rather they are created by the experiment itself. In effect (3.1) 
exclude not only the concept of trajectory, but also that of distance and velocity; 
as shown in 3.2 the local space time coordinates must be replaced by the respec-
tive ranges, so concepts like “superluminal” distance are actually unphysical. In 
this sense the EPR paradox shouldn’t even be formulated: replacing systemati-
cally x xδ→  and t tδ→  are missing the concepts themselves of point to 
point space distance and time to time lapse needed to define any “superluminal” 
effect; remember that in effect according to (2.8) and (2.9) 0v c=  is introduced 
“as such”, i.e. as a fundamental constant of Nature regardless the ratio xδ  over 

tδ . 
The second one concerns the addition of velocities. Consider an electromag-

netic wave that appears in the point where 0m = . An example is the annihila-
tion of m by collision with its antiparticle purposely assumed in the vacuum: one 
would naively expect that the new born electromagnetic wave should propagate 
at rate classically resulting from its own velocity c summed up to that v initially 
characterizing the moving center of mass of the annihilating particles. Yet (2.48) 
has already negatively answered this question. 

The third question concerns the energy fluctuation necessary to account for the 
mass change when 0m → . This point is concerned in the next two subsections. 
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4.4. Energy Fluctuation 

The corpuscle/wave dualism has been accepted as compelling experimental evi-
dence since the early experiments of electron diffraction, simply acknowledging 
that either behavior depends on the kind of experiment. Yet this shortcut leaves 
in fact unexplained why mass appears explicitly in (3.64) whereas it is hidden in 
the proportionality constants (2.36), despite both concern momentum and 
energy of a free particle. The fact that both equations have been inferred in the 
frame of a unique model based on the definitions (1.11) and (1.12) stimulates 
one to think that even this duality could find rational explanation, i.e. explaina-
ble by a logical physical reasoning in the conceptual frame of the present model, 
without need of supplementary “ad hoc” hypotheses. This hope is supported by 
the probabilistic character of (4.7), direct consequence of the concept of velocity 
dependent mass elucidated in the form (4.4): in effect the chances 0m =  and 

cλν =  or respectively m m′=  and 0gv =  appear in principle reciprocally 
consistent and compliant with the unity, i.e. the certainty that anyway something 
travels through the space time as amount of mass or wave: in the former case it 
is appropriate to think about corpuscle displacement velocity, in the latter about 
wave propagation rate. The validity of this idea is proposed in this subsection 
not only by evidencing its self-consistency, but also quoting as a verification 
further well known results contextually obtainable. 

The results of the point 4.3 have been obtained considering initially a particle 
of mass m that displaces at rate v; next has been considered also its probability of 
mass, i.e. energy, fluctuation, which eventually turns it into massless electro-
magnetic wave or matter wave traveling at rates 1n−  or gv  respectively. On 
the one hand, besides the formal similarity with the propagation of either kind of 
wave, the Equations (4.5) and (4.4) show that this virtual process scales both p 
and ε  to p′  and ε ′  by a common factor related to the refractive index. On 
the other hand, this also implies an energy change that occurs in a time range 

0t t t∆ = − , being 0t  the arbitrary time at which the mass m starts modifying its 
value. 

Owing to (2.34), consider thus the energy change 2 2p c v pc vε ε ε′ ′ ′∆ = − = −  
since when the particle starts loosing its initial mass m to when eventually 

0m →  according to (4.7). The fluctuation driven energy change is summarized 
by the following equations  

2
2 2

2 n , , , n .c cv v v p v v p
vv

ε δε δε δε′′ ′ ′ ′∆ = = = = − =
′′′′

     (4.8) 

The energy range ε∆  must not be confused with δε  of (3.1): δε  con-
cerns the quantum uncertainty unavoidably constraining the arbitrary variability 
range allowed to the conjugate dynamical variables of any system, ε∆  is in-
stead the specific energy fluctuation allowed in particular to the particle during 
the mass loss virtual process that “converts” it into a wave. The time length re-
lated to ε∆  is thus  
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2
2 . . n .

n
t i e t tδ

ε δε
∆ = = ∆ =

∆
                 (4.9) 

The Equation (4.9) yields  
2

2

1 1, ,v t
t t tc

δ
δ

ν
ν ν

δ ν δ ∆
∆

∆
= = = =

∆
             (4.10) 

these positions are easily understood; the respective energies proportional to 2v  
and 2c  are also proportional to the frequencies δν  and ν∆ . Of course the 
only way to regard this result in the wave formalism of quantum mechanics is 
the link between frequencies and energies, which in fact is just the Planck posi-
tion: precisely in this sense the probabilistic Equation (4.7) introduces the ratio 
( )2m m′ , mass addend, and the corresponding ratio δν ν∆ , wave addend. This 
confirms that the corpuscle/wave behavior has probabilistic origin and follows 
an energy fluctuation of quantum matter. 

Are the Equation (4.8) along with its premises and implications true indeed? 
To support the validity of (4.7) and thus (4.8) itself, is now tested their direct 
consequence, the Equation (4.9), in three particular cases of major physical in-
terest. Write first with the help of (3.1) and (2.25)  

2

2 2 2 ,
n

v x xt
c c t
δ δ

δε δ
∆ = = =

                 (4.11) 

noting that 2c t∆  has physical dimensions of diffusion coefficient D introduced 
in (2.19); this suggests that v x Dδ σ= , being σ  an appropriate proportionali-
ty coefficient to be determined. So  

2xD v x
t

δσ δ
δ

= =                    (4.12) 

The coefficient σ  is crucial to specify the kind of problem precisely con-
cerned. 

1) Putting first 1σ =  means describing one particle that displaces with dif-
fusion coefficient D through xδ  at average velocity v. Strictly speaking, as pre-
viously remarked about the Equation (3.60), in the present one space dimen-
sional model (3.39) defines C as linear density mass length  instead of the ac-
tual 3mass length ; yet C regarded in the usual 3-dimensional space allows to 
define the actual physical dimensions of flux J of matter, i.e. 2mass length time . 
Multiplying both sides of the first equality v x Dδ =  by Cδ , being C mass per 
unit volume, yields v C D C xδ δ δ= . This result is more appropriately rewritten 
as v C D C xδ δ δ= ± ; the double sign accounts for the fact that v is actually a 
velocity component on the x-axis along which is defined xδ , correspondingly 
to the definition 2

0v τ  of the Equation (2.19). Simple dimensional considera-
tions allow defining the equation  

, ,C mJ D J v C C
x V

δ
δ

= ± = =               (4.13) 

that introduces with the minus sign the concept of mass flux J, i.e. mass trans-
ferred per unit surface and time through the volume V; so Cδ  is due to the 
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diffusion driven matter transfer between the surfaces xδ  apart of an ideal cube 
of matter of volume V. The Equation (4.13) completes the Equations (2.19), as it 
is well known. Anyway, merging both expressions (4.13) of J, one finds 
vC D C xδ δ= − ; then, recalling (3.60) and (3.61) as already done in (2.22), the 
limit δ → ∂  yields  

0

log , log .C D Cv D kT
x kT x C

µ µ
 ∂ ∂

= = − =  ∂ ∂  
          (4.14) 

The double sign of v is obvious, being it a velocity component. For simplicity 
and brevity v and D have been regarded not dependent on x, to make quickly 
recognizable the link of these results with well known concepts of elementary 
diffusion theory; also, the diffusion process has been assumed at the constant 
temperature T. With the minus sign in (4.13), positive D, one acknowledges 
once more the definition of chemical potential µ  in agreement with (3.61). 
Moreover, as the xµ−∂ ∂  is equivalent to a force  , this yields also the 
famous Einstein-Smoluchowski relationship between mobility   and diffu-
sion coefficient D, i.e.  

, .vD kT= = 


                   (4.15) 

Eventually the plus sign in (4.13), which instead corresponds to negative D, 
describes phenomena like the spinodal decomposition of alloys of appropriate 
composition [9]. 

2) Putting next 2σ =  and writing thus (4.12) as 2v x Dδ =  means describ-
ing one particle that travels with diffusion coefficient D the distance 2xδ  at 
average velocity v± . The factor 1/2 specifies therefore that the particle displaces 
around the mean coordinate x  towards both sides of xδ , in which case 2xδ  
at the right hand side of (4.11) reads ( )22x x xδ → −  and takes thus the statis-
tical meaning of average square displacement 2xδ  of the particle traveling 
through the whole range around x . So the second equality (4.12) yields  

2 2 ,x D tδ δ=                         (4.16) 

i.e. the famous Einstein equation of one dimensional Brownian motion. 
3) The validity of the Equation (4.8) is further checked implementing the 

property n 1≥ . Consider now a system of particles, the i-th of which has energy 

iε . The fact that ε∆  is in general 2n  times greater than 0δε ε ε= −  suggests 
the possible chance of regarding the former as 0E Eε∆ = −  and the latter as the 
sum of an appropriate number N of terms 0i i iδε ε ε= −  such that 

( )2
0n i iε δε ε ε∆ = = −∑ ; clearly N depends of the value of 2n  and size of all 

ranges 0i iε ε− . Anyway the initial Equation (4.8) is compatible with the position  

( )2 2
0 0 0n n i iE E ε ε ε ε− = − = −∑                (4.17) 

simply requiring  

 

DOI: 10.4236/jmp.2018.914161 2538 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2018.914161


S. Tosto 
 

2 2
0 0 0n , n ;i iE Eε ε ε ε= = = =∑ ∑  

as in principle n can take any value from 1 to ∞, the number of terms of the sum 
is arbitrary. The Equation (4.17) is well known and reported in all standard 
textbooks concerning the fluctuations of thermodynamic systems: it yields  

( ) ( )( )2
0 0 0i i j jE E ε ε ε ε− = − −∑∑  and thus ( ) ( )22

i iε ε− = −∑   regard-

ing appropriately 0E  and 0iε  as average quantities. So with 0E →   and 

0iε ε→ , follows then immediately  

( ) ( )2 2 .N ε ε− = −                      (4.18) 

4.5. Liouville Theorem 

An interesting question concerning (3.1) is the following: is oδε ε ε= −  simply 
an energy range or is it even compatible with the physical meaning of difference 
between two diverse forms ε  and oε  of energy? This question, which ac-
cording to (2.25) involves op p pδ = −  too, is answered rewriting identically 
(3.1) as  

.x pp x
t t

δ δδε δ δ
δ δ

= =                     (4.19) 

The first equality reads  

, ,xp x
x t

δε δδ δ
δ δ

= =


                    (4.20) 

the second equality reads  

, .pp p
x t

δε δδ δ
δ δ

= =                      (4.21) 

Now fulfill the idea that δε  defines the difference of two distinct energies, 
specifically T and U introduced in section 2.3, which implies the chance of writ-
ing in general T Uε = ± . To highlight this point, concerning in particular the 
energies already introduced in (2.41) and (2.42), introduce the following posi-
tions  

( ) ( )T U, T T , , U Ux x xδε δ δ= ± = =            (4.22) 

in this way the sign of pδ  in (4.20) is uniquely defined since T only depends 
on x , whereas is expected the double sign in (4.21) because both energies T and 
U depend on x. As in effect pδ  is the component of δ p  along the x-axis, so 
that it can actually take in principle both signs, rewrite explicitly (4.21) as  

, ,o o o
o o

p p p p
p p p p p

x t t
δε δ δ δ δ δ
δ δ δ

′ ′− −′ ′ ′ ′= ± = − = =           (4.23) 

the double sign on the one hand emphasizes that both p and op  are actually 
components of the vectors p  and op  along the x-axis. The last two equations 
also agree with the fact that in principle  

op pδ δ′ ′   
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in lack of any information about the ranges, both inequalities are actually possi-
ble. Regarded in this way, i.e. implementing range boundaries arbitrary and in-
dependent each other, the notation (4.23) effectively defines δε  as difference 
of two energies reasonably dissimilar according to (4.22). Taking the ratios side 
by side of the first Eqs (4.20) and (4.21) one finds  

x p
x p

δ δ
δ δ

= ±
 

                       (4.24) 

It is immediate to link (4.24) and (4.22), noting that the former defines at both 
sides ratios with physical dimensions of reciprocal time range. Multiplying both 
sides by  , the equations  

0, 0x p x p
x p x p

δ δ δ δ
δ δ δ δ

+ = − =
   

                 (4.25) 

define energies that, in agreement with (2.42) and (2.38), correspond respective-
ly to  

H T U 0, T U 0.δ δ δ δφ δ δ= + = = − =  

Hence simple considerations on the range boundaries imply the concepts of 
Hamiltonian and Lagrangian according to the previous Equations (2.38) and 
(2.42): φ  has been identified with the Lagrangian of a particle, H with the Ha-
miltonian of the system. In particular, is of interest here  

H T U , x pconst
x p

δ δ
δ δ

= + = = −
 

 

for the following reason. According to the quantum uncertainty, the left hand 
side of (3.1) reads nδ δ⋅ =x p  , where the number of scalars, so far intuitively 
associated to the three usual space dimensions only, is actually arbitrary, i.e. ex-
tensible to any number j of extra-dimensions required by some theories or, al-
ternatively, to the number of freedom degrees allowed to the system of particles: 
in fact any freedom degree has its pertinent δ x  and δ p . Thus it is sensible to 
introduce the dimensionless quantity ( ) jx pδ δ   where fall all points in the 
multidimensional phase space defined by the sizes of all xδ  and pδ  of the 
corresponding particles with respect to  . Accordingly  

( ) jp xδ δ δΩ =   

yields  

( ) ( ) ( )j jp x x p
j x j p j x p

t x p x p
δ δ δ δ δ δ δ δδ δ δ δ
δ δ δ δ δ
Ω  Ω Ω

= + = + 
 

 

     

the range δΩ  includes all points of coordinates x and p falling within 
( ) jx pδ δ   elementary cells of j-dimensional volume ( ) jx pδ δ  in the phase 
space. So  

( )1 x p
j t x p
δ δ δ δδ δ
δ δ δ
Ω Ω Ω

= +   

yields then  
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( )1 0x p
j t x p
δ δ δ δδ
δ δ δ
Ω  

= Ω + = 
 

   

according to the first (4.25) ( ) 0tδ δ δΩ = , i.e. the volume constδΩ =  along 
phase space trajectories where H const= . 

5. Some Thermodynamic Corollaries 

The last results have somehow linked the relativistic Equation (2.25) to impor-
tant results of classical statistical thermodynamics. The importance of this topic 
is shortly highlighted in the following three subsections. 

5.1. Statistical Sets of Particles 

Let us implement once more the Equation (2.26), and calculate the change of 
v c pc ε=  according to the following chain of equations  

( )
2 log .

pcv pc pc pc
c

δ
δ δε δ

ε ε εε
   = − =   
   

 

Since by definition  

log log log ,o

o

p cpc pcδ
ε ε ε

    = −     
     

 

being op  and oε  arbitrary constants, it is possible to write  

log log .ovv v v v
c c c c c

δ   = − 
 

 

Consider now preliminarily the case of an ideal gas of non-interacting free 
particles/atoms/ions/molecules and let ip  and iε  the momenta and energies 
of each particle. Then, owing to the last equality, it is possible to write for each 
i-th particle  

log log , , 1;o i
i i i i o o i

v v
c c

δΠ = Π Π −Π Π Π = Π = <  

moreover it is also possible to sum terms like this of each particle over all par-
ticles of the system, so that it is possible to write  

log logi i i o i
i i i
δΠ = Π Π − Π Π∑ ∑ ∑  

whence  

1 1log log , , ,i i o i i
i i i

N N
N N

δ δ δΠ = Π Π − Π Π Π = Π Π = Π∑ ∑ ∑   (5.1) 

being N the number of particles of the system. Note that this result is actually 
more general than prospected here. Suppose first two interacting particles only; 
in this case we expect 1p′  and 1ε ′  for the first particle and 2p′  and 2ε ′  for 
the second one because of their interaction: despite the first (2.34) holds for a 
free particle, it is reasonable to think that changing appropriately i ip p′→  and 

i iε ε ′→  one can describe at least approximately even an interacting particle. 
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For example it is possible to replace i ip ε  with ( )i i i i ip pε σ ε′ ′ = , being iσ  
an appropriate correction factor. Anyway, 1 1p ε′ ′  and 2 2p ε′ ′  are in principle 
calculable; summing these terms, the left hand side of (5.1) involves 1 2v c v c′ ′+ . 
In the case of three particles mutually interacting one would obtain  

1 1 2 2 3 3p p pε ε ε′′ ′′ ′′ ′′ ′′ ′′+ +  defining 1 2 3v c v c v c′′ ′′ ′′+ + , and so on for any number 
of particles all mutually interacting. On the one hand this means that now the 
previous iΠ  is replaced by i i iv cσ′Π = , whereas the summation is possibly ex-
tended to a different number of terms. On the other hand this reasoning holds 
also for i i iv cσ′′ ′ ′Π =  and also for multiple primed probabilities. In fact, summing 
all iv c  or all iv c′′  does not change the conceptual statistical meaning of the 
sum; in other words, whatever iv′′  might be, one could include appropriate 
correction factors to the various iv  of the allowed states; normalizing the sums, 
one still obtains an equation like (5.1). To calculate how each iv  turns into iv′  
and next into iv′′  because of these interactions, is in general difficult and must 
be examined case by case; yet, if we content ourselves to describe the evolution 
of the system as a whole from the non-interacting to the interacting state, the 
form of the final equation is still similar to the previous (5.1) obtained for free 
particles. Omitting for simplicity the primed or multiple primed notations for 

iΠ  and iv  in the following, introduce the positions  

, log , log , ,o o o o i j o
i

S N S N S Sσ δ σ= − Π = −Π Π = − Π Π Π = Π∑  (5.2) 

where σ  is now a proportionality constant. The factor N in (5.2) simply shows 
that S is an extensive property. Introduce the condition expressed by the equiva-
lent positions  

, ,v const vδ δ= Π = = Π                   (5.3) 

where const  can be 0 or more in general 0≠  in this one dimensional model 
where v  is actually a component of v  that can take both signs. The first con-
dition regards a completely disordered system of particles regarded as a whole at 
the equilibrium, whose velocities are randomly distributed both by modulus and 
direction with equal probability. The second condition assumes a macroscopic 
system in an unstable situation out of equilibrium, e.g. gas with an internal 
pressure gradient due to a non uniform distribution of velocities; this can hap-
pen for example for a system of charged particles in an inhomogeneous external 
field. Whatever its particle velocity distribution might be, both chances are as-
sumed compatible with the third position (5.2). 

Actually nothing compels these positions, which in effect are purposely in-
troduced to plug the present considerations into the realm of statistical mechan-
ics. In practice ( ) 0velocity distributionδ =  shows that the equilibrium corres-
ponds to the maximum possible disorder of the system as concerns the velocity 
distribution of its constituting particles. This statement, assumed valid in general 
and not in the present one dimensional case only, can be regarded as boundary 
condition of (5.2) as it implies constΠ = , in this particular case S const= . 
According to (5.2) this constant can be nothing else but the right hand side, i.e.  
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log ,B o oS σ σ σ′ ′= − Π = Π                 (5.4) 

This is nothing else but the Boltzmann definition of dimensionless entropy: 
note that oΠ  constant indeed does not mean that it has one fixed value only, 
but that it does not depend on the index of summation states I, whereas it de-
pends of course on T. 

This simple procedure has introduced the function S as sum of consistent 
functions logi i−Π Π  of all particles of the system; the summation over i has 
been extended to the velocities iv  of all particles of the system. This summation 
is surely positive and finite because all iv c< . 

It is possible to ask at this point whether this kind of equation is uniquely re-
ferable to the property i

i
constΠ =∑ , or it has a more general worth, e.g. in the 

case of probability distribution function of states such that 1i
i
Π =∑ . This ex-

pectation is sensible, being a particular case of the second (5.3). The next subsec-
tion concerns just this point. 

5.2. The Entropy 

The starting point is now (3.38) with the minus sign. The way to implement this 
equation is similar to that just described for the Equation (5.1): any space time 
factor x tδ δ  is regarded as j kx tδ δ , with notation that goes back to the section 
1 in order to specify an arbitrary j-th state of a system of particles at the time kt . 
The system defined in this way is a statistical set in the sense previously hig-
hlighted for each iv c v c→ , in agreement with the definition of j j kv x tδ δ= : 
in other words, the variation of configuration of the system implies reasonably 
the change of local space coordinates of a cluster of j-th particles enclosed in 

jxδ  during the time range ktδ : both ranges define a possible state in the phase 
space as described in the subsection 4.5. Actually both xδ  and tδ  were in-
herent the definition of iv  in subsection 5.1; similarly W must be be introduced 
here in order to describe the non-instantaneous evolution of a local small vo-
lume of the system during space time ranges that represent its configuration 
change rate. The Equations (3.60) and (3.61) show that this way of thinking al-
lowed to infer the chemical potential µ  hidden in χ ; let us examine here the 
possibility of extracting further thermodynamic information from this function. 

The algebraic steps are listed one by one after rewriting (3.38) as  

log , .W W x tχ ζ ξδ δ η− = − = +                 (5.5) 

1) On the basis of the section 5.1, define  

( ), , log , 0,k k k k k ku a W E a S E a W S W W a a tχ ζ−= = + = = − = >  (5.6) 

being ka  positive factor dependent on the time kt  only; 
2) regard j kx t x tδ δ δ δ→ , i.e. any local space time coordinate xt is defined as 

one that characterizes the j-th state of each particle in the space range jxδ  
during the time range ktδ , which implies jkW W→  while jku u→  and 

jkS S→  as well  
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( ) ( ) ( ), ,jk jk j k jk jk j k jk jk j kW W x t S S x t u u x tδ δ δ δ δ δ= = =      (5.7) 

3) sum over all allowed states j accessible during an assigned ktδ  by all par-
ticles in the phase space  

, , , log ,k k k k k k jk k jk k jk jk
j j j

U a a S U u W S W Wζ= Θ + = Θ = = −∑ ∑ ∑  (5.8) 

whereas the factor ka  is defined by  

, ;k o k k o k kU U a S U aζ= + = Θ                 (5.9) 

4) the last Equation (5.9) defines a “new” quantity T called temperature  

( ), ,k
o k k k k

k

U
U U TS a T T T t

S
δ
δ

= − = = =           (5.10) 

uniquely defined for a body of matter at the thermal equilibrium. Note that the 
first equation has been written introducing at the left hand side the summation 
over jkW  only. Also note that  

log 1jkk
jk

jk jk

SS
W

W W
δδ

δ δ
= = − −  

i.e.  

log 1jk

jk

S
W

W
δ
δ

− − =                     (5.11) 

the j-th addend contributing to kS  is to be considered to calculate the right 
hand side. Multiplying both sides by jkW  one finds  

logk
jk jk jk jk

jk

S
W W W W

W
δ
δ

= − −  

and then, summing over j, owing to (5.8) one finds  

, .o o k
k k k k jk

j jk

S
S S S W

W
δ
δ

 
Θ = + = −   

 
∑             (5.12) 

Normalizing via kΘ , this result reads  

1
o
k k

k k

S S
= +
Θ Θ

                       (5.13) 

If 0o
kS >  this equation emphasizes the certainty resulting from the sum of 

two positive terms, which therefore can be regarded as probabilities. If kS  
measures the disorder of the system, then reasonably o

kS  measures the order: 
the sum of these probabilities yields the certainty that both order and disorder 
concur to define the state of any system. In other words, any system can be par-
tially ordered and partially disordered; e.g. some parts of a crystal lattice can 
contain in general local point and/or line pile up defects inside a surrounding 
defect free volume. 

This probabilistic interpretation is possible if 0o
kS ≥ : in other words, the 

probability of modifying the local order/disorder of the system requires accord-
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ing to (5.12) 0jk jkS Wδ δ ≤  inside any jxδ  at different ktδ  at which is cal-
culated jkSδ . Let be therefore 1jk jk jkS S Sδ += −  and 1jk jk jkW W Wδ += −  the 
changes allowed to occur within any space range jkxδ  at any time within ktδ  
and rewrite W of (5.5) according to the positions (5.7) via (3.1) and (2.28); once 
more the space ranges, and not the local space time coordinates they represent, 
are physically appropriate to describe the changes in the system. Replacing 

tδ δε=   and x p vδ δ δε= =  one finds 
2

2
jk

jk
k

x
W

t
δ

ξ η
δδε

= +
  

having expressed jk kv x tδ δ=  according to the current notation; clearly 

jkδε  is the pertinent energy change corresponding to the configuration change 
in progress within jkxδ . Hence, keeping jkδε  and jkxδ  constants, write 

2

2
1

1 1
jk jk

k kjk

W x
t t

δ ξ δ
δ δδε +

 
= − − 

 



 

and thus 

( ) ( )
1

2
1

2
1

jk k k
jk

jk k kjk

S S t S t
x

W t t
δ δ δ

ξ δ
δ δ δδε

−

+

+

  −
= −   − 

 . 

In this way kS  and o
kS  describe the changes occurring in 1ktδ +  with re-

spect to ktδ  in the given region jkxδ  of the system. Certainly the local jkS  is 
due to the corresponding local changes of jkx  and jkε ; however it is in prin-
ciple possible that even at 1ktδ +  both these latter remain still included in the 
same range size jkxδ  where they were at ktδ ; this simply means that jkSδ  is 
small enough to imply correspondingly small changes of jkx  and jkε  that 
therefore still remain included within the same jkxδ . While acknowledging that 
this is in principle admissible because all range sizes are in principle arbitrary, it 
is interesting to compare what happens at 1ktδ +  and ktδ . If for example 

1k kt tδ δ+ >  by definition, i.e. the former is greater than the latter because it must 
include increasing values of local time coordinates kt , then 0jkWδ <  implies 

1jk jkW W +< . The negative sign of jkWδ  means that on the one hand 0o
kS ≥  

fulfils via 0jk jkS Wδ δ ≤  the probabilistic meaning of (5.13) and that on the 
other hand it also implies all 0jkSδ ≥ . Thus summing over j all terms jkSδ  at 
all ktδ  one infers 

0k jk
j

S Sδ δ= ≥∑ .                (5.14) 

Clearly this is just the second law of thermodynamics because, as written, it 
concerns an isolated system; the conclusion is in effect true if no external action 
perturbs the system. If not so, then any action altering substantially the configu-
ration of the system modifies by consequence the j-th range size too; in general 
different jkxδ  and jkδε  are reasonablyimplied before and after the external 
action. Thus, in particular, it can result that 1jk jkx xδ δ+ <  while however (5.13) 
can be again fulfilled: 0jk jkS Wδ δ ≤  still holds even with 0jkWδ >  but 

0kSδ < . Clearly in the system no longer isolate the external action has modified 
the spontaneous tendency towards increasing entropy. 
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It is worth remarking once more that the evolution of the physical system has 
implemented two subsequent time lapses ktδ  and 1ktδ + , not two deterministic 
time coordinates kt  and 1kt + :  these latter and the respective deterministic 

jkε  and 1jkε +  representing the external action would be incompatible with the 
Heisenberg principle. 

5.3. The Statistical Distributions 

Let the change Wδ  of W be W W wδ = ± , being w an arbitrary amount added 
or subtracted to the initial value of W. On the one hand W can increase or de-
crease by any physical reason with respect to its initial value; the double sign in-
dicates that no reason is guessable to expect that the change consists of either 
increase only or decrease only of the initial value W. On the other hand it is also 
reasonable to expect that 0W qWδ = , being q an arbitrary proportionality factor 
and 0W  an arbitrary value allowed to W consistent with (5.5); this position 
means that anyway the change Wδ  implies a new quantity still related to the 
meaning of thermodynamic probability 0W  coherent with W. In other words, 

0W  is such that 0W W qW′ = +  and 0W W qW′′ = −  are respectively compati-
ble and physically consistent with W w± . The fact that both W ′  and W ′′  
must fulfill (5.8) likewise the initial W, allows expecting the consistency of the 
following considerations with the equations up to (5.10) as well. If so, then  

0 , 0W W w q W qδ ± ± ±= ± = >                  (5.15) 

yields  

01 ;
1

W w
q W w

±

± ±

=
±

                      (5.16) 

put in this form, once more the space time Equation (5.5) of W is implemented 
via W w  and related 0W w , similarly to the position (5.8) leading to the re-
sults (5.10). The Equation (5.15) has been written in order to emphasize how w 
is to be regarded in agreement with either sign, i.e. 0W w q W+ ++ =  and 

0W w q W− −− = . In conclusion, recalling the Equation (5.5),  

( ) ( )0
0

0

, exp ;
exp 1

Ww w
q

ζ
χ ζ ζ

±
±

±
−

= =
− − ±

 

also here appears the space time function χ− . Hence, according to the reason-
ing to infer the Equation (4.14) via (3.60) and (3.61), at any given time 

( )0log C C constχ ζ
−
− = +  and thus 0kT kTµ µ− . In conclusion  

( )( )
0

0

.
exp 1

Ww
q kTµ µ
±

±

=
− ±

                  (5.17) 

This equation follows from the arbitrariness of 0µ , consistent with that of 

0ζ ; the multiplicative factor 1w−  has simply included 0ζ  in the constant ad-
dend of chemical potential µ  together with ζ . Implement now either  

0 0,W q W w W q W w− + + −= − = +  

of (5.15): being 0W >  by definition, there is no constrain to the number w−  
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related to the negative sign in the Equation (5.17), whereas the positive sign of 
this equation requires 0w q W+ −≤  i.e. 0 1w q W+ − ≤ . This constrain suggests the 
possible physical meaning of w q± ±  in (5.17). Let 0W  be the numbers of 
states with a given energy µ , i.e. the degeneracy of the state, and w q Nµ± ± =  
the number of particles in the given state; if so, then it is easy to realize that in 
the latter case Nµ  can take only the values 0 and 1 whatever µ  might be [10]. 
All details published elsewhere are omitted here for sake of brevity. Thus (5.17) 
is the well known formula of statistical distribution of fermions and bosons with 
degeneracy 0W . 

5.4. The Phase Space 

Entropy and Liouville theorem, both previously inferred, are the key concepts to 
introduce the phase space. As this topic is well known, are reported here just a 
few remarks aimed only to emphasize the link between space time and phase 
space; i.e. the concept of space time is actually the third essential ingredient to 
introduce “ab initio” the statistical mechanics. To this purpose consider in par-
ticular the Equations (3.39) and (3.1). 

Being x and t arbitrary and independent variables, which represent for exam-
ple the space coordinate of a given particle at various times in the space time, 
any value of xt can be obtained keeping constant either factor and allowing ap-
propriate values of the other one; both ways of defining an arbitrary space time 
coordinate j kx t  are numerically and conceptually equivalent to describe each 
one among N particles of the system at given time kt  in the range of space 
coordinates 1j j jNx x x≤ ≤  or at jx  during the time range 1 2kt t t≤ ≤ . Ac-
cording to (3.1), indeed, the space time coordinate of each particle is defined 
within allowed variability ranges 1j jN jx x xδ = −  and 2 1k k kt t tδ = − . So is phys-
ically significant the amount 2

j k j kx t pδ δ δ δε=  , whatever these range sizes 
might be. To highlight this point consider the following equations obtained im-
plementing (3.1) and (2.28)  

( )( )

2 2

,j k
j k j j k k

x t
p v v p

δ δ
δ δε δε δ

= =
 

 

whence  
2

j
k k j k

j j k

x
v t t x

v p
δ

δ δ δ
δε δ

= =


 

and thus, comparing the initial and final ranges of coordinates,  

j k k jx t x tδ δ δ δ=                        (5.18) 

the initial equation regards the j-th space coordinate jx  at the time kt , the 
former defined within the interval jxδ  the latter in the time range ktδ ; the fi-
nal equation rewrites the first one with exchanged indexes j and k. As in effect 
the first two equations are summarized in the third one, it means that the con-
cerned particle is described at different times jt  and kt  by different space 
ranges jxδ  and kxδ , to which correspond the respective momenta jpδ  and 
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kpδ ; moreover it also follows j k k jp pδ δε δ δε= , as it must be because anyway 
the Equation (3.1) must be fulfilled no matter how any particle moves in the 
space time. In other words, as j and k are not specified or specifiable, the particle 
moves actually through any random space and time ranges in the phase space 
according to its position and momentum of the space time. This can be better 
evidenced and generalized rewriting with trivial manipulations the last equation 

, ,

q q q q
j k j j q kjq

k k kj

qk
kj kjq

j kj

p x x p
x t x x x t

F

p
F t

x F

δ δ δ δ
δ δ δ δ δ δ

δε δε

δδε
δ

δ

= = = =

= =



       (5.19) 

i.e. one particle initially at any random jx  within jxδ  at the random time kt  
included in ktδ  is actually found within another qxδ  at the subsequent time 

kjqt  within time range kjqtδ . Obviously this chain could be further extended 
starting again from the last term q kjqx tδ δ , which in effect has the same form of 
the first one but is simply rewritten with different subscripts; the first and last 
terms of this chain represent different space time coordinates and thus its ability 
of the particle to fill various coordinate and momentum ranges defining the 
whole phase space. All accessible local coordinates of space time correspond to 
the respective local coordinates of space phase, with equal probability. 

5.5. Further Comments about the Diffusion Coefficient 

The diffusion coefficient D introduced in (2.19) is usually concerned in prob-
lems of matter displacement under non-equilibrium conditions, essentially due 
to concentration gradients; the same holds for the heat diffusion coefficient (2.22) 
in non-thermal equilibrium problems, typically in the presence of temperature 
gradients. However, the four equations from (4.13) to (4.16), as well as the next 
(5.20) and (5.21), suggest a more profound physical meaning of D. In this re-
spect deserve attention the following three remarks. 

1) The dimensional definition of D is m ; this yields D D m mδ δ= − , i.e. 
( ) ( )log logo oD D m mδ δ= − , being of course oD  and om  arbitrary con-

stants. Then, reasoning likewise in (4.14), the right hand side yields 
( ) ( )( ) ( )log = logo om V m V C Cδ δ , being C the amount of mass in a given 

volume V. Hence, being ( )log oC C kTµ= , as found in (3.60) and (3.61), one 
finds ( ) ( )log oD D kTδ δ µ= −  and therefore  

( )exp
o

D kT
D

µ= −                     (5.20) 

this is the usual form to express the dependence of diffusion coefficient on tem-
perature via the activation energy µ  and the reference constant oD . 

2) Assume now a body of matter of mass m in equilibrium at temperature T 
and implement the reasonable idea that both D and   take finite ranges of 
allowed values. Let minD  and max  be the respective limit values of interest 
here; is then significant the particular case where the Equation (4.15) concerns 
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the minimum temperature minT  defined as follows  

min
min

max

.zpDT
k k

= =



                   (5.21) 

Dimensional considerations are useful to guess an order of magnitude esti-
mate of minT . The reciprocal mobility 1−  has physical dimensions 
mass time , whereas D is h mass ; so their product represents the minimum 
energy zp . The notation emphasizes that the energy of interest to calculate 

minT  excludes the contribution of thermal vibrations, being instead due to the 
mere confinement of a particle or a body of matter within a finite delocalization 
range xδ ; accordingly, it is sensible to define minT  as zp kε . In fact the Equa-
tions (3.1) justify the existence of this form of energy and related force. 

Consider indeed one particle of mass m ideally delocalized between two infi-
nite potential walls xδ  apart; in a one dimensional model it is possible to write  

2

2 2, ,
2 2zp
p D
m m x x

δ ω σε ω
δ δ

= = = =


            (5.22) 

having expressed D mσ=   via an appropriate proportionality constant σ . 
This result is understandable thinking an oscillating particle confined in xδ , so 
that m bounces back and forth between the potential walls with frequency 

1 tω δ= . In fact tδ  is the time lapse to complete one oscillation cycle; 

max 0p pδ = −  is the range defined by the maximum delocalization momentum 

maxp p=  related to the range size and 0p =  when the particle inverts its mo-
tion on both potential walls. This picture agrees with 0pδ ≠ , i.e. with the 
physical impossibility of conceiving a localized particle at rest and thus with 

0p =  in fixed point exactly defined. The circular frequency here introduced is 
justifiable from a more realistic three dimensional point of view, where the back 
and forth one dimensional motion of m reads actually 2m xωδ=  and thus 

( )2 2zp m xωδ= ; i.e. m describes a closed circular path at tangential velocity 

tanv xωδ=  inside its confinement delocalization volume V, so far not yet in-
troduced explicitly. In effect it is also possible to evidence the confinement vo-
lume writing  

2 2 2 2
3

2 2 3 , , .
2 22 2

zp
zp zp zp zp

zpzp zp

p
F V x

m mVm x mV
δ

δ
δ

≈ = = ≈ =
  

     (5.23) 

Anyway it is sensible that minT , being presumably a fixed value, cannot de-
pend on the arbitrary m and specific zpV ; rather minT  is to be regarded as a 
universal property of matter uniquely defined. Both requirements suggest res-
tarting from the relativistic energy equation 2pc vε =  of one free particle of 
arbitrary mass m, which however must no longer appear explicitly. Implement-
ing thus the wave expression of momentum p h λ= , which in fact allows in-
troducing the expected oscillation behavior as that related to the concept of wa-
velength λ , one finds  

2 2

,pc hc
v v

ε
λ

= =                       (5.24) 
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which thus also defines  

( )
2

min

max

.zp
zp

hc
vλ

=  

The 3D generalization of this result is obtained imagining an arbitrary amount 
of mass delocalized in an appropriate range 2 r∆ , regarded as the diametric size 
of a hypersphere of radius r∆  to which is related the maximum value of zpλ : 
the idea is to implement steady matter waves of wavelengths zpλ  propagating 
through the hypersphere at rate maxv . Regard thus an arbitrary mass of an iso-
late free corpuscle ideally bouncing within one diametric distance, whose extent 
corresponds to one half wavelength; the largest zero point wavelength is that 
with steady nodes on the opposite boundaries of the hypersphere diameter and 
is thus 4zp rλ = ∆ . This implies that min

zp  defined by the zero point momentum 
wavelength zpλ  corresponds to back and forth delocalization through twice the 
diametric size 4 r∆  of the hypersphere: this is the physical meaning of (5.22) 
where ( )= 2 2zp v rν ∆  whence zp zphν ω=  . Also, imagining asymptotically 
v c→  to simulate maxv  and recalling (5.22), it is possible to conclude  

min min
min

min

2 π, , .
4 4

zp zp
zp

hc hc cT
r k k r r

ω= = = = =
∆ ∆ ∆

 
         (5.25) 

These results will be calculated later; regardless of the numerical values, how-
ever, it is possible to remark since now some interesting implications: 
− The Nernst theorem is automatically fulfilled, i.e. the absolute zero actually 

does not exist being clearly impossible to remove the zero point energy, 
which is an intrinsic feature itself of any amount of confined matter. 

− As expected, the related zero point temperature min
zp k  does not depend on 

the specific amount and physical nature of m. 
− Is in principle possible the quantization of temperature, which accordingly 

should start from minT  and change by discrete steps of the order of minT  it-
self. 

3) The reasoning to infer (5.21) and (5.25) introduces minD , whose physical 
meaning is relevant: it implies that minT  is somehow linked to the possible gra-
nular structure of the space time. 

To show this last point, calculate the change ( )j kx tδ  of the space time coor-
dinates around any local coordinate jx  and kt . The result is elucidated by the 
following chains of equations implementing once more the Equations (3.1):  

( ) ( ) , ;j
j k k j j k k jk j k jk

k

x
x t t x x t t v x t v

t
δ

δ δ δ δ
δ

= + = + =  

since the expression at right hand side reads  

( ) ( ) ( )

( ) ( )

2 22
2

22 2

,

, ,

k jk j jk
k jk

k jk j k jk jk

k jk j jk k jk j

t v x p
t p

t v x v x

t v x x t v x

δδ
δ δ δ

δε δ

δ δ

−
= = =

−

= − = −









 

with notation of (6.4), then  
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( ) ( ) ( ) ( )
22 2 2

2
3 3 , .jk jk

j k jk jk
jk jk jk

v D
x t D v

v v v

δ δ
δ δ= = = =





  

It is possible to identify here a minimum value of ( )j kx tδ  defined by 

minjkD D→  and jkv c→ , at least asymptotically. Anyway one finds  

( ) ( ) ( ) ( ) ( )
2

22 2 2 2min
3min

, , , .j k k j jkinv inv

Dx t t c x v c
c

δ δ δ δ= ≡ = − =    (5.26) 

Whatever the specific value of minD  might be, is interesting the conceptual 
idea of “granular” space time determined by a minimum linear size of cells, in 
the present one-dimensional model ( )length timeδ × , that define any macros-
copic values of xt within these cell; the third (5.26) corresponds to the definition 
of invariant interval, which is known to be the basis of the special relativity [11]. 

Accordingly, the Lorentz transformations, in particular, should actually be 
nothing else but the straightforward consequence of the granular nature of space 
time.  

5.6. Further Comments about the Zero Point Energy 

This section generalizes the idea of regarding the zero point energy and volume 
(5.23) as intrinsic properties of matter, rather than as operative thermodynamic 
parameters related to specific experimental conditions. According to (5.23), 
think the zero point volume zpV  considering for example an atom surrounded 
by neighbor lattice atoms; zpV  corresponds to its free lattice volume, whatever 
it might be depending on temperature and mobility. The fact that zp  is de-
fined by the confinement lattice volume around a given atom/ion, implies the 
limit 0zp →  simply because for an isolated free particle zpV →∞ . Nonethe-
less zp  depends itself on T, both because of the thermal dilation of matter that 
modifies the size of lattice spacing and because the T dependent mobility allows 
one lattice atom to spread well beyond its volume at minT  via the so called 
“self-diffusion” [12]. Moreover zpV  also depends on the presence of lattice de-
fects, which affect the free space available for its delocalization. In particular, one 
expects that the lattice atom is quenched in one lattice site at minT T=  only; in 
other words the volume V is a thermodynamic parameter experimentally set, 
whereas zpV  is determined by the physics of matter. In the absence of external 
fields at minT T= , therefore, minkT  is the minimum non-thermal energy of the 
lattice atom/ion, as it results from all possible interactions with lattice neighbors 
that determine the available free confinement volume; at minT T> , the thermal 
energy kT represents actually the additional contribution to the non-thermal 
zero point energy ( )zp zp T=  , so that it seems reasonable to think that in gen-
eral the simple kT should be implemented as zpkT +  . This holds in particular 
for the FD and BE statistical distributions. In the case of a single free particle this 
does not hold, as its delocalization volume is infinity by definition: but in general, 
when considering the thermodynamic properties of a body of matter, zp  can-
not be longer omitted at least in principle. 
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To justify the legitimacy of this conclusion, consider first an ideal gas inside 
which energy exchanges occur via direct collisions between its molecules only. 
Without hypothesizing specific interactions between molecules, e.g. long range 
Coulomb or dipole interactions between electron shells, holds between p and   
of each molecule the general equation  

2 2

;pc hc
v x

τ
λδ

= =                      (5.27) 

the second equality introduces the time lapse τ  between any successive shocks, 
during which the molecule travels freely the distance v xτ δ= . During each τ  
therefore   remains constant, since inside the gas the energy changes are sup-
posedly due to direct collisions only. In particular, as concerns the zero point 
energy,  

( )
2

3 2
2 3 , ;zp

hc xτ λδ= = 


 

the notation is justified by the free volume   dependence analogous to that of 
the Equation (P77). The fact that   involves xδ  is not surprising; 1xδ −  
comes from   in (5.27) and agrees with pδ  , being pδ  the total range of 
momentum change ( )p p− −  after one shock between molecules. 

Let 


 be the distance between one molecule just after its last shock and the 
wall of the recipient containing the gas; in general xδ≠ . Moreover, as 

/ = forceε λ−∂ ∂ , (5.27) yields  
2

2, ,hc xτ λ δ
λ

= = =


 


                 (5.28) 

where   is the impact force of the concerned molecule against the wall. If A is 
the surface of the wall, then the pressure due to the shock of one molecule is  

2

.hc
A A

τ
= =





                       (5.29) 

If   is such that A =


  , then the former equation becomes 2hc τ=


  ; 
so, since the numerator has physical dimensions energy volume× , the result 
reads  

2, .o o
o o hc τ= =





 
  


                   (5.30) 

Note that in general neither τ  nor   are necessarily constants independent 
of time; so the pressure   inferred in (5.30) could be variable during subse-
quent time lapses τ . Also note that to infer this result in the present one di-
mensional model it is enough to think the plane A orthogonal to the space coor-
dinate xδ . In a general three dimensional approach one should integrate over 
all possible incidence angles of the molecule against the wall to obtain the pres-
sure, as it is well known. This would entail a numerical factor, which however 
can be included in o o   and thus is irrelevant for the present purposes. Moreo-
ver, it is still possible to define a statistical value of   averaging the shocks 
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over several time lapses during a time range t τ∆  . So is defined the quantum 
pressure  

( )2
2 , , .o o

zp zp zp zp
zp

T= = =


 
    


 

This result has been obtained considering the delocalization volume of one 
molecule; it holds in general for any number N of molecules regarding zp  no 
longer as volume of a single molecule but as total experimental volume expV  of 
ideal gas simply with the position zp expV N= . The right hand side is the av-
erage confinement size of the molecule. It is significant to conclude that the 
pressure of the gas must be expressed not only taking into account the variable 
dynamical parameter expP  experimentally determined but adding to this latter 
the contribution zp  having merely quantum nature; in effect the present rea-
soning waives considerations about any state equation of ideal or real gases. Also, 
regarding the macroscopic volume expV  as a further dynamical parameter expe-
rimentally set, it contains the quantum contribution zpN . So, extending the 
reasoning carried out for one gas molecule to the case of N molecules, one finds  

2

2 , , .eff exp eff exp exp o o
zp

fNP P V V N f= + = − =  


         (5.31) 

The volume zp  is easily understandable, being intuitively evident that the 
molecules have finite size contributing to the total volume expV  experimentally 
measurable. Even zp  is guessable: if the zero point energy is simulated by an 
oscillator characterized by a non-thermal vibrational frequency that determines 
the zero point energy, see the next Equation (5.22), then the energy of any oscil-
lator in the gas volume defines a confinement non-thermal energy density 
equivalent to pressure, see next Equations (8.34). Indeed (5.31) shows that even 
at 0expP = , e.g. the core of a free body of matter in the vacuum with zero ap-
plied pressure, there is a residual internal pressure, non-eliminable, e.g. it could 
act substantially similarly to the repulsion between electron shells of molecules; 
moreover the latter equation shows even a non-reducible residual volume 

oN=  . The relationship between energy, pressure and volume follows directly 
from (5.29) as 2c A constτ= =  at fixed temperature: indeed at the right 
hand side of the first equality appear fixed quantities, of course at given 


 and 

τ  and thus constant T. So  

( )
2

2 .eff eff zp zp
fNP V N

 
= + − 
 
  


 

This equation reminds closely the characteristic terms of the Van der Waals 
equation, where f and zp  are approximately regarded as gas constants; this 
holds also here, even though the pressure and volume terms (5.31) have been 
inferred considering initially an ideal gas via quantum considerations about its 
constituting molecules. The interactions between these molecules, even not hy-
pothesized and purposely introduced “a priori”, appear as quantum effects re-
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gardless of specific considerations about their actual nature, which is in effect 
“hidden” in parameters like τ  or 


 or f descriptive of the properties of the 

gas; hence is not surprising that the coefficients o o   and o  contribute to 
that characterizing the famous Van der Waals equation. The conceptual reasons 
underlying this equation are well known; is interesting however that the form of 
the resulting equation based on the present approach is analogous to that just 
found. 

These considerations are now extended to the concept of temperature once 
having introduced the quantum meaning of minT  related to zp  to show that 
the zero point energy, typical quantum effect, affects the macroscopic properties 
of gases: ideal gas is the one where these quantum effects are approximately neg-
lected along with the long range mutual interactions as well. 

If effectively exists a minimum temperature 0≠ , then it must be defined by 

min zpkT =  . However, the right hand side is in general function of T itself; in-
deed it has been shown that 2 3

zp lV −∝ , being lV  the lattice volume available 
around a given lattice site. So the thermal dilation modifies zpε , whose 
non-thermal physical meaning however still holds identically. Moreover the lo-
cal mobility is itself T dependent, as it is intuitive to think; in effect it is known 
that by self diffusion, atoms in a given lattice point can exchange of place with 
lattice neighbors, so that the actual volume allowed to a given atom is increased 
by the number of neighbor elementary cells accessible. 

These considerations should be also extended in particular to the statistical 
distributions of bosons and fermions, usually written as a function of kT only: 
taking into account the considerations elucidated in the case of the Van der 
Waals equation, one should conclude that strictly speaking in the case of a solid 
body the simple term kT should be replaced by ( )qk T T+ , where qkT  ac-
counts for the quantum contribution related to the T-dependent zero point 
energy with ( )q qT T T= . 

( )( )
( )

0
min

0

,
exp 1

, 1.

zp

zp zp

Ww nT k
q k

T n integer

µ µ±

= = +
− ±

= = ≥

 


 

         (5.32) 

Even though the value of minT  is presumably much lower than the ordinary 
temperatures today attainable and experimentally measurable, the Equation 
(5.25) suggests the chance of being tested in a situation where zp  is relevant, 
i.e. in the case of theoretical models of solid state physics. In effect the paper [13] 
implements the ideas of quantized temperature and statistical distributions 
(5.32), both introduced as hypotheses; the specific heat calculated agrees very 
well with the experimental data from very low T up to the melting point for sev-
eral metals with different crystal structures. 

6. Some Relativistic Corollaries 

In this section are examined some relevant relativistic corollaries of the previous 
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results. The importance of the following considerations is shown by the chance 
of obtaining contextually relativistic results in the same conceptual frame of the 
quantum results previously obtained. The next two subsections emphasize the 
importance of the previous equations (3.15) and (4.9), now again under test after 
their previous validations, see respectively Equations (3.20) and (4.6), (4.7), (4.13) 
to (4.18). 

6.1. The Invariant Interval 

Implement the Equation (3.15), once more under test after the result (3.20), re-
written as follows  

( )
2

2, ,a p
bc pr r ap c
c
εσ ε σ∆ = ∆ ∆ = − − = −          (6.1) 

depending on whether 1r   one has c p∆ ∆ . Hence, squaring both sides, 
( ) ( )2 2c p∆ ∆  reads  

( ) ( )2 2 , 0,c p K K∆ − ∆ =                  (6.2) 

where anyway K is the resulting value from the left hand side of the Equation 
(6.2). 

Consider first 0K > . 
Implementing (3.1), one finds  

( ) ( )2 22 2 2 ,c x t K− −∆ − ∆ =   

whence  

( )
( )

2
2 2 2

2 ;c t x K
t x

∆ −∆ =
∆ ∆

                   (6.3) 

this equation reads identically  

( ) ( ) ( ) ( )
2

2 22 2 2 2 2 2 2
2 21 , ,K vs x t c t s s s c t x

c
 

′ ′′∆ = ∆ ∆ = ∆ − ∆ = − = ∆ −∆ 
 

  (6.4) 

having implemented once more v x t= ∆ ∆ , whereas  

( )2 2
2

21
c vx
K c

 
∆ = − 

 



 

reads by dimensional reasons, whatever the value of K might be,  

( )22
2 2

2 2 , .
1

cxx x
Kv c

∆′ ′∆ = ∆ =
−



               (6.5) 

It is easy to recognize the Lorentz transformation of the intervals x′∆  and 
x∆  in two different inertial reference systems R and R′ , hence in (6.4) both 

( )2s∆  and x t∆ ∆  must be invariants, as found in particular in (3.62); indeed K 
is invariant itself if r of (6.1) is calculated via invariant forms of ε  and p, see 
Equations (3.64). 

Consider now 0K < . 
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The interval defined in (6.3) reads 2 2 2 0x c t∆ − ∆ > ; moreover (6.2) reads 
( )22 c p K∆ = ∆ − , whence (3.20) with an appropriate value of K. Also this result 

holds regardless of the local limit condition ∆ → ∂ ; so this is not a local prop-
erty, but a feature of the whole space time. It is significant the fact that these re-
sults have been obtained with the help of the quantum uncertainty relationships 
(3.1). 

6.2. The Gravity Force 

Consider again the Equation (4.9), now once more under test after its early vali-
dation via the Equations (4.6), (4.7) and (4.13) to (4.18). Implementing the Equ-
ations (3.1) and the initial definition (2.2) of v one finds  

2 3

2 2 2

v x p x pt
c c t

δ δ δ δ
δε δεδ

∆ = =  

that yields, after multiplying and dividing the right hand side by an arbitrary 
mass m,  

3
2

2

1, , ;m p t F xmc
m t

δ δ
δε δε δ
∆

= = = =
 

              (6.6) 

by dimensional reasons   is an arbitrary length. The function   consists in 
general of a constant term G plus a correction term  ; indeed   can be ex-
panded in series around arbitrary reference ranges 0xδ , 0tδ  and 0m  defining 
G, i.e.  

3 33
0 0

2 2 2
10 0 0 0

, , , ,j
j

j

x xxG G a u u
m t m t m t
δ δδ
δ δ δ

∞

=

= + = = = −∑        (6.7) 

being ja  appropriate coefficients of the power series expansion and   the 
sum of the higher order terms of the series. This means calculating   around 
an arbitrary value 0 G≡ . So (6.6) reads  

( )2 ,mc G= +


                       (6.8) 

It is evident that the general relativity appears in this result: the Newtonian 
potential Gm   recognizable in this equation is the approximate particular case 
of a more general equation involving   too. It is known for example that the 
simple addition of a further term to the Newtonian potential is enough to calcu-
late correctly the perihelion precession even without implementing the basic as-
sumptions and tensor calculus of general relativity [14]. Unfortunately the 
Newton physics does not justify itself this additional term. Nonetheless the mere 
series expansion of the last (6.6) around an arbitrary space time constant term G 
legitimates the chance of generalization without introducing “ad hoc” hypothes-
es. In this respect some further considerations exposed below regard in particu-
lar the additional non-Newtonian terms due to the series (6.7), still in the con-
ceptual frame introduced by (1.11) and (1.12) as done throughout this paper. In 
effect, some papers among which [15] show that the quantum uncertainty allows 
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to infer the most relevant results of general relativity in a unique frame that in-
cludes of course the quantum physics. The presence of 2c  at the left hand side 
of (6.8) suggests the chance of multiplying both sides by a further arbitrary mass 

m′± ; one finds then  

2 ,G
m m m mm c G
′ ′

′± = = ±

 

              (6.9) 

which defines two important quantities  

2, , .G G
G G

mG m mF G G
m

δ
φ

δ
′

= = ± = − ≈ ±
′



  

 
       (6.10) 

At the left hand side of (6.9) appears the rest energy 2m c′±  of m′  plus a 
correction term resulting from the series expansion of G, at the right hand side 
the related potential energy G  to which correspond the pproximate gravita-
tional potential Gφ  and force GF  of (6.10) via the constant zero order term 
  only. Note that the Equations (2.35) and (3.64) have introduced the concept 
of states of negative energy; hence the left hand sides of (6.9) and (6.10) have 
physical meaning even regarding m′±  as unique mass m±  with positive and 
negative energy states 2 2m c m c±′± = . So the Equations (4.9) and (3.1) prospect a 
possible chance for positive sign of m′ , i.e. a repulsive gravity force as already 
found in [16] [17] [18], whereas (6.9) yields  

*
* *

2, .G
G G

mG m mF G
δ

φ
δ

′
= = − ≈
  


               (6.11) 

Consider here the negative value m′−  and suppose G ; (6.9) and (6.10) 
yield  

2, .G G
mG m mF Gφ

′
= − ≈ −

 

                (6.12) 

The Equations (6.12) and (6.11) will be further explained just below, see the 
next Equation (8.6), after having first validated the results achieved in this sub-
section. 

1) The Equation (6.8) reads also  

2 ,G mG
G c
+

=
  

which in the particular case G=  implies a specific value of 


 given by  

2

2 .bh
mG
c

=
                        (6.13) 

To understand the physical meaning of this result, rewrite identically (6.8) 
multiplying both sides by an arbitrary factor 1σ ≤ ; then  

( )2 2 2, 1 , .e o o ev Gm G v cσ σ= = + =    

For 2oR = , in particular, one recognizes the well known escape velocity ev  
of an arbitrary mass m′  at a distance 


 from the gravitational center of mass 

of m, also inferable via (6.12) under the condition of null total energy (potential 
plus kinetic) of m′  at infinity. As 2oR =  is compatible with 1σ =  simply 

 

DOI: 10.4236/jmp.2018.914161 2557 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2018.914161


S. Tosto 
 

putting G=  in (6.8), this limit condition for the chance of m′  at distance 


 of escaping from the gravity field of m holds also for c. This velocity can be 
nothing else but that of a photon, so (6.13) shows that at any bh′ ≤   even light 
cannot escape from the gravity field of m. Trivial manipulations of the early Eq-
uations (4.8) and (4.9) yield therefore the black hole limit condition between 
mass m and distance 


. 

2) The present way to introduce the gravity force explains why any test mass 
m′  behaves in the same way in the field of a source mass m: the masses m of 
(6.6) and m′  of (6.9) have been introduced subsequently and independently 
each other. Note the conceptual difference between the present reasoning and 
that of the Newtonian approach: Newton has contextually introduced two 
masses to define their mutual interaction law, here the masses have been conse-
quentially introduced starting from (6.6) because 2c  requires the concept of 
mass to introduce that of gravitational energy. It is not surprising that once 
having decided either mass as a field source, the behavior of the other is uniquely 
fixed: as both masses are independent and arbitrary, once having fixed m the 
behavior of m′  is uniquely determined. In other words there is no reason to 
expect that any other mass m′′  behaves in a different way from m′  in the gra-
vitational field of m because the law governing its dynamics has already been 
independently fixed. 

3) Here m and m′  are regarded in fact as gravitational and inertial masses; 
the first one defines the gravitational potential Gφ , the second one defines their 
mutual interaction force GF . As they are interchangeable, their gravitational 
and inertial role is physically equivalent and indistinguishable. Thus gravitation-
al and inertial masses must be equal. 

4) Consider that (6.9) and (6.12) yield  

2 2 22 , 2 .bh G bh bh G

c c
φ δφ

δ δ = − = − = − 
 

  



  

          (6.14) 

Identify now the distance   with one wavelength of a light beam propagat-
ing in the vacuum; thus  

2

2 2 2 2, , .c c c
cc

δ δν ν δνδ δν
ν ν ν

= = − = − = −


 



 

Hence, given a light wave propagating at distance bh>  , one finds  

2 22 ;bh G
bh cc

δφ δνδ− = − = −


 



 

then  
3

2

2, , ,G
r r

r bh

c c
mGc

δφ δν ν δν ν ν
ν

= = = = −


          (6.15) 

being rν  a reference frequency of the wave. The first equation defines the 
famous red shift ( )r rν ν ν−  of a light wave due to the gravitational potential 
field change Gδφ . 

5) It is instructive to consider now two photons freely moving in the vacuum 
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on the diametric plane of two concentric hyperspheres: the inner photon just at 
radial distance bh  from the gravity center of m, given by (6.13), the outer 
photon at any radial distance bh>   from m. The previous result shows that 
the inner photon cannot escape from the gravity field of m, so it can move on 
the surface of the inner hypersphere only, whereas any photon moving at very 
large distance bh    from m is free to travel unperturbed as a limit case from 
minus infinity to infinity or vice-versa. Is reasonable the idea that the outer 
photon moving at the closest approach distance bh>   should follow an in-
termediate behavior, i.e. a curved space time path bent by m. This preliminary 
consideration justifies why the problem of light beam bending is tackled here 
with reference to the previous Equation (6.13). The standard way to approach 
the problem considers the curved trajectory traveled by the photon that follows 
the space time curvature along an arc sδ  around m at distance 


; the position 

of the photon before and after its closest approach to m defines the characteristic 
deflection angle ( ),mϕ ϕ=   equal to that formed by the tangents to the oscu-
lating circumference at boundaries of sδ . From a quantum point of view, 
however, the concepts of position and trajectory are missing, rather the ap-
proach must be similar to that followed to infer (4.16). Just for this reason the 
present reasoning is instructive to highlight how the quantum requirements are 
plugged into and provide information on this typical relativistic context. 

Regard the arc sδ  of osculating circumference of radius 


 defined by 
sδ ϕ=   conceptually according to of (3.1), i.e. as an uncertainty range where 

the photon is delocalized. Accordingly sδ  is actually given by two half angles 
2cwsδ ϕ=   and 2ccwsδ ϕ= −  traveled by the photon along clockwise and 

counterclockwise paths around the middle point 2sδ ; indeed the photon dis-
placements implied by cwsδ  and ccwsδ  are physically indistinguishable, be-
cause nothing is known about the motion features of any particle within an un-
certainty range. This point of view skips the idea of a photon entering in sδ  
through one boundary and exiting from the other boundary, which in fact would 
define sδ  as an element of trajectory. So ( )cw ccws s sδ δ δ ϕ= − − =   waives the 
whole ϕ , which would imply discriminating the events where the photon tra-
vels through sδ  coming from −∞  towards ∞  or from ∞  towards −∞ ; 
actually these events are indistinguishable likewise the boundaries of sδ  
themselves. So, with respect to gravity center of m, the angle of physical interest 
is 2ϕ  and not ϕ  to account for the sought total sδ . In other words the 
Equations (3.1) compel merging two half-paths into a unique travel path without 
discriminating either of them. 

Consider then an angle 2ϕ  on a circumference of radius 


 and its related 
length ( )2sδ   to describe the uncertainty range sδ  where is delocalized the 
photon. Rewrite the second (6.14) as follows  

2 2

2 , ;bh bh bh

o o

s mG c mG c sδ δ δ
 

− = − = − − − = 
 

  



     

 

here the uncertainty ranges ( )bhδ    and ( )2
G cδ φ  have been simply re-
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written with the usual notation of any oy y yδ = −  by definition, whatever the 
concerned y might actually be. In this specific case 


 and o  are two different 

distances of the photon from the gravity center of m. It is clear that it is conve-
nient to put here o →∞  because, as previously stated, we are interested to 
describe the situations where one photon initially unperturbed passes at a finite 
distance 


 from m. Hence the last equation reads  

2

2 .bh s mG cδ
= − = −



  

 

If, for the aforesaid quantum reasons 2sδ ϕ=  on the osculating circle, 
one finds immediately  

22 .
2

bhl mG
c

ϕ
= =
 

 

These simple considerations emphasize the actual quantum character of one 
of the most representative relativistic predictions, the gravitational lensing; the 
famous factor 4 defining ϕ  at the right hand side appears to be actually the 
fingerprint of the quantum uncertainty. 

6) Consider the physical dimensions of the gravity constant inferred from 
(6.6): according to (6.7), space and time range sizes 0xδ  and 0tδ  concur to its 
macroscopic value together with the arbitrary mass 0m . From a quantum point 
of view, (6.7) does not exclude the chance of mass fluctuation, i.e. according to 
(4.6)  

3 3
0 0

02 2 2
00 0 0

2

0 0 0 0 2

1 ,

1 1 .

x x
G m

mm t t

vm m m m
c

δ δ
δ δ δ

δ δ

δ

 
= − +  

 
 

′  = − = − −
 
 

              (6.16) 

Even considering preliminarily the fluctuation of 0m  only, and thus energy 
fluctuation * 2

0c mδ δ=  only, the constancy of G is expressible as  
3 3
0 0

0 02 2
0 0 0

0,
x x

G m m
m t t
δ δ

δ δ δ
δ δ

 
= =  

 
 

i.e. *δ  implies the change of 3 2
0 0x tδ δ  as well. Note that 0xδ  and 0tδ  

are not usual dynamical variables characterizing physical laws, rather they define 
the structure of G itself. In effect, this quantum standpoint implies that transient 
fluctuations of values of G are in principle possible, being compatible with cor-
responding space time energy quantum fluctuations *δ . Making explicit the 
right hand side of this last equation, trivial algebraic steps yield  

2 3 3
0 0 0

0 0 02 3 2 2
0 0 0 0 0 0

2
0 0 0 0 0

2
0 0 0 00 0

3 2

3 2 0

x x x
G x t m

m t m t m t

x x x t x m
t x m xm t

δ δ δ δ

δ δ δ
δ δ

= − −

 
= − − = 

 

 

so that 1G const=  simply if  
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0 0 0 0 0 0
1 2 1

0 0 0 0 0 0 2

1, , , 2 3;
x x m m m m
t t x x t t

δ δ δ
σ σ σ

δ δ δ σ
= = = + =  

otherwise, e.g. a different correspondence between 1σ  and 2σ  whatever their 
values might be, the quantum definition of G admits 0Gδ ≠ . All this has clear-
ly to do with the existence of inflationary era of the early Universe: an appropri-
ate fluctuation 0Gδ ≠  of G can contribute in principle to the sudden increase 
of expansion rate of the early Universe. Among the implications of these asser-
tions, one deserves particular attention: the possible fluctuations of G affect the 
black hole length bh  of (6.13) of a given m. Unfortunately further discussion 
on this crucial point is outside the aims of the present paper. 

7) Returning now to the Equations (5.25), the maximum value of momentum 
wavelength zpλ  has been related to a suitable space range r∆  defined as the 
radius of a hypersphere within which is delocalized an arbitrary amount of mass. 
As the steady wavelength appropriate to calculate the zero point energy min

zp  
defining minT  corresponds to the maximum delocalization extent physically 
conceivable in our Universe, is reasonable to relate zpλ  to the diametric size 
2 ur∆  of the Universe, regarded here as a hypersphere with diameter 2 ur∆ . So 
think the mass ideally bouncing within one diametric distance, whose maximum 
space extent corresponds to one half wavelength; this wave has thus steady nodes 
at the diametric boundaries of the Universe, regarded in effect as a hypersphere. 
Replacing r∆  of the Equation (5.25) with ur∆  and putting v c→  asymptot-
ically, one finds  

min min
min

min

2 π, , .
4 4

zp zp
zp u

u u u

hc hc cT
r k k r r

ω= = = = =
∆ ∆ ∆

 
       (6.17) 

The current estimate 284.35 10 cmur∆ = ×  [19] yields the numerical values  
min 45 30 18 1

min1.2 10 erg, 8.3 10 K, 2.2 10 szp uT ω− − − −= × = × = ×     (6.18) 

In addition to the preliminary remarks about the Equation (5.25) previously 
emphasized, these numerical results suggest further implications: 
− Finite Universe means identically min 0zp ≠ . 
− The limit min 0T →  would hold in an infinite universe only. 
− To guess the physical meaning of the small value of zp , note that 

171 4.6 10 sω = ×  fits surprisingly well the estimated age of the universe 
174.35 10 s×  reported in [19]. 

− The fact that the energy corresponding to zpλ  agrees reasonably with the 
estimated order of magnitude of the age of the universe, suggests that min

zp  
with which has been calculated minT  could be a possible vacuum energy 
fluctuation, still in progress, of the whole Universe. 

− It is interesting that uω  that determines minT  agrees surprisingly well with 
the Hubble constant. 

8) It is possible to implement these results to calculate another important 
property of the Universe, i.e. the vacuum energy density uη . In general, the 
energy density corresponds from the dimensional point of view to 
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2mass frequency length× . Consider now that according to (6.13) nothing, even 
the light, can escape from a range size bh  enclosing the mass m; hence, the 
Equation (6.13) represents a significant opportunity to describe how to trap in-
side a volume of space time energy that cannot be irradiated nor lost outside it. 
After having inferred that an energy uω  pervades all Universe, whose zero 
point value 2uω  determines the zero point energy defining minT , is attract-
ing the idea that uη  can be calculated just with the value of uω  controlling 

minT . This idea links the vacuum energy density to the zero point energy (5.22) 
related to minkT . If so, then calculating 2 2m c G=  according to (6.13) and 
implementing uω  just calculated,  

2
2 8 3 9 33.3 10 erg cm 3.3 10 J m .

2u u
c
G

η ω − −= = × = ×         (6.19) 

The sensible value of vacuum energy density further supports the way to cal-
culate the values (6.18). This means that the concept of vacuum does not imply 
that of “nothing”: rather the vacuum must consist of virtual particles whose 
energy, i.e. mass, governs the residual vacuum energy density in agreement with 
the third law of thermodynamics. 

9) But there is more. Implement the mass uM  of the part of visible Universe 
[16] estimated counting the stars only to calculate  

55 27
2

2
3 10 g, 4.5 10 cm.u

u
M G

M
c

= × = ×             (6.20) 

On the one hand one expects that uM  is estimated by defect, without taking 
into account that other forms of energy distributed in the Universe could in 
principle increase this value; whatever this additional energy ∗  might be, it 
concurs with uM  by 2c∗  to the total mass of the Universe. On the other 
hand are visible only the stars whose distance does not overcome the observation 
limit posed by the light speed; assuming that the distribution of galaxies and 
thus stars is uniform in the Universe, the actual mass due the total number of 
stars should be  

3
* 55 573 10 1.1 10 g.u

u

r
M

c t
 ∆

≈ × = × ∆ 
 

This value still estimates the total visible matter of the Universe as if the light 
speed would be infinite; as such, however, it does not tell anything about other 
possible contributions inherently “dark”, i.e. non-luminous, for example the va-
cuum energy/c2 or the zero point energy/c2. Compare thus just this value *M  
with the total mass related to the whole vacuum energy density uη  calculated 
above. It is  

3 58
2

4 π 1.3 10 g
3

u
ur c
η

∆ = ×  

The total vacuum energy of the Universe is still about 12 times higher than 
that of all visible objects. Make at this point a hypothesis: 

The energy density of vacuum and that of matter are equal, i.e. regard matter 
 

DOI: 10.4236/jmp.2018.914161 2562 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2018.914161


S. Tosto 
 

and vacuum as two different thermodynamic systems at global equilibrium. 
So *M  must be incremented just by this factor to make equal the respective 

densities. Write thus the total mass balance as a function of the true visible mass as  
* *2 12p totM M M M Mε+ + = =               (6.21) 

the factor 2 accounts for the antimatter, wherever it might be in the Universe, 
whereas pM  and Mε  are the missing masses also concurring to the factor 12 
assumed true. The notations account for the fact that the concept of mass can be 
defined in general via p v  and 2vε . Rewrite now these positions with the 
help of (2.36)  

2, ,p
p

hh vM M
v v

ε
ε ε

ε

ν
ν

λ λ
= = =                (6.22) 

where pλ  and εν  are the pertinent momentum wavelength and energy fre-
quency. Thus  

2

2, .o o
p

p o o

v vh hvM M
v v v vε

ελ λ
 = =  
 

              (6.23) 

being ov  arbitrary velocity. Moreover rewrite identically (6.21) as  
* * * * *

* *
2

2 12 , ,

, ,

p p p

p o o

M q M q M M M q M

h hvM q M M
v v

ε

ε ε
ελ λ

+ + = =

= = =
         (6.24) 

where pq  and qε  are appropriate coefficients able to express numerically 

pM  and Mε  via *M . Actually the physical meaning of these positions is to 
establish a relationship between visible mass and the other contributions to 

totM . The last position, in particular, is possible because pλ  and ελ  are arbi-
trary. One equation to determine these coefficients is obviously  

( ) ( )10, , , , .p p pq q q q x t q q x tε ε ε+ = = =           (6.25) 

Moreover, as (6.23) reads  
2

2, , ,o o o
p p

p

v v vvq q q
v v ε

ελ λ
 = = = = 
 

            (6.26) 

(6.24) yields  

( )* * 2 * 2, 10,p p p p pq M q M q q M q qε+ = + + =          (6.27) 

and thus 2.7pq =  and 7.3qε = . Being the third position (6.26) certainly ful-
filled via the arbitrary ov , which however does not appear in (6.27), (6.24) and 
(6.21) become  

* * * * * *2 2.7 7.3 12 , 2.7 , 7.3 ,pM M M M M M M Mε+ + = = =  

which are expressed more significantly in relative % : 

( ) *8.3 8.3 % , 22.5% , 60.8% .pM M Mε+            (6.28) 

The papers [10] propose a possible explanation, here omitted for brevity, 
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about why matter and antimatter are separated. It is more important to note that 
there is no “ad hoc” hypothesis in this reasoning, rather a further implication of 
the fundamental concept of uncertainty repeatedly invoked throughout all this 
paper and again exploited here through the assumption of vacuum/matter equi-
librium. In effect the mass densities calculable via the terms pM  and Mε  ad-
ditional to *M  in (6.21) correspond to the respective energy densities and thus 
to pressure terms inside the Universe. The next Equations (8.28) to (8.34) eluci-
date this point. 

10) Multiply (6.6) by the mass am  introduced in (3.20) and (3.21); recalling 
the second (3.26) it is possible to write  

2
2 2

2
,a a

a
m m

m c G
n nεσ

−= =
′ + 


                  (6.29) 

which links via 2c  the Newtonian gravity and quantum energy at the left hand 
side. Whatever εσ  might be, the arbitrary distance   is repalced by arbitrary 
quantum numbers n and n′ . In this sense (3.20) is reasonably defined in [6] as 
equation of quantum gravity. 

It is true that actually G should be replaced by   to plug all considerations 
carried out in the subsection 6.2 into the relativistic realm via (6.7); but it is also 
true that actually am  has been defined in order to make εσ  and pσ  of Equ-
ation (3.15) consistent with the harmonic oscillator form (3.25) consequent 
(3.24). Modifying the definitions (3.23) in order to define non-harmonic oscilla-
tions would mean adding additional correction terms corresponding to the 
higher order terms of the series (6.7). It is possible to say shortly that the Newton 
gravitational energy corresponds to quantum harmonic oscillators at the left 
hand side of (3.25), the relativistic gravity is described by non-harmonic oscilla-
tor terms replacing the mere n hν′  of (3.25). 

7. Klein Gordon, Proca and Maxwell Equations 

Implement now the Equations (3.30) introducing a function of ( )0ψ  defined as 
follows  

( ) ( ) ( ) ( ) ( )0 0 0exp , , ,Q x tψ σψ ψ ψ ′= =                 (7.1) 

where σ  and Q are arbitrary constants. So the first Equation (3.30) yields  

( )

( )
( )

202 2 2

2 2 20

1 1 ;
tt t t

δ ψ δ ψ δψ δ ψσ σ σ σ
δδ δ δψ

  = + = ±     
          (7.2) 

proceeding in analogous way with the help of (3.31), the second Equation (3.30) 
yields  

( )

( )
( )

02 2

2 20

1 1 .
x x

δ ψ δ ψσ σ
δ δψ

= ±
′ ′

                    (7.3) 

Hence, replacing (7.3) and (7.2) in the right hand side of (3.32), the result is 
an equation expressed as a function of the functional ( )0ψ  of ψ   
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( )
( ) ( )

( )
2 0 02 2

0
2 2 , 1 ;m c m m

t x
δ ψ δ ψψ σ σ
δ δ

′  ′= − + = ±  ′ 

         (7.4) 

as m appears at the left hand side only of (3.32), it has been included in m′  to-
gether with the factor ( )1σ σ±  without loss of generality. Taking the limit 
δ → ∂ , which by consequence implies ( )0

KGψ ψ→  as well, this one dimen-
sional result is actually the well known Klein Gordon equation  

2 22 2

2 2

2 2

2 2

0,

.

KG KG
KG KG KG

i

m c m c
t x

t x

ψ δ ψ
ψ ψ ψ

′ ′∂   = − + → + =   ′∂ ∂   
∂ ∂

= −
∂ ∂

 





 

On the one hand it confirms the validity of the positions (3.30) and thus of 
(3.39) too; on the other hand this result shows that the Klein Gordon equation is 
inferred from the local functional (7.1) of the space time function (3.39). The 
latter equation simply rewrites the former according to the usual 4D d’Alabertian. 

This result can be further generalized taking advantage that the last equation 
is actually expressed as a function of m′  and not of the initial m. The fact that 
m′  can take two values depending on either sign in (7.3) suggests that in fact 
two equations are tacitly implied by the unique Equation (7.1); for example one 
scalar equation and one vector equation should be compatible with (7.3). This is 
very easily proven showing that the scalar and vector fields of the Proca equa-
tions can be combined into one resulting Klein Gordon-like equation. The most 
straightforward way to demonstrate this assertion starts just from the Proca eq-
uations  

2

2

2

2

1 ,

1 ,

mc
t tc

mc
tc

φφ φ

φ

∂ ∂   − +∇ ⋅ = −   ∂ ∂   

∂   +∇ +∇ ⋅ = −   ∂   

A

A A A









 

which actually, owing to the definition of the operator 


, read respectively  

( ) ( )2 22
2

2 2 2

1 1, ;mc mc
t tc t c

φ
φ φ

∂ ∇ ⋅ ∂ ∇∂   ∇ + = + = −   ∂ ∂∂   

A A A
 

    (7.5) 

thus φ  and A  are the sought scalar and vector fields linking the two equa-
tions. Multiply the former equation by an arbitrary function ( ), , ,f f x y z t=  
and the latter by an arbitrary velocity vector ( ), , ,o o x y z t=v v , i.e.  

( )

( )

2
2

22

2 2 2

,

1 1 .o o o

mcf f f
t

mc
tc t c

φ φ

φ

∂ ∇ ⋅  ∇ + =  ∂  
∂ ∇∂  ⋅ + ⋅ = − ⋅ ∂∂  

A

Av v v A





 

Subtracting side by side these equations, 

( ) ( )2 22
2

2 2 2

1 1 ,o
mc mcf

t tc t c
φ

φ φ
   ∂ ∇ ⋅ ∂ ∇∂   ∇ + − = ⋅ + +         ∂ ∂∂      

A Av A
 

  (7.6) 
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trivial algebraic steps yield the following scalar equation  

( ) ( ) ( )
22

2
2 2 2

1 1 .o o o
mcf f f

t tc t c
φ

φ φ
∂ ∇ ⋅ ∂ ∇∂  ∇ + − ⋅ − ⋅ = + ⋅ ∂ ∂∂  

A Av v v A


  (7.7) 

As f is an arbitrary function, it can be defined in order that  

( ) ( ) 2 2

2 2 2 2 2

1 1 1 ;o of f
t tc c t c t

φ φ∂ ∇ ⋅ ∂ ∇ ∂ ∂
− ⋅ − ⋅ = −

∂ ∂ ∂ ∂

A Av v          (7.8) 

hence  

( )
22

2
2 2

1 .o
mcf f f

c t
φφ φ∂  ∇ − = + ⋅ ∂  

v A


               (7.9) 

Eventually it is possible to infer from this equation  

( )
22

2
2 2

1 1 , , 0;o
mcf f q f qf q

c t
φφ φ φ∂  ∇ − = + ⋅ = ∂  

v A


     (7.10) 

both f and ov  are arbitrary, thus the last position just introduced is in fact 
possible. Actually the first (7.10) does not depend on f and has still the form of a 
Klein Gordon-like equation for the previous scalar function φ , where appears 
however the factor 1 q+  at the right hand side corresponding to the previous 
( )1σ σ±  of (7.3). Just this factor is the key to split this double valued equation: 

indeed 0q =  is one scalar equation, whereas the additional chance 0q ≠  al-
lows inferring the couple of Proca equations via the position o qfφ⋅ =v A  that 
introduces the vector field A . It is enough to revert the steps from (7.10) to (7.5) 
still via the key position (7.8). The profound physical meaning of this position, 
here purposely introduced to obtain (7.9), is shortly outlined below, to show that 
it is not merely a useful algebraic step. 

The Equation (7.8) reads  

( ) ( )2 2

2 2 2 2

1 = of
t tc t c t

φφ∂ ∇ ⋅ ∂ ∇   ∂ ∂
+ ⋅ +   

∂ ∂∂ ∂   

A v A          (7.11) 

i.e.  

2 2

1 .of
t t t tc c

φ φ∂ ∂ ∂ ∂   ∇ ⋅ + = ⋅ ∇ +   ∂ ∂ ∂ ∂   

v AA            (7.12) 

In this equation it is possible to put formally  

2 2

1 0, , 0ov
t t tc c
φ φ∂ ∂ ∂

∇ ⋅ + = ∇ + = − ⋅ =
∂ ∂ ∂

A EA E         (7.13) 

the first position is the Lorentz condition, the second equation is the definition 
of the new quantity E , the third equation is obtained replacing E  at the right 
hand side of (7.11) and simply means that ov  is orthogonal to t∂ ∂E  to get 
0 0=  at both sides. Now give A  physical meaning introducing the following 
positions  

1, 0,
c t
∂

= ∇× ∇ ⋅ = ∇× = −
∂
HH A H E             (7.14) 
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the first position is simply the definition of a new quantity H , whence follows 
the second equation by consequence; the third equation is obtained taking ∇×  
of both sides of the second (7.13). Note now that the first and second (7.13) yield  

2
2 2

2 2

1
t t c t

φφ φ φ ρ∂ ∂∇ ⋅ ∂   −∇ ⋅ ∇ + = − ∇ + = −∇ = ∇ ⋅ =   ∂ ∂ ∂   

A A E    (7.15) 

Eventually it is possible to infer a fourth equation considering the continuity 
condition 0gδ =  of an arbitrary function ( ),g g x t= , which reads 

( ) ( ) 0g g t t g x xδ δ δ= ∂ ∂ + ∂ ∂ = ; thus the one dimensional expression 
( ) 0g t g x v∂ ∂ + ∂ ∂ = , where v must be intended of course as xv x tδ δ= , reads 

in general g g t⋅∇ = −∂ ∂v . Hence ( )g g g⋅∇ = ∇ ⋅ − ∇ ⋅v v v  yields  

( )0 .gg g
t

∂
∇ ⋅ = = +∇ ⋅

∂
v v  

Since g has not yet been defined, it is possible to rewrite this equation imple-
menting the scalars already inferred, to obtain a self-contained set of equations. 
Put  

1 , ,g g
c

ρ ρ= ∇ ⋅ = = =E v v J  

which yields therefore  

10 ;
c t
∂∇ ⋅

∇ ⋅∇× = = +∇ ⋅
∂

EX J  

It is convenient to utilize the vector property ( ) 0∇⋅∇× =  in agreement 
with 0∇⋅ =v  of solenoidal flux of ρ  to simplify this last equation whatever 
the arbitrary field X  might be. Thus one obtains  

1 , .
c t

ρ∂
∇× = + =

∂
EX J J v                  (7.16) 

Despite the lack of specific information to identify the actual nature of X , it 
is reasonable to put ∝X H  with H  magnetic field to be introduced just in 
the next section: this position is in fact possible without introducing a new field, 
hardly justifiable in the present context. Hence the position (7.8) is valuable as it 
implies four relevant equations, whose importance appears by answering ques-
tions like: flux of what? what kind of fields are E  and H ? The next section 
clarifies these points that clearly allow to obtain the Maxwell equations (7.14), 
(7.15) and (7.16). 

These fields allow modifying appropriately the functional (7.1), in order to 
describe one particle even via a possible interaction potential; of course such a 
calculation is omitted here for brevity, being clearly beyond the purposes of the 
present paper. 

8. The Fundamental Interactions of Nature: Force Laws 

Some considerations about the gravity force in the subsection 6.2 were inferred 
starting from the Equation (4.9). Now the concept of force is reexamined start-
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ing from the more general Equations (3.1) and (3.69). This section consists of 
three subsections. 

8.1. Preliminary Considerations 

The Equations (3.1) provide several chances of defining the general concept of 
force, directly related to (3.69) and (3.70)  

p F
t x

δ δε
δ δ

= =                       (8.1) 

whence, implementing once more p xδ δ=  , one infers in general  

2 , , .x pp x x p
t tx

δ δδ δ δ δ
δ δδ

= − = =


                 (8.2) 

To understand intuitively the correlation between F and xδ  , think that the 
effect of any force is to modify the state of motion of matter on which it acts. 
Consider a body of mass m under the action of a force F. If m is actually a sys-
tem of particles, then F perturbs the dynamics of all particles of m: for example 
they move faster. According to (3.1), modifying the kinetic energy of a system of 
particles implies changing in principle their delocalization extent and thus the 
range size xδ  able to include each one of them. The greater the force altering 
the status of a system, the greater must be the size change rate xδ   to account 
for the altered delocalization extent of matter in xδ . This is the intuitive way to 
justify in general the quantum link between F and the related xδ  . More specif-
ically (8.1) also imply  

, ;xv x cδ δε δ δε= ≤ 


                    (8.3) 

the inequality is direct consequence of the first equation with 1tδ −  replaced by 
δε  . Again, the position δ → ∂  yields the usual definition of generalized local 
force F p=  . These equations are directly referable to long range interactions, 
because xδ  is defined even at infinity in lack of specific constrains; being di-
rectly inferred from the general Equations (3.1), F is expected to hold for 
charged and neutral particles. In effect the Newton and Coulomb forces 
represent an important class of forces that vanish at infinity as 2xδ − , justifiable 
simply assuming x constδ = ; is evident the analogy of (8.2) with GF  of (6.10). 

Beside (8.2), particularly interesting are further dimensional considerations 
about characteristic space and time ranges related some specific forces. Write for 
example  

( )22 2

2 ,
c xF F

mV V t x tmc V
δ
δ δ δ

= = = =


                 (8.4) 

the first definition follows from 2 2 3p m x m xδ δ δ=  . The Equations (8.4) and 
(8.3) prospect the chance of introducing the concept of short range force as that 
related to characteristic lengths, times and possibly volume consistently with the 
Equations (3.1). An example in this respect is the zero point energy resulting 
from the confinement of matter in a finite volume of space time, already intro-
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duced in (5.23); another example is the Casimir force, shortly sketched below. 
The ranges δε  and xδ  of (8.4) help to fix the energy scale or the distance 

scale characteristic of specific interactions. Are useful in this respect the values 
(3.12) of length ranges; the Equations (8.4) are implementable with these scale 
lengths of prospective interest to estimate the strength of short range forces. 

The few remarks exposed here highlight how to proceed in various cases. First 
of all, it is necessary to examine how long range and short range forces are in-
cluded in the general definition (8.1) of F: the key point is the deformation rate 

xδ   of the space time range xδ . 
Let two interacting partners be xδ  apart and expand in series 

( )1x x xδ δ δ −=  : this position ensures that F vanishes at xδ → ∞ . Write thus in 
general 

0 2

Ac Bcx x
x x

δ δ
δ δ

= + + + 
                    (8.5) 

where A and B are the constant coefficients of the series expansions. So (8.2) 
splits into the sum of various terms  

( ) ( )

( )

2
0 1 2 30

0 1 22 3 4

2
0 1 2 3

, , ,

, ,

c cx
F F F

x x x
A B

δ
δ δ δ

+ +
= ± = ± = ±

+ = + =


     

   

 

Here 0x constδ =  by definition, with signs of 0F  dependent on whether xδ   
swells or shrinks during tδ . The Equation (8.5) is more general than (6.7): the 
latter concerns specifically   and thus the gravity, i.e. 0F  corresponds to GF , 
whereas (8.5) instead concerns more in general xδ  ; the higher order terms ex-
pressing xδ   include   of (6.7). Just to show this point the coefficients A 
and B have been split introducing constants lengths i  that characterize vari-
ous kinds of forces in fact included in (8.2) and made explicit by the respective 
terms of the series expansion of F. Examine thus one by one the forces resulting 
from the first three terms of (8.5) to show that in effect this approach is inter-
pretable in a sensible way. The first force identifiable is  

2
0 1 2

2 3 4 ,NC

x c cF
x x x
δ
δ δ δ

= ± + + +




   

                (8.6) 

where the subscript NC stands for Newton Coulomb. The second and third 
forces easily identifiable are  

2
0

03 , ,
2 2zp

zp

c
F

mV mcxδ
= = ± =


 

  

having inferred 0  by comparison with (5.23), and  

32
4

2 3 2

, 2.Ca
F cP

x
σ σ

δ
= = ± = +




  

 

One finds again the zero point force controlled by the Compton length 0  of 
the mass m. Moreover one recognizes the Casimir force per unit surface 2 3   
given by c  times the pertinent numerical factor σ  whose value is controlled 
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by 3  whatever the value of 2  contributing to GF  might be. In this way 
neither 0  nor 1  and 2  result fixed; so the second and third terms of (8.6) 
are the higher order terms of the zero order approximation 0F  in principle de-
finable by these lengths independently of the coefficients characterizing zpF  
and force per unit surface CaP . The zero point energy has been already con-
cerned; a detailed discussion of the Casimir term is clearly outside the purposes 
of the present paper. It is really crucial the fact that various kinds of forces are 
nested in the general uncertainty Equation (8.2), in turn direct consequence of 
(2.10). Owing to the importance of (8.6), the following consideration will be fo-
cused on this equation for sake of brevity only; this allows to complete the in-
formation in Section 6.2. 

8.2. Long Range Gravity Force 

To verify how (8.6) implies more specifically the space time curvature, examine 
both sides of the general Equation (8.2). The Equations (3.1) imply the following 
chain of equations implementing the left hand side of (8.2)  

1 1 1
c

p x x p r x
t t x t x x t x x x x t

δ δ δ δ δ
δ δ δ δ δ δ δ δ δ δ δ δ

′ ′ ′  ′= = = + = ′ ′ ′+  

        (8.7) 

1 1, ,cp r
x x x x

δ
δ δ δ δ

′ = = +
′ ′+



 

being cr  the Laplace average curvature radius of an ideal surface such that 
0F →  for xδ → ∞  and xδ ′ → ∞ . 

Note that cr  is formally similar to 1 21 1LK r r= + , where the addends are 
defined on two orthogonal planes called curvature sections; it refers to flat space 
time. According to its classical derivation, the local value of LK  is calculable as 
both radii 1r  and 2r  are assumed in principle exactly knowable. Here, instead, 
the quantum derivation of cr  does not allow any information about size and 
even mutual orientation of xδ  and xδ ′ , the only indication available being 
that it is conceptually defined by two curvature sections in a 4D space time; so 

cr  is not calculable in practice, it is compatible with all combination of values 
included within xδ  and xδ ′ . The relativistic curvature EK  is instead 
self-defined in a Gauss curvilinear coordinates in a covariant way regardless of 
the reference system. According to (3.2), however, even cr  defined by two un-
certainty ranges actually waives the link to a specific reference system; hence the 
impossibility of calculating uniquely cr  prevents comparing it to EK , whose 
local value is instead in principle calculable. Hence is meaningless to enquiry 
whether or not the Equation (8.7) fits the standard definition of general relativity 
or not. In other words EK  must be necessarily covariant to have physical 
meaning, because effectively it can be calculable locally; cr  instead fulfills the 
quantum concept of covariance required by (3.2) and cannot take any determi-
nistic value. Hence, in lack of numerical assessment, the quantum reasoning im-
plied by (8.7) allows conceptual comparison only: the quantum definition of 
space time curvature, although symbolic, is still related to its relationship with F, 
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i.e. 0F ≠  for xδ  and xδ ′  both finite. The non trivial implication of this 
reasoning is that in this way the relativity becomes a corollary of (3.1) and (8.2) 
via the series expansion (8.5) that generalizes the mere Newtonian term. This is 
not surprising because the Section 1 has evidenced the 4D holistic character of 
the present model; the purpose of the next considerations is to clarify further 
this idea. 

Recalling (2.36) p h λ= , the right hand side of (8.2) yields, owing to (4.24) 
and (2.36),  

2 ;x ph
x x t
δ δλ δ

δ δ δδλ
− = − =






                    (8.8) 

so, merging (8.7) and (8.8), one finds  

2 , , .c c
h p xr x r v p v

t t
δλ δ δδ δε δε δ

δ δδλ
′ ′

′ ′ ′ ′ ′ ′− = = = =


         (8.9) 

No apparent reference to the mass is explicitly evident in this formula: the 
force cr δε ′  and its approximation 0F  are due to the mere deformation rate of 
the range 0xδ  . 

On the one hand (8.2) results consistent with this equation that links force 
pδ   and energy δε ′  via the curvature radius cr  of space time: as expected the 

momentum, and thus its time change as well, can be expressed via corpuscle 
formalism, see e.g. (3.64), and via wave formalism inferred in (2.36). According-
ly F p=   waives the concept of mass if just (2.36) is implemented to calculate 

2p hδλ δλ= − 

 . The analogy with (8.6) and (8.5) appears because also now it is 
possible to write  

0
j

j
j

kδλ δλ δλ−= ± +∑                     (8.10) 

this is the meaning of the Equations (8.7) to (8.9), where the mass is mere di-
mensional property of h. 

On the other hand, the connection of (8.6) with (6.12) implied by (6.7) re-
quires writing  

1 2
0 0 1 22 ,

m m GF G x m m
x

δ
δ

= ± =


              (8.11) 

the curvature cr  is linked to one mass, that defining ε ′  and pδ   of (8.9), the 
zero order deformation rate 0xδ   of xδ  is given by the constant G   times 
the product 1 2m m , i.e. 0xδ   is proportional to 1 2m m  that in turn is directly 
proportional to the force. The Equations (8.6) and (8.11) are the space 
time/matter formulations of the gravity force analogous to the wave/corpuscle 
formulations of the energy and momentum in quantum mechanics; in effect 
(3.70) has shown that in general the force is proportional to pδεδ . 

It turns out therefore from the previous considerations with the help of (2.36)  

1 2
2 2 ,c

Ein New

m mp p hF r G
t t x

δ δ δλδε
δ δ δλ δ

′= = ↔ = =


      (8.12) 
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whence the correlations  

force field deformation rate of space time ranges acceleration→ →    (8.13) 

Comparing the left and right hand sides of both (8.12), is evident why Einstein 
has successfully replaced the concept of force with that of space time curvature, 
while skipping the more intuitive Newtonian correspondence between mass and 
force: thus, in His intuition, the mass appears directly related to the space time 
curvature. So the first correlation (8.13) is understandable. The second correla-
tion deserves attention, as the concept of acceleration has been not yet intro-
duced; it will be concerned in the next subsection in particular to explain what 
have to do xδ   or λ  with the acceleration implied by F. It will be shown that 
just the ranges, which link the concept of force to the quantum uncertainty, 
also plug the Newton and Coulomb forces into the realm of quantum mechan-
ics. 

8.3. The Equivalence Principle 

Implement the Equations (8.11) and (8.8) to understand why the mass appears 
in the former and not in the latter. Also this topic, shortly sketched here for 
completeness, has been concerned in [10]. 

Position and size of any ox x xδ = −  in an arbitrary R are respectively defina-
ble considering the distance of either range boundary, say ox , from the origin O 
and the distance of x from ox ; of course the opposite choice would be identi-
cally admissible. Being both boundaries arbitrary, in general it is possible to re-
gard ( )x x t=  and ( )o ox x t= . A force F arises inside xδ  because in general 

ox x≠  , i.e. when the range size of xδ  shrinks or stretches as a function of time 
during ot t tδ = −  with respect to its initial size at the time ot . To simplify the 
reasoning it is enough to examine the cases where: 1) ox const=  and ( )x x t=  
only or 2) x const=  and ( )o ox x t=  only; as anyway the size of xδ  changes, 
for example because of energy fluctuation of a particle inside xδ , both cases 
imply in general 0F ≠  and the following considerations about inertial and 
accelerated reference systems. 

Imagine an observer sitting on ox  and assume for simplicity that one par-
ticle only is delocalized in xδ ; the rising of any F is detected observing the dy-
namical behavior of this test particle.  

In the case (1) the observer is by definition at rest in R with respect to O; yet 
he acknowledges a force ( )2F x xδ δ= − 

  acting on the particle, actually due 
to 0x ≠ . To justify in principle why the motion of the particle is perturbed, the 
observer reasonably thinks to the presence of an external force, e.g. a gravita-
tional mass outside xδ . 

In the case (2) the observer no longer at rest in R necessarily accelerates with 
respect to O, whereas the force ( )2

o o oF x xδ δ= 
  again appears in xδ  ac-

cording to 0ox ≠ ; now oF  governs the dynamics of the particle delocalized in 
xδ . The observer concludes that its own acceleration is due to oF . 
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Of course the analytical forms of F and oF  are in principle analogous, al-
though their strengths are in general different if ox x≠  ; indeed the forces only 
differ by the time dependence of either boundary coordinate of xδ  with which 
is calculated the overall xδ  . However, despite the boundaries of xδ  are in 
general arbitrary and independent each other, nothing hinders to assume in par-
ticular 2 2

o ox x x x= −  : i.e. stretching of xδ  occurs via forwards displacement 
of x only or backwards displacement of ox  only with respect to O. So locally 

oF F= − . The acceleration experienced by the observer and the presumed force 
F arising outside xδ  perturb in the same way the test mass because they have 
actually a unique background, the deformation rate (8.5) of the space time range 

xδ  itself that in effect implies (8.6): in (2) this deformation rate is perceptible 
by the observer as force oF  whereas in (1) it does not, although in both cases 
the observer can anyway record the same change of local dynamics of the par-
ticle inside xδ . Clearly the observer reference system oR  with origin on ox  
is at rest or inertial in (1) but non-inertial in (2) with respect to R, in agreement 
with the aforesaid correlation. 

One key point of the reasoning is that these conclusions hold exchanging the 
role of x and ox , because both range boundaries are arbitrary and physically 
equivalent; no physical property characterizes specifically either space time 
boundary displacement. As (1) and (2) are physically indistinguishable, the 
unique information available is the overall deformation rate xδ   and its related 
F; this means that the concept of acceleration implied by oF  holds identically 
for F as well. Another key point is that the acceleration does not necessarily 
imply the concept of mass, but that of force in turn due to inertial and 
non-inertial reference systems. 

One could also say that the concept of force is redundant, what in fact exists is 
the stretching/shrinking rate of xδ  which in turn implies space time curvature 
according to (8.7). But now this statement has quantum foundation only. 

Anyway the dualism wave/corpuscle of quantum mechanics has relativistic 
analogy in the “corpuscular” Equation (6.9) and “wave” Equation (8.9) proper-
ties of matter; the latter originates from the space time curvature, the former 
from the necessity of defining the change of delocalization extent of massless or 
massive particles both contextually implied by the probabilistic Equation (4.7). 
In this sense quantum and relativistic physics are perfectly symmetrical, which is 
not surprising because both are rooted on the quantum uncertainty. From this 
analogy follow the correspondences (8.12) along with the Equations (6.28) and 
the various forces implied by (8.5). 

Is evident the analogy of xδ  with the elevator of Einstein’s thought experi-
ment: the cases of inertial and non-inertial reference systems merge here into the 
unknown and unknowable behavior of the boundaries of a unique space time 
uncertainty range xδ  only. Implementing space time ranges rather than local 
space time coordinates plugs a typical relativistic reasoning about inertial and 
non-inertial reference systems into the quantum uncertainty (3.1). In this sense 
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the relativity is conceptually compatible with quantum requirements; any rea-
soning via local coordinates, e.g. the tensor calculus, wouldn’t. The present ap-
proach shows what the mere wave formalism to quantum mechanics cannot 
emphasize itself: quantum and relativistic theories are conceptually rooted in the 
unique concept of uncertainty, the operator formalism exposed in the subsection 
3.5 is instead less general being actually itself a corollary of the quantum uncer-
tainty. 

8.4. Long Range Electromagnetic Interactions 

Start from the Equation (4.8) 2nε δε∆ =  and the position (4.9) tε∆ = ∆ , 
which now are once more under test besides to the results (4.13), (4.14), (4.16) 
and (4.17) already obtained; the Equation (4.9) was also the starting point of the 
section 6.2. Recalling the definition (4.5) of refractive index n, elementary ma-
nipulations yield  

2

2 1, ,v c t
c

δε ε ε= = − = ∆






                (8.14) 

being of course   an arbitrary length. The second equality is the mere defini-
tion of energy range δε  with arbitrary boundary values 2ε  and 1ε . A possi-
ble way to split accordingly 2v c   too, is to rewrite (8.14) defining 1ε  and 

2ε  as follows 
2 2 2
1

1 2
2

, ,q v q
c

ε
δε ε ε

ε
= = =



  

               (8.15) 

to obtain next (8.14) rewritten as  
2 2

2 1
v q v
c

ε ε −
= − =

 

 

                  (8.16) 

the positions (8.15) convert thus the unique term at the left hand side of (8.14) 
into the difference of energies 2q   and v   defining δε . In general 

( )q q v= . Let   measure the distance between two interacting partners. The 
fact that   is defined by c means that the carriers of the force are massless par-
ticles, photons. Also, v that defines the energy range (8.14) characterizing this 
kind of interaction must be consistently identified by v c= ; as any v c<  could 
not be enough to travel through  , a coherent way to characterize the peculiar 
value of q consistent with   requires the boundary condition n 1=  in (8.16). 
Put thus the resulting value of q, now uniquely defined, proportional to a “new” 
quantity called e. So, calling 02α  the dimensionless proportionality constant 
linking 2q  and 2e , (8.16) yields  

2
2 20

0
2

, 2 , .
e cc q e v c

α
α

−
= = =




 

            (8.17) 

Multiplying both sides by c   one finds  
2

0
1 , e

c
α α

α
= =


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as a result we have obtained the definition of fine structure constant α  via 
three universal constants of the nature, whereas 0α  is to be regarded as a pure 
number corresponding to the numerical value of 1 α . 

Note in this respect that the electric charge e, so far not yet explicitly intro-
duced, appears in the model via α . This introductory reasoning outlines the 
next task to be concerned just now: to show how the Equation (4.9) implies the 
electromagnetic interaction too. This subsection links therefore the following 
considerations to the Section 7. Usually e is introduced by postulating the Cou-
lomb force; here instead e and thus the electromagnetic forces are introduced 
starting from α . By analogy with (8.6), the Equation (8.2) is rewritten as fol-
lows  

2
1

02 2 , ,C
c eF x c
x x

α δ
δ δ

−± = = ± =


               (8.18) 

i.e. the physical meaning of α  introduces itself also the long range Coulomb 
force component CF . 

Is evident the formal analogy between 0F  of (8.11), concerning the mass li-
near density m xδ , and CF  of (8.18), introducing the charge linear density 
e xδ : both regard in particular 0xδ ×   as constant characterizing the lowest 
order term (8.6) of the series expansion (6.7). This suggests that the first order 
approximations of Newton and Coulomb laws should be both deducible from 

0xδ ×   through a dimensional constant. In effect the connection between G 
and e via a dimensional proportionality constant is easily proven; indeed  

( )eGe Gξ α=  

yields numerically  

( )

10 10 3 2

3 22 3

4.80 10 ues, 4.88 10 cm s g ,

1.01 ues g cm g cm s.eG

e G

t

α

ξ

− − −= × = × ⋅

≈ × = ⋅
 

Of course the signs of the component CF  correspond to equal or opposite 
charges defining α . Implement first (8.18) for both charges at rest in R; so  

2

2 , 0,r
C

eF v
xδ

= =                       (8.19) 

where the subscript stands for “rest”; in this equation there is no explicit refer-
ence to v, which from now on denotes the relative motion of the charges. As 

xδ  is arbitrary, α  has been included in it, to simplify notations like 
*x xδ αδ= . 

The second way to implement (8.18) assumes constant the rate v with which 
moves either charge with respect to the other at rest in R; as according to (2.34) 

( ) 2p x v v cδ δ δε εδ= = + , (8.18) yields  

( )2

2 2

1 .
pce c v v
x c x xx x

δ δε εδ
δ δ δδ δ

 = = = + 
 

             (8.20) 

Thus  
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2

2 , ,me v v const
c xx
δε
δδ

= =                     (8.21) 

where the subscript stands for “mobile”, whence  
2 22

2

1
.m v ce

c t c tx
δεδε

δ δδ
−

= =
′

                  (8.22) 

The last equality has introduced the time range rtδ ′  defined in a reference 
system R′  of the mobile charge moving at rate v−  with respect to R; an ob-
server ideally sitting on the moving charge in R′  sees the other charge at rest, 
as the backwards motion of R′  in R balances exactly the forwards motion of 
the charge. So, in practice (8.22) can be regarded likewise (8.19); obviously (8.22) 
reduces anyway to (8.19) in particular for 0v = . Hence it is possible to write the 
second equality as  

2

2 2 2
, ;

1
em Lor

e eF F vH
c t cx v c

δε
δ δ

= = =
′ ′ −

           (8.23) 

the first equation emphasizes the link between 2 2e xδ  in R and R′ , the 
second equation also follows directly from (8.21) according to the following 
chain of elementary steps  

, , .v v F e FF e vH F H
c c e c x e

δε
δ

= = = =  

Regarding emF F=  one finds a “new” quantity called magnetic field already 
introduced as a final step (7.16) of the reasoning in the section 7. The one di-
mensional scalar approach followed throughout this paper hides the actual vec-
tor character of v  and thus of emF  and LorF . Simple considerations allow 
however to surrogate this missing information acknowledging that LorF  and 

emF  are two different corollaries of a unique information to describe the charge 
dynamics: both Equations (8.23) follow from different ways of rewriting the 
unique Equation (8.21), as in effect it is physically sensible. So, to avoid that the 
energy of a mobile test charge in both fields is counted twice summing separately 

emF  and LorF , it is necessary that the former only performs work on the mobile 
charge, likewise as in the particular case of charge at rest, whereas the latter 
doesn’t; the vector properties of these forces follow from these considerations, i.e. 
H  and v  must be such that Lor ∝ ×F H v . 

The third way to handle α  concerns the case where v is not constant; owing 
to (8.20), an additional force term Fω  is expected because of the addend 

/v c xεδ δ  previously omitted in (8.21). This additional term reads  
1, ,v t t vF a a a

c x t x x c tω
εδ δ εδ ε δ
δ δ δ δ δε δ

= = = =


 

where the acceleration a of the charge appears as a reciprocal frequency because 
of the factor 1c− . It is possible to extract from this chain of equation the fre-
quency ω  defined by the energy F xωδ , i.e.  

F x
aωδ δε ω

ε
= =



                     (8.24) 
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A fraction δε ε  of energy F xωδ  is thus converted into and appears as 
electromagnetic radiation, whose energy ω  increases of course with δε ε . 
The fact of having found ω  for 0vδ ≠  means that an accelerated charge im-
plies emission of e.m. radiation. Of course 0Fω =  and thus 0ω =  for 0v =  
or v const= , so even this contribution to the right hand side of (8.20) vanishes 
for charges at rest. In principle εω  prospects the chance of calculating the 
power irradiated by an accelerated charge regarding appropriately Fω  and δε  
of (8.24). This chance has been exemplified in section 7 in a more complete and 
rigorous way via the Maxwell equations. 

Is still proven useful here the initial idea of implementing uniquely the early 
Equations (1.11) and (1.12) without any further physical hint but simply includ-
ing α  among the fundamental constants of Nature. 

8.5. Quantum Charges 

Dividing both sides of the inequality (8.3) by 2e  and next by xδ  too, one 
finds  

2 2
2, 1,e

x
σδε σ
α δ

= ≤                      (8.25) 

being σ  an appropriate factor. According to (3.69) and (3.70) this yields also  
2

2

1 , ,e
eF e e

x x
δε σ
δ α δ′

′
′= = =                   (8.26) 

Now the question rises: does e′  have mere numerical meaning or it actually 
generalize the concept of usual charge e according to e e′ ≤  ? To answer this 
question consider first some implications of (8.26) based on (3.70). As eF PA′ = , 
where A is an arbitrary area and P pressure, one finds the dimensional relation-
ships  

2

2

1eF eP
A A xα δ
′ ′

= =                       (8.27) 

the Equations (8.26) imply the rising of a pressure P related to the energy density 
Vε  due to charged particles enclosed in the volume V. Start thus just from the 

dimensional identity between pressure and energy density and write  

3, ,EP V x A x
V

σ σ δ′ ′= = ∆ =                 (8.28) 

where σ ′  is a proportionality factor necessary to define in general the volume 
V as a function of A defining the pressure. Owing to the dimensional character 
of this equation, although P and E have been defined specifically by (8.27) and 
(8.28), the following reasoning holds in general for any E, i.e. also for atoms, 
ions, elementary charges and even photons. The second equation yields  

3 .V x
V x
δ δ∆

=
∆

                       (8.29) 

Consider now that if in V are contained photons or matter, e.g. gas particles, it 
 

DOI: 10.4236/jmp.2018.914161 2577 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2018.914161


S. Tosto 
 

is possible to implement the wave properties of matter and write  
3 3

, , ,v c c c vV
vλ λ

λ λ

ν ν λ ν ν
ν ν λ ν
   = = = = = ≥   

  
      (8.30) 

the matter particles are assumed moving at average rate v with De Broglie mo-
mentum h λ  and thus frequency λν ; for calculation purposes, λν  has been 
rewritten as a function of ν  as indicated here to include also photons. The 
presence of steady waves in V requires  

3 3V E
V E
δ δν δ

ν
= − = −                    (8.31) 

the first equality is directly deducible from (8.30) that expresses the steadiness 
condition, i.e. the change of λ  requires that of x∆  as n xλ = ∆  with n in-
teger, the second equality expresses the proportionality between ν  and E. So 
the change of E inside V is related to that of ν  of the matter/light waves prop-
agating in V. Implement now the idea that (8.29) regards a number of corpuscles 
inside V, whose change of energy density is uniquely definable by Vδ  anyhow 
it might be obtained; instead (8.31) regards waves, whose energy changes are 
presumably related to how the early V is modified by a given Vδ  because of 
steadiness condition. Reasonably the steady propagation of waves is different 
depending on whether one side only or two sides or even three sides of V are 
modified. Consider thus the three possible ways to deform the initial V, whose 

V∆  remains however uniquely defined in all cases: V can be equivalently re-
written as 2

0x x∆ ∆  or 2
0x x∆ ∆  or 3x∆ . Being both x∆  and the constant 0x∆  

arbitrary, it is certainly possible to define them in order to fit a given value V of 
course arbitrary itself. Hence  

, 1, 2,3.V xn n
V xν ν
δ δ∆

= =
∆

 

To make consistent both ways of defining V Vδ  merge this result with (8.31) 
to obtain  

3 ,x En
x Eν

δ δ∆
−

∆
 

whence  
1 2, , ,1.

3 3 3 3
n nE E

x x
ν νδ

δ
= − =

∆ ∆
                (8.32) 

Assume that the left hand side defines an average force such that 
E F xδ δ= ∆ ; dividing both sides by the surface 2x∆  one finds  

2 3 .
3

F n EP
x x

ν= = −
∆ ∆

                   (8.33) 

At the right hand side appears an energy density Eρ  defined by an amount 
of energy Eδ , arbitrary, in the volume 2x xδ∆ ∆ , arbitrary as well, and recall 
the initial position (8.28); then, as the dimensions of E x∆  and 2x∆  are force 
and surface, one finds eventually  
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1 2 3 3

1 2, , , .
3 3E E E E

EP P P
x

ρ ρ ρ ρ= = = =
∆

         (8.34) 

The minus sign in (8.33) and (8.34) has been omitted, it simply establishes 
whether an internal or external pressure expands or shrinks V. These results, 
which hold for photons or gases because no specific hypothesis has been made, 
are well known: 1P  holds for a light beam completely absorbed by the internal 
surface of V, whereas 2P  when waves or corpuscles bounce elastically; 3P  
yields the well known law 3P V Eδ δ= . As 3P  is due itself to elastic shocks of 
corpuscles against the internal walls of V, then 2 3E E′= ; i.e. E should be 2/3 of 
another energy E′  that yields ( )3 2PV E′= ; is evident the connection of this 
last conclusion with the elementary kinetic theory of gases, where E′  is easily 
demonstrable to be the average kinetic energy of molecules. 

Skipping further considerations on this well known topic, return now to the 
Equations (8.25) and (8.26) to specify the result (8.34) in order to explain σ  in 
the equation e eσ′ = . The comparison of (8.32) and (8.26) suggests the corres-
pondences  

, , ,E x x F xε δ δ δ ε→ ∆ → =                  (8.35) 

where the third position is the usual definition of force. So, owing to (8.26) and 
(8.18),  

2 2

2

1 1, , ;
3
nE e x E e x x

x x x x x x
νδ δε δ ε δ

δ δ α δ α δ
′

→ = = = ∆ =
∆ ∆ ∆ ∆

 

the third equation makes (8.33) compliant with (8.35). So the Equation (8.32) 
reads  

2 2

,
3
ne e

x x
ν

δ
′
=

∆
                       (8.36) 

whence, recalling the second (8.26), i.e.  

2 1, , .
3 3

e e e e e e′ ′ ′= ± = ± = ±                (8.37) 

The second and third charges are consistent with quark charges, all with both 
signs correspondingly to e± , in the nuclear volume V. It is amazing the fact 
that even the quark charges appear here as a consequence of the dual 
wave/corpuscle behavior of matter and light, whereas their fractional character is 
reminiscent of the radiation/matter wave pressure in the volume enclosing them. 

As a final remark, note that all charges can take both signs because e can be 
found in negative and positive energy states, as previously shown. 

Now let us return to (8.24), to exemplify in a simple case how it is in fact cal-
culable. 

Let ε  be the energy of a charged particle; (8.24) provides in principle the 
energy radiated per unit time with the help of (2.28)  

.
F

x F F v
p

ω
ω ω
δεεω δ δε
δ

= = =

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It is easy to find the total power radiated E tδ  by such an accelerated par-
ticle, knowing that its charge is e and the change rate of its momentum is pδ  . 
To solve this problem, however, more information is necessary about the link 
between radiation pressure and energy density. Once having found  

( )3

2 2 ,
3 3

P
V c
ε ε

ν
= =  

being 1 tν δ=  the wave frequency, the non relativistic result as a function of 
the acceleration a p mδ=   is obtained after having multiplied both sides by 

3x tδ δ  via the following chain of equations  

( )

( )

23 3 3 2 3 3 2

3 3 3 2

2 22 2 2 2

3 2 3 2 3

2 2 2
3 3 3

2 2 2 .
3 3 3

xx x e x eP
t t x tc c c t

p me v e e p
mc t c t c

νδδ ε ν δ ν δ
δ δ δ δ δ

δδ δ
δ δ

= = =

 = = =  
 



       (8.38) 

8.6. Short Range Nuclear Interactions 

The Equations (3.12) and (8.4) suggest specific orders of magnitude significant 
to introduce short range forces. Skipping all theoretical details outside the pur-
poses of the present paper, a few short comments are exposed below to highlight 
at least the essential features of these forces implementing only results so far ob-
tained. Consider thus the following chances introduced by the general Equation 
(8.1)  

( )pcp p vF v
t x c x

δδ δ
δ δ δ

= = =  

to infer, in agreement with (3.14) and the reasons therein explained,  

( ) ( )
,s w

pc v pc
F F

c t c x
δ δ
δ δ

= =                 (8.39) 

only in the first case xδ  has been replaced by v tδ . The question that rises 
now is whether these expressions are mere equivalent ways of rewriting the same 
Equation (8.19) or they represent actually different force laws. 

Preliminary inspection evidences that in both cases the force is defined via 
lengthδε  but in two different ways: wF  depends explicitly on v and xδ , 

whereas sF  on sx c tδ δ=  only. In the former case the interaction force is in-
versely proportional to xδ ; in the latter case the interaction energy s sF xδ  in-
creases with the distance sxδ , whatever this latter might be. This suggests the 
concept of “asymptotic freedom”. Moreover the messenger particles of wF  
carrying the interaction through wx v tδ δ=  should be massive, owing to v; the 
messenger particles of sF  should be massless, as the force carried through sxδ  
involves c only. Consequently, one expects that for assigned tδ  the characteris-
tic range measured by sxδ  is greater than wxδ . 

Taking according to (8.4) t x cδ δ  and c xδε δ , order of magnitude 
estimates of space ranges and time ranges that characterize sF  and wF  can be 
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calculated utilizing the values (3.12). Particularly interesting is in this respect the 
range  

( )2 1 .n e N Bx r r rδ α α= − = −  

1) Consider first sF  assuming preliminarily that the concerned interactions 
occur at the nuclear or sub-nuclear scale: i.e. reasonably nxδ  concerns the in-
teraction between different nucleons and in the nucleons themselves. Accor-
dingly define the length  

2.5 ,N e Br r r α=  

which is clearly an average value within nxδ , and introduce two complementary 
subranges 1sxδ  and 2sxδ  of the whole nxδ  as follows  

( ) ( )2.5 3 2 2.5
1 2, .s N e N B s e N e Bx r r r r x r r r rδ α α δ α α= − = − = − = −  (8.40) 

It yields  
14 142.4 10 cm, 2.1 10 cm;nucl

N e Cr r λ− −≈ × = ×  

moreover both subranges expressible through electron and nuclear range sizes 
yield  

( )
( )

2.5 3 14
1

2 2.5 13
2

2.2 10 cm,

2.6 10 cm.

s B

s B

x r

x r

δ α α

δ α α

−

−

= − ≈ ×

= − ≈ ×
             (8.41) 

Is relevant the fact that that 1sδ  is surprisingly close to the nucleon Compton 
lengths nucl

Cλ  of both proton and neutron, which have in effect a similar order 
of magnitude. Also N er r  does so, which means that the nucleon mass 
represents the boundary value discriminating the interaction lengths 1sxδ  and 

2sxδ  inside and outside the respective nucleon; this also explains the order of 
magnitude of the nucleon mass, indeed 24

1 1.6 10 gsc xδ −= ×  differs from the 
experimental nucleon mass by about 5.5% only. Here we take advantage of the 
fact that proton and neutron masses differ by less that 0.14% only. Hence the 
forces (8.4) defined by these ranges could concern both nucleons and their mu-
tual interactions at distances consistent with the inequality (8.3); indeed, as ex-
pected, 3

1 1.6 10 erg 1 GeVsc xδ δε −= = × =  is related just to the order of mag-
nitude of the nucleon mass, whereas 4

2 1.2 10 erg 0.08 GeVs Nc xδ δε −= = × =  is 
related to the binding energy between nucleons. In fact sF  is attractive, in 
agreement with the concept of “asymptotic freedom” already emphasized for 
quarks in nucleons less than 1sxδ  apart. The characteristic times are 

25
1 7 10 sτ −≈ ×  and 24

2 9 10 sτ −≈ × . At this point it is possible a rough estimate 
of the stability of the nucleus comparing this energy Nδε  with the Coulomb 
repulsion energy calculated via (8.23) approximately as 2

2rep se xε δ≈  between 
two protons 2sxδ  apart; 79 10 ergrepε −≈ ×  is negligible with respect to the at-
tractive field in Nδε . The fact that 1s Cxδ λ  suggests that sF  should concern 
sub-nuclear particles that form protons and neutrons, which therefore are not 
elementary particles themselves. Hence the whole charge of proton and the null 
charge of the neutron can be due to nothing else but appropriate combinations 
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of the e′  fractional charges (8.37). 
These considerations, well known and here shortly sketched only, are enough 

to conclude that sF  concerns the strong force. Further considerations are 
clearly outside the scopes of the present paper, merely aimed to show how to 
identify the fingerprints of the short range forces (8.39) in the conceptual frame 
hitherto outlined. Some more details are reported in [20]. 

2) Consider now wF , noting that with the help of (2.28) the second Equation 
(8.39) reads also  

( )
.w

v pc
F

c x x x t
δ δε
δ δ δ δ

= = =


                 (8.42) 

Being v c<  one expects wx c tδ δ< ; in other words, once having fixed tδ , a 
shorter interaction rang w sx xδ δ<  is to be expected for wxδ  of wF . Accord-
ing to (8.4), x cδ δε   implies information about wxδ  compatible with wδε  
in this case. To estimate v in the same reference system of (8.23), implement 
(8.23) supposing that an appropriate xδ  fulfills the condition  

2

2 2 2
.

1

eF
x t x v cδ δ δ

= ≈
−

                   (8.43) 

Elementary manipulations show that this position yields 2 2 21v v c e− =  
i.e. 2 21v c v c α− = , whence the solutions v c α  and 1v c  . Hence, 
taking the same value of tδ  of (8.41) by comparison purposes, one finds two 
possible corresponding ranges  

17 14 257.7 10 cm, 1 10 cm, 3.5 10 s.c wx x tαδ δ δ− − −× × ≈ ×      (8.44) 

In effect, extending the Equations (3.12) to the fourth power of α  one finds 
the further length 4 171.5 10 cmw Bx rδ α −= ≈ ×  necessary to include xαδ  in the 
whole range of wF . The first and second results are acceptable, as both yield 
space ranges shorter than that of both (8.41); the first value, in particular, yields 
according to the fourth (8.4)  

0.4 erg 255 GeVw
c
xα

δε
δ

≈ =
               (8.45) 

The existence of two range sizes (8.44) of xδ  compatible with (8.43) sug-
gests that wF  should imply two different kinds of massive force carriers, rea-
sonably with and without charges; if so, then the charges must have opposite 
signs. This kind of interaction needs thus three kinds of carriers. Assuming 
charged and neutral carriers of masses m±  and 0m , just a few considerations 
are enough to infer significant information on the masses of these messengers. 

Implementing this assumption to establish the energy balance governing the 
formation of the carriers, the results are in full agreement with the experimental 
data. 

Is reasonable the idea of regarding the cluster of messengers as a system of 
particles interacting themselves in order that the gain of binding energy of the 
charges accounts not only for their own masses m+  and m−  but also for that 
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of 0m . Is interesting the energy balance of the charged carriers according to the 
electromagnetic Equation (8.43). Start with the energy of a Coulomb system with 
a nucleus of mass m±  formed by either charge, e.g. m+ , in the field of which 
interacts the other charge, e.g. m− , at average distance Br ; the subscript “B” 
stands for “bound”, whereas the simplest hypothesis on the masses is m m+ −= . 
Consider preliminarily that such a system can be described as shown in subsec-
tion 3.2: the reasoning introduced to describe the electron charge around the 
nuclear charge holds in principle also for integer spin charged particles. The 
early hydrogenlike atom was introduced before the concept of spin, which be-
came essential to account for the electron pile up in many electron atoms [7] 
according to the exclusion principle and for the possible presence of an external 
field. The success of Bohr’s idea was allowed by the fact that the spin-orbit and 
spin-spin interaction between electron and nucleus are both small with respect 
to the Coulomb interaction. Consider at this point uniquely (3.1) that has gener-
al validity and skips, as shown in section 3.3, the operator formalism imple-
menting wave functions along with all related implications: e.g. it is known that 
a 0 spin particle requires a 4 dimensional scalar wave function, whereas a spin 1 
particles requires a three component wave function. On the one hand (3.1) has 4 
dimensional character as it merges space and time coordinates through the re-
spective uncertainty ranges, to which are related energy and momentum ranges 
too. On the other hand the necessity of describing the particle in any reference 
system is in fact ensured by (3.1) according to (3.2). Implement thus the elec-
tromagnetic interaction only to describe via (3.1) even a system of spin 1 
charged bosons m+  and m−  trusting that the steps from (3.3) to (3.9) still hold 
at least approximately also now; the comparison with the experimental data will 
be the decisive benchmark to assess the validity of these considerations. So it is 
possible to write for the system of boson charges 4 2 22n re m nε =  , see Equa-
tion (3.7) with 1Z = , where rm  is the reduced mass of the concerned system. 
Accordingly (3.9) yields 

2 2
2

2 2

1 1 , , 2
2 2B r B r

B r

c n cm c r m m
rn m c

α αε
α ±= − = − = =

         (8.46) 

for charges of equal mass. Putting 1n =  and including α  into rm , this equa-
tion reads  

2 21 1 , , ;
2 2

B
B r r r B

B r

rcm c m m r
r m c

ε α
α

′ ′ ′= − = − = = =
′ ′
         (8.47) 

with these positions Bε  depends explicitly on Br′  and rm′  only, no longer on 

Br  and rm . Is of interest now an appropriate Br′  compliant with Bε  and such 
that  

( ) 2
0

1 π2 , 2π
2 B

B

c cm m c r n
r n

λ
λ± ′ ′+ = = =

′ ′
 

            (8.48) 

with n′  integer, the second equation is a well known condition of the wave 
mechanics already implemented in (3.8) with the same physical meaning. Let the 
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shortest wavelength λ  be the Compton length of either m± , as suggested by 
the Equation (3.6) and [7], i.e.  

;
m c

λ
±

=


 

then, replacing 2m c c λ± =   into (8.48) one finds  

( )2
0 π 2 .cm c n

n λ
′= −

′


 

In conclusion, comparing with (8.48) and putting 1n′ = , it is possible to 
write  

( ) ( )
2 2

0
2 2

0 0

π 2 1, .
π π2 2

m c m c
m m c m m c

±

± ±

−
= =

+ +
 

These results are verifiable by comparison with the experimental masses m±  
and 0m :  

( ) ( )

0
2 2

0
2 2

0 0

91.19 GeV, 80.39 GeV,

0.36, 0.32,
2 2

m m

m c m c
m m c m m c

±

±

± ±

= =

= =
+ +

 

which in effect compare well with ( )π 2 π 0.36− =  and 1 π 0.32=  respectively. 
Moreover note that (8.47) regards by definition Br′  as average distance be-

tween m+  and m− , whereas axδ  of (8.44) is by definition the total range of 

wF ; therefore one infers that reasonably 2B ar xδ′ = . Hence, according to (8.48), 

B ac xε δ= −  is the binding energy gain available to create the masses 
( ) 2

0 2m m c±+ . In effect one finds that the total energy wε  related to wF  is  

( ) 2
0255 GeV ,w B

c m m m c
xα

ε ε
δ + −= − = = = + +


          (8.49) 

in agreement with (8.45) and with the experimental masses. The Equations (8.47) 
and (8.46) differ in fact only formally; once having removed α  merely includ-
ing it in the reduced mass of the system as a numerical scale factor, someway 
analogous to (3.12), it appears that wF  is different from but closely related to 
the electromagnetic interaction constant via the linked energy scale factor. 

In effect, considering rm′  and Br′ , and not rm  and Br , one calculates expe-
rimental masses of the force carriers and reasonable estimate of the interaction 
range 177.3 10 cmxαδ −≈ ×  that agree with the total energy (8.45); these values 
support the idea that a hydrogenlike system bound by electromagnetic interac-
tion via photon carriers turns into a short range interaction system via massive 
carriers. There appears in this way the link between electromagnetic and weak 
interactions. 

At this point, something else about xαδ  can be still inferred to confirm that 

wF  corresponds to the weak interaction. Helps in this respect the first (8.4) 
2FV x tδ δ=   that reads  

3 ,w w
cV x

t xα
ε δ ε

δ δ
= =
 
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whence, with the help of the values (8.44),  

3 49 32 10 erg cm ;w
cV x
x α
α

ε δ
δ

−= = × ⋅


             (8.50) 

this is the Fermi constant characterizing the weak interactions. 
This result is more than mere fingerprint of weak interactions; interesting in-

formation can be inferred from it expressing appropriately energy and volume 
inherent this result. Write  

3 3
49 3 22 10 ,F F F F F F

F F

c m c
m c

ε λ ε ε ε
ε

−    
× = = = =   

   

         (8.51) 

the energy Fε  that defines the characteristic Fermi constant has been expressed 
via Compton length of the characteristic mass Fm  that in turn defines Fε  too. 
Hence  

( )3

49 0.397 erg 255 GeV.
2 10F

c
ε −= = =

×



             (8.52) 

It is not surprising that one finds once more the value of total energy of this 
kind of interaction. Implement now the idea that actually the energy (8.49) is 
degenerate: it consists of m−  moving in the field of m+  or, identically, from 
m+  moving in the field of m− . As both configurations can coexist consistently 
with the unique reduced mass rm  (8.46) that calculates Be  of (8.47), it is rea-
sonable to regard the value (8.49) as the sum of both allowed chances; this means 
that the total energy refers to the total volume calculated via (8.51), so that each 
configuration has energy  

1 0.2 erg 127 GeV.
2H Fε ε= = =                 (8.53) 

Note that this value is also consistent with that inferred through a characteris-
tic range similarly as done in (8.40) and (8.41)  

( )3.5 4 161.6 10 cm,

0.197 erg 123 GeV.

H B

H

x r

c
x

δ α α

δ

−= − = ×

= =


             (8.54) 

8.7. The Dirac and Lamb Equations 

This section generalizes the results of the Section 3.2 obtained implementing the 
non-relativistic equation 2 2 2 22rp p M r= + . The following considerations 
show how to describe a relativistic hydrogenlike system replacing the classical 
position (3.4) with the series expansion  

31 2
0 0 2 3p

r r r
σσ σ

ε δ σ= = + + + +
∆ ∆ ∆


                (8.55) 

expressing ( )1p p rδ δ −= ∆   as 
0

i
iip rδ σ −

=
= ∆∑  similarly as done in the Equ-

ations (8.5) or (8.6). In effect even the term 2 2rp m∆  of (3.4) can be written as 
2

1 rσ ′ ∆  with coefficient ( )2
1 2n mσ ′ =  ; so (3.4) is actually a particular case of 
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the series (8.55) truncated at the second order. Of course 0  is an arbitrary 
constant length that introduces the energy corresponding to force pδ  . Al-
though pδ   vanishes at the infinity, the arbitrary constant 2

0 mcσ =  accounts 
for the electron rest mass energy. Hence it is possible to write  

2 31 2
2 1 0 2 3

2 1 2 1

,

, ,r r r

p mc
r r r

r r r p p p

σσ σ
δε ε ε δ= − = − = + + +

∆ ∆ ∆
∆ = − ∆ = −


 

        (8.56) 

being rp∆  the radial momentum range conjugate to r∆ . All range boundaries 
are of course arbitrary. In this way we deliberately waive introducing explicitly 
radial and angular momenta exploited in section 3.2, but implement directly the 
fundamental Equation (3.1). Multiply both sides of (8.56) by 2mc  so that  

( ) ( )
( )

( )
( )

2 3
2 2 32 21

0 2 3 ,r rp c m p c m
p mc mc

r n n c

σ σσ
δ

∆ ∆ − − = + + ∆ 


 

 

 

The series truncated at the third order yields  

( ) ( )
( )

( ) ( )
( )

( )

2 3
22 32 2 2 2

2 1 2 3

2 2 2 1
0

,

.

r rp c m p c m
mc

n n c

mc p mc
r

σ σ
δ ε ε ε

σ
δ ε δ

∆ ∆
= − = + +

= −
∆

 




 

As the coefficient 2σ  has not yet been defined, it is convenient to turn this 
equation into  

( ) ( ) ( ) ( )
( )

( )3 2
22 32 2

23 , ;r
r

p c m n
p c mc

mn c

σ
δ ε σ

∆
= ∆ + + + =







 

then, dividing both sides by ( )22mc , one finds  

( )

( )
( )
( ) ( ) ( )

22
2

2 22

32 2
3 31 1

2 2 2 2 332 2 2

1 ,

.

r

r

p c
mcmc

p c m
mc rmc mc n c mc

ε

σ σε ε

∆ = + +Θ 
 

∆
Θ = + = +

∆


        (8.57) 

Next write  

( )
2

2 1 2
2 2 2 22

1, 1r r rp c p c p c si si
mc mc mc mc

ε ∆  = − = −Θ − = ±  
 

        (8.58) 

so that, subtracting 2
2 mcε  at both sides, one finds  

( )22 2 1 2
2 2 21 , ,r rp c pb si a a b a

mc mc mc
ε ε−

= + −Θ − − = =       (8.59) 

and then  

( )
( )

( )( )
22 2

2
2

2 2

1 .
r

mc
b si a a

p c ε

−

= + −Θ − −
−
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According to the first (8.57) ( )( ) ( )
2 22 2

2 1 rmc p cε − +Θ = ∆ ; thus the last equa-
tion reads  

( )( )
( )

( )( )
( )( )

22 2
22

2 2
2 2 2 2

1 .
1 1

r

r r

p c
b si a a

p c p c
ε

ε ε

−∆
− = + −Θ − −

+Θ − +Θ −
 (8.60) 

Put now  

2 2 .r rp c p cε− = ±∆                      (8.61) 

This position has two implications: the first replacing it in (8.57)  

( )( ) ( )
2 22 2

2 2 21 rmc p cε ε− +Θ = −                (8.62) 

and the second replacing in (8.60)  

( )( )
( )( )

2 2
22

2
2 2

11 .
11 r

b si a a
p c
ε

ε

−

= + −Θ − − +
+Θ+Θ −

    (8.63) 

Note that we have introduced four conditions: a and b in (8.59) plus (8.62) 
and (8.63); the unknowns in these equation are 1 2 2, , ,r rp p ε Θ . In principle the 
system appears solvable. 

Taking the reciprocal of both sides one finds 

( )( )
1 22

22

2

1 11 1 , 1.
11

rp csi b si a a si
ε

−−   ′ ′− = + −Θ − − + = ±   +Θ+Θ   
 (8.64) 

The notations si  and si′  have been introduced to allow that the upper and 
lower signs in (8.58) and (8.56) are independent each other. Then it is possible 
that  

( )( )
1 22

22

2

1 11 1, 1
11

rp c b si a a si
ε

−−  ′− = + −Θ − − + − = − +Θ+Θ  
 (8.65) 

or  

( )( )
1 22

22

2

1 11 1, 1
11

rp c b si a a si
ε

−−  ′= + −Θ − − + + = +Θ+Θ     
 (8.66) 

Subtracting (8.65) from (8.66) with the same sign si , one finds 
( ) ( )2 2 2 2 2r rp c p cε ε

+ −
− = : this suggests that the left hand side of these equa-

tions must have the form 2E mc , so that  
22 .E E mc+ −− =  

The minus sign at the left hand side of (8.65) represents binding energy of the 
electron to the nucleus in 2mc  units; the first addend at the right hand side 
represents the energy gain with respect to that of the free electron in either 
energy state. 

The previous algebraic steps aimed just to find an equation introducing the 
ratio 2 2rp c ε . In effect this ratio is significant because, according to (8.61), if 

2 2rp c ε→  then 0rp∆ →  and thus r∆ →∞  whereas rp  becomes constant; 
this is the limit case of free electron. Indeed 0rp∆ ≠  implies binding energy, 
since the electron takes random values of radial momentum between 1rp  and 
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2rp  depending on its finite random distance from the nucleus. 
Examine the result (8.65) putting first 0Θ = : in fact, according to the second 

(8.57), this occurs putting 3 0σ =  and in (8.55) and 1 0ε = , i.e. considering 
the energy 2ε  only instead of the energy range δε  (Heisenberg compliant 
quantum case). Now require that  

( )
1 22

2
2 1 1 1

E b si a a
mc

−−
−  = + − − + −  

            (8.67) 

must be compatible with the non-relativistic quantum Equations (3.5) and (3.9); 
in other words, in (8.67) must somehow appear not only Zα  but also n and 
( )1l l +  as well. To fulfill this boundary condition as a limit case for small values 

of Zα , put in (8.67))  

, ;o oa b
a b

Z Zα α
= =                   (8.68) 

in effect, replacing and expanding in series around 0Zα = , (8.67) becomes  

( )
( )

2

2 2
0

.
2Z o o o

ZE
mc b sia aα

α−

→

=
+ −

 

Considering in particular 1si = , the boundary condition requires ob n= . 
Once having identified ob , regard then oa  and 2

oa  in order to be compliant 
with l and ( )1l l +  of Equation (3.5), while also fulfilling (3.9) and (3.10). This 
suggests reasonably 1 2oa l s= + ± , being s the electron spin; in effect, depend-
ing on the sign, oa  becomes l or 1l + . In conclusion  

( ) ( ) ( )

1 22

2 2 2
1 1, , 0

1 2 1 2

E Z j l s
mc n j Z j

α

α

−

−

  
  = + − = ± Θ =   + + − − +   

(8.69) 

This is the Dirac equation, which however becomes in the present approach 
particular case of an even more general equation including Θ  as well. The Eq-
uation (8.65) reads indeed  

( ) ( )( ) ( )

1 22

2 2 2

1 1 1
11 1 2 1 1 2

E Z
mc n j Z j

α

α

−

−

  
  = + −   +Θ+Θ  + + − +Θ − +   

 

which removes the degeneracy of states with equal n and j of the Dirac equation 
and also suggests that a further physical effect related to Θ  not concerned in 
(8.69) is still hidden in this result. In effect the Dirac equation becomes in this 
approach the zero order approximation of a more complex energy function 
whose series expansion reads  

2
0

Dir
E EE

mc
− −

Θ=

∂
= + Θ+

∂Θ


                 (8.70) 

It is evident that (8.70) removes the degeneracy of the 1 22 p  and 1 22s  states: 
indeed, whatever the actual analytical form of Θ  might be, calculating the 
energy difference of these states one finds  

 

DOI: 10.4236/jmp.2018.914161 2588 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2018.914161


S. Tosto 
 

1 2 1 2 1 2 1 2

2 2
2 2 0 02 2

0.
p s p s

E E E E
mc mc

− − − −

Θ= Θ=

   ∂ ∂
− = Θ − Θ ≠   ∂Θ ∂Θ   

 

Owing to the physical dimensions 3energy length×  of the coefficient 3σ  in 
the second (8.57), it is easy to guess the order of magnitude of the second ad-
dend of Θ  according to the following reasonable positions  

3
3 3

3 3 3, , ,bohr C
bohr C bohr

bohr

r r
r r
σ ε λ

σ ε λ≈ × ∆ ≈ ≈
∆

 

being Cλ  the electron Compton length. So it follows from the second (8.57) 
with the help of (3.4) and (3.8)  

( )
5 53 2

1
2 3 22

1 1, .
2 2

bohr C

bohr

Z Z
n nmc r mc

ε λ εα α   = − Θ ≈ −   
   

         (8.71) 

The second addend of Θ  in (8.71) is the signature of the radiative energy 
displacement due to the interaction of the electron with the quantum vacuum, 
known as electron driven vacuum polarization effect; the analytical form of the 
first addend represented by 1ε , not yet concerned explicitly, is at present still 
under investigation. So, even without detailed calculations in this respect, appear 
two relevant facts: 1) the first three terms of (8.55) are enough to infer the Dirac 
equation; 2) the cubic term and the implementation of the energy range δε  in-
stead of a unique energy term ε  are essential to infer contextually the Lamb 
energy shift too. 

9. Discussion 

The present model has concerned several topics of fundamental physics 
self-consistently inferred uniquely from the concept of evolution inherent the 
definitions (1.11) and (1.12). The concepts of mass, momentum, energy and 
electric charge, obviously missing in these equations, have been uniquely and 
self-consistently introduced through the fundamental constants of Nature. It 
appears also significant the chance of describing the Universe according to laws 
inferred from the change of a unique primordial function ψ , even regardless of 
a specific and detailed knowledge about the function that is changing itself: it is 
instead crucial how it changes. 

The fact of having introduced an initial function and its actual space time 
evolution, has been proven enough to infer contextually quantum uncertainty 
and relativistic results in a surprisingly straightforward way even regardless of 
any deterministic metric and without hypotheses “ad hoc”. 

On the one side the necessity of quantized physical laws is implied by the 
concept itself of uncertainty, Equations (3.1) and (3.2), on the other side special 
and general relativity are implied by the space time frame under the condition of 
its holistic evolution. The reverse reasoning is also true: the foundation of quan-
tum and relativistic theories are the fingerprint of an evolving Universe, whose 
evolution is governed by a few constants in which are nested the essential dy-
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namical variables of interest for the everyday experimental activity, mass, energy 
charges and so on. 

The modern physics is essentially wave physics. This is because the Bohr atom 
first opened the way to the hydrogenlike atoms and thus to the probabilistic in-
terpretation of the wave functions. Next Schrödinger further enhanced this con-
ceptual path including in the wave function the potential term and thus the elec-
tron correlation in many electron atoms and ions. Eventually a further step 
ahead was accomplished by Dirac: with its relativistic hydrogen atom, He has in 
fact introduced the quantum field theory. Yet all these physical models imple-
mented wave formalism. The present paper, instead, introduces and contextually 
exploits the corpuscle nature of the particles constituting the matter, appro-
priately integrated with their wave nature when necessary. The subsection 3.2 
has been reported just to clarify this point. In this way is irrelevant the theoreti-
cal problem raised by many physicists about why *Ψ Ψ , and not Ψ  itself, has 
physical meaning [21]; moreover the approach to the various equations of 
quantum and relativistic physics appears not only simpler but also the equations 
themselves are more interconnected. The Heisenberg principle has negative 
content; the statistical formulation of the space time uncertainty has instead a 
highly positive content as it shares both quantum and relativistic theories. Re-
garding a fundamental statement the uncertainty and following the approach 
shortly sketched in Section 3.2 the EPR paradox would be meaningless because 
the concept of distance is missing; the uncertainty ranges waive since the begin-
ning conceptually, and not as a sort of approximation useful to simplify calcula-
tions, the concepts of local space time coordinates necessary to define “superlu-
minal” distances.  

As concerns the quantum way of describing the reality, these basic concepts 
can be summarized as follows  

 

uncertainty range uncertainty range

operator operator

dynamical variables

, , ,

i x i t

p

p
x c G t

ε

ε
α

∂ ∂
−

∂ ∂

∆ ∆
∆ ∆

 

 

 



               (9.1) 

The upper part deals with differential equations that by definition describe the 
local properties of the solution of the pertinent wave equation; the lower part 
describes instead the system regardless of its local properties and thus without 
need of solving the pertinent differential equations. In principle both approaches 
are equivalent, although the operator formalism is a byproduct of the quantum 
uncertainty; in practice, however, the problem is to see which approach is more 
effective in describing the quantum properties of the Universe regardless of the 
local and deterministic tensor formalism. It is worth recalling that all papers 
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based only on the Equation (3.1) only, allowed to obtain the most significant re-
sults of both general relativity and quantum physics [20]; in the latter case, in 
particular, the usual positions (3.28) introducing the operator formalism of wave 
mechanics according to (3.66) and (3.67) are systematically replaced by the un-
certainty positions  

, , , ,x x p p t tδ δ δ ε δε→ → → →             (9.2) 

while obtaining results identical to that of the standard wave formalism, as 
shortly shown in subsection 3.2. 

The classical dynamical variables p and ε  are to be regarded equivalently as 
quantum differential operators or quantum uncertainty ranges: this implies that 
actually it is necessary neither to solve the Schrödinger equation of wave me-
chanics nor the tensor calculus of relativity. The form (3.2) expressing the 
quantum uncertainty, apparently weird, shows the quantum equivalent of the 
relativistic covariance: the Equations (3.1) could seem defined in some particular 
reference system, instead (3.2) show that whenever the dynamical variables are 
replaced by the respective uncertainty ranges about which nothing is known in 
the sense highlighted in the subsection 3.2, the dependence of any formula on a 
particular reference system, inertial or not, is lost. So the independence of for-
mulas on any particular R is ensured by (3.1), despite their different forms in R 
and R′ ; however holds the more substantial fact the any formula inferred from 
(3.1) has validity in any R′ : this is the profound reason why relativistic formu-
las can be inferred from (3.1). 

Yet, the rational foundation of everything is just the conceptual impossibility 
of knowing everything. 

10. Conclusions 

As stated in Section 1, part of this paper aimed to find known results as a test of 
validity of the present theoretical model. Besides well known results, explicitly 
quoted throughout the exposition, the model has also provided original results: 
− Evolutionary imprinting and derivation of physical laws. 
− Possible granular structure of the space time. 
− Possible quantization of the temperature. 
− Lnk between entropy, phase space and space time. 
− Link between Van der Waals equation and quantum zero point state of mat-

ter. 
− Link between relativity and quantum gravity. 
− Probabilistic link between corpuscle and wavelike behavior of matter. 
− Link between operator and uncertainty driven approach to quantum prob-

lems. 
− Generalization of Dirac equation to include the Lamb effect. 

Moreover: 
− The Equations (4.4) and (3.13) show that even a small mass 0m  can take 

large values of kinetic mass m for v c→ ; also, (4.6) shows that just m is the 
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classical mass. 
− The Equation (6.19) has shown the existence of finite vacuum energy density η , 

to which corresponds according to (8.34) a pressure 8 22.2 10 dyn cmvacP −= × . 
− The Equation (4.7) has shown that the corpuscle/wave behavior of matter has 

probabilistic character and that this probability involves the ratios 0m m  
and gv c . 

− The velocity dependence of mass shows that 0m m→  implies 0v → , 
whatever 0m  might itself be; contextually, increasing 0m  to m′  means 
decreasing gv  from c to a smaller value v′ . 

− Short notes, although necessarily incomplete, emphasize the essential finger-
prints of the strong and weak interactions, Equations (8.37), and contextually 
also the gravity force and Maxwell equations. 

− The model explains why un upper limit of velocity, c, must necessarily exist. 
These short remarks are enough to conclude that the present model fits the 

basic concepts of thermodynamics and fundamental forces of nature merging 
concept of quantum and relativistic physics. 
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Abstract 
Resonance energies of the Cl II-[3s23p3(2D5/2)]nd and [3s23p3(2P3/2)]nd, Ar 
II-3s23p4(1D2)ns, nd and of the Kr II [4s24p4(1D2)]ns, nd and 4s24p4(3P2,3P1)]ns, 
4s24p4(3D2)]ns, nd and 4s24p4(3D2, 1S0)]ns, nd Rydberg series are reported. 
Natural widths of the Ar II-[3s23p4(1D2)]ns, nd series are also reported. Cal-
culations are done in the framework of the Modified Atomic Orbital Theory 
(MAOT). Excellent agreements are obtained with available theoretical and 
experimental data. High lying accurate resonance energies up to n = 40 are 
tabulated. The possibility to use the MAOT formalism report rapidly with an 
excellent accuracy the position of the excitation resonances as well as their 
width within simple analytical formulae is demonstrated.  
 

Keywords 
Resonance Energies, Rydberg Series, Natural Widths, Modified Atomic  
Orbital Theory (MAOT) 

 

1. Introduction 

In many astrophysical systems such as stars and nebulae, the main process go-
verning light-atomic species interaction is Photoionization. Of great important 
ions interesting to investigate are Cl II (Cl+), Ar II (Ar+) and Kr II (Kr+) ions. As 
far as Cl II is concerned, its interest is connected with it abundance in photoio-
nized astrophysical objects. In the past, various studies have indicated the great 
importance of Cl II ions abundances for understanding extragalactic HII regions 
[1]. In addition, emission lines of Cl II ions have been observed in the spectra of 
the Io torus [2] and in the optical spectra of planetary nebulae NGC 6741 and IC 
5117 [3]. In a very recent past, Hernández et al., [4] measured at the Advanced 
Light Source at Lawrence Berkeley National Laboratory absolute photoionization 
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cross-sections for the of Cl II ions using the merged beams photon-ion tech-
nique at a photon energy resolution of 15 meV in the energy range 19 - 28 eV. 
Using the Dirac-Coulomb R-matrix (DCR) method, McLaughlin, [5] performed 
calculations in the same photon energy range that in the ALS experiments [4] to 
assign and identify the resonance series in the ALS spectra of the Cl II ions. In 
these experimental works, the 3s23p3nd states have been identified in the Cl II 
spectra as the prominent Rydberg series belonging to the 3p → nd transitions. 
The weaker 3s23p3ns Rydberg series, identified as 3p → ns transitions and win-
dow resonances 3s3p4(4P) np features, due to 3s → np transitions, have also been 
found in the spectra [5]. Besides, one of the important elements to study is Ar-
gon present in several astrophysical systems. An overabundance of the argon 
element in the spectra of X-rays of yellow supernovas was revealed by the satel-
lite Chandra [6] dedicated to analyze the stellar object spectra. Furthermore, 
spectral rays of the argon element were observed in the optical spectra of plane-
tary stars and nebulae [7] [8]. These few examples show the importance of the 
photoionization study of the argon element from the perspective of astrophysics. 
In a recent past, Covington et al., [9] performed the first experimental measure-
ments of the photoionization cross-section of the Ar II ion. These authors also 
determined the resonance energies and natural widths related to the dominant 
Rydberg series 3s23p4(1D2)ns, nd and 3s23p4(1S0)ns, nd in the emission spectra of 
the Ar II ions. These energies were relatively measured at the metastable state Ar 
II (2P°1/2) and at the ground state Ar II (2P°3/2). As far as Krypton is concerned, it 
is also an element of major importance for diagnosing stellar plasmas such as 
stars and planetary nebulae as well as for diagnosing laboratory plasmas such as 
those obtained by inertial fusion. In a recent past, Hinojosa et al., [10] experi-
mentally studied the photoionization of the Kr II ion at ALS at Berkley in the 
photonic energy range of 23 - 39 eV. In the photoionization spectra, these au-
thors observed several Rydberg series, including the Kr II [4s24p4(1D2)] ns, nd se-
ries converging toward the excitation threshold Kr II [4s24p4(1D2)]. Very recent-
ly, Sakho, [11] applied the Screening constant by unit nuclear charge (SCUNC) 
formalism to report precise data belonging to various Rydberg series of Ar II and 
Kr II as observed in the works of Covington et al., [9] for Ar II and of Hinojosa 
et al., [10] for Kr II. In the present study, we use the Modified atomic orbital 
theory [12] [13] [14] [15] [16] to report accurate high lying resonance energies 
of the Cl I-[3s23p3(2D5/2)]nd and [3s23p3(2P3/2)]nd, Ar II-3s23p4(1D2)ns, nd and of 
the Kr II [4s24p4(1D2)]ns, nd and 4s24p4(3P2,3P1)]ns, 4s24p4(3D2)]ns, nd and 
4s24p4(3D2, 1S0)]ns, nd Rydberg series reported. Natural widths of the Ar 
II-[3s23p4(1D2)] ns, nd series are also reported. In Section 2, a brief description of 
the MAOT formalism is given. The results are present in Section 3. Section 4 
concludes the study. 

2. Theory 
2.1. Brief Description of the Modified Atomic Orbital Theory 

In the framework of the modified atomic orbital theory (MAOT), the total 
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energy of a (νl)-given orbital is expressed in the form in Rydberg units  

( )
( ) 2

2

Z l
E l

σ
ν

ν

−  = −                       (1) 

In Equation (1), σ is the screening constant relative to the electron occupying 
the (νl)-orbital, l denotes the orbital quantum number, ν stands for the principal 
quantum number and Z represents the atomic number. In general, the doubly 
excited states (DES) in two electron systems are labelled as ( ) 2 1, SNl nl Lπ+′ . In 
this notation, N and n denote respectively the principal quantum numbers of the 
inner and the outer electron, l and l’ are their respective orbital quantum num-
bers, S the total spin, L the total angular momentum and πthe parity of the sys-
tem. For an atomic system of many M electrons, total energy is expressed as fol-
lows 

( ) 22 1

2
1

S
M i

i i

Z L
E

πσ

ν

+

=

 − = −∑                    (2) 

In the photoionisation study, energy resonances En are generally measured 
relatively to the E∞ converging limit of a given (2S+1LJ)nl-Rydberg series. For 
these states [12] [13] [14] 

( ) ( )

( ) ( ) ( ) ( )

2 1 2 1
1 22

2

2 0 1
2 3 2 2

1 1

1,
, , ,

S S
n J J

k k

E E Z L L
nn

P D n m n q
f n m q s

α

σ σ

σ

+ +
∞

= − − − ×


− × − × − 


∑
       (3) 

In this equation, m and q (m < q) denote the principal quantum numbers of 
the (2S+1LJ)nl-Rydberg series of the considered atomic system used in the empiri-
cal determination of the ( )2 1S

i JLσ + -screening constants, s represents the spin 
of the nl-electron (s = 1/2), E∞ is the energy value of the series limit generally 
determined from NIST atomic database, and Z represents the nuclear charge of 
the considered element. The only problem that one may face by using the  

MAOT formalism is linked to the determination of the 
( )

1
, , ,k kf n m q s∑ -term.  

The correct expression of this term is determined iteratively by imposing general 
Equation (3) to give accurate data with a constant quantum defect values along 
all the considered series. The value of α is fixed to 1 and or 2 during the iteration. 
The quantum defect is calculated from the standard formula 

( )
2
core

2n
RZ

E E
n δ∞= −
−

                       (4) 

In this equation, R is the Rydberg constant, E∞ denotes the converging limit, 
Zcore represents the electric charge of the core ion, and δ means the quantum de-
fect. As far as the natural widths are concerned, they are given by (in Rydberg 
units) 
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( ) ( )

( ) ( ) ( ) ( )
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       (5) 

2.2. Expressions of the Resonance Energies and of the Natural  
Widths 

In the present work, for all the Rydberg series investigated for both Cl II, Ar II 
and Kr II, the resonance energies are given by the formula 

( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 1 2 1
1 22
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2 4 4
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2 4 4

1 1
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n m s n m s

σ σ

σ
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+ +
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+

+

= − − − ×
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 
− × − + 

+ + −  

 + × − + 
+ + + −  

       (6) 

For the [3s23p4(1D2)]ns (j = 1/2) series originating from the 2 5 2
1 23s 3p P°  me-

tastable state of Ar II ions, the natural widths are given by (in Rydberg units) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 1 2 1 2 2 1
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2

4 4 4 4

1 1

1 1 1 1
1

S S S
n J J JZ L L L n m n q

nn

n q m s n m s n q s n m s

σ σ σ+ + +Γ = − − × + × − × −


 × + + + 
+ − + + + + + + + −  

 (7) 

The other expressions for the other series are of type Equation (7). 

3. Results and Discussion 

The σ1-screening constants in Equations (6) and (7) are evaluated empirically 
using the data from Covington et al., [9] Hinojosa et al., [10] and from 
Hernández et al., [4]. The results obtained as indicated in the caption of the cor-
responding Table. As far as the σ2-screening constant is concerned, it is eva-
luated theoretical from the simple equation σ2 = Z − Zcore. The electric charge of 
the core ion is deduced directly from the single Photoionization process for a 
given Xp+-plasma ion  

( ) ( )p 1p
coreX X e p 1h Zν ++ −+ → + ⇒ = +                (8) 

So, for Cl II, Ar II and Kr II, we find respectively.  
2

core 2Cl Cl e ; 2 15.00h Zν σ+ + −+ → + = ⇒ =  

2
core 2Ar Ar e ; 2 16.00h Zν σ+ + −+ → + = ⇒ =  

2
core 2Kr Kr e ; 2 34.00h Zν σ+ + −+ → + = ⇒ =  

The resonance energies of the [ ( )2 3 2
5 23s 3p D° ]nd Rydberg series originating 

from the 2 4 3
23s 3p P°  ground state and from the 2 4 3

13s 3p P° , 2 4 3
03s 3p P° ,
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2 4 1
03s 3p S°  and 2 4 1

23s 3p D  metastable states of Cl II ions are listed in Tables 
1-8. Comparisons of the present MAOT calculations are done with the available 
Dirac-Coulomb R-matrix (DCR) calculations [5] and with the ALS experimental 
data [4]. For both the DCR [5] and ALS [4] studies, the determination of the re-
sonances energies have been limited to n = 13 (see Table 4). In general due to 
interaction configuration and other electron-electron effects, the peaks of the 
cross section overlap involving difficulty for the identification of lines in the 
atomic spectra with increasing n. But, it can be seen that, the MAOT formulas 
are enough stable so that very high lying resonances can be tabulate up to n = 40 
with a quantum defect practically constant along all the series investigated. For 
many resonances, the uncertain experimental entries in parenthesis are enligh-
tened. In Table 2, the resonance energy of the [ ( )2 3 2

5 23s 3p D° ]11d level are 
equal to 25.493 eV (MAOT), 25.493 eV (DCR) and (25.492 eV) for the ALS un-
certain experimental data. The excellent agreement between theories indicate 
that the ALS data can be stated as accurate at 25.492 eV. The same conclusion 
can be drawn for the [ ( )2 3 2

5 23s 3p D° ]8d state quoted in Table 3 where the 
MAOT prediction at 25.001 eV agree very well with both the DCR value at 
24.999 eV [5] and the uncertain ALS measurement [4] equal to (25.000 eV). For 
this level the ALS data must be considered as precise at 25.000 eV. Table 4 lists 
resonance energies of the [ ( )2 3 2

3 23s 3p P° ]nd Rydberg series originating from 
the 2 4 3

23s 3p P°  ground state of the Cl+ ions. In this table, two uncertain ALS 
values are quoted for the [ ( )2 3 2

3 23s 3p P° ]6d and [ ( )2 3 2
3 23s 3p P° ]12d levels re-

spectively at (25.745 eV) and (27.114 eV) to be compared to the MAOT predic-
tions at 25.749 eV and 27.113 eV and to the DCR data [5] respectively equal to 
25.755 eV and 27.115 eV. For the n = 11 and 13, the MAOT calculations respec-
tively at 27.031 eV and 27.176 eV are seen to agree very well with the ALS mea-
surements [4] at 27.031 eV and 27.175 eV. Subsequently the DCR data at 25.755 
eV (n = 6) and at 27.178 eV (n = 13) are probably greater than the accurate data. 
The ALS experimental entries in parenthesis can be considered as certain at 
25.745 eV and 27.114 eV. Besides, the MAOT data at 25.659 eV quoted in Table 5 
is seen to agree very well with the uncertain ALS measurement [4] at (25.660 
eV). A slight discrepancy is observed when comparing with the corresponding 
DCR calculation [5] equal to 25.668 eV. Comparison indicates clearly that the 
ALS value [4] is correct at 25.660 eV. In Table 6 and Table 7, all the ALS data 
[4] are certain. In general, good agreements are obtained between theory and 
experiment. In Table 8, the uncertain ALS data [4] at (24.152 eV) for the 
[ ( )2 3 2

5 23s 3p D° ]11d level is difficult to enlighten. For this level, the MAOT pre-
diction at 24.146 eV compared fairly well with the DCR calculations [5] equal to 
24.138 eV. A new measurement or calculation is needed to clarify this uncertain 
ALS value [4]. Overall, for the entire data quoted in Tables 2-8, comparisons in-
dicate that the MAOT formula reproduces with a very good accuracy the ALS 
measurements [4] via a simple formalism without using computational codes in 
contrast with the DCR formalism [5]. Tables 9-11 list resonance energies of the  
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Table 1. Resonance energies of the [ ( )2 3 2
5 23s 3p D° ]nd Rydberg series originating from 

the 2 4 3
23s 3p P°  ground state of the Cl+ ions converging to the ( )2 3 2

5 23s 3p D°  threshold 

of Cl2+. The present results from the Modified atomic orbital theory (MAOT) are com-
pared with the Dirac-Coulomb R-matrix (DCR) calculations of McLaughlin [5] and with 
the ALS experimental data of Hernández et al., [4]. The ALS experimental resonance 
energies are calibrated to ±0.013 eV. The energy limits is taken from the NIST tabulations 
of Ralchenko et al., [19]. σ1(2D5/2) = −0.770 ± 0.048; σ2(2D5/2) = 15.00. 

n 
MAOT DCR ALS MAOT DCR ALS 

E E E δ δ δ 

6 24.348 24.353 24.348 0.362 0.30 0.38 

7 24.824 24.846 24.829 0.363 0.35 0.35 

8 25.127 25.130 25.128 0.362 0.30 0.36 

9 25.331 25.334 25.335 0.361 0.34 0.34 

10 25.474 25.476 25.479 0.360 0.35 0.32 

11 25.579 25.584 25.583 0.360 0.30 0.32 

12 25.658   0.359   

13 25.719   0.359   

14 25.768   0.358   

15 25.806   0.358   

16 25.838   0.358   

17 25.863   0.358   

18 25.885   0.358   

19 25.903   0.358   

20 25.919   0.358   

21 25.932   0.359   

22 25.944   0.359   

23 25.954   0.359   

24 25.963   0.359   

25 25.970   0.359   

26 25.977   0.360   

27 25.983   0.360   

28 25.989   0.360   

29 25.994   0.361   

30 25.998   0.361   

31 26.002   0.361   

32 26.006   0.361   

33 26.009   0.362   

34 26.012   0.362   

35 26.015   0.362   

36 26.017   0.363   
37 26.019   0.363   
38 26.022   0.363   

39 26.024   0.363   

40 26.025   0.364   

… … … …  … … 

∞ 26.060 26.060 26.060    
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Table 2. Resonance energies (E) and quantum defect (δ) of the [ ( )2 3 2
5 23s 3p D° ]nd Ryd-

berg series originating from the 2 4 3
13s 3p P°  metastable state of the Cl+ ions converging 

to the ( )2 3 2
5 23s 3p D°  threshold of Cl2+. The present results from the Modified atomic 

orbital theory (MAOT) are compared with the Dirac-Coulomb R-matrix (DCR) calcula-
tions of McLaughlin [5] and with the ALS experimental data of Hernández et al., [4]. The 
ALS experimental resonance energies are calibrated to ±0.013 eV. The energy limits is 
taken from the NIST tabulations of Ralchenko et al., [19]. σ1(2D5/2) = −0.781 ± 0.048; 
σ2(2D5/2) = 15.00. 

n 
MAOT DCR ALS MAOT DCR ALS 

E E E δ δ δ 

6 24.259 24.264 24.259 0.367 0.36 0.37 

7 24.737 24.762 24.750 0.368 0.30 0.33 

8 25.040 25.039 25.036 0.367 0.37 0.38 

9 25.244 25.237 25.238 0.366 0.40 0.40 

10 25.388 25.385 25.384 0.365 0.40 0.42 

11 25.493 25.493 (25.492) 0.365 0.36 (0.37) 

12 25.572   0.364   

13 25.633   0.363   

14 25.681   0.363   

15 25.720   0.363   

16 25.751   0.363   

17 25.777   0.363   

18 25.799   0.363   

19 25.817   0.363   

20 25.833   0.363   

21 25.846   0.363   

22 25.858   0.364   

23 25.868   0.364   

24 25.877   0.364   

25 25.884   0.364   

26 25.891   0.365   
27 25.897   0.365   
28 25.903   0.365   
29 25.908   0.365   
30 25.912   0.366   
31 25.916   0.366   
32 25.920   0.366   
33 25.923   0.367   
34 25.926   0.367   
35 25.929   0.367   
36 25.931   0.367   
37 25.933   0.368   
38 25.936   0.368   
39 25.938   0.368   

40 25.939   0.369   

… … … …  … … 

∞ 25.974 25.974 25.974    
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Table 3. Resonance energies (E) and quantum defect (δ) of the [ ( )2 3 2
5 23s 3p D° ]nd Ryd-

berg series originating from the 2 4 3
03s 3p P°  metastable state of the Cl+ ions converging 

to the ( )2 3 2
5 23s 3p D°  threshold of Cl2+. The present results from the Modified atomic 

orbital theory (MAOT) are compared with the Dirac-Coulomb R-matrix (DCR) calcula-
tions of McLaughlin [5] and with the ALS experimental data of Hernández et al., [4]. The 
ALS experimental resonance energies are calibrated to ±0.013 eV. The energy limits is 
taken from the NIST tabulations of Ralchenko et al., [19]. σ1(2D5/2) = −0.789 ± 0.048; 
σ2(2D5/2) = 15.00. 

n 
MAOT DCR ALS MAOT DCR ALS 

E E E δ δ δ 

6 24.219 24.223 24.219 0.370 0.36 0.37 

7 24.697 24.733  0.372 0.27  

8 25.001 24.999 (25.000) 0.371 0.38 (0.38) 

9 25.205 25.198  0.370 0.40  

10 25.349 25.345  0.369 0.40  

11 25.455   0.368   

12 25.534   0.367   

13 25.595   0.367   

14 25.643   0.367   

15 25.682   0.366   

16 25.713   0.366   

17 25.739   0.366   

18 25.761   0.366   

19 25.779   0.367   

20 25.795   0.367   

21 25.808   0.367   

22 25.820   0.367   

23 25.830   0.367   
24 25.839   0.368   
25 25.846   0.368   
26 25.853   0.368   
27 25.859   0.368   
28 25.865   0.369   

29 25.870   0.369   

30 25.874   0.369   

31 25.878   0.370   

32 25.882   0.370   
33 25.885   0.370   
34 25.888   0.371   
35 25.891   0.371   
36 25.893   0.371   
37 25.895   0.371   
38 25.898   0.372   

39 25.900   0.372   

40 25.901   0.372   

… … … …  … … 

∞ 25.936 25.936 25.936    
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Table 4. Resonance energies (E) and quantum defect (δ) of the [ ( )2 3 2
3 23s 3p P° ]nd Ryd-

berg series originating from the 2 4 3
23s 3p P°  ground state of the Cl+ ions converging to 

the ( )2 3 2
3 23s 3p P°  threshold of Cl2+. The present results from the Modified atomic orbit-

al theory (MAOT) are compared with the Dirac-Coulomb R-matrix (DCR) calculations 
of McLaughlin [5] and with the ALS experimental data of Hernández et al., [4]. The ALS 
experimental resonance energies are calibrated to ±0.013 eV. The energy limits is taken 
from the NIST tabulations of Ralchenko et al., [19]. σ1(2P3/2) = −1.006 ± 0.077; σ2(2P3/2) = 
15.00. 

n 
MAOT DCR ALS MAOT DCR ALS 

E E E δ δ δ 

6 25.749 25.755 (25.745) 0.459 0.46 (0.47) 

7 26.246 26.253 26.246 0.469 0.45 0.47 

8 26.562 26.576 26.564 0.471 0.45 0.46 

9 26.774 26.780 26.778 0.471 0.44 0.45 

10 26.923 26.927 26.928 0.470 0.44 0.43 

11 27.031 27.035 27.031 0.469 0.43 0.47 

12 27.113 27.115 (27.114) 0.468 0.44 (0.45) 

13 27.176 27.178 27.175 0.467 0.42 0.48 

14 27.225   0.467   

15 27.264   0.466   

16 27.296   0.466   

17 27.323   0.466   

18 27.345   0.466   

19 27.364   0.466   

20 27.379   0.466   

21 27.393   0.466   

22 27.405   0.466   

23 27.415   0.466   

24 27.424   0.467   

25 27.432   0.467   

26 27.439   0.467   

27 27.445   0.467   
28 27.450   0.468   
29 27.455   0.468   
30 27.460   0.468   
31 27.464   0.469   
32 27.467   0.469   
33 27.471   0.470   
34 27.474   0.470   
35 27.476   0.470   
36 27.479   0.471   
37 27.481   0.471   
38 27.483   0.471   
39 27.485   0.472   

40 27.487   0.472   

… … … …  … … 

∞ 27.522 27.522 27.522    
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Table 5. Resonance energies (E, eV), quantum defect (δ) of the [ ( )2 3 2
3 23s 3p P° ]nd Ryd-

berg series originating from the 2 4 3
13s 3p P°  metastable state of the Cl+ ions converging 

to the ( )2 3 2
3 23s 3p P°  threshold of Cl2+. The present results from the Modified atomic or-

bital theory (MAOT) are compared with the Dirac-Coulomb R-matrix (DCR) calcula-
tions of McLaughlin [5] and with the ALS experimental data of Hernández et al., [4]. The 
ALS experimental resonance energies are calibrated to ±0.013 eV. The energy limits is 
taken from the NIST tabulations of Ralchenko et al., [19]. σ1(2P3/2) = −1.018 ± 0.076; 
σ2(2P3/2) = 15.00. 

n 
MAOT DCR ALS MAOT DCR ALS 

E E E δ δ δ 

6 25.659 25.668 (25.660) 0.464 0.45 (0.45) 

7 26.157 26.162 26.157 0.474 0.46 0.47 

8 26.473 26.480 26.475 0.477 0.45 0.47 

9 26.686 26.695 26.687 0.476 0.43 0.46 

10 26.835 26.842 26.833 0.475 0.42 0.49 

11 26.944   0.474   

12 27.025   0.473   

13 27.088   0.472   

14 27.138   0.472   

15 27.177   0.471   

16 27.209   0.471   

17 27.236   0.471   

18 27.258   0.471   

19 27.276   0.471   

20 27.292   0.471   

21 27.306   0.471   

22 27.318   0.471   

23 27.328   0.471   

24 27.337   0.472   

25 27.345   0.472   

26 27.351   0.472   

27 27.358   0.473   

28 27.363   0.473   

29 27.368   0.473   
30 27.373   0.474   
31 27.377   0.474   
32 27.380   0.475   
33 27.384   0.475   
34 27.387   0.475   
35 27.389   0.476   
36 27.392   0.476   
37 27.394   0.476   
38 27.396   0.477   
39 27.398   0.477   
40 27.400   0.477   
… … … …  … … 

∞ 27.435 27.435 27.435    

 

DOI: 10.4236/jmp.2018.914162 2603 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2018.914162


A. Diallo et al. 
 

Table 6. Resonance energies (E) and quantum defect (δ) of the [ ( )2 3 2
3 23s 3p P° ]nd Ryd-

berg series originating from the 2 4 3
03s 3p P°  metastable state of the Cl+ ions converging 

to the ( )2 3 2
3 23s 3p P°  threshold of Cl2+. The present results from the Modified atomic or-

bital theory (MAOT) are compared with the Dirac-Coulomb R-matrix (DCR) calcula-
tions of McLaughlin [5] and with the ALS experimental data of Hernández et al., [4]. The 
ALS experimental resonance energies are calibrated to ±0.013 eV. The energy limits is 
taken from the NIST tabulations of Ralchenko et al., [19]. σ1(2P3/2) = −1.088 ± 0.076; 
σ2(2P32) = 15.00. 

n 
MAOT DCR ALS MAOT DCR ALS 

E E E δ δ δ 

6 25.603 25.635  0.493 0.44  

7 26.108 26.117 26.108 0.505 0.48 0.51 

8 26.429 26.434 26.430 0.507 0.49 0.50 

9 26.644 26.650 26.648 0.507 0.47 0.49 

10 26.794 26.797  0.506 0.48  

11 26.904   0.504   

12 26.986   0.503   

13 27.050   0.502   

14 27.099   0.502   

15 27.139   0.501   

16 27.171   0.501   

17 27.198   0.501   

18 27.220   0.501   

19 27.239   0.501   

20 27.255   0.501   

21 27.268   0.501   
22 27.280   0.501   
23 27.290   0.502   
24 27.299   0.502   
25 27.307   0.502   
26 27.314   0.503   
27 27.320   0.503   
28 27.326   0.504   
29 27.331   0.504   
30 27.335   0.504   
31 27.339   0.505   
32 27.343   0.505   
33 27.346   0.506   

34 27.349   0.506   

35 27.352   0.507   

36 27.355   0.507   

37 27.357   0.507   

38 27.359   0.508   

39 27.361   0.508   

40 27.363   0.509   

… … … …  … … 

∞ 27.398 27.398 27.398    
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Table 7. Resonance energies (E, eV), quantum defect (δ) of the [ ( )2 3 2
1 23s 3p P° ]nd Ryd-

berg series originating from the 2 4 1
03s 3p S°  metastable state of the Cl+ ions converging to 

the ( )2 3 2
1 23s 3p P°  threshold of Cl2+. The present results from the Modified atomic orbital 

theory (MAOT) are compared with the Dirac-Coulomb R-matrix (DCR) calculations of 
McLaughlin [5] and with the ALS experimental data of Hernández et al., [4]. The ALS 
experimental resonance energies are calibrated to ±0.013 eV. The energy limits is taken 
from the NIST tabulations of Ralchenko et al., [19]. σ1(2P1/2) = −0.262 ± 0.015; σ2(2P1/2) = 
15.00.  

n 
MAOT DCR ALS MAOT DCR ALS 

E E E δ δ δ 

4 20.426 20.420 20.426 0.127 0.13 0.13 

5 21.762 21.734 21.742 0.127 0.16 0.15 

6 22.477 22.459 22.463 0.126 0.16 0.15 

7 22.902 22.890 22.900 0.126 0.16 0.13 

8 23.176 23.170 23.178 0.125 0.15 0.12 

9 23.363 23.361  0.125 0.14  

10 23.496   0.125   

11 23.594   0.124   

12 23.668   0.124   

13 23.726   0.124   

14 23.771   0.124   

15 23.808   0.124   

16 23.838   0.124   

17 23.863   0.124   

18 23.884   0.124   

19 23.901   0.124   

20 23.916   0.124   

21 23.929   0.124   

22 23.940   0.124   

23 23.950   0.124   

24 23.959   0.124   

25 23.966   0.124   

26 23.973   0.125   

27 23.979   0.125   

28 23.984   0.125   

29 23.989   0.125   

30 23.993   0.125   

31 23.997   0.125   

32 24.000   0.125   

33 24.004   0.125   

34 24.007   0.125   

35 24.009   0.125   

36 24.012   0.125   
37 24.014   0.125   
… … … …  … … 

∞ 24.054 24.054 24.054    
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Table 8. Resonance energies (E) and quantum defect (δ) of the [ ( )2 3 2
5 23s 3p D° ]nd series 

originating from the 2 4 1
23s 3p D  metastable state of the Cl+ ions converging to the 

( )2 3 2
5 23s 3p D°  threshold of Cl2+. The present results from the Modified atomic orbital 

theory (MAOT) are compared with the Dirac-Coulomb R-matrix (DCR) calculations of 
McLaughlin [5] and with the ALS experimental data of Hernández et al., [4]. The ALS 
experimental resonance energies are calibrated to ±0.013 eV. The energy limits is taken 
from the NIST tabulations of Ralchenko et al., [19]. σ1(2D5/2) = −0.483 ± 0.050; σ2(2D5/2) = 
15.00. 

n 
MAOT DCR ALS MAOT DCR ALS 

E E E δ δ δ 

6 22.979 22.969 22.979 0.232 0.25 0.27 

7 23.427 23.392  0.233 0.32  

8 23.713 23.719 23.718 0.232 0.21 0.21 

9 23.907 23.907 23.907 0.232 0.23 0.23 

10 24.045 24.039 24.040 0.231 0.28 0.27 

11 24.146 24.138 (24.152) 0.231 0.32 (0.27) 

12 24.222   0.230   

13 24.281   0.230   

14 24.328   0.230   

15 24.366   0.230   

16 24.396   0.230   

17 24.421   0.229   

18 24.443   0.229   

19 24.461   0.229   

20 24.476   0.229   

21 24.489   0.229   

22 24.500   0.229   

23 24.510   0.229   

24 24.519   0.230   

25 24.526   0.230   

26 24.533   0.230   

27 24.539   0.230   
28 24.544   0.230   
29 24.549   0.230   
30 24.554   0.230   
31 24.558   0.230   
32 24.561   0.230   
33 24.564   0.230   
34 24.567   0.231   
35 24.570   0.231   
36 24.572   0.231   
37 24.575   0.231   
38 24.577   0.231   
39 24.579   0.231   
40 24.581   0.231   

… … … …  … … 

∞ 24.615 24.615 24.615    
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Table 9. Resonance energies (E) and quantum defect (δ) of the 3s23p4(1D2)ns (j = 1/2 se-
ries originating from the 2 5 2

1 23s 3p P°  metastable state of the Ar+ ions converging to the 
1D2 threshold of Ar2+. The present results from the Modified atomic orbital theory 
(MAOT) are compared with the Screening constant by unit nuclear charge (SCUNC) re-
sults of Sakho [11] are compared with the QB data of Covington et al., [9]. The energy 
limits eV) is taken from the NIST tabulations of Ralchenko et al., [17]. σ1(1D2) = −4.227 ± 
0.224; σ2(1D2) = 16.00. 

n 
MAOT SCUNC QB MAOT SCUNC QB 

E E E δ δ δ 

8 27.830 27.830 27.830 1.672 1.673 1.673 

9 28.169 28.173 28.173 1.695 1.682 1.682 

10 28.400 28.401 28.401 1.696 1.689 1.688 

11 28.561 28.561 28.561 1.689 1.694 1.692 

12 28.678 28.676 28.677 1.679 1.697 1.695 

13 28.765 28.763 28.763 1.670 1.699 1.698 

14 28.831 28.829 28.829 1.662 1.700 1.699 

15 28.883 28.881 28.881 1.656 1.701 1.701 

16 28.925 28.923 28.923 1.652 1.701 1.702 

17 28.958 28.956  1.649 1.700  

18 28.985 28.984  1.647 1.700  

19 29.008 29.007  1.647 1.698  

20 29.027 29.027  1.648 1.697  

21 29.044 29.043  1.649 1.695  

22 29.058 29.057  1.652 1.693  

23 29.070 29.069  1.655 1.691  

24 29.080 29.080  1.658 1.688  

25 29.089 29.089  1.662 1.686  

26 29.097 29.097  1.666 1.683  

27 29.104 29.104  1.670 1.680  

28 29.110 29.110  1.675 1.677  

29 29.116 29.116  1.679 1.674  

30 29.121 29.121  1.684 1.671  

31 29.126   1.689   

32 29.130   1.694   

33 29.133   1.699   

34 29.137   1.704   

35 29.140   1.708   

36 29.143   1.713   

37 29.145   1.718   

38 29.148   1.723   

39 29.150   1.727   

40 29.152   1.732   

… … … …  … … 

∞ 29.189 29.189 29.189    
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Table 10. Resonance energies (E) and quantum defect (δ) of the 3s23p4 (1D2)nd (j = 1/2 
series originating from the 2 5 2

1 23s 3p P°  metastable state of the Ar+ ions converging to the 

3s23p4(1D2) threshold of Ar2+. The present results from the Modified atomic orbital theory 
(MAOT) are compared with the Screening constant by unit nuclear charge (SCUNC) re-
sults of Sakho [11] are compared with the QB data of Covington et al., [9]. The energy 
limits eV) is taken from the NIST tabulations of Ralchenko et al., [17]. σ1(1D2) = −1.159 ± 
0.265; σ2(1D2) = 16.00. 

n 
MAOT SCUNC QB MAOT SCUNC QB 

E E E δ δ δ 

8 28.211 28.211 28.211 0.540 0.540 0.540 

9 28.428 28.426 28.426 0.543 0.555 0.554 

10 28.581 28.578 28.576 0.543 0.563 0.574 

11 28.691 28.689 28.691 0.542 0.568 0.546 

12 28.775 28.772 28.773 0.541 0.571 0.562 

13 28.838 28.837 28.837 0.540 0.573 0.568 

14 28.889 28.887 28.887 0.539 0.573 0.572 

15 28.929 28.928 28.928 0.538 0.573 0.574 

16 28.961 28.960  0.538 0.572  

17 28.988 28.987  0.537 0.571  

18 29.011 29.010  0.537 0.570  

19 29.029 29.029  0.537 0.568  

20 29.045 29.045  0.537 0.567  

21 29.059 29.059  0.537 0.565  

22 29.071 29.071  0.537 0.563  

23 29.081 29.081  0.537 0.560  

24 29.090 29.090  0.537 0.558  

25 29.098 29.098  0.538 0.556  

26 29.105 29.105  0.538 0.553  

27 29.111 29.111  0.538 0.551  

28 29.117 29.117  0.538 0.548  

29 29.122 29.122  0.539 0.546  

30 29.126 29.126  0.539 0.543  

31 29.130   0.539   

32 29.134   0.540   

33 29.137   0.540   

34 29.140   0.540   

35 29.143   0.541   

36 29.146   0.541   

37 29.148   0.542   

38 29.150   0.542   

39 29.152   0.542   

40 29.154   0.543   

… … … …  … … 

∞ 29.189 29.189 29.189    
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Table 11. Resonance energies (E) and quantum defect (δ) of the 3s23p4(1D2)nd (j = 3/2 
series originating from the 2 5 2

1 23s 3p P°  metastable state of the Ar+ ions converging to the 

3s23p4(1D2) threshold of Ar2+. The present results from the Modified atomic orbital theory 
(MAOT) are compared with the Screening constant by unit nuclear charge (SCUNC) re-
sults of Sakho [11] are compared with the QB data of Covington et al., [9]. The energy 
limits eV) is taken from the NIST tabulations of Ralchenko et al., [17]. σ1(1D2) = −1.159 ± 
0.265; σ2(1D2) = 16.00. 

n 
MAOT SCUNC QB MAOT SCUNC QB 

E E E δ δ δ 

8 27.821 27.821 27.821 1.693 1.693 1.692 

9 28.163 28.171 28.171 1.717 1.688 1.691 

10 28.396 28.401 28.401 1.718 1.689 1.690 

11 28.558 28.561 28.561 1.710 1.692 1.689 

12 28.676 28.677 28.677 1.700 1.693 1.688 

13 28.763 28.763 28.764 1.691 1.695 1.688 

14 28.830 28.830 28.830 1.683 1.695 1.688 

15 28.882 28.882 28.882 1.676 1.695 1.687 

16 28.924 28.923 28.923 1.672 1.694 1.687 

17 28.957 28.957  1.669 1.692  

18 28.985 28.984  1.667 1.691  

19 29.008 29.007  1.667 1.688  

20 29.027 29.027  1.668 1.686  

21 29.043 29.043  1.669 1.683  

22 29.057 29.057  1.672 1.679  

23 29.069 29.069  1.675 1.676  

24 29.080 29.080  1.678 1.672  

25 29.089 29.089  1.682 1.668  

26 29.097 29.097  1.686 1.663  

27 29.104 29.104  1.691 1.659  

28 29.110 29.111  1.695 1.655  

29 29.116 29.116  1.700 1.650  

30 29.121 29.121  1.705 1.645  

31 29.126   1.710   

32 29.130   1.715   

33 29.133   1.720   

34 29.137   1.725   

35 29.140   1.730   

36 29.143   1.735   

37 29.145   1.740   

38 29.148   1.745   

39 29.150   1.750   

40 29.152   1.754   

… … … …  … … 

∞ 29.189 29.189 29.189    
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3s23p4(1D2)ns, nd (j = 1/2) and of the 3s23p4(1D2)nd (j = 3/2) series originating 
from the 2 5 2

1 23s 3p P°  metastable state of the Ar II ions. Comparison indicate an 
excellent agreements between the present results from the Modified atomic or-
bital theory (MAOT) and both the Screening constant by unit nuclear charge 
(SCUNC) results [11] and the multichannel R-matrix QB technique which de-
fines matrices Q and B in terms of asymptotic solutions [9]. These very good 
agreements are also observed comparing the resonance energies 3s23p4(1D2)ns, 
nd (j = 1/2) series originating from the 2 5 2

3 23s 3p P°  ground state of the Ar II 
ions. For both Tables 9-12, the QB data are limited to n = 16 and the SCUNC 
values to n = 30. High lying MAOT data are tabulated up to n = 40 with a con-
stant quantum defect along each series. Table 13 and Table 14 quote respec-
tively resonance energies of the 3s23p4(1D2)nd (j = 1/2)and of the 3s23p4(1D2)ns (j 
= 3/2) series originating from the 2 5 2

3 23s 3p P°  ground state of the Ar II ions. 
Here again, the agreements between the present MAOT results and both 
SCUNC of Sakho [11] and QB results of Covington et al., [9] are very good. 
Table 15 presents resonance energies of the 3s23p4 (1D2)nd (j = 3/2) series origi-
nating from the 2 5 2

3 23s 3p P°  ground state of the Ar II ions. In this Table, an 
uncertain QB data [9] is quoted at (28.774 eV) for the 3s23p4(1D2)10d level. For 
this level, the MOAT prediction is at 28.735 eV to be compared to the SCUNC 
forecast at 28.734 eV. Subsequently, the QB data at (28.774 eV) associated with a 
quantum defect equal to (0.422) is less precise. For this level, both the MAOT 
and SCUNC [11] predictions associated with the quantum defects 0.721 and 
0.724 are preferable. Therefore, it should be underlined that the SCUNC calcula-
tions are more precise than the MOAT calculations. This is due mainly to the 
fact that, the SCUNC formalism is a development of 1/Z taking implicitly into 
account more relativistic effects than the MAOT formalism witch is a simple 
development on 1/n. In addition, in the SCUNC formalism, great accuracy are 
obtained when performing the analytical formula for each atomic system [11]. In 
the present work, the same Formula (6) is used for both Cl II, Ar II and Kr II in 
contrast with the work of Sakho [11] where the resonance energy expression for 
the Ar II ions is different to that of the Kr II ions. Table 16 and Table 17 list 
natural widths of the [3s23p4(1D2)]ns, nd (j = 1/2) (Table 16) and of the 
[3s23p4(1D2)]ns, nd (j = 3/2) (Table 17) series originating from the 2 5 2

1 23s 3p P°  
metastable state of Ar+ ions. It can be seen that the present MAOT data agree 
well with both the SCUNC results [11] and QB data [9]. It should be mentioned 
again that the SCUNC calculations are more precise than the MOAT calcula-
tions for the reason explained above. Table 18 lists resonance energies and 
quantum defect of the [4s24p4 (1D2)]nd series originating from the 2 5 2

3 24s 4p P°  
ground state of the Kr II ions. Comparisons indicate very good agreements be-
tween the present results from the MAOT formalism and both the SCUNC cal-
culations [11] up to n = 30 and ALS measurements of [10] up to n = 13. In this 
iable, two uncertain ALS data are quoted for the [4s24p4(1D2)]12d and 
[4s24p4(1D2)]13d levels respectively at (25.880 eV) and (25.926 eV). The  
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Table 12. Resonance energies (E) and quantum defect (δ) of the 3s23p4(1D2)ns (j = 1/2 se-
ries originating from the 2 5 2

3 23s 3p P°  ground state of the Ar+ ions converging to the 

3s23p4(1D2) threshold of Ar2+. The present results from the Modified atomic orbital theory 
(MAOT) are compared with the Screening constant by unit nuclear charge (SCUNC) re-
sults of Sakho [11] are compared with the QB data of Covington et al., [9]. The energy 
limits eV) is taken from the NIST tabulations of Ralchenko et al., [17]. σ1(1D2) = −4.234 ± 
0.224; σ2(1D2) = 16.00. 

n 
MAOT SCUNC QB MAOT SCUNC QB 

E E E δ δ δ 

8 28.007 28.007 28.007 1.674 1.674 1.673 

9 28.346 28.351 28.351 1.698 1.681 1.682 

10 28.577 28.579 28.579 1.699 1.688 1.688 

11 28.739 28.739 28.739 1.691 1.694 1.692 

12 28.856 28.854 28.854 1.681 1.698 1.696 

13 28.943 28.941 28.941 1.672 1.701 1.698 

14 29.009 29.007 29.007 1.664 1.702 1.700 

15 29.061 29.059 29.059 1.658 1.702 1.701 

16 29.103 29.101 29.100 1.654 1.702 1.702 

17 29.136 29.135  1.651 1.700  

18 29.163 29.162  1.649 1.698  

19 29.186 29.185  1.649 1.696  

20 29.205 29.205  1.650 1.693  

21 29.222 29.221  1.652 1.690  

22 29.236 29.235  1.654 1.686  

23 29.248 29.247  1.657 1.682  

24 29.258 29.258  1.660 1.678  

25 29.267 29.267  1.664 1.673  

26 29.275 29.275  1.668 1.668  

27 29.282 29.282  1.672 1.663  

28 29.288 29.289  1.677 1.658  

29 29.294 29.294  1.682 1.653  

30 29.299 29.299  1.686 1.647  

31 29.304   1.691   

32 29.308   1.696   

33 29.311   1.701   

34 29.315   1.706   

35 29.318   1.711   

36 29.321   1.716   

37 29.323   1.720   

38 29.326   1.725   

39 29.328   1.730   

40 29.330   1.734   

… … … …  … … 

∞ 29.367 29.367 29.367    
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Table 13. Resonance energies (E) and quantum defect (δ) of the 3s23p4(1D2)nd (j = 1/2 
series originating from the 2 5 2

3 23s 3p P°  ground state of the Ar+ ions converging to the 

3s23p4(1D2) threshold of Ar2+. The present results from the Modified atomic orbital theory 
(MAOT) are compared with the Screening constant by unit nuclear charge (SCUNC) re-
sults of Sakho [11] are compared with the QB data of Covington et al., [9]. The energy 
limits eV) is taken from the NIST tabulations of Ralchenko et al., [17]. σ1(1D2) = −1.159 ± 
0.265; σ2(1D2) = 16.00. 

n 
MAOT SCUNC QB MAOT SCUNC QB 

E E E δ δ δ 

8 28.389 28.389 28.389 0.540 0.540 0.540 

9 28.606 28.603 28.603 0.543 0.560 0.554 

10 28.759 28.755 28.754 0.543 0.567 0.574 

11 28.869 28.867 28.869 0.542 0.572 0.546 

12 28.953 28.950 28.951 0.541 0.575 0.562 

13 29.016 29.014 29.014 0.540 0.578 0.568 

14 29.067 29.065 29.065 0.539 0.581 0.572 

15 29.107 29.105 29.105 0.538 0.583 0.574 

16 29.139 29.138  0.538 0.585  

17 29.166 29.165  0.537 0.587  

18 29.189 29.187  0.537 0.588  

19 29.207 29.206  0.537 0.589  

20 29.223 29.223  0.537 0.590  

21 29.237 29.236  0.537 0.589  

22 29.249 29.248  0.537 0.589  

23 29.259 29.259  0.537 0.587  

24 29.268 29.268  0.537 0.585  

25 29.276 29.276  0.538 0.581  

26 29.283 29.283  0.538 0.577  

27 29.289 29.289  0.538 0.572  

28 29.295 29.295  0.538 0.566  

29 29.300 29.300  0.539 0.559  

30 29.304 29.304  0.539 0.551  

31 29.308   0.539   

32 29.312   0.540   

33 29.315   0.540   

34 29.318   0.540   

35 29.321   0.541   

36 29.324   0.541   

37 29.326   0.542   

38 29.328   0.542   

39 29.330   0.542   

40 29.332   0.543   

… … … …  … … 

∞ 29.367 29.367 29.367    
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Table 14. Resonance energies (E) and quantum defect (δ) of the 3s23p4(1D2)ns (j = 3/2 se-
ries originating from the 2 5 2

3 23s 3p P°  ground state of the Ar+ ions converging to the 

3s23p4(1D2) threshold of Ar2+. The present results from the Modified atomic orbital theory 
(MAOT) are compared with the Screening constant by unit nuclear charge (SCUNC) re-
sults of Sakho [11] are compared with the QB data of Covington et al., [9]. The energy 
limits eV) is taken from the NIST tabulations of Ralchenko et al., [17]. σ1(1D2) = −4.294 ± 
0.224; σ2(1D2) = 16.00. 

n 
MAOT SCUNC QB MAOT SCUNC QB 

E E E δ δ δ 

8 27.999 27.999 27.999 1.693 1.693 1.692 

9 28.341 28.348 28.348 1.717 1.692 1.691 

10 28.574 28.578 28.579 1.718 1.692 1.690 

11 28.736 28.739 28.739 1.710 1.693 1.689 

12 28.854 28.855 28.855 1.700 1.694 1.688 

13 28.941 28.941 28.941 1.691 1.694 1.688 

14 29.008 29.008 29.098 1.683 1.695 1.688 

15 29.060 29.060 29.060 1.676 1.695 1.687 

16 29.102 29.101 29.101 1.672 1.695 1.687 

17 29.135 29.135  1.669 1.695  

18 29.163 29.162  1.667 1.695  

19 29.186 29.185  1.667 1.694  

20 29.205 29.205  1.668 1.694  

21 29.221 29.221  1.669 1.693  

22 29.235 29.235  1.672 1.692  

23 29.247 29.247  1.675 1.691  

24 29.258 29.258  1.678 1.690  

25 29.267 29.267  1.682 1.689  

26 29.275 29.275  1.686 1.688  

27 29.282 29.282  1.691 1.687  

28 29.288 29.288  1.695 1.686  

29 29.294 29.294  1.700 1.684  

30 29.299 29.299  1.705 1.683  

31 29.304   1.710   

32 29.308   1.715   

33 29.311   1.720   

34 29.315   1.725   

35 29.318   1.730   

36 29.321   1.735   

37 29.323   1.740   

38 29.326   1.745   

39 29.328   1.750   

40 29.330   1.754   

… … … …  … … 

∞ 29.367 29.367 29.367    
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Table 15. Resonance energies (E, eV) and quantum defect (δ) of the 3s23p4(1D2)nd (j = 
3/2 series originating from the 2 5 2

3 23s 3p P°  ground state of the Ar+ ions converging to 

the 3s23p4(1D2) threshold of Ar2+. The present results from the Modified atomic orbital 
theory (MAOT) are compared with the Screening constant by unit nuclear charge 
(SCUNC) results of Sakho [11] are compared with the QB data of Covington et al., [9]. 
The energy limits eV) is taken from the NIST tabulations of Ralchenko et al., [17]. σ1(1D2) 
= −1.575 ± 0.265; σ2(1D2) = 16.00. 

n 
MAOT SCUNC QB MAOT SCUNC QB 

E E E δ δ δ 

8 28.341 28.341 28.341 0.717 0.717 0.716 

9 28.573 28.573 28.573 0.721 0.721 0.720 

10 28.735 28.734 (28.774) 0.721 0.724 (0.422)* 

11 28.852 28.851 28.850 0.720 0.727 0.738 

12 28.939 28.939 28.937 0.718 0.729 0.745 

13 29.006 29.006 29.004 0.717 0.729 0.744 

14 29.059 29.058 29.047 0.715 0.729 0.744 

15 29.100 29.100 29.099 0.714 0.728 0.744 

16 29.134 29.134  0.713 0.727  

17 29.162 29.162  0.713 0.725  

18 29.185 29.185  0.713 0.722  

19 29.204 29.204  0.712 0.720  

20 29.221 29.221  0.712 0.718  

21 29.235 29.235  0.713 0.716  

22 29.247 29.247  0.713 0.714  

23 29.257 29.257  0.713 0.713  

24 29.267 29.267  0.714 0.712  

25 29.275 29.275  0.714 0.712  

26 29.282 29.282  0.715 0.713  

27 29.288 29.288  0.715 0.715  

28 29.294 29.294  0.716 0.719  

29 29.299 29.299  0.717 0.723  

30 29.304 29.303  0.717 0.729  

31 29.308   0.718   

32 29.311   0.719   

33 29.315   0.719   

34 29.318   0.720   

35 29.321   0.721   

36 29.323   0.722   

37 29.326   0.722   

38 29.328   0.723   

39 29.330   0.724   

40 29.332   0.724   

… … … …  … … 

∞ 29.367 29.367 29.367    

*This line is not well identified. 
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Table 16. Natural widths (Γ, meV) of the [3s23p4(1D2)]ns, nd (j = 1/2) series originating 
from the 2 5 2

1 23s 3p P°  metastable state of Ar+ ions. The present results from the Modified 

atomic orbital theory (MAOT) are compared with the Screening constant by unit nuclear 
charge (SCUNC) results of Sakho [11] are compared with the QB data of Covington et al., 
[9]. For: [4s24p4(1D2)] ns: σ1(1D2) = −5.494 ± 0.010; σ2(1D2) = 17.989 ± 0.010. For: 
[4s24p4(1D2)]nd: σ1(1D2) = −0.168 ± 0.010; σ2(1D2) = 17.998 ± 0.010. 

n 

[4s24p4(1D2)]ns series [4s24p4(1D2)]nd series 

MAOT SCUNC QB MAOT SCUNC QB 

Γ Γ Γ Γ Γ Γ 

8 103.5 103.4 103.4 0.112 0.110 0.110 

9 64.9 64.8 64.8 0.072 0.070 0.070 

10 43.4 43.0 43.0 0.048 0.047 0.050 

11 30.4 30.0 30.0 0.034 0.033 0.040 

12 22.1 21.7 21.8 0.024 0.024 0.030 

13 16.5 16.2 16.3 0.018 0.018 0.020 

14 12.7 12.4 12.5 0.014 0.014 0.020 

15 9.9 9.8 9.8 0.011 0.011 0.020 

16 7.8 7.8 7.8 0.008 0.009  

17 6.3 6.4  0.007 0.008  

18 5.1 5.3  0.005 0.006  

19 4.2 4.5  0.004 0.005  

20 3.5 3.8  0.004 0.005  

21 2.9 3.3  0.003 0.004  

22 2.5 2.9  0.003 0.003  

23 2.1 2.5  0.002 0.003  

24 1.8 2.2  0.002 0.003  

25 1.5 2.0  0.002 0.002  

 
Table 17. Natural widths (Γ, meV) of the [3s23p4(1D2)]ns, nd (j = 3/2) series originating 
from the 2 5 2

1 23s 3p P°  metastable state of Ar+ ions. The present results from the Modified 

atomic orbital theory (MAOT) are compared with the Screening constant by unit nuclear 
charge (SCUNC) results of Sakho [11] are compared with the QB data of Covington et al., 
[9]. For: [4s24p4(1D2)] ns: σ1(1D2) = −0.670 ± 0.010; σ2(1D2) = 18.038 ± 0.010. For: [4s24p4 
(1D2)] nd: σ1(1D2) = −1.399 ± 0.010; σ2(1D2) = 17.827 ± 0.010. 

n 

[4s24p4(1D2)]ns series [4s24p4(1D2)]nd series 

MAOT SCUNC QB MAOT SCUNC QB 

Γ Γ Γ Γ Γ Γ 

8 0.44 0.44 0.44 25.7  25.7 

9 0.22 0.22 0.22 18.1  18.1 

10 0.13 0.11 0.13 12.9  33.8 

11 0.08 0.06 0.08 9.3  8.5 
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12 0.05 0.03 0.08 6.9  3.8 

13 0.03 0.02 0.04 5.2  5.3 

14 0.02 0.01 0.02 4.0  4.4 

15 0.01 0.01 0.02 3.1  3.6 

16    2.5   

17    2.1   

18    1.7   

19    1.4   

20    1.2   

21    1.0   

22    0.9   

23    0.8   

24    0.7   

25    0.6   

 
Table 18. Resonance energies (E) and quantum defect (δ) of the [4s24p4(1D2)]nd series 
originating from the 2 5 2

3 24s 4p P°  ground state of the Kr+ ions converging to the [4s24p4 

(1D2)] threshold of Kr2+. The present results from the Modified atomic orbital theory 
(MAOT) are compared with the Screening constant by unit nuclear charge (SCUNC) re-
sults of Sakho [11] are compared with the ALS experimental data of Hinojoha et al., [10]. 
The ALS resonance energies are calibrated to ±30 meV and quantum defects are esti-
mated to within an error of 20%. The energy limits is taken from the NIST tabulations of 
Ralchenko et al., [18]. Here σ1(1D2) = −0.719 ± 0.116; σ2(1D2) = 34.00. 

n 
MAOT SCUNC ALS MAOT SCUNC ALS 

E E E δ δ δ 

5 24.342 24.342 24.342 −0.387 −0.387 −0.385 

6 24.882 24.878 24.878 −0.386 −0.375 −0.370 

7 25.220 25.215 25.217 −0.387 −0.369 −0.370 

8 25.444 25.439 25.441 −0.389 −0.366 −0.370 

9 25.600 25.596 25.598 −0.390 −0.365 −0.360 

10 25.713 25.710 25.712 −0.390 −0.365 −0.358 

11 25.798 25.796 25.796 −0.391 −0.365 −0.345 

12 25.863 25.861 (25.880) −0.391 −0.366 (−0.671) 

13 25.913 25.912 (25.926) −0.391 −0.367 (−0.663) 

14 25.954 25.953  −0.391 −0.368  

15 25.987 25.987  −0.390 −0.369  

16 26.014 26.014  −0.390 −0.370  

17 26.037 26.037  −0.390 −0.371  

18 26.056 26.056  −0.389 −0.372  

19 26.072 26.072  −0.389 −0.373  

20 26.086 26.086  −0.389 −0.373  

21 26.098 26.098  −0.388 −0.374  

22 26.108 26.108  −0.388 −0.374  

23 26.118 26.117  −0.387 −0.374  

24 26.125 26.125  −0.387 −0.374  
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25 26.133 26.132  −0.387 −0.374  

26 26.139 26.139  −0.386 −0.374  

27 26.144 26.144  −0.386 −0.374  

28 26.149 26.149  −0.385 −0.373  

29 26.154 26.154  −0.385 −0.373  

30 26.158 26.158  −0.385 −0.372  

31 26.162   −0.384   

32 26.165   −0.384   

33 26.168   −0.383   

34 26.171   −0.383   

35 26.174   −0.383   

36 26.176   −0.382   

37 26.178   −0.382   

38 26.180   −0.382   

39 26.182   −0.381   

40 26.184   −0.381   

… … … …  … … 

∞ 29.367 29.367 29.367    

 
associated ALS quantum defects are equal to (−0.671) and (−0.663) respectively. 
For the same levels, the MAOT and SCUNC calculations [11] are respectively at 
25.863 eV and 25.861 eV for the [4s24p4(1D2)]12d state and at 25.913 eV and 
25.912 eV for the [4s24p4(1D2)]13d state. Constant quantum defects are tabulated 
for the MAOT and SCUNC predictions [11] respectively at −0.31 and −0.37. So 
the MAOT and SCUNC estimations can be considered as the accurate data for 
the [4s24p4(1D2)]12d and [4s24p4(1D2)]13d resonances. Table 19 quotes reson-
ance energies and quantum defect of the 4s24p4(3P2,3P1)]ns and 4s24p4(3P1)]ns se-
ries originating from the 2 5 2

1 24s 4p P°  metastable state of the Kr II ions. For the 
4s24p4(3P2)]ns series, comparisons indicate good agreements between theory and 
experiments. It should be underlined the very good agreements for n = 13 - 20. 
This may enlighten the accuracy of the uncertain ALS measurement [10] listed 
into parenthesis. For the 4s24p4(3P1)]ns series only one ALS data at 23.996 eV is 
quoted. New MAOT values from n = 14 to 40 are tabulated with a constant 
quantum defect about 0.42. In Table 20, resonance energies and quantum defect 
of the 4s24p4(3D2)]ns, ndseries originating from the 2 5 2

1 24s 4p P°  metastable 
state of the Kr II ions are listed. Here again, the MAOT data agree very well with 
the ALS data of Hinojoha et al., [10]. It should be underlined the excellent 
agreements between theory and experiments for the 4s24p4(3D2)]8s and 
4s24p4(3D2)]9s levels. For these states, both the MAOT and ALS work provide the 
same values respectively equal to 24.650 eV and 24.842 eV. The excellent agree-
ment for the quantum defects can also be mentioned, 0.20 for both theory and 
experiments. Table 21 presents resonance energies and quantum defect for the  
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Table 19. Resonance energies (E) and quantum defect (δ) of the 4s24p4(3P2,3P1)]ns series 
originating from the 2 5 2

1 24s 4p P°  metastable state of the Kr+ ions converging to the 

[4s24p4(1D2)] threshold of Kr2+. The present results from the Modified atomic orbital 
theory (MAOT) are compared with the Screening constant by unit nuclear charge 
(SCUNC) results of Sakho [11] are compared with the ALS experimental data of Hinojo-
ha et al., [10]. The ALS resonance energies are calibrated to ±30 meV and quantum de-
fects are estimated to within an error of 20%.The energy limits is taken from the NIST 
tabulations of Ralchenko et al., [18]. σ1(3P2) = −1.438 ± 0.104; σ2(3P2) = 34.00; σ1(3P1) = 
−0.863 ± 0.138; σ2(3P1) = 34.00. 

n 

4s24p4(3P2)]ns 4s24p4(3P1)]ns 

MAOT ALS MAOT ALS MAOT ALS MAOT ALS 

E E δ δ E E δ δ 

11 23.910 (23.906) −0.771 (−0.716)     

12 23.969 23.969 −0.765 −0.779     

13 24.016 24.016 −0.762 −0.791     

14 24.053 (24.059) −0.761 (−0.940) 23.957  0.418  

15 24.084 24.083 −0.761 −0.730 23.996 23.996 0.419 0.403 

16 24.109 24.109 −0.762 −0.774 24.028  0.420  

17 24.131 (24.129) −0.762 (−0.686) 24.054  0.420  

18 24.148 (24.147) −0.763 (−0.707) 24.076  0.420  

19 24.164 (24.162) −0.764 (−0.659) 24.094  0.420  

20 24.177 (24.176) −0.764 (−0.731) 24.110  0.420  

21 24.188  −0.765  24.124  0.420  

22 24.198  −0.765  24.135  0.420  

23 24.207  −0.765  24.145  0.419  

24 24.214  −0.766  24.154  0.419  

25 24.221  −0.766  24.162  0.419  

26 24.227  −0.766  24.169  0.419  

27 24.232  −0.766  24.175  0.419  

28 24.237  −0.766  24.180  0.419  

29 24.242  −0.766  24.185  0.418  

30 24.246  −0.766  24.190  0.418  

31 24.249  −0.766  24.194  0.418  

32 24.252  −0.765  24.197  0.418  

33 24.255  −0.765  24.201  0.418  

34 24.258  −0.765  24.204  0.418  

35 24.260  −0.765  24.206  0.418  

36 24.263  −0.765  24.209  0.418  

37 24.265  −0.764  24.211  0.418  

38 24.267  −0.764  24.213  0.418  

39 24.269  −0.764  24.215  0.418  

40 24.270  −0.763  24.217  0.418  

…         

∞ 24.303 24.303   24.252 24.252   
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Table 20. Resonance energies (E) and quantum defect (δ) of the 4s24p4(3D2)]ns, nd series 
originating from the 2 5 2

1 24s 4p P°  metastable state of the Kr+ ions converging to the 

[4s24p4(1D2)] threshold of Kr2+. The present results from the Modified atomic orbital 
theory (MAOT) are compared with the Screening constant by unit nuclear charge 
(SCUNC) results of Sakho [11] are compared with the ALS experimental data of Hinojo-
ha et al., [10]. The ALS resonance energies are calibrated to ±30 meV and quantum de-
fects are estimated to within an error of 20%. The energy limits is taken from the NIST 
tabulations of Ralchenko et al., [18]. σ1(1D2) = −0.414 ± 0.116; σ2(1D2) = 34.00 for 
4s24p4(3D2)]ns. σ1(1D2) = −0.698 ± 0.116; σ2(1D2) = 34.00 for 4s24p4(3D2)]nd. 

n 

4s24p4(3D2)]ns 4s24p4(3D2)]nd 

MAOT ALS MAOT ALS MAOT ALS MAOT ALS 

E E δ δ E E δ δ 

6 23.927 23.927 0.200 0.200 24.214 24.214 −0.371 −0.375 

7 24.368 (24.366) 0.200 (0.205) 24.553 24.551 −0.369 −0.371 

8 24.650 24.650 0.200 0.204) 24.778 24.775 −0.370 −0.371 

9 24.842 24.842 0.200 0.201 24.935 24.933 −0.371 −0.375 

10 24.978 - 0.199 - 25.049 25.047 −0.372 −0.379 

11 25.079 25.082 0.199 0.152 25.134 25.132 −0.372 −0.363 

12 25.154 25.158 0.199 0.139 25.199 25.196 −0.373 −0.349 

13 25.213  0.198  25.251 25.248 −0.373 −0.364 
14 25.259  0.198  25.292  −0.373  
15 25.297  0.198  25.325  −0.373  

16 25.327  0.198  25.352  −0.373  

17 25.352  0.198  25.375  −0.373  

18 25.373  0.198  25.394  −0.373  

19 25.391  0.198  25.410  −0.373  

20 25.406  0.198  25.424  −0.373  
21 25.419  0.198  25.436  −0.373  
22 25.431  0.198  25.446  −0.372  
23 25.440  0.198  25.455  −0.372  
24 25.449  0.198  25.463  −0.372  
25 25.457  0.198  25.470  −0.372  
26 25.463  0.198  25.477  −0.371  
27 25.469  0.198  25.482  −0.371  
28 25.475  0.198  25.487  −0.371  
29 25.479  0.198  25.492  −0.371  
30 25.484  0.198  25.496  −0.370  
31 25.488  0.198  25.500  −0.370  
32 25.491  0.198  25.503  −0.370  
33 25.494  0.198  25.506  −0.370  
34 25.497  0.198  25.509  −0.369  
35 25.500  0.198  25.511  −0.369  
36 25.503  0.198  25.514  −0.369  
37 25.505  0.199  25.516  −0.369  
38 25.507  0.199  25.518  −0.368  

39 25.509  0.199  25.520  −0.368  

40 25.511  0.199  25.522  −0.368  

…         

∞ 25.545 25.545   25.555 25.555   
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Table 21. Resonance energies (E) and quantum defect (δ) of the 4s24p4(3D2, 1S0)]ns, nd 
series of the Kr+ ions. The present results from the Modified atomic orbital theory 
(MAOT) are compared with the Screening constant by unit nuclear charge (SCUNC) re-
sults of Sakho [11] are compared with the ALS experimental data of Hinojoha et al., [10]. 
The ALS resonance energies are calibrated to ±30 meV and quantum defects are esti-
mated to within an error of 20%. σ1(1D2) = −0.785 ± 0.116; σ2(1D2) = 34.00; σ1(1S0) = 
−0.811 ± 0.116; σ2(1S0) = 34.00. 

n 

2 5 2
1 24s 4p P°  → 4s24p4(1S0]ns 2 5 2

3 24s 4p P°  → 4s24p4(1S0)]nd 

MAOT ALS MAOT ALS MAOT ALS MAOT ALS 

E E δ δ E E δ δ 

4 23.738 23.738 0.357 0.358     

5 25.315 25.312 0.358 0.360 25.965 (25.947) 0.369 (0.385) 

6 26.132 26.124 0.355 0.368 26.780 26.780 0.380 0.379 

7 26.608 26.602 0.353 0.371 27.261 (27.261) 0.381 (0.379) 

8 26.910 26.904 0.352 0.376 27.566 27.566 0.381 0.376 

9 27.112 27.108 0.351 0.377 27.771 27.771 0.379 0.378 

10 27.255 (27.261) 0.351 (0.303) 27.915 27.914 0.378 0.381 

11 27.360 27.356 0.351 0.400 28.021 28.020 0.378 0.383 

12 27.439 27.435 0.351 0.412 28.100 28.099 0.377 0.381 

13 27.500 (27.495) 0.351 (0.435) 28.161 (28.160) 0.377 (0.394) 
14 27.548 (27.544) 0.352 (0436) 28.210 (28.208) 0.376 (0.394) 
15 27.586  0.352  28.249 (28.247) 0.376 (0.418) 
16 27.618  0.353  28.280  0.376  
17 27.644  0.354  28.306  0.376  
18 27.665  0.354  28.328  0.376  
19 27.683  0.355  28.346  0.376  
20 27.699  0.356  28.362  0.376  
21 27.712  0.356  28.375  0.377  
22 27.724  0.357  28.387  0.377  
23 27.734  0.358  28.397  0.377  
24 27.743  0.358  28.405  0.377  
25 27.750  0.359  28.413  0.378  
26 27.757  0.359  28.420  0.378  
27 27.763  0.360  28.426  0.378  
28 27.769  0.361  28.432  0.379  
29 27.774  0.361  28.437  0.379  
30 27.778  0.362  28.441  0.379  
31 27.782  0.362  28.445  0.379  
32 27.786  0.363  28.449  0.380  
33 27.789  0.363  28.452  0.380  
34 27.792  0.364  28.455  0.380  
35 27.795  0.364  28.458  0.381  
36 27.797  0.365  28.460  0.381  
37 27.799  0.365  28.462  0.381  
38 27.802  0.366  28.465  0.382  

39 27.804  0.366  28.467  0.382  

40 27.805  0.366  28.468  0.382  

…         

∞ 27.840 27.840   28.503 28.503   
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4s24p4(3D2, 1S0)]ns, nd series of the Kr II ions. Here again, the good agreements 
between the present MAOT and ALS data [10] may enlighten the accuracy of the 
uncertain ALS measurement listed into parenthesis. Overall, for both the Cl II, 
Ar II and Kr II ions, it is demonstrated in this paper the possibilities to repro-
duce excellently high ALS measurements from single MAOT analytical expres-
sion. This is the main strength of the present work. 

4. Conclusion 

Accurate high lying resonance energy up to n = 40 is reported applying the 
Modified atomic orbital theory. For both the Cl II, Ar II and Kr II ions investi-
gated, a single formula has been established to reproduce with a very good accu-
racy high experimental measurements such as those performed at the Advanced 
Light Source at Lawrence Berkeley National Laboratory. A huge number of re-
sults are tabulated as useful reference data for interpreting atomic spectra from 
astrophysical objects containing chlorine, argon and krypton elements. 
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Abstract 
This paper discusses an absurdity that is rooted in the modern physics’ inter-
pretation of Einstein’s relativistic mass formula when v is very close to c. 
Modern physics (and Einstein himself) claimed that the speed of a mass can 
never reach the speed of light. Yet at the same time they claim that it can ap-
proach the speed of light without any upper limit on how close it could get to 
that special speed. As we will see, this leads to some absurd predictions. If we 
assert that a material system cannot reach the speed of light, an important 
question is then, “How close can it get to the speed of light?” Is there a 
clear-cut boundary on the exact speed limit for an electron, as an example? 
Or must we settle for a mere approximation? 
 

Keywords 
Relativistic Mass, Maximum Velocity of Subatomic Particles, Boundary  
Condition, Haug Maximum Velocity 

 

1. Introduction 

Einstein’s relativistic energy mass formula [1] [2] is given by 
2

2

2

.

1

mc

v
c

−

                             (1) 

Further, Einstein commented on his own formula. 
This expression approaches infinity as the velocity v approaches the velocity 

of light c. The velocity must therefore always remain less than c, however great 
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may be the energies used to produce the acceleration1. 
Carmichael (1913) [3] came up with a similar statement in relation to Eins-

tein’s theory: 
The velocity of light is a maximum which the velocity of a material system 

may approach but never reach.  
We certainly agree with Einstein’s formula. Our question is, “How close can v 

be to c?” Modern physics says nothing about this, except that it can approach c, 
but never reach c. Does this mean that one can make it as close to c as one wants? 
This is what we will look into here, and we will show that without a more specific 
boundary condition on v this can lead to truly absurd predictions. 

Einstein’s relativistic mass equation predicts that a mass will keep increasing 
as the velocity of the mass approaches the velocity of the speed of light. If v c= , 
then the mass would become infinite. Einstein and others have given an ad hoc 
solution to the problem, namely in claiming that indeed the relativistic mass 
never can become infinite, as this would require an infinite amount of energy for 
the acceleration. Still, they also seem to claim that the speed of subatomic par-
ticles can get as close to c as one would want. 

The discussion above is also fully relevant at today’s university campus. For 
example, the excellent text book “University Physics”2 by Young and Freedman 
[4] states that 

When the particle’s speed v is much less than c, this is approximately equal to 
the Newtonian expression...In fact as v approaches c, the momentum ap-
proaches infinity.  

Here I have marked part of the sentence in bold. Similarly, in another 
well-known and excellent university text book by Walker [5] we can read3. 

As v approaches the speed of light, the relativistic momentum becomes signif-
icantly larger than the classical momentum, eventually diverging to infinity as 
v c→ .  

Similarly, in the university physics text book by Cutnell and Johnson [6] we 
can read4: 

As v approaches the speed of light c, the 2 21 v c−  term in the denominator 
approaches zero. Hence, the kinetic energy becomes infinitely large. However, 
the work-energy theorem tells us that an infinite amount of work would have to 
be done to give the object an infinite kinetic energy. Since an infinite amount of 
work is not available, we are left with the conclusion that the objects with mass 
cannot attain the speed of light c.  

I do not directly disagree; mathematically this is correct. My point is that 
modern physics does not give an exact limit on how close v can get to c, and we 
will soon see how this leads to absurd relativistic masses and kinetic energies. In 

 

 

1This quote is taken from page 53 in the 1931 edition of Einstein’s book Relativity: The Special and 
General Theory. English translation version of Einstein’s book by Robert W. Lawson.  
214th edition, page 1238.  
3Fourth edition, page 1026. 
4Ninth edition, page 884.  
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the otherwise excellent book on special relativity by Sartori [7] we can read5: 
According to equation (7.12), the kinetic energy of a body approaches infinity 

when its speed approaches c. This important prediction is confirmed by the ex-
perimental data.  

I will claim that these statements are partly wrong, or at least they are not pre-
cise. No experiment has shown that the kinetic energy approaches infinity. What 
has been shown is that the kinetic energy increases rapidly as a particle is accele-
rated towards a velocity significantly close to the speed of light. 

In 1965, Max Born [8] stated that6 
A glance at Formula (78)7 for the mass tells us that the values of the relativistic 

mass m become greater as the velocity v of the moving body approaches the 
speed of light. For v c=  the mass becomes infinitely great. From this it follows 
that it is impossible to make a body move with a velocity greater than that of 
light by applying forces: Its inertial resistance grows to an infinite extent and 
prevents the velocity of light from being reached.  

Long ago, in 1893 Thomson [9] wrote8 
When in the limit v c=  the increase in mass is infinite, thus the charged 

sphere moving with velocity of light behaves as if its mass were infinite...  
Naturally, Thomson did not know about Einstein’s theory of special relativity, 

as it was published 12 years later. Still, his equations pointed to a similar result 
concerning mass when v approaches c. 

2. The Absurdity of the Electron Following Modern Physics’  
Incomplete Relativistic Mass Interpretation 

An electron is a very small so-called fundamental particle with a rest-mass of 
approximately 319.10938356 10 kgem −≈ ×  (NIST CODATA 2014). Next let’s 
look at the relativistic mass of the electron as v approaches, but never reaches, 
the speed of light. 

Absurd one Kg mass electron 
Assume an electron is accelerated (by a giant exploding star, or by the core of 

a galaxy, for example) to the following velocity  
0.99999999999999999999999999999999999999
99999999999999999999999999999999586

v c= ×
 

That is 70 nines behind the decimal point followed by the number 586, or we 
could say it is 73586 10−×  with nines instead of zeros after the decimal point. It 
gives a relativistic mass for a single electron of approximately 1 kg. 

Absurd Moon mass electron 
Assume an electron is accelerated (by for example a giant exploding star, or by 

the core of a galaxy) to the following velocity  

 

 

5Page 209. 
6Page 277. 
7Here Born is referring to the Einstein relativistic mass formula. 
8Page 21. Actually, Thomson used V as symbol for the speed of light and w for the velocity of the 
object. We have replaced these with c and v in the citation to make it easier to follow.  
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0.999999999999999999999999999999999999999999999
           9999999999999999999999999999999999999999999999
           999999999999999999999999923

v c= ×
 

That is 116 nines behind the decimal point followed by the number 23, or we 
could say it is 118923 10−×  with nines instead of zeros after the decimal point. It 
gives a relativistic mass for a single electron of approximately 227.34 10 kg× , 
that is basically equal to the rest-mass of the Moon. That is quite amazing, a tiny 
electron that suddenly has a relativistic mass equal to the rest-mass of the Moon! 
Where can we find such electrons? 

Absurd Earth mass electron 
Assume an electron is accelerated to the following velocity  

0.99999999999999999999999999999999999999999999999
           999999999999999999999999999999999999999999999999
           999999999999999999999999884

v c= ×
  

That is 119 nines behind the decimal point followed by the number 884, or we 
could say it is 122884 10−×  with nines instead of zeros after the decimal point. It 
gives a relativistic mass for a single electron of 245.9806 10 kg× , that is basically 
equivalent to the rest-mass of the Earth. 

Absurd Sun mass electron 
Assume an electron accelerated to the following velocity  

0.9999999999999999999999999999999999999999999999
           99999999999999999999999999999999999999999999999
           9999999999999999999999999999999999999895

v c= ×
 

That is 130 nines behind the decimal point followed by the number 895. It 
gives a relativistic mass for a single electron equal to the rest-mass of the Sun, 
that is about 301.98 10 kg.×  

Absurd Milky Way mass electron 
Assume an electron is accelerated to the following velocity 

0.99999999999999999999999999999999999999999999
           999999999999999999999999999999999999999999999
           999999999999999999999999999999999999999999999
           99999999999999999999895

v c= ×

 

The relativistic mass of the electron at this velocity is equal to the rest-mass of 
the Milky Way, that is about 1012 solar masses. Still, the electron is traveling be-
low the speed of light, so this does not go against mainstream modern physics. 

Insane Observable Universe electron 
Assume an electron is accelerated to the velocity of  

0.999999999999999999999999999999999999999999999
           9999999999999999999999999999999999999999999999
           9999999999999999999999999999999999999999999999
           999999999999999999999999

v c= ×

99999999999996

 

That is 174 nines behind the decimal point followed by the number 6, or we 
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could say it is 1756 10−×  with nines instead of zeros after the decimal point. It 
gives a relativistic mass for a single electron of approximately 521.018 10×  kg, 
that is basically equal to the rest-mass of what main frame physics claims is the 
approximate mass of the observable universe, see [10] [11] [12] [13]. That is 
quite amazing, a tiny electron that suddenly has a relativistic mass equal to the 
rest-mass of the whole observable universe. 

Modern physics leads to absurd kinetic energies for subatomic particles 
Table 1 lists the relativistic kinetic energy of an electron traveling at various 

velocities, all below the speed of light. All of these velocities are valid inside the 
framework of modern physics, as it stipulates no precise speed limit on the ve-
locity of an electron as long as it falls below the speed of light. 

Why don’t we see a single electron (or other subatomic particle) with a relati-
vistic mass equal to (even at the most moderate level) the rest-mass of the Moon? 
Such an electron would have enormous kinetic energy, causing a gigantic impact 
with collision with the Earth, or other planets in our solar system. We suspect 
that mainstream physics does not have a good answer to this question. Maybe 
such fast-traveling electrons exist, but they are rare and therefore have a very low 
probability of occurring? What if, as a counterpoint, a single electron wiped the 
dinosaurs out? Are we doomed? And why have we not heard physicists discuss-
ing such velocities for electrons? Perhaps they simply do not like to talk about 
such things, as they have no good explanations for why such very fast electrons 
have never been observed? 

3. A Simple Solution to the Absurdity That Saves Einstein’s  
Relativistic Mass Formula 

We have seen how modern physics’ assumption that a mass must travel more 
slowly than the speed of light, while at the same time asserting that it can ap-
proach the speed of light, leads to absurd predictions. An important question is, 
therefore, if there could be an exact speed limit below the speed of light for any-
thing with rest-mass. Haug has recently suggested a maximum velocity for any-
thing with rest-mass by assuming the maximum relativistic mass (energy) for  
 
Table 1. The table shows the kinetic energy for an electron traveling at various velocities 
below the speed of light. 

Velocity of electron 
% of light (v/c): 

Relativistic electron 
mass = rest-mass of 

Kinetic 
energy:a 

Ton TNT 
equivalent:b 

120923 10−×  (9’ns in front) Moon 396.597 10 J×  301.58 10×  

122884 10−×  (9’ns in front) Earth 415.375 10 J×  321.28 10×  

133895 10−×  (9’ns in front) Sun 471.787 10 J×  374.27 10×  

145895 10−×  (9’ns in front) Milky Way 591.787 10 J×  494.27 10×  

aThe Kinetic energy is calculated as 
2

2

2

2
1

k

mcE mc
v
c

= −
−

. bOne ton TNT equivalent is about 4.184 giga 

joules. 
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an elementary particle is the Planck mass (energy), see [14]-[19]. The maximum 
velocity any subatomic particle can take as measured by Einstein-Poincaré syn-
chronized clocks9 is then given by 

2

max 21 plv c
λ

= −                           (2) 

where λ  is the reduced Compton wavelength of the mass in question, and pl  
is the Planck length [21] [22]. This formula can be derived by setting 

2
2

2

21
p

mcm c
v
c

≥

−

 

2

21
p

v m
mc

− ≥  

2 2

2 21
p

v m
c m

− ≥  

2
2 2

21
p

mv c
m

 
≤ −  

 
 

2

21
p

mv c
m

≤ −                           (3) 

where pm  is the Planck mass, and m is the mass of an elementary particle. And 
since any elementary mass can be written as 

1m
cλ

=
                             (4) 

Which means the mass of an elementary particle can be found by measuring 
the Compton wavelength of the particle, as has been done experimentally with 
electrons, see [23]. Since the reduced Compton wavelength of the Planck mass 
must be the Planck length, then we must have 

2

2

1

1
1

p

cv c

l c

λ
 
 
 ≤ −
 
  
 





 

2

21 plv c
λ

≤ −                           (5) 

The same formula can also be derived by assuming that the shortest possible 
length-contracted Compton wavelength is limited by the Planck length 

2

21 p
v l
c

λ − ≥  

 

 

9This also holds true if measured with clocks synchronized with very slow clock transportation me-
thod, see [20].  
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22

2 21 plv
c λ

− ≥  

2

21 plv c
λ

≤ −                          (6) 

Further, the same maximum velocity of matter can also be found from Hei-
senberg’s uncertainty principle when assuming the uncertainty in position can-
not be smaller than the Planck length [24] [25]. So again this would mean the 
maximum relativistic mass of a elementary particle is the Planck mass. The 
Planck mass is approximately 82.17651 10 kg−× . It is enormous compared to 
the electron, but it is miniscule compared to the mass of the Moon, Earth, or the 
Sun. Further, the Planck mass only can last for an instant (the Planck time), as 
pointed out by Haug, something we soon will get back to soon. 

Further, an electron can travel at a velocity very close to that of the speed of 
light, but its maximum velocity will still be significantly less than what has been 
described here previously. The maximum velocity for an electron would be ap-
proximately 

2

max 21 0.999999999999999999999999999999999999999999999124p

e

l
v c c

λ
= − ≈ ×  (7) 

In this calculation, we have assumed the reduced Compton wavelength of the  

electron given by NIST CODATA, that is 
122.4263102367 10

2π

−×  m, and a  

Planck length of 351.616229 10 m.−×  Because there is some uncertainty regard-
ing both the exact Planck length and the reduced Compton wavelength, there is 
some uncertainty around this velocity, but it must be very close to this number. 
NIST (2014) CODATA reports a standard uncertainty for the Planck length of 

350.000038 10 m.−×  Based on this theory, we can rest assured that the electron 
(or any other mass) can never reach a relativistic mass even close to one kg, so 
there is no chance that a single electron will cause much harm (at least not com-
pared to the data in Table 1), no matter how fast it is accelerated because there is 
a maximum velocity that limits both its kinetic energy and its relativistic mass. 

Will modern physics accept the existence of a maximum speed limit for sub-
atomic masses or will the field keep holding on to absurd beliefs? If we do not 
accept the idea that the maximum velocity for subatomic particles has an exact 
limit below the speed of light, then we must accept the following absurdities: 
 That there is a wavelength shorter than the Planck length. 
 That there is a time interval shorter than the Planck time. 
 That there is a maximum frequency higher than the Planck frequency. 
 That an electron can take a relativistic mass similar to that of the Moon, the 

Earth, the Sun, and even the Milky Way, or even larger masses. This is, at 
best, truly absurd! Our theory predicts that no subatomic particle can take a 
relativistic mass higher than the Planck mass. 
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 That there is no limit on the relativistic Doppler shift. This is also highly un-
likely. Haug [15] has suggested that the limit here is the Planck frequency 
Doppler shift. 

 For a subatomic particle, there is a momentum close to infinity. This is ab-
surd. The maximum momentum of a subatomic particle based on our max-
imum velocity formula for matter is likely just below the Planck momentum. 

 For a subatomic particle, there is a kinetic energy close to infinity. This is, 
again, absurd. 

The newly introduced maximum velocity puts a series of limits on subatomic 
“fundamental particles”: 

 The maximum frequency is the Planck frequency: max
p

cf
l

= . 

 The maximum relativistic mass a subatomic particle can take is the Planck 
mass. 

 The maximum relativistic momentum a subatomic particle can take is just 
below the Planck momentum. 

 The maximum kinetic energy a subatomic particle can take is close to 
p

c
l
 , 

or more precisely ,max
1 1

k
p

E c
l λ

 
= −  

 
 . 

 The maximum relativistic length contraction of the reduced Compton wave-
length a subatomic particle is pl , which is the reduced Compton length of 
the Planck mass particle. This again means the maximum relativistic mass of 
a elementary particle is the Planck mass. 

Also, it is worth mentioning here that the Planck length can be found totally 
independent of any knowledge of Newton’s gravitational constant, see [18] and 
even independent of any knowledge of the Planck constant, see [26]. 

4. Ways to Write the Maximum Velocity Formula 

There are several ways to write the maximum velocity for subatomic particles 
that will all give the same answer; here we present some of them. 

In terms of reduced Compton wavelength 
2

max 21 plv c
λ

= −                           (8) 

In terms of particle mass 
2

max 21
p

mv c
m

= −                           (9) 

where m is the rest-mass of the particle and pm  is the Planck mass. 
As a function of Newton’s gravitational constant  

2

max 1 Gmv c
c

= −


                         (10) 
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All of these formulas are basically the same, but each one requires somewhat 
different input: 

2 2 2

max 2 21 1 1p

p

l m Gmv c c c
cmλ

= − = − = −


             (11) 

The maximum velocity for an electron 
For an electron, the maximum velocity can be written as function of the di-

mensionless gravitational coupling constant.  

max 1 Gv c α= −                        (12) 

This is no surprise, since the dimensionless gravitational coupling constant is 

given by 
22

2 2
pe

G
p e

lm
m

α
λ

= = . For information about the dimensionless gravitational  

coupling constant see [27] [28] [29] [30]. 

5. The Speed of the Planck Mass Particle 

In the maximum velocity formula given by Haug, the maximum speed of any 
observed particle is very close to light, but still faster than what we can achieve at 
our strongest particle accelerators such as the Large Hadron Collider. However, 
in the special case where we deal with a Planck mass particle then the reduced 
Compton wavelength is equal to the Planck length, plλ =  and we must have 

2

max 21 0p

p

l
v c

l
= − =                         (13) 

That the maximum velocity of the Planck mass particle is zero sounds bizarre 
at first. However, as suggested by [17] the Planck mass particle is the collision 
point between two photons. Light always travel at the speed of light, but what is 
the speed of a photon just at the moment it collides with another photon? We 
will claim a photon stands still just at the instant (Planck time) it collides with 
another photon. Recent research has been quite clear on the concept that in a 
photon-photon collision we likely can create matter, see [31]. We will claim the 
collision point between two light particles is the missing Planck mass particle. 
The Planck mass energy p pE p c m cc= =  seems far too great for any observed 
photons. However, in our analysis, we claim that the Planck mass particle only  

can last for one Planck second: p
p

l
t

c
= , before it dissolves into energy and  

where the light particles once again travel at the speed of light. This means the 
minimum momentum of a photon is 

p
p

l
m c

c c
=
                          (14) 

and multiplied by c we get the energy of the light particle, that is 


, and divid-
ing this by 2c  we get 
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2 p pm t
c

=
                           (15) 

Haug has recently suggested that all masses ultimately consist of Planck mass 
particles, but again these Planck mass particle events only last for one Planck 
second. Schrödinger in 1930 indicated that the electron was in a sort of  

Zitterbewegung (“trembling motion” in English) 
2

212 1.55269 10mc
≈ ×



 per second. 

We will suggest that the electron is in a Planck mass state 207.76344 10
e

c
λ

≈ ×   

per second (about half of that of Schrödinger’s “Zitterbewegung” frequency). 
However, each Planck mass state only lasts for one Planck second and therefore 
we get the normal electron mass from 

311 9.10938 10 kgp
p

e e

lc m
c cλ λ

−= ≈ ×
                (16) 

That is to say, every elementary particle is also a clock ticking at the reduced 
Compton periodicity. The idea of an internal clock with a clock frequency close 
to the “Zitterbewegung” frequency in the case of the electron is not new, see [32] 
[33], for example. The link between mass and Compton time frequency has re-
cently been supported by recent experimental research. Dolce and Perali [34] 
conclude that “the rest-mass of a particle is associated to a rest periodicity 
known as Compton periodicity”. Again, in our model the reduced Compton pe-
riodicity is directly linked to a Planck mass event. Between each Planck mass  

event there is a reduced Compton time interval: 
c
λ . The Planck mass event  

itself we suggest only lasts for one Planck second and that even an elementary 
particle is in an internal energy state most of the time; only in the time fraction  

pl
λ

 is the particle in a Planck mass state. The rest of the time it is in an internal  

energy state. An electron switches between energy and mass state approximately 
207.76 10×  times per second. 

This would mean that the mass of an elementary particle such as an electron is 
time dependent. However, evaluating the time dependency of elementary par-
ticles can likely only be done directly when one measures the mass of an ele-
mentary particle at time windows close to the reduced Compton time of the par-
ticle, where the reduced Compton time simply is defined as the reduced Comp-
ton wavelength of the particle divided by the speed of light. This time interval is 
so short that we are not really able to complete such a study yet, even for an 
electron. 

In 1899, Max Planck was the first to suggest that there was an important ele-

mentary mass given by p
cm

G
=

 . He derived the Planck mass using  

dimensional analysis, assuming that the Newton gravitational constant, the 
Planck constant, and the speed of light were the most important universal con-
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stants. It was Lloyd Motz, while working at the Rutherford Laboratory in 1962, 
[35] [36] [37] who first suggested that there likely existed a very fundamental 
particle with a mass equal to the Planck mass that he called the “Uniton.” Motz 
acknowledged that his Unitons (Planck mass particles) had far too much mass 
compared to known subatomic masses. The Planck mass one gets from the Max 
Planck formula is approximately 82.176 10−×  kg. Motz tried to explain this by 
claiming that the Unitons had radiated most of their energy away: 

According to this point of view, electrons and nucleons are the lowest bound 
states of two or more Unitons that have collapsed down to the appropriate di-
mensions gravitationally and radiated away most of their energy in the process. 
—Lloyd Motz 

Others have suggested that there were plenty of Planck mass particles around 
just after the Big Bang, see [38], but that most of the mass of these super-heavy 
particles has radiated away. Several physicists, including Motz and Hawking, 
have suggested that such particles could be micro black holes [39] [40] [41]. 
Planck mass particles have even been proposed as candidates for cosmological 
dark matter [42] [43]. 

Still, no sign of the enormous Planck mass particle has been found, and there 
have been no observations of micro black holes yet either. The Compton clock 
model of matter seems to give a possible simple solution to this puzzle. In our 
model of matter, one needs to consider the observational time window, in par-
ticular when it comes to the Planck mass particle. The Planck mass particle likely 
only lasts for one Planck second. So, if observed inside one Planck second its 
mass is indeed its well-known Planck mass, and it is then very large compared to 
any observed elementary particles so far. However, we are not even close to ob-
serving particles at the Planck time scale. In a longer time window, one second 
for example, the Planck mass particle is only approximately 511.173 10−×  kg. 
That is, we have likely looked for a much too large mass in our search for the 
Planck mass particle and micro black holes. With that in mind, we should per-
haps change the perspective on what a micro black hole is. In our view, it is 
nothing more than the very collision point between two photons: they collide 
and the collision lasts for one Planck second. At collision the photons stand ab-
solutely still, and then dissolve into energy again moving at the speed of light. 
The micro black hole is, in this way, almost a misnomer. Further theoretical and 
practical research is needed to decide if this is the case or not. In particular, re-
search looking for possible breaks in Lorentz symmetry could be important here 
and is what we come to in the next section. 

6. Breakdown of Lorentz Invariance at the Planck Scale? 

The maximum velocity formula for anything with rest-mass would mean Lo-
rentz invariance breaks down at the Planck scale. Based on this view, the Planck 
particle, the Planck length, and the Planck time, unlike any other particle, length, 
or time, seem to be the same no matter what frame they are observed from. The 
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view that Lorentz invariance could be broken at the Planck scale appears to be 
consistent with what is predicted by several quantum gravity theories, see for 
example [44]. Lorentz symmetry is supported by a long series of tests, but it has 
never been tested at anything even close to the Planck scale (at distances close to 
the Planck length, or Planck energies), so one should be careful to use experi-
mental evidence as an argument against this idea. 

One could ask to what degree new physics at the Planck scale could be weakly 
detected at lower energies; this is discussed by [45] [46], for example. A recent 
review article [47] on the possibility for Lorentz symmetry breaking in relation 
to quantum gravity predictions and experiments noted: 

In conclusion, though no violation of Lorentz symmetry has been observed so 
far, an incredible number of opportunities still exist for additional investigations. 

So, we think testable predictions related to the Planck scale should be investi-
gated further, also in relation to our maximum velocity formula. Recently, Haug 
[48] has indicated that this new maximum velocity of matter likely predicts zero 
velocity time-dilation in quasars, which is consistent with what has been ob-
served [49] [50]. The Schwarzschild radius is linked to the Planck length,  

2

22 2 p
s

lGmR N
c λ

= = , where N is the number of Planck masses in the mass in  

question. This, combined with the fact that quasars are often considered black 
holes (at least at their core), means quasars likely are linked to the Planck scale. 
It could be that we already have observations from the Planck scale from quasars, 
and that such anomalies as lack of time dilation in quasars can distinguish vari-
ous theories in relation to their prediction of how Lorentz symmetry is broken 
down or not broken down. At least it seems that our theory in relation to this 
maximum velocity likely is consistent with everything that has been observed so 
far. 

7. Conclusion 

We conclude that in stating that a mass must travel more slowly than the speed 
of light, while at the same time asserting that it can approach the speed of light, 
we get absurd predictions. Examples include the idea that an electron could at-
tain a relativistic mass equal to the rest-mass of the Moon, the Earth, the Sun, 
the Milky Way, or even entire galaxy clusters. Haug has recently addressed this 
absurdity by showing that there must be a precise maximum velocity for anything 

with mass likely given by 
2

max 21 plv c
λ

= − . 
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Abstract 
This paper posits that the observed resonance with 28 GeV at the LHC is the 
pseudoscalar top-bottom quark-antiquark composite which has the calculated 
mass of 27.9 GeV derived from the periodic table of elementary particles. The 
calculated mass is for the mass of bb ̅ + (bb ̅ + tt ̅)/2. In the periodic table of 
elementary particles, t quark (13.2 GeV) in the pseudoscalar top-bottom 
quark-antiquark composite is only a part of full t quark (175.4 GeV), so 
pseudoscalar tt ̅ (26.4 GeV) cannot exist independently, and can exist only in 
the top-bottom quark-antiquark composite. As shown in the observation at 
the LHC, the resonance with 28 GeV weakens significantly at the higher 
energy collision (13 TeV), because at the higher collision energy, low-mass 
pseudoscalar tt ̅ in the composite likely becomes independent full high-mass 
vector tt ̅ moving out of the composite. The periodic table of elementary par-
ticles is based on the seven mass dimensional orbitals derived from the seven 
extra dimensions of 11 spacetime dimensional membrane. The calculated 
masses of hadrons are in excellent agreement with the observed masses of 
hadrons by using only five known constants. For examples, the calculated 
masses of proton, neutron, pion (π±), and pion (π0) are 938.261, 939.425, 
139.540, and 134.982 MeV in excellent agreement with the observed 938.272, 
939.565, 139.570, and 134.977MeV, respectively with 0.0006%, 0.01%, 0.02%, 
and 0.004%, respectively for the difference between the calculated and ob-
served mass. The calculated masses of the Higgs bosons as the intermediate 
vector boson composites are in excellent agreements with the observed 
masses. In conclusion, the calculated masses of the top-bottom quark-antiquark 
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composite (27.9 GeV), hadrons, and the Higgs bosons by the periodic table of 
elementary particles are in excellent agreement with the observed masses of 
resonance with 28 GeV at the LHC, hadrons, and the Higgs bosons, respec-
tively. 
 

Keywords 
LHC, CMS, Resonance, b Quark Jet, Periodic Table of Elementary Particles, 
Top Quark, Bottom Quark, Hadron Masses, Mass Calculation, Higgs Boson 

 

1. Introduction 

In the search for resonances in the mass range 12 - 70 GeV produced in associa-
tion with a b quark jet and a second jet, and decaying to a muon pair, the CMS 
Collaboration at the LHC recently reported an excess of events above the back-
ground near a dimuon mass of 28 GeV [1]. The search is carried out in two mu-
tually exclusive event categories from proton-proton collisions at center-of-mass 
energies of 8 and 13 TeV. The first category involves a b quark jet in the central 
region and at least one jet in the forward region, while the second category in-
volves two jets in the central region, at least one of which is identified as a b 
quark jet, no jets in the forward region. At the 8 TeV collision, the first category 
has 4.2 standard deviations, while the second category has 2.9 standard devia-
tions. At the 13 TeV collision, the first category has 2.0 standard deviations, 
while the second category results in a 1.4 standard deviation deficit. 

This potential new particle at 28 GeV does not match the properties of any of 
particles in the standard model. It is also puzzling that the resonance at 28 GeV 
weakens, disappears, or gets inverted at 13 TeV. This paper posits that the re-
sonance with 28 GeV observed recently at the LHC is the pseudoscalar 
top-bottom quark-antiquark composite which has the calculated mass of 27.9 
GeV derived from the periodic table of elementary particles in good agreement 
with the observed 28 GeV. The calculated mass is the mass of three pseudoscalar 
b quarks and one pseudoscalar t quark which represent the composite of bpb ̅p + 
(bpb ̅p + tpt ̅p)/2 where p = pseudoscalar. (The quark in pseudoscalar meson is de-
noted as “pseudoscalar quark”, while the quark in vector mesons is denoted as 
“vector quarks” which has higher mass than pseudoscalar quark.) As described 
in the periodic table of elementary particles, pseudoscalar t quark (13.2 GeV) is 
only a part of full t quark (175.4 GeV), so pseudoscalar tpt ̅p (26.4 GeV) cannot 
exist independently, and can exist only in the top-bottom quark-antiquark 
composite. As shown in the observation at the LHC, the resonance with 28 GeV 
weakens significantly at the higher energy collision (13 TeV), because at the 
higher collision energy, low-mass pseudoscalar tt ̅ in the composite likely be-
comes independent full high-mass vector tt ̅ moving out of the composite. To 
account for the observed two jets, the composite has two jets consisting of a bb ̅ 
jet and a b + t jet, where bb ̅ jet for (bpb̅p + tpt̅p)/2 is more stable than b + t jet 
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which decays faster into the jet in the forward region to constitute the first cate-
gory of the search by the CMS Collaboration at the LHC.  

The periodic table of elementary particles is based on the seven mass dimen-
sional orbitals derived from the seven extra dimensions of 11 spacetime dimen-
sional membrane particles [2] [3] [4]. The seven mass dimensional orbitals in-
clude the seven principal mass dimensional orbitals for stable baryonic matter 
leptons (electron and neutrinos), gauge bosons, gravity, and dark matter and the 
seven auxiliary mass dimensional orbitals for unstable leptons (muon and tau) 
and quarks, and calculate accurately the masses of all elementary particles and 
the cosmic rays by using only five known constants [5] [6]. Hadron masses can 
be calculated in excellent agreement with the observed masses of hadrons. For 
examples, the calculated masses of proton, neutron, pion (π±), and pion (π0) are 
938.261, 939.425, 139.540, and 134.982 MeV in excellent agreement with the ob-
served 938.272, 939.565, 139.570, and 134.977 MeV, respectively with 0.0006%, 
0.01%, 0.02%, and 0.004%, respectively for the difference between the calculated 
and observed mass. 

Section 2 describes the periodic table of elementary particles and the mass 
formulas. Section 3 deals with quarks and hadrons. Section 4 explains the 
top-bottom quark-anti-quark composite as the resonance at 28 GeV. Section 5 
describes the Higgs boson doublet as the intermediate vector boson composites. 

2. The Periodic Table of Elementary Particles and the Mass  
Formulas 

The periodic table of elementary particles [2] [3] [4] is based on the seven mass 
dimensional orbitals derived from the seven extra dimensions of 11 spacetime 
dimensional membrane. The seven mass dimensional orbitals include the seven 
principal mass dimensional orbitals for stable baryonic matter leptons (electron 
and neutrinos), gauge bosons (all forces), gravity, and dark matter (five sterile 
dark matter neutrinos) and the seven auxiliary mass dimensional orbitals for 
unstable leptons (muon and tau) and quarks (d, u, s, c, b, and t) as in Figure 1 
and Table 1. 
 

Table 1. The periodic table of elementary particles for baryonic matter and dark matter. 

d 
a = 0 a = 0 1 2 1 2 3 4 5 a = 0 

Stable Baryonic Matter Leptons Dark Matter Leptons Unstable Leptons Quarks Bosons 

5 νe νDM5        B5 = A electromagnetism 

6 e νDM6        B6 = g* strong (basic gluon) 

7 νμ νDM7 μ7 τ7 d7/u7 s7 c7 b7 t7 B7 = 0
LZ  left-handed weak 

8 ντ νDM8 μ8 (absent)  b8 (absent) t8    B8 = XR right-handed CP 

9 ν’τ (high-mass ντ) νDM9        B9 = XL left-handed CP 

10          B10 = 0
RZ  right-handed weak 

11          B11 = gravity 

d = principal mass dimensional orbital number, a = auxiliary mass dimensional orbital number. 
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Figure 1. The seven principal mass dimensional orbitals (solid lines) denoted by the 
principal mass dimensional orbital number d and the seven auxiliary mass dimensional 
orbitals (dash-dotted lines) denoted by the auxiliary mass dimensional orbital number a. 
 

The periodic table of elementary particles calculates accurately the particle 
masses of all leptons, quarks, gauge bosons, the Higgs boson, and the cosmic 
rays by using only five known constants: the number (seven) of the extra spatial 
dimensions in the observed four-dimensional spacetime from the ele-
ven-dimensional membrane, the mass of electron, the masses of Z and W bo-
sons, and the fine structure constant [5] [6]. The calculated masses are in excel-
lent agreements with the observed masses. For examples, the calculated masses 
of muon, top quark, pion, neutron, and the standard model Higgs boson are 
105.55 MeV, 175.4 GeV, 139.54 MeV, 939.42 MeV, and 126 GeV, respectively, in 
excellent agreements with the observed 105.65 MeV, 172.4 GeV, 139.57 MeV, 
939.27 MeV, and 126 GeV, respectively. 

The seven mass dimensional orbitals are arranged as F5 B5 F6 B6 F7 B7 F8 B8 F9 
B9 F10 B10 F11 B11, where Fd and Bd are mass dimensional fermion and mass di-
mensional boson, respectively. As described in the previous papers [2] [3], the 
mass of mass dimensional fermion and the mass of mass dimensional boson are 
related to each other with three simple formulas as the follows.  

d, d, dB FM M α=                         (1) 

d 1,F d, d 1BM M α+ +=                        (2) 

2
d 1,B d, d 1BM M α+ +=                        (3) 

where d is the mass dimensional orbital number, F is fermion, and B is boson. 
Each dimension has its own αd, and all αd’s except α7 (αw) of the seventh dimen-
sion (weak interaction) are equal to α, the fine structure constant of electromag-
netism. The given observed masses are the mass of electron for F6 and the mass 
of Z boson for B7. From Equations (1) and (3), αw = α7 = α of week interaction = 
(MB6/MB7)1/2 = (MF6/α/MB7)1/2 = (Me/α/MZ)1/2 = 0.02771. Therefore, the masses of 
gauge bosons are as in Table 2. 

The lowest energy gauge boson (B5) at d = 5 is the Coulomb field for electro-
magnetism. The second gauge lowest boson (B6) at d = 6 is basic gluon (g* = 70 
MeV ≈ one half of pion) is the strong force as the nuclear force in the pion 
theory [7] where pions mediate the strong interaction at long enough distances 
(longer than the nucleon radius) or low enough energies. At short enough dis-
tances (shorter than the nucleon radius) or high enough energies, gluons emerge  
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Table 2. The masses of the principal mass dimensional orbitals (gauge bosons). 

Bd Md GeV (calculated) Gauge boson Interaction 

B5 Meα 3.7 × 10−6 A = photon Electromagnetic 

B6 Me/α 7 × 10−2 (70.02 MeV) g* = basic gluon Strong 

B7 
2

Z B6 wM M α=  91.1876 (given) 0
LZ  weak (left) 

B8 M7/α2 = MZ/α2 1.71 × 106 XR CP (right) nonconservation 

B9 M8/α2 = MZ/α4 3.22 × 1010 XL CP (left) nonconservation 

B10 M9/α2 = MZ/α6 6.04 × 1014 0
RZ  weak (right) 

B11 M10/α2 = MZ/α8 1.13 × 1019 G Gravity 

 
to confine fractional charge quarks. B6 is denoted as basic gluon, g*. The third 
lowest boson (B7) at d = 7 is Z0 for the weak interaction.  

F11 (8.275 × 1016 GeV) relates to spin 3/2 gravitino, while B11 (1.134 × 1019 
GeV) relates to spin 2 graviton. In supersymmetry, gravitino and graviton me-
diate the supersymmetry between fermion and boson in space dimension and 
gravitation. There are 10 space dimensions in the 11 spacetime dimensional 
membrane. As a result, the supersymmetry involves 10F11 + B11, which is equal 
to 1.217 × 1019 GeV in excellent agreement with the Planck mass (1.221 × 1019 
GeV) derived from observed gravity as (ћc/G)1/2 where c is the speed of light, G 
is the gravitational constant, and ħ is the reduced Planck constant. 

The lepton mass formula and the quark mass formula are derived from the 
incorporation of basic gluon (g* = B6 = 70 MeV) to electron. The incorporation 
of basic gluon as flux quanta follows the the composite fermion theory for the 
FQHE (fractional quantum Hall effect) [8] [9]. In the composite fermion model 
for FQHE, the formation of composite fermion is through the attachment of an 
even number of magnetic flux quanta to electron, while the formation of com-
posite boson is through the attachment of an odd number of magnetic flux 
quanta to electron. In the same way, the formation of composite fermion is 
through the attachment of an even number of basic gluons to electron, while the 
formation of composite boson is through the attachment of an odd number of 
basic gluons to electron. The formation of composite boson is equal to the for-
mation of composite di-leptons, so the formation of composite lepton is through 
the attachment of one half of an odd number of basic gluons to electron. As a 
result, the muon (µ) mass formula is as follows.  

7 g*

e

3 2

3 2
105.5488 MeV

M Me M

Me M
µ

α

= +

= +

=
                      (4) 

which is in excellent agreement with the observed 105.6584 MeV [10] for the 
mass of muon. The mass of τ follows the Barut lepton mass formula [11] as fol-
lows. 
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4
lepton

0

3
2

n
e

e
a

M
M M a

α =

= + ∑                     (5) 

where a = 0, 1, and 2 are for e, µ7, and τ7, respectively. The calculated mass of τ7 
is 1786.2 MeV in good agreement with the observed mass as 1776.82 MeV.  

According to Barut, the second term, 4

0

n

a
a

=
∑  of the mass formula is for the  

Bohr-Sommerfeld quantization for a charge-dipole interaction in a circular or-
bit. The more precise calculated mass of τfor the tau lepton mass formula is as 
follows. 

43
2

2
3

17 17
2

1777.47 MeV

e
e

e
e

M
M Me M

M
Me M

τ α

α

 = + − 
 
 = + − 
 

=

∑

                  (6) 

which is in excellent agreement with observed 1776.82 MeV, and means that 
during this dipole-interaction in a circular orbit for τ, an electron with total 
mass of 17Me is lost. 17Me is shown as the observed 17 MeV for 34Me in the light 
boson (17 ee ̅) [12] [13]. 

Quark has fractional charge (±1/3 or ±2/3), 3-color gluons (red, green, and 
blue) for 3g*, and both the principal mass dimensional orbitals and axillary mass 
dimensional orbitals, so similar to Equation (4), d and u in the principal mass 
dimensional orbital involves e/3 or 2e/3 and 3g* as follows.  

( )

( )

g*
principal

B6

principal mass dimensional orbital at d 6

3 31 or 2
3 2

3 31 or 2
3 2

1 or 2 9
3 2

q

MMeM

MMe

Me Me
α

=

= +

= +

= +

            (7) 

For quarks in the auxiliary mass dimensional orbitals, 3-color basic gluons 
(3g*) become 3-color auxiliary basic gluons ( 73ga

∗ ) at d = 7. Based on Equation 
(2), auxiliary basic gluon is derived from muon as follows.  

773ga
wM M µ α∗ =                          (8) 

Similar to Equation (5), the masses of quarks in the auxiliary mass dimension-
al orbital are as follows. 

( )
7 74 4

auxiliary 7
1 1

auxiliary mass dimensional orbital at d 7

3 3 9
2 2

a
n ng w

q
a a

M M
M a aµ α∗

= =

=

= =∑ ∑
            (9) 

The quark mass formula at d = 7 is the combination of Equations (7) and (9) 
as follows. 

7 4
7

1

91 or 2 9
3 2 2

n
w

q
a

MMe MeM aµ α
α =

= + + ∑               (10) 
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where a = 1, 2, 3, 4, and 5 for u7/d7, s7, c7, b7, and t7, respectively. 
The quark mass at a = 5 for the auxiliary mass dimensional orbital at d = 7 is 

the maximum mass below the mass of B7, so the next auxiliary mass dimensional 
orbital has to start from B7.There are b and t at d = 8, so it is necessary to have 
µ8for the masses of b and t. Like µ7 in Equation (4), the mass of µ8 is as follows. 

0
8 7

7

0

g

B

Z

2 3 2

2 3 2

2 3 2

136.78 GeV

M Me M

Me M

Me M

µ ∗= +

= +

= +

=

                     (11) 

Since at d = 7, there are 3-color basic gluons, at d = 8, 3-color basic gluons are 
not needed, and only one basic gluon ( 7g∗ ) at d = 7 is used. Similar to Equations 
(7) and (9). The quark mass formulas for the principal and auxiliary mass di-
mensional orbitals are as follows. 

77
principal quark

principal mass dimensional orbital at d 7
3 2 3 2 3 2B Zg

M M M M∗

=
= = =             (12) 

( )
8

0
4 48

auxiliary quark
1 1

auxiliary mass dimensional orbital at d 8

3 3
2 2

a
n ng

a a

M
M a a

µ α∗ ′ ′

′ ′= =

=

′ ′= =∑ ∑
           (13) 

The quark mass formula at d = 8 is the combination of Equations (12) and 
(13) as follows.  

0
8 4

8
1

33
2 2

n
Z

q
a

MMM aµ
α ′

′=

′= + ∑                   (14) 

where a' = 1 and 2 for b8 and t8, respectively. 
Combining Equations (10) and (14), the quark mass formula is as follows.  

0
7 84 4

quark
1 1

39 31 or 2 9
3 2 2 2 2

n n
w Z

a a

MM MMe MeM a aµ µ
αα

α

′

′= =

′= + + + +∑ ∑   (15) 

where a =1, 2, 3, 4, and 5 for d/u. s, c, b, and t, respectively, and a' = 1 and 2 for b 
and t respectively. The calculated masses for d, u, s, c, b, and t are 328.4 MeV, 
328.6 MeV, 539 MeV, 1605.3 MeV, 4974.6 MeV, and 175.4 GeV, respectively. In 
the standard model, there are three generations of leptons. Extra-muon µ8 is 
outside of the three generations of leptons in the standard model, so µ8 is absent 
as shown in Table 2. As shown in Table 2, to be symmetrical to the absent µ8, b8 
quark is also absent. The calculated mass of top quark is 175.4 GeV in good 
agreement with the observed 172.4 GeV. The calculated masses are comparable 
to the quark masses proposed by De Rujula, Georgi, and Glashow [14], Griffiths 
[15], and El Naschie [16]. 

3. Quarks and Hadrons 

For baryons, the quarks in the periodic table of elementary particles are baryonic 
quarks. Mesons have vector mesons with parallel spins and pseudoscalar mesons 
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with antiparallel spins. Since parallel spins have higher energy than antiparallel 
spins, vector mesons have higher masses than pseudoscalar mesons. For high-
er-mass vector mesons (parallel spins), vector t, b, c, and s are baryonic t, b, c, s, 
and vector d and u are baryonic d and u plus basic gluon (g* = 70 MeV). For 
lower-mass pseudoscalar mesons (antiparallel spins), pseudoscalar t as t7 is a 
part of vector t (= t7 + t8), pseudoscalar b and c are vector quarks minus g*, and 
pseudoscalar d, u, and s are derived from g* as shown in Table 3. 

The calculated masses and the observed masses [10] of baryons are listed in 
Table 4. The binding energy for each d or u quark involves the auxiliary mass 
dimensional orbital at d = 7 from Equation (9). The primary binding energy EQ1 
for d or u quark from Equation (9) is as follows.  

71 9 2 13.162 MeVQ wE M µ α= =                  (16) 

 
Table 3. The masses of quarks. 

Particle Symbol Composition d= a= Charge Generation Mass (calculated) 

Electron e e 6 0 −1 1 0.511 MeV (given) 

Basic gluon g* B6 6 0 0  70.02 MeV 

Baryon        

d db d7 7 1 −1/3 1 328.5 MeV 

u ub u7 7 1 2/3 1 328.6 MeV 

s sb s7 7 2 −1/3 2 539.0 MeV 

c cb c7 7 3 2/3 2 1605.3 MeV 

b bb b7 7 4 −1/3 3 4974.7 MeV 

t tb t7 + t8 7 + 8 5 + 2 2/3 3 175.4 GeV 

Vector meson        

d dv d7 + g* 6 + 7 0 + 1 −1/3 1 398.5 MeV 

u uv u7 + g* 6 + 7 0 + 1 2/3 1 398.6 MeV 

s sv s7 7 2 −1/3 2 539.0 MeV 

c cv c7 7 3 2/3 2 1605.3 MeV 

b bv b7 7 4 −1/3 3 4974.7 MeV 

t tv t7 + t8 7 + 8 5 + 2 2/3 3 175.4 GeV 

Pseudoscalar 
meson 

       

d dp g* + 1/3e 6 0 −1/3 1 70.2 MeV 

u up g* + 2/3e 6 0 2/3 1 70.4 MeV 

s sp 2(3g* + 3e) + 1/3e 6 0 −1/3 2 423.4 MeV 

c cp c7 − g* 6 + 7 0 + 3 2/3 2 1535.3 MeV 

b bp b7 − g* 6 + 7 0 + 4 −1/3 3 4904.7 MeV 

t tp t7 7 5 2/3 3 13.2 GeV 

d = principal mass dimensional mass orbital number, a = auxiliary mass dimensional number, generation = gen-
eration of lepton-quark in the standard model. 

 

DOI: 10.4236/jmp.2018.914164 2645 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2018.914164


D.-Y. Chung 
 

Table 4. The masses of baryons. 

Baryon Composition 

Calculated 
mass without 

binding 
energy MeV 

Calculated 
mass with 
binding 

energy MeV 

Observed 
mass 
MeV 

% 
difference 

proton (P) ububdb 985.679 938.261 938.272 −0.0006 

neutron (N) ubdbdb 985.508 939.425 939.565 −0.01 

Lambda (Λ0) ubdbsb − g* 1126.1 1117.7 1115.7 0.18 

Sigma (Σ0) ubdbsb 1196.1  1192.6 0.29 

charmed Lambda ( c
+Λ ) ubdbcb + g* 2332.4 2286.3 2286.5 0.005 

charmed Sigma ( c
+Σ ) ubdbcb + 3g* 2472.5 2449.4 2452.9 −0.14 

bottom Lambda ( b
+Λ ) ubdbbb 5631.7 5608.7 5619.4 −0.19 

Sigma (Σ+) ububsb 1196.3 1187.9 1189.4 −0.13 

Sigma (Σ−) dbdbsb 1195.9  1197.4 −0.13 

charmed Sigma ( c
++Σ ) ububcb + 3g* 2472.7 2449.6 2453.7 −0.18 

charmed Sigma ( 0
cΣ ) dbdbcb + 3g* 2472.3 2449.4 2453.7 −0.14 

bottom Sigma ( b
+Σ ) ububbb + 3g* 5842.0 5818.9 5811.3 0.13 

bottom Sigma ( b
−Σ ) dbdbbb + 3g* 5841.6 5818.6 5815.5 0.05 

Xi (Ξ0) ubsbsb − g* 1336.7 1313.6 1319.9 0.38 

Xi (Ξ−) dbsbsb − g* 1336.5 1328.1 1319.7 −0.15 

charmed Xi ( c
+Ξ ) ubsbcb 2473.0 2464.6 2467.8 −0.13 

charmed Xi ( c
+Ξ ) dbsbcb 2472.8  2470.9 0.08 

charmed Xi prime ( c
+′Ξ ) ubsbcb + 2g* 2612.9 2581.6 2575.6 0.23 

charmed Xi prime ( c
+′Ξ ) dbsbcb + 2g* 2612.9 2581.4 2577.9 0.14 

double charmed Xi ( c
++′Ξ ) ubcbcb + 2g* 3679.3 3633.3 3621.4 0.33 

bottom Xi ( b
+Ξ ) ubsbbb 5842.3 5810.9 5787.8 0.40 

bottom Xi ( b
+Ξ ) dbsbbb 5842.2 5810.7 5791.1 0.34 

charmed Omega ( 0
cΩ ) sbsbcb 2683.4  2695.2 −0.44 

bottom Omega ( 0
bΩ ) sbsbbb 6052.8  6071 −0.30 

 
The secondary binding energy EQ2 for d or u quark is as follows. 

2 19 2 1.641 MeVQ Q wE E α= =                   (17) 

The tertiary binding energy EQ3 for d or u quark bond is as follows. 

3 for quark 29 2 0.205 MeVQ Q wE E α= =                (18) 

The binding energy EQQ for each dd, uu, and du bond is 2EQ. 

2QQ QE E=                           (19) 
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The mass of neutron (ddu) involves the mass of 2d and u subtracting the 
binding energy of EQQ1 and EQQ2 for two quark bonds (2du’s) as follows. 

/ /1 22 2 2 939.425 MeV
d u d uN QQ QQM Mu Md E E= + − + =        (20) 

The calculated mass of neutron is in excellent agreement with the observed 
value 939.565 MeV with the % mass difference between the calculated and the 
observed masses = −0.01%. 

Proton (duu) is more stable than neutron, so it involves the additional binding 
energy from the tertiary binding energy EQQ3. For the mass of proton, the baryon 
number conservation involves the loss of the mass of positron to prevent the de-
cay into positron. Proton becomes permanently stable. The proton mass formula 
is as follows. 

/ / /1 2 32 2 2 2 938.261 MeV
d u d u d uP QQ QQ QQM Mu Md E E E Me= + − + − − =  (21) 

The calculated mass of proton is in excellent agreement with the observed 
value 938.272 MeV with the % mass difference between the calculated and the 
observed masses = −0.0006%. 

Being less stable than du bond, the primary binding energy for us bond is 
one-third of the primary binding energy for du as follows. 

71 3 2 4.387 MeVQ wE M µ α= =                 (22) 

The secondary binding energy EQ2 for u and s is as follows. 

2 13 2 0.182 MeVQ Q wE E α= =                  (23) 

Only one bond (with binding energy) or less per baryon is allowed for the ba-
ryons with s, c, and b. The mass of Sigma (Σ+) as uus is as follows. 

1 22 2 1187.9 MeV
us usN QQ QQM Mu Ms E E= + − + =           (24) 

which is in excellent agreement with the observed value 1189.4 MeV. The bind-
ing energy of ds is zero. For example, Sigma (Σ−) with dds has the mass of d + s 
+ d which is 1195.9 MeV in excellent agreement with the observed 1197.4 MeV. 

In the two baryons with the same quark composition, the difference in the 
masses between the two baryons is equal to the multiple of g*, and one baryon 
has morebond (with binding energy) than the other baryon, so a bond is added 
or subtracted in one of the two baryons. For example, the two baryons, Lambda 
(Λ0) and Sigma (Σ0), are uds. Lambda (Λ0) has the mass of u + d + s – g* − EQQus1 
+ EQQus2 which is 1117.7 MeV in excellent agreement with the observed 1115.7 
MeV. One bond is subtracted in Sigma (Σ0) which has the mass of u + d + s 
which is 1196.1 MeV in excellent agreement with 1192.6 MeV. 

The binding energies of dd, uu, du, uc, and ub are the same. The binding 
energies of ds, dc, and db are zero. For example, bottom Lambda ( b

+Λ ) with udb 
has the mass of u + d + b − EQQub1 + EQQub2 which is 5608.7 MeV in excellent 
agreement with the observed 5619.4 MeV. Only one bond or less is allowed for 
the baryons with s, c, and b except in the two baryons with the same quark 
composition where one bond is added in one of the two baryons. For example, 
the two baryons, charmed Sigma ( c

+Σ ) and charmed Lambda ( c
+Λ ), are udc, 
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Charmed Sigma ( c
+Σ ) has the mass of u + d + c + 3g* − EQQuc1 + EQQuc2 which is 

2449.4 MeV in excellent agreement with the observed 2452.9 MeV. One bond is 
added in charmed Lambda ( c

+Λ ) which has the mass of u + d + c + g* − EQQuc1 + 
EQQuc2 − EQQud1 + EQQud2 which is 2286.3 MeV in excellent agreement with the ob-
served 2286.5 MeV.   

Without d/u, the baryons have no binding energy. For example, charmed 
Omega ( 0

cΩ ) with ssc has the mass of s + s + c which is 2683.4 MeV which is in 
excellent agreement with the observed 2695.2 MeV.  

The calculated masses and the observed masses [10] of mesons are in Table 5. 
Since parallel spins have higher energy than antiparallel spins, vector mesons 
with parallel spins have higher masses than pseudoscalar mesons with antiparal-
lel spins. For higher-mass vector mesons (parallel spins), vector t, b, c, and s are 
baryonic t, b, c, s, and vector d and u are baryonic d and u plus basic gluon (g*). 
For lower-mass pseudoscalar mesons (antiparallel spins), pseudoscalar t is a part 
of vector t, pseudoscalar b and c are vector quarks minus g*, and pseudoscalar d, 
u, and s are derived from g*.  

The mass of π± is the mass of 2g* minus the mass of e± as proposed by Peter 
Cameron [17]. The calculated mass of π± is 139.5395 MeV which is in excellent 
agreement with the observed 139.5702 MeV. π± has much longer mean lifetime 
than other mesons to indicate that the composite of π± is not normal composite 
of u and d quarks. Another pseudoscalar meson with long mean lifetime is K+ 
(us̅) which has the composition of 7g* + 7e with the calculated mass of 493.754 
MeV in excellent agreement with the observed 493.677 MeV.  

The mass of π0 involves the composite of pseudoscalar u and pseudoscalar d 
quarks as (upu ̅p + dpd̅p)/2. The binding energy for pseudoscalar meson involves 
the auxiliary mass dimensional orbital at d = 7 similar to the binding energy in u 
and d quarks for baryons as Equation (16).The binding energy for pseudoscalar 
u and d does not involve 3 colors as in 3-color gluons, so similar to Equation 
(16), the primary binding energy for pseudoscalar u and d quarks at d = 7 with 
αw as follows. 

1 *3 2 2.911 MeVQ g wE M α= =                  (25) 

The secondary binding energy is as follows. 

2 13 2 0.121 MeVQ Q wE E α= =                  (26) 

The binding energy EQQ for each dd, uu, and du bond is 2EQ. π0 is (upu ̅p + 
dpd̅p)/2, so similar to Equation (20), the mass of π0 is as follows. 

0 1 2 134.982 MeVp p QQ QQM Mu Md E E
π

= + − + =           (27) 

which is in excellent agreement with the observed value 134.9766 MeV. 
The binding energy for the ds bond and the us bond is three times of the d/u 

quark bond to form the composite boson with three flux quanta as follows.  

1 *3 3 2 8.732 MeVQ g wE M α= × =                 (28) 

The secondary binding energy is as follows. 
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Table 5. The masses of mesons and the Higgs bosons. 

Meson Spin Composition 

Calculated 
mass 

without 
binding 
energy 
(MeV) 

Calculated 
mass with 
binding 
energy 
(MeV) 

Observed 
mass 

(MeV) 

% 
difference 

pion (π±) 0 2g* – e as ud̅ 139.540  139.570 −0.02 

pion (π0) 0 (upu̅p + dpd ̅p)/2 140.562 134.982 134.977 0.004 

charged rho meson (ρ+) 1 uvd̅v 797.11 774.07 775.11 −0.13 

omegameson (ω) 1 uvd̅v 797.11 785.59 782.65 0.32 

eta meson (η) 0 (upu̅p + dpd ̅p + sps̅p)/2 563.949 548.663 547.862 0.15 

eta prime meson (η’) 0 (upu̅p + dpd ̅p)/2 + sps̅p 987.34 956.76 957.78 −0.11 

kaon (K+) 0 7(g* + e) as ups̅p 493.754  493.677 0.02 

kaon (K0) 0 7(g* + 2e) as dps̅p 497.331  497.614 −0.06 

kaon (K*+) 1 uvs̅v 937.7 891.60 891.66 −0.007 

phi meson (ϕ) 1 svs̅v 1078.1 1018.9 1019.5 −0.06 

D meson (D*0) 1 cvu̅v 2004.0  2007.0 −0.15 

strange D meson ( sD+ ) 0 
0 

e + 20(3g*/2) − 2g* 
(cps̅p) 

1961.2 
(1958.7) 

 1968.3 −0.36 

strange D meson ( sD∗+ ) 1 
1 

e + 20(3g*/2) 
(cvs̅v) 

2101.3 
(2144.4) 

 2112.1 −0.52 

charmed eta meson (ηc) 
0 
0 

2e + 30(3g*/2) – 2g* 
(cpcp̅) 

3012.1 
(3070.6) 

 2983.6 0.95 

J/Psi 
1 
1 

2e + 30 (3g*/2) – g* 
(cvc̅v) 

3082.1 
(3210.6) 

 
 

3096.9 −0.48 

D meson (D0) 0 cpu̅v – g* 1863.9  1864.8 −0.05 

D meson (D*0) 1 cvu̅v 2003.8  2010.3 −0.32 

B meson ( 0
dB ) 0 dvb̅p 5303.1  5279.6 0.44 

B meson ( 0
dB∗ ) 1 dvb̅v 5373.1  5325.2 0.89 

B meson (Bc) 
0 
0 

e + 60(3g*/2) 
(cpb̅p) 

6302.8 
(6440.0) 

 6275.6 0.41 

bottom eta 
meson (ηb) 

0 
0 

2e + 90(3g*/2) – g* 
(bpb̅p) 

9384.4 
(9809.3) 

 9398.0 −0.14 

upsilon meson (γ) 
1 
1 

2e + 90(3g*/2) 
(bvb̅v) 

9454.4 
(9949.4) 

 9460.3 −0.06 

top-bottom 
quark-antiquark 

composite 
0 bpb̅p + (bpb ̅p + tpt ̅p)/2 27.9 GeV  28 GeV −0.3 

pseudoscalartop 
quark-antiquark (absent) 

0 tpt ̅p 26.4 GeV  
not 

observed 
 

t quark ½ t7 + t8 175.4 GeV  172.4 GeV 1.71 

perturbative 
Higgs boson (absent) 

0 W+W−Z0 252 GeV  
not 

observed 
 

low Higgs boson 0 W+W−Z0/2 126 GeV  125 GeV 0.79 

high Higgs boson 0 3W+W−Z0 756 GeV  750 GeV 0.8 
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2 19 2 1.089 MeVQ Q wE E α= =                   (29) 

The mass of η as (upu ̅p + dpd̅p + sps̅p)/2 is as follows.  

1 2 548.663 MeVp p p QQ QQM Mu Md Ms E Eη = + + − + =         (30) 

which is in excellent agreement with the observed value 547.862 MeV. 
The mass of η’ as (upu ̅p + dpd̅p)/2 + spsp̅ is as follows.  

1 22 2 2 956.764 MeVp p p QQ QQM Mu Md Ms E Eη′ = + + − + =      (31) 

which is in excellent agreement with the observed value 957.78 MeV. 
The mesons with c, b, and t have no binding energy. For dp and up in the 

pseudoscalar mesons with c and b, dp = db = dv – g*, and up = ub = uv – g*. For 
example, the mass of D meson (D0) with cp u ̅p is cp + up = cp + uv – g* which is 
1863.9 MeV in excellent agreement with the observed 1864.8 MeV. 

The binding energy for vector dd, uu, and du bonds involves the same binding 
energy as baryonic d/u quark bond as Equations (16) and (17), so vector ρ+ as 
uvd ̅v with the binding energy derived from Equations (16) and (17) is as follows. 

1 2 774.07 MeVv v QQ QQM Mu Md E Eρ = + − + =             (32) 

which is in excellent agreement with the observed value 775.11 MeV. As in the 
baryons with the same quark composition, charged rho meson (ρ+) and omega-
meson (ω) have the same composition as uvd ̅v, so 1/2 bond is subtracted in 
omegameson (ω) which has the mass as follows. 

1 2 785.59 MeVv v Q QM Mu Md E Eω = + − + =             (33) 

which is in excellent agreement with the observed value 782.65 MeV. 
The binding energy for vector ds bond and us bond is twice of the binding 

energy for d/u quarks. The mass for kaon (K*+) with uvsv̅ is as follows. 

* 1 22 2

52.648 MeV 6.565 MeV
891.60 MeV

v v QQ QQK

v v

M Mu Ms E E

Mu Ms
+ = + − +

= + − +

=
           (34) 

which is in excellent agreement with the observed value 891.66 MeV. The bind-
ing energy for vector ss bond has the opposite sign for EQQ2, so phi meson (ϕ) as 
svs̅v has the mass of sv + sv—52.648 MeV - 6.565 MeV which is 1018.9 MeV in 
excellent agreement with the observed 1019.5 MeV. The mesons with c, b, and t 
have no binding energy. For example, D meson (D*0) with cvu ̅v has the mass of 
cv + uv which is 2004.0 MeV which is in excellent agreement with the observed 
2007.0 MeV.   

The masses of the mesons of c/b without d/u follow the meson mass formula 
by Malcolm H. MacGregor [18] to match the masses of mesons derived from the 
quark mass formula as Equation (15). The MacGregor’s meson mass formula 
derived from the muon mass formula as Equation (4) is as follows.  

( )g*or 2 2 3 2mesonM Me Me n M= +                 (35) 

where one e is for charge meson and 2e for neutral meson, and n (integer) is de-
termined by the masses of mesons calculated from the quark mass formula as 
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Equation (15). For example, the calculated mass of vector strange D meson 
( sD∗+ ) as cvsv̅ is cv + sv which is 2144.4 MeV. To match 2144.4 MeV, the Mac-
Gregor’s meson mass formula generates e + 20(3g*/2) which is 2101.3 MeV in 
excellent agreement with the observed 2112.1 MeV. The mass different between 
pseudoscalar strange D meson ( sD+ ) as cpsp̅ and vector strange D meson ( sD∗+ ) 
as cvs̅v is 2g*. Strange D meson ( sD+ ) has the mass of e + 20(3g*/2) – 2g* which is 
1961.2 MeV in excellent agreement with the observed 1968.3 MeV. 

The MacGregor’s meson mass formula in Equation (35) for the mesons of c/b 
without d/u/s, n = the multiple of 3to simulate baryonic quark which uses 3µ as 
in Equation (9). For example, vector upsilon meson (γ) with bvb ̅v has the mass of 
2e + 90(3g*/2) which is equal to 9454.4 MeV in excellent agreement with the 
observed 9460.3 MeV. The mass difference between vector bb̅ and pseudoscalar 
bb ̅ is the mass of g*. Pseudoscalar bottom eta meson (ηb) with bpb ̅p has the mass 
of 2e + 90(3g*/2) – g* which is equal to 9384.4 MeV in excellent agreement with 
the observed 9398.0 MeV. 

Pseudoscalar and partial t quark is t7, while vector and full t quark is t7 + t8. 
Vector and full t quark with enormous mass is extremely short-lived, so top 
quark-antiquark does not have time before they decay to form hadrons, resulting 
in “bare” t quark and antiquark. The calculated mass of t is 175.4 GeV in good 
agreement with the observed 172.4 GeV.  

The summary of binding energies in hadrons is in Table 6. The binding ener-
gies are derived from the auxiliary mass dimensional orbital at d = 7 as in Equa-
tions (16), (17), (18). (19), (22), (23), (25), (26), (28), (29), (32), and (34). In 
general, the relatively stable hadrons with d, u, and s quarks have binding ener-
gies, while relatively unstable hadrons with c, b, and t quarks and without u and 
d do not have binding energies. The baryons with the u and s/c/b bonds have 
binding energies, and the baryons with the d and s/c/b bonds do not have binding  
 
Table 6. The binding energies in hadrons. 

 Bond (QQ) 
Primary 
(MeV) 

Secondary 
(MeV) 

Tertiary 
(MeV) 

Equation 

Baryon dd, uu, du, uc, ub 26.324 3.282 0.409 16, 17, 18. 19 

 us 8.775 0.365 0 22, 23 

 
ds, dc, db, baryons 

without d and u 
0 0 0  

Pseudoscalar 
meson 

dd, uu, du 5.822 0.242 0 25, 26 

 ds, us 17.465 2.178 0 28, 29 

 mesonswith c, b, and t 0 0 0  

Vector meson dd, uu, du 26.324 3.282 0 32 

 ds, us, ss 52.648 6.565 0 34 

 mesons with c, b, and t 0 0 0  
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energies. The mesons with c, b, and t quarks do not have binding energies. 
Pseudoscalar mesons have lower binding energies than baryons and vector me-
sons. In the two hadrons with the same quark composition, one hadron has 
more bond (with binding energy) than the other, so a bond is added or sub-
tracted in one of the two hadrons.  

4. The Top-Bottom Quark-Antiquark Composite 

In the search for resonances produced in association with a b quark jet and a 
second jet, and decaying to a muon pair, the CMS Collaboration at the LHC re-
cently reported an excess of events above the background near a dimuon mass of 
28 GeV. The search is carried out in two categories from proton-proton colli-
sions at center-of-mass energies of 8 and 13 TeV. The first category involves a b 
quark jet in the central region and at least one jet in the forward region, while 
the second category involves two jets in the central region, at least one of which 
is identified as a b quark jet, no jets in the forward region. At the 8 TeV collision, 
the first category has 4.2 standard deviation, while the second category has 2.9 
standard deviations. At the 13 TeV collision, the first category has 2.0 standard 
deviations, while the second category results in a 1.4 standard deviation deficit.  

As shown in Figure 1, Table 1, Table 3, and Table 5, pseudoscalar t quark is 
t7 (13.2 GeV), while vector and full t quark (175.4 GeV) is t7 + t8. This paper po-
sits that the resonance with 28 GeV observed recently at the LHC is the pseu-
doscalar top-bottom quark-antiquark composite which has the calculated mass 
of 27.9 GeV derived from the periodic table of elementary particles in good 
agreement with the observed 28 GeV as shown in Table 5. The calculated mass 
is the mass of three pseudoscalar b quarks and one pseudoscalar t quark which 
represent the composite of bpb ̅p + (bpb ̅p + tpt ̅p)/2. As described in the periodic ta-
ble of elementary particles, pseudoscalar t quark is only a part of full t quark, so 
pseudoscalar tpt ̅p (26.4 GeV) cannot exist independently, and can locate within a 
composite, such as the top-bottom quark-antiquark composite. As shown in the 
observation at the LHC, the resonance with 28 GeV weakens significantly at the 
higher energy collision (13 TeV), because at the higher collision energy, 
low-mass pseudoscalar tt ̅ in the composite likely becomes independent full 
high-mass vector tt ̅ moving out of the composite. The presence of the top-bottom 
quark-antiquark composite weakens, disappears, or gets inverted at 13 TeV as 
shown at the LHC. Normally, the presence of resonance gets stronger at the 
higher collision energy. 

To account for the observed two jets, the composite has two jets consisting of 
a bb ̅ jet and a b + t jet for (bpb ̅p + tpt̅p)/2, where bb ̅ jet is more stable than b + t jet 
which decays faster into the jet in the forward region to constitute the first cate-
gory of the search by the CMS Collaboration at the LHC. Since tpt ̅p is less stable 
than bpb ̅p, so the decay of the b + t jet is faster to allow the greater standard devi-
ations for the first category than for the second category. The sum of the stan-
dard deviations from both categories is greater than 5. 
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5. The Higgs Boson Doublet 

One important open theoretical issue about the Higgs boson is the triviality 
problem [19]. Within the perturbation theory, the Higgs boson mass squared is 
proportional to the self-coupling. However, the scalar self-coupling for the scalar 
Higgs boson leads to triviality or non-interaction which is inconsistent to the 
interactive Higgs boson. To deal with the triviality problem, Cea and Cosmai 
[20] [21] established the non-perturbation non-trivial rescaling of the Higgs 
condensate to avoid the vanishing self-coupling, resulting in the generation of 
the heavy Higgs boson with 754 GeV. According to Cea, the theoretical expecta-
tions of the predicted heavy Higgs boson (754 GeV) are in fairly good agreement 
with the observations at the LHC Run 2with an estimated statistical significance 
of more than five standard deviations [22].  

This paper proposes that derived from the non-trivial rescaling of the Higgs 
condensate, the Higgs boson doublet consists of the high Higgs boson from the 
upward rescaling of the Higgs condensate and the low Higgs boson from the 
downward rescaling. The perturbative Higgs boson became the non-perturbative 
Higgs boson doublet irreversibly during the spontaneous symmetry breaking. 
The observed mass of the high Higgs boson is 750 GeV [22] [23] [24] [25], and 
the observed mass of the low Higgs boson is 125 GeV [26] [27]. 

This paper also proposes that the Higgs bosons are the intermediate vector 
boson composites whose condensate provides the masses directly to the inter-
mediate vector bosons during the spontaneous symmetry breaking. The Higgs 
bosons consist of the perturbative Higgs boson (W+W−Z0 = 252 GeV = MW+ + 
MW− + MZ0), the low Higgs boson (W+W−Z0/2 = 126 GeV) from the downward 
rescaling, and the high Higgs boson (3W+W−Z0 = 756 GeV) from the upward 
rescaling. The perturbative Higgs boson is absent, and there is no Higgs boson 
pair [28]. The low Higgs boson as W+W−Z0/2 with respect to W+W−Z0 is like one 
quark in a di-quark meson, while the high Higgs boson as 3W+W−Z0 with re-
spect to W+W−Z0 is like one baryon consisting of three quarks. In this way, the 
Higgs boson doublet from the rescaling provides the structures of the quark 
compositions for mesons and baryons which are not like leptons without com-
posite structures. The calculated masses (126 GeV and 756 GeV) of the Higgs 
boson doublet are in excellent agreements with the observed masses (125 GeV 
and 750 GeV) [22]-[27]. For the periodic table of elementary particles, the Higgs 
mechanism assigns the mass of B7 as the mass of Z0. The mass of B7 produces αw 
which determines the masses of quarks as in the quark mass formula in Equation 
(15).   

6. Summary 

This paper posits that the observed resonance with 28 GeV at the LHC is the 
pseudoscalar top-bottom quark-antiquark composite which has the calculated 
mass of 27.9 GeV derived from the periodic table of elementary particles. The 
calculated mass is the mass of three pseudoscalar b quarks and one pseudoscalar 
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t quark to represent the composite of bpb ̅p + (bpb̅p + tpt̅p)/2 where p = pseudosca-
lar. (The quark in pseudoscalar meson is denoted as “pseudoscalar quark”, while 
the quark in vector mesons is denoted as “vector quark” which has higher mass 
than pseudoscalar quark.) In the periodic table of elementary particles, pseudos-
calar t quark (13.2 GeV) is only a part of full t quark (175.4 GeV), so pseudosca-
lar tpt ̅p (26.4 GeV) cannot exist independently, and can exist only in the 
top-bottom quark-antiquark composite. As shown in the observation at the 
LHC, the resonance with 28 GeV weakens significantly at the higher energy col-
lision (13 TeV), because at the higher collision energy, low-mass pseudoscalar 
tpt ̅p in the composite likely becomes independent full high-mass vector tvt ̅v mov-
ing out of the composite. To account for the observed two jets, the composite 
has two jets consisting of a bb ̅ jet and a b + t jet, where bb ̅ jet for (bpb ̅p + tpt ̅p)/2 is 
more stable than b + t jet which decays faster into the jet in the forward region to 
constitute the first category of the search by the CMS Collaboration at the LHC. 

The periodic table of elementary particles is based on the seven mass dimen-
sional orbitals derived from the seven extra dimensions of 11 spacetime dimen-
sional membrane particles. The seven mass dimensional orbitals include the 
seven principal mass dimensional orbitals for stable baryonic matter leptons 
(electron and neutrinos), gauge bosons, gravity, and dark matter and the seven 
auxiliary mass dimensional orbitals for unstable leptons (muon and tau) and 
quarks, and calculate accurately the masses of all elementary particles and the 
cosmic rays by using only five known constants. For baryons, the quarks in the 
periodic table of elementary particles are baryonic quarks. For high-mass vector 
mesons (parallel spins), vector t, b, c, and s are baryonic t, b, c, s, and vector d 
and u are baryonic d and u plus basic gluon (g* = 70 MeV) which has the mass 
of electron/α where α is the fine structure constant of electromagnetism. For 
low-mass pseudoscalar mesons (antiparallel spins), pseudoscalar t is a part of 
vector t, pseudoscalar b and c are vector quarks minus g*, and pseudoscalar d, u, 
and s are derived from g*. The binding energies among quarks are derived from 
the auxiliary mass dimensional orbital. With these masses and binding energies 
of quarks, the masses of hadrons can be calculated in excellent agreement with 
the observed masses of hadrons by using only five known constants in the peri-
odic table of elementary particles. For examples, the calculated masses of proton, 
neutron, pion (π±), and pion (π0) are 938.261, 939.425, 139.540, and 134.982 
MeV in excellent agreement with the observed 938.272, 939.565, 139.570, and 
134.977 MeV, respectively with 0.0006%, 0.01%, 0.02%, and 0.004%, respectively 
for the difference between the calculated and observed mass. The calculated 
masses of the Higgs bosons as the intermediate vector boson composites are in 
excellent agreements with the observed masses. In conclusion, the calculated 
masses of the top-bottom quark-antiquark composite (27.9 GeV), hadrons, and 
the Higgs bosons by the periodic table of elementary particles are in excellent 
agreement with the observed masses of resonance with 28 GeV at the LHC, ha-
drons, and the Higgs bosons, respectively. 
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Abstract 
Biologically active molecules create substitutes in liquid water by forming 
single-domain ferroelectric crystallites. These nanoparticles are spherical and 
constitute growing chains. The dipoles are aligned, but can be set in oscilla-
tion at the frequency of vibration of the charged part of active molecules. 
They are then automatically trimmed and become information carriers. 
Moreover, they produce an oscillating electric field, causing autocatalytic 
multiplication of identical chains in the course of successive dilutions. Active 
molecules are thus only required to initiate this process. Normally, they excite 
their specific receptors by resonance, but trimmed chains have the same ef-
fect. This theory is confirmed by many measurements.  
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1. Introduction 

The concept of water memory is based on experimental results of measurements, 
published 30 years ago in the prestigious scientific journal Nature [1]. This asto-
nishing phenomenon had been discovered by Jacques Benveniste and his colla-
borators, but one month later, the same journal declared that it was a delusion 
[2]. Even the publication of the discovery was already accompanied by an as-
tounding editorial reservation [3]. The editor in chief, John Maddox, declared 
indeed that “there is no physical basis for such an activity” and announced even 
that independent investigators would “observe repetitions of the experiments”. 

When they arrived at Benveniste’s laboratory, it turned out that John Maddox 
was accompanied by the professional magician James Randi and the debunker of 
scientific fraud Walter Steward. The objective was thus to detect errors or fraud. 
During their stay in Paris, the first experiments confirmed the published result, 
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but not later ones. The inquisitors did immediately publish a devastating con-
clusion: the reported results are not reproducible and merely due to imagination 
[2]. Randi stated even that they should be compared to the sensational claim of 
having seen a unicorn, where there was merely a goat.  

The load of the accusation fell on Jacques Benveniste (1935-2004). He was a 
medical doctor, who had practiced several years before opting for research. In 
California, he discovered the platelet-activating factor and determined its role in 
immunology [4] [5]. He returned to France in 1973 and joined INSERM (Na-
tional Institute of Health and Medical Research). Since 1980, he directed Unit 
200, devoted to research in immunology, allergy and inflammation. He discov-
ered there a very sensitive method to detect allergens. It required careful count-
ing of discolored cells, but Elisabeth Davanas succeeded very well [1]. The young 
medical doctor Bernard Poitevain, who joined the team to prepare a thesis, 
asked somewhat later if he could test the efficiency of homeopathic dilutions by 
means of this method. Benveniste answered: “try if you want, but there will be 
no effect; high dilutions are merely water” ([6], p. 45). Nevertheless, the results 
were positive and confirmed by other members of the group. 

This phenomenon was totally unexpected, since successive dilutions of bio-
logically active molecules in pure water do necessarily lead to their complete 
elimination. Was it really possible to create substitutes that are only constituted 
of water molecules? Further experimentation did prove that these structures 
should even be able to mimic active molecules of different types. No one knew 
how this might be achieved. Benveniste verified therefore if these hypothetical 
structures could be destroyed. It appeared that after heating extra-high dilutions 
(EHDs) of histamine during one hour at 70˚C, they had completely lost their bi-
ological efficiency. Exposition to ultrasound had the same effect ([6], pp. 53-54). 
The puzzling phenomenon of “water memory” had even a characteristic proper-
ty: the biological efficiency of EHDs decreased at first, but increased again and 
reached a high value after about the 9th decimal dilution. Then it dropped and 
continued to vary in a quasi-periodic way during successive dilutions.  

Since the reality of this phenomenon was tested many times for different sub-
stances, Benveniste thought that these facts had to be published, although they 
were unexplained. He insisted on the observed quasi-periodic variations, by pro-
viding two figures [1]. However, Maddox was convinced that the reported re-
sults cannot be real. He required independent confirmations. They were pro-
vided by other laboratories in Italy, Canada and Israel. Eventually, after two-year 
long discussions ([6], p. 51), Maddox accepted to publish the article if Benve-
niste did agree that a team of experts could come to “verify the quality of the ex-
perimentation”. This was more than bizarre, but Benveniste had nothing to hide. 
The outcome was the terrible accusation that we mentioned [2]. Benveniste was 
allowed to add a reply, but could only describe how the investigators had pro-
ceeded. They created a climate of “intense and constant suspicion”. Actually, 
Benveniste and his collaborators were treated like “criminals”.  
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In their report, the group of inquisitors insisted on the variability of the peaks 
of activity and claimed that measurements had been treated in “disregard of sta-
tistical principles”. They declared even that “the laboratory has fostered and then 
cherished a delusion about the interpretation of this data”. Melinda Baldwin, 
lecturer on History of Science at Harvard University, identified the actual cause 
of this grave incident. Maddox considered that scientific journals are shaping 
science by controlling its quality [7]. This implies enormous power, but also the 
danger to defend orthodoxy by condemning any deviation. Baldwin mentioned 
the quasi-periodic variations of the reported biological efficiency. They were 
strange, but could have an intrinsic cause, deserving further research.  

Benveniste considered that his duty was only to establish the reality of these 
“unbelievable and fear-provoking” facts, since their meaning and the underlying 
mechanism could be studied later on ([6], p. 61). This is not at all unusual in 
science. After the events of 1988, the experiments were repeated many times 
with the statistician Spira, but the previous results were validated. In the course 
of further tests, Benveniste made a second discovery. He realized in 1993 that 
two EHDs were able to perturb one another and thought that this was due to 
electromagnetic fields. He suspected that these “signals” could play an essential 
role in the constitution of water memory and did prove that they can be de-
tected, amplified, recorded and transmitted. They seemed to be noise in the fre-
quency domain of audible sound waves (lower that 20 kHz). However, when 
pure water was exposed to them, it acquired the same properties as EHDs of the 
initially dissolved active molecules. This information transfer confirmed that 
water memory is real, but INSERM did not renew the contract for Unit 200 in 
1995. Benveniste pursued his research in a room on the parking of his former 
institute, with a caravan for storing materials. He focused now his efforts on de-
veloping “digital biology”.  

Alain Kaufmann presented in 1994 basic facts and an analysis of the sociolog-
ical context [8]. Michel Schiff published the same year a more detailed descrip-
tion of the experiments and denounced the dangers of censorship [9]. Benve-
niste, who had reluctantly accepted to write the preface of this book, attributed 
there the radical rejection of available evidence to the following reasons: “It 
cannot be, since if it were true it would have been found two hundred years ago” 
and “there is no theory behind it.” We can add that the discovery of an anomaly 
may lead at first to incredulity, but well-documented facts should induce a 
search of their cause. It might be necessary, indeed, to correct some previous as-
sumptions. Peer evaluation is necessary and useful, but not infallible. Schiff in-
sisted that even scientists can “suppress unwanted knowledge” when it would 
“shatter their current beliefs”. Actually, “the long history of scientific dogmatism 
shows that today’s heresy could well become tomorrow’s scientific truth”. 

Francis Beauvais, a former collaborator of Benveniste, provided in 2007 much 
more details on events at that time [10]. Yolène Thomas [11] continued research 
on water memory, but it had to be camouflaged as concerning properties of 
EHDs. Even the French virologist Luc Montagnier, who received in 1988 the 
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Nobel Prize for his contribution to the discovery of the HIV virus, was violently 
attacked when he resumed the experimental study of water memory. He was 
motivated by scientific curiosity and the constant need of improved medical 
treatments, while his opponents negated a priori that EHDs in pure liquid water 
could modify this solvent. Montagnier presented his experimental method in a 
documentary, realized in 2014 by French TV [12]. It is also available in English 
[13] and does clearly demonstrate that water memory involves detectable signals 
at frequencies like those of audible sound waves (20 - 20,000 Hz). Montagnier 
published in 2009 and 2010 important results concerning water memory [14] 
[15]. He discovered even that viral DNA sequences can be reproduced by means 
of transmitted signals when the building blocks are available in pure water. 
These signals had thus to provide the required master plan and this fact might 
account for strange resurgences of some sicknesses. The conference of Montag-
nier at UNESCO in 2014 stressed this fact and other medical applications [16]. 

Visceral opposition to the concept of water memory was often motivated by 
fear that it could justify homeopathy. The aim of the present study is merely to 
find out if water memory is real or not. This has to be viewed as a basic problem 
for condensed matter physics, since bonds between water molecules are con-
stantly broken by thermal agitation in liquid water at the time scale of picose-
conds. Martin Chaplin, specialist of properties of water molecules, proposed 
therefore in 2007 that water memory could result from creating statistically sta-
ble clusters of water molecules [17]. Individual molecules would there be re-
placed by other ones without affecting the global structure. This hypothesis was 
the most plausible one, but Martin Chaplin added that “much research work 
remains to be undertaken if these real and observable facts are to be completely 
understood”.  

The structure of this article results from the itinerary that we followed. In Sec-
tion 2, we examine the internal structure of water molecules and their possible 
interactions. This leads to the concept of “water pearls”. In Section 3, we explain 
why biologically active molecules can create chains of these nano-pearls and why 
they account for water memory. Section 4 presents more observational evidence 
concerning these chains. It is diverse, detailed and very remarkable, but the con-
cept of water pearls accounts for known facts, while the alternative concept of 
Coherent Domains does not. In Section 5, we insist on the most important con-
sequence of water memory: molecular interactions are not only possible by 
means of the “key and slot” model of chemical reactions. Intermolecular com-
munications can also result from oscillating electric fields and resonance effects. 
It will appear once more that “Nature is written in Lingua Mathematica”, as Ga-
lilei stated already, but we endeavor to be understandable by non-specialists.  

2. Interactions of Water Molecules 
2.1. Their Structure and the Dipole Approximation 

Martin Chaplin provides detailed information about the internal structure of 
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water molecules [18] and various models that have been proposed [19]. The 
usual “stick and ball model” insists on the chemical composition (H2O), but the 
protons of both light atoms are deeply embedded in the common electron cloud 
of the oxygen and hydrogen atoms. Water molecules are thus practically spheri-
cal, but at close range, the protons are surrounded by a spherically symmetric 
excess density of electrons. They are thus equivalent to point-like charges q ≈ 
e/3. The core of the oxygen atom and the remaining part of the electron cloud 
are equivalent to a central point-like charge −2q.  

The kinetic diameter (for collisions) of water molecules in the terrestrial at-
mosphere is 0.265 nm. H2O molecules are thus smaller than O2, N2, CO2 and H2 
[20]. Their size is slightly greater in the liquid state, because of interactions with 
surrounding water molecules. The average separation of two oxygen atoms is 
there measurable by means of x-ray diffraction. The resulting diameter is d = 
0.275 nm. In the gaseous state, the angle HOH is 104.5˚, but it is close to 106˚ in 
the liquid state. Vibrational and rotational spectra of water molecules disclosed 
that the length of OH bonds is δ ≈ 0.095 nm. Thus, δ/d ≈ 1/3. Since water mole-
cules behave in the liquid state like hard spheres that can easily roll on one 
another, we adopt the model of Figure 1. To simplify later calculations, we chose 
natural units, where δ = 1 and q = 1. The diameter of a water molecule in the 
liquid state is then d ≈ 2.90. Since the angle φ = 53˚, the distance a = cosφ ≈ 0.60 
and b = sinφ ≈ 0.80. It follows that a/d = 1/5. 

Because of their internal point-like charges, water molecules are tripoles, but it 
is customary to replace them by dipoles. They are constituted by the central 
charge −2q and a single charge +2q, situated in the middle between the charges 
+q. This dipole is represented in Figure 2 by a red arrow. By definition, the di-
pole moment is then p = 2qa. The limited validity of this approximation appears 
when we calculate the electrostatic potential V(r, θ) at large distances r from the 
center of the effective dipole. The angle θ specifies the chosen direction with re-
spect to the axis of the dipole. 

The test charge +1 does then “see” the charges along parallel lines, but their 
distances are slightly different. They are indicated by thin red lines. Adopting 
also natural units (4πe2/δεo = 1) for electrostatic potentials, their sum is 
 

 
Figure 1. Model of water molecules. 
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Figure 2. The dipole approximation. 
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The radial and angular components of the electric field E at the observation 
point result from partial derivatives of V(r, θ). At closer range, there are inevita-
ble corrections. In liquid water, it is also necessary to account for intermediate 
water molecules, since they are easily reoriented by an applied electric field. The 
potential V(r, θ) is then reduced by the factor 1/εr, where the relative dielectric 
constant εr ≈ 80. When neighboring water molecules are subjected to an electric 
field, their effective dipoles will be aligned. These molecular chains are broken 
by thermal agitation when the electric field is extinguished, but they could also 
be stabilized by association, like sticks in a bundle. 

This possibility merits attention, since it is known that electric field lines can 
be visualized by means of neutral particles, like grains of semolina or short plas-
tic filaments dispersed on oil. The applied electric field does merely polarize 
these particles, but the induced dipoles tend then to align one another. Could 
similar chains be formed by means of water molecules? To answer this question, 
we have to examine all possible types of interactions between water molecules.  

2.2. The Origin of Van der Waals Forces 

Even electrically neutral molecules attract one another in gases, because of Cou-
lomb forces and quantum-mechanical effects. Indeed, if such a particle were 
subjected to an electric field, it would displace all weakly bound electrons inside 
this particle. This produces surface charges that create a secondary electric field 
inside the particle. It opposes displacements of the electrons and would restore 
neutrality when the applied field is switched off. For oscillating electric fields, 
this force leads to a resonance for the ensemble of oscillating electrons. That ex-
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plains the appearance of colors and peculiar optical properties of thin granular 
metal films. They were said to be “anomalous” until they could be explained in 
terms of collective oscillations of nearly free electrons [21]. Since oscillations of 
electrons inside neutral particles do also create an oscillating electric field out-
side these particles, two neutral ones can interact with one another.  

Nearly free electrons will be set in coupled oscillations inside neighboring par-
ticles. Their resonance frequency is then reduced, but in quantum mechanics 
(QM), the lowest possible energy of an oscillator is proportional to its resonance 
frequency. The (zero-point) energy of two neutral particles is thus reduced when 
they come close enough to one another. This effect can be interpreted as result-
ing from an attractive force. The existence of this short-range force was discov-
ered by Van der Waals in 1873, since a dense gas does not behave like an ideal 
one. It corresponds to a model, where velocities are only randomized by colli-
sions of point-like particles, but neutral particles attract already one another at 
some small distance. The physical origin of this force could only be understood 
after the development of QM.  

Since Van der Waals forces are proportional to the volume of the polarizable 
particles, they are negligible with respect to other forces for water molecules in 
the liquid state. However, small metal particles that are suspended in liquid wa-
ter contain nearly free electrons. They are very polarizable and big enough to at-
tract one another by Van der Waals forces. In liquid water, small metal particles 
attract thus one another and constitute chains. These “necklaces of pearls” are 
observable by optical microscopy [22] and attract now much attention, because 
of expected applications. Similar chains might be relevant for water memory. 

2.3. Hydrogen Bonds and Exchange Effects 

The concept of so-called “hydrogen bonds” was already introduced in 1920, 
since some quantum effects could be treated in a semi-classical way [23], but 
simplified models can lead to confusions. The Lewis model, proposed in 1916, 
was merely based on the fact that many atoms are more stable when their 
shells contain 2 or 8 electrons. Because of Bohr’s semi-classical model of 
atomic structures and Pauli’s exclusion principle, these values correspond to 
closed shells. Hydrogen atoms contain only 1 electron, while C, N, O, and F 
atoms do respectively have 4, 5, 6 and 7 electrons in their external shells instead 
of 8. Molecules like CH4, NH3, OH2 and FH would thus result from the “tenden-
cy to complete… the octet of electrons”. This lowers the total energy, but H2O 
molecules are special. The left part of Figure 3 represents closed shells of the 
oxygen atom and the hydrogen atoms by blue rings. The shared electrons are 
represented by dots, but the oxygen atom is then surrounded by 4 pairs of elec-
trons. There are 2 bound pairs and 2 free pairs.  

It was therefore proposed that the negative charge density of the free pairs 
“might be able to exert sufficient force” on two neighboring oxygen atoms. This 
would account for mutual attraction of water molecules that allows for structur-
ing of liquid and frozen water. The right part of Figure 3 represents these  
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Figure 3. Semi-classical concepts of hydrogen bonds. 

 
“hydrogen bonds” by means of red lines, when neighboring water molecules are 
assumed to be situated in the same plane. QM revealed that electrons behave 
according to laws that apply to waves. Every oxygen atom contains two strongly 
bound electrons and four external electrons in (2s12p3) states. Superposition of 
these wave functions leads to interference effects and the charge distribution of 
the 4 external electrons acquires then tetragonal symmetry. We might thus think 
that hydrogen bonds are merely due to stronger electrostatic attraction, but 
modern biochemistry states that “in a hydrogen bond, a hydrogen atom is 
shared by two other atoms” [24]. The right part of Figure 3 can then be inter-
preted in terms of two donor sites of protons and two acceptor sites. This de-
scription implies that the intermediate proton might change its position. Hy-
drogen bonds would then be due to exchange effects, which are also known for 
nuclear forces.  

Figure 4(a) represents the effects of hydrogen bonds between water molecules 
in 3D space. The red dots define average positions of the cores of neighboring 
water molecules in liquid water, while the red lines correspond in a schematic 
way to electron pairs, but also to possible exchanges of protons between pairs of 
oxygen atoms. This configuration requires a modification of the internal struc-
ture of water molecules, since the normal angular separation of two protons was 
there 2φ = 106˚ (Figure 1). Here we get 4 equal angles 2μ ≈ 110˚. They are de-
fined by joining the center of the cubic cell to four equally separated vertices. 
The value of cos 1 3h cµ = = , since (2c)2 = 3(2h)2. It follows that μ = 54.74˚.  

Figure 4(a) accounts only for one possible lattice structure of ice, since im-
posed temperatures and pressures can yield different phases for frozen water 
[25]. In liquid water, adjacent molecules are moving around, since all bonds are 
constantly broken and reconstituted at an extremely rapid pace [26]. Neverthe-
less, small-scale order is statistically preserved, while large-scale order is lost. At 
an intermediate scale, we get the extended lattice-structure of Figure 4(b). 
Body-centered and empty cubes are alternating. This yields many voids, which 
will often be filled at higher temperatures. This fact explains the existence of 
low-density and high density liquid water, as well as analogous amorphous states 
for frozen water.  

It is important to be aware of the quantum-mechanical nature of exchange ef-
fects. They are also possible between two X and Y atoms, when an intermediate 
proton could belong to X or Y. Both possibilities are expressed by the notation 
XH… Y or X… HY. QM accounts indeed for limited knowledge. The probability 
distribution for possible positions of electrons is defined by means of their wave 
functions. Exchange effects are then due to “tunneling” through an intermediate  
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Figure 4. (a) Idealized model for the relative positions of oxygen atoms in neighboring 
molecules for ice and liquid water; (b) Extended lattice structure of this type. 
 
potential barrier. This is relevant for bonds between atoms inside molecules and 
in particular for 2H+ , where one electron allows for H-H+ or H+-H. Although 
protons have a greater mass than electrons, they are also subjected to quan-
tum-mechanical laws. The probability distribution for being at different places 
in space is then not smeared out, but reduced to needle-like (delta) functions. 
When a proton has two possible positions, it can be said to be delocalized, but 
possible exchanges are then not due to tunneling. They result from the fact that 
the energy of any physical system cannot be precisely determined during short 
time intervals Δt. There is always an irreducible uncertainty ΔE ≈ h/Δt. In 
semi-classical terms, the proton is able to “jump” over the intermediate potential 
barrier, when this happens rapidly enough. 

2.4. Coulomb Forces and Exchange Effects for Water Dimers 

To analyze possible effects of protons for interacting water molecules, we begin 
with the simplest case. Figure 5 represents the cores of two oxygen atoms by 
open dots, separated by the distance d. The left part of this figure corresponds to 
purely classical concepts. The intermediate proton has a well-defined position, 
indicated by a black dot. Since the measured length of OH bonds is δ, we can 
calculate the total potential energy U1 that results from electrostatic interactions 
between two point-like particles of charge −2 and one charge +1. However, the 
concept of hydrogen bonds means that the intermediate proton has two possible 
positions. They are represented by gray dots in the upper right part of Figure 5. 
When they are occupied with equal probabilities, we have to attribute an average 
charge +1/2 to these positions. However, even when a particle is delocalized, it 
cannot exert forces on itself. We will calculate the resulting electrostatic poten-
tial energy U2. The third configuration would be obtained if it were possible to 
account for hydrogen bonds in a semi-classical way, by assuming that the proton 
has only one well-defined position, situated in the middle. This position is 
represented by a black dot and the potential energy would then be U3.  

Using natural units for charges, distances and energies, we get  

1 2
4 2 2 1.67U U
d dδ δ

= − − = − =
−

 and 3
4 2 0.69U
d d

= − = −  
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Figure 5. Three conceivable models for O-H-O bonds. 

 
Since U2 = U1, a strictly classical description is sufficient, although the proton 

is delocalized. This would even be true (in the present case) if the uncertainty 
did allow for any partition q' and (1 − q') of the charge +1. The third configura-
tion is very unstable and does not account for quantum-mechanical exchange 
effects. We are now ready to calculate the total potential energies V1 to V4 for 
different configurations of dimers, represented in Figure 6. They result from the 
fact that two water molecules can easily be rotated with respect to one another, 
but this modifies the potential energy of the interacting tripoles. The usually as-
sumed configuration of (H2O)2 is close to the upper left one of Figure 6. The 
tripole of one molecule is situated in the plane of the drawing and one of its two 
protons is precisely oriented towards the core of the neighboring molecule. The 
other tripole is perpendicular to this plane and seen in profile. We will calculate 
the potential energy V1 for the indicated configuration. 

V2 corresponds to aligned effective dipoles. This configuration would be pre-
ferred if water molecules did only contain dipoles, but could even be privileged 
for effective dipoles, when the dimer is subjected to an electric field. We want 
thus to see if V2 is already close to V1 in the absence of an applied electric field. 
The tripoles should then be orthogonal to one another to minimize repulsion 
between protons in neighboring molecules. V3 is the potential energy for any 
pair of molecules in a nearly linear chain, where all intermediate protons are 
ideally situated between two oxygen atoms. The resulting zigzagging configura-
tion is planar and in conformity with a classical representation.  

An applied electric field could even allow for a perfectly linear chain, because 
of intramolecular exchange effects, although this was unknown. For clarity, we 
consider here two coplanar tripoles. One proton is always situated as close as 
possible to the core of the neighboring oxygen atom. The other proton has two 
equally probable positions, above and below the symmetry axis. This would yield 
the energy V4 for any pair of water molecules. Alternatively orthogonal tripoles 
would reduce repulsion between the delocalized protons. The resulting potential 
energy is then V5 < V4. 

To facilitate this type of calculations, we note that the total potential energies 
result always from adding the Coulomb potentials (V = qq'/Δ) for pairs of 
point-like charges q and q', separated by a distance Δ. We define thus a function 
S(x, y, z), where x, y and z are differences of Cartesian coordinates, respectively 
measured towards the right, rear and top. Thus, 

( ), ,V qq S x y z′=  where ( ) ( ) 1 22 2 2, ,S x y z x y z
−

= + +         (2) 

The values of V1 depends on the angle φ = 106˚ and the complementary angle 
ϕ = 74˚. Since δ = 1 in natural units, the distance a1 = cosϕ = 0.28 and b1 = sinϕ  
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Figure 6. Conceivable structures of water dimers. 

 
= 0.96. However, a2 = aa1 and b2 = ab1, where a = cosφ = 0.60 and b = sinφ = 
0.80. Thus, 
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V1 can be slightly lowered when the repulsion between the nearest protons is 
reduced by a small rotation of the left molecule around its center. An angle of 
1.4˚ is sufficient to reach the minimal potential energy [27]. Since V1 < V2, it has 
been assumed that more than 2 water molecules should always be assembled ac-
cording to the same rule as for the most strongly bound dimer. Water molecules 
could then only constitute rings or clusters of limited size, but linear polymeri-
zation is not excluded for water molecules. It would even be preferred for n2 wa-
ter molecules, compared to clusters of n1 molecules, when (n2 − 1)V2 < (n1 − 
1)V1. It is thus sufficient that n2 > 1.3n1. Of course, long chains of water mole-
cules would be too fragile to resist thermal agitation in liquid water, but we will 
show (in Section 2.7) that chains of water molecules with aligned effective di-
poles can be stabilized.  

Moreover, V3 = −0.111, which is quite close to V1 = −0.116. Since water mo-
lecules can easily be rotated, they are aligned according to this pattern inside 
very narrow pores [28]. They are then said to form wires or filaments. Perfectly 
linear polymerization with intramolecular exchange effects would yield  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

5 1 1 1 1 1 1

1 1 1 1

5 ,0,0 , , 1 , ,0 1 ,0,

2 1,0,0 2 1,0,0 2 , ,0 2 ,0,
0.084

V S d S d b b S d a b S d a b

S d S d S d a b S d a b

= + + − − + + +

− − − + − − − +

= −

  

An applied electric field does not only align water molecules, but also polarize 
water molecules in such a chain. This yields stronger bonds, since all positive 
charges of one molecule come closer to the central negative charge of the neigh-
boring molecule. Polarization of water molecules is possible [29] and favors thus 
linear polarization by means of intramolecular exchange effects.  
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2.5. Initial Evidence of Molecular Chains 

When the young Theodor von Grotthuss was experimenting in1806 with a Volta 
pile, he discovered that pure water has a much higher electric conductivity than 
other liquids. The chemical structure of water molecules was not yet known. 
[John Dalton asserted in 1808 that it is HO, while Avogadro proposed in 1811 
that it could be H2O. This hypothesis was disregarded, since it resulted from the 
assumption that all types of particles occupy the same volume in gases, whether 
they are molecules or atoms. This was only accepted at about 1860, after the de-
velopment of the kinetic theory of gases.] However, Von Grotthuss knew that 
water molecules are composed of positive and negative parts, since they can be 
separated by electrolysis. This had already been proven in 1800.  

Von Grotthuss thought therefore that water molecules are held together in 
liquid water by mutual attraction of positive and negative parts. An electric field 
should align them. The high electric conductivity of liquid water could then be 
explained, if water molecules did contain tiny charge carriers that move more 
easily inside these chains than outside them [30]. This hypothesis may have been 
suggested by the method of fire-fighting of that time. People were standing in a 
row and passed buckets from hand to hand, but the existence of protons was not 
yet known. Nevertheless, this explanation was appealing and successful. Now, we 
can justify this model in term of intramolecular exchange effects. The left part of 
Figure 7 represents two water molecules in a linear chain, subjected to an elec-
tric field E. One molecule contains an additional proton. We indicate displace-
ments of charged particles by red lines, but the applied electric field does also 
modify the intermediate potential barrier. It becomes dissymmetric and facili-
tates “hoping” over the potential barrier for the proton in best position. The blue 
arrow represents a jump of this proton towards one of the nearby potential wells. 

The right part of Figure 7 shows the result (without polarization effects). The 
H3O+ ion became a normal H2O molecule, while the neighboring H2O molecule 
was converted into an H3O+ ion. The proton did advance without being deviated 
by collisions. [Ohm’s law is still valid for relatively small electric fields, as for io-
nic conduction in solid state physics]. We could equally well consider H2O mo-
lecules with one delocalized proton on the left side and an adjacent HO− ion. It 
contains only one proton, attracted toward the center of the next molecule. The 
electric field E would then cause a jump of the intermediate proton towards one 
of the two empty places. This would be equivalent to opposite motion of a pro-
ton hole. The essential result is that intramolecular exchange effects are realistic, 
since they explain the high electric conductivity of liquid water in a more de-
tailed way.  
 

 
Figure 7. Explanation of the von Grotthuss mechanism. 
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2.6. Evidence of 2D Polymerization of Water Molecules 

The story of this discovery is similar to that of water memory. It began with an 
unexpected observation, made by the Russian chemist Nikolai Fedyakin. He 
condensed water in thin capillary quartz tubes and found that its physical prop-
erties are different from those of ordinary water. This phenomenon was totally 
unexpected, but arose at first much attention and scientific curiosity. Lippincot 
and Stromberg combined, for instance, routine infra-red spectroscopy with an 
improved method for producing this type of water. They confirmed that it has 
peculiar properties and proposed an explanation [31]. They assumed that water 
molecules can be bound to one another inside layers like that of Figure 8. The 
nature of hydrogen bonds was misunderstood (see Section 2.4), but this confi-
guration was simple and heuristically useful. Since the layers can slide on one 
another, water remains liquid, but is viscous near substrates that favor this con-
figuration.  

2D polymerization of water molecules would thus yield a “new state” of liquid 
water, since it is partially crystallized. However, other persons declared that this 
is impossible, since they preferred to stick to customary ideas. The media prop-
agated the slogan of “bad science”, which had great impact. It led even to total 
prohibition of research on “polywater”. Academic careers would have been bro-
ken for anyone who might dare to be involved in such “pathological” science. 
Even Stromberg, interviewed some 40 years later, accepted that researchers 
might be misled by unconscious bias [32]. However, he added that “most mista-
ken hypotheses in science aren’t entirely wrong; they just have to be modified a 
bit.” 

Actually, it is well-known in material science that crystallization can be influ-
enced by the substrate, because of local attractions. Rostrum Ray proposed that 
this phenomenon of epitaxy might explain water memory, because of the “ex-
treme structural flexibility” of water molecules [33]. Their internal structure and 
relative positions could be modified, but this model would require molding and 
stability of detached structures and even multiplication of positive and negative 
molds in the course of successive EHDs. These hypotheses are not plausible 
enough, but Ray tried at least to explain water memory, instead of simply pre-
tending that it is impossible. 
 

 
Figure 8. Polywater with hexagonal cells. 
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2D polymerization of water molecules was rediscovered by the bioengineer 
Gerald Pollack. He wondered why particles that imitate red blood cells can easily 
move through narrow capillaries. Trying to understand this fact, he realized that 
some materials create an “exclusion zone” near their surface [34]. Indeed, water 
molecules can be so strongly bound to the substrate and to one another in suc-
cessive layers that the presence of red blood cells, for instance, becomes there 
impossible. Pollack adopted the model of Figure 8 to explain the formation of 
2D lattices. He deduced from this model that every oxygen atom is surrounded 
by 3 half-hydrogen atoms. In natural units, this would yield a charge (3/2) − 2 = 
−1/2 per molecule. Exclusion zones should thus be electrically charged and this 
was proven to be true. Contact of pure water with some materials is sufficient to 
constitute a battery. 

Pollack’s discovery and empirical investigations were outstanding achieve-
ments, but Figure 8 can be replaced by Figure 9. Delocalized protons have then 
3 equally probable positions inside any water molecule. This model combines 
intramolecular with intermolecular exchange effects. It is then not necessary to 
assume strong distortions of tripoles in all water molecules, since the normal an-
gles of 106˚ can be preserved when the third angle is 148˚. Regular hexagons 
would merely be transformed into elongated ones. The upper and lower rows of 
Figure 9 are even zigzagging chains, like those of Figure 6. 

2.7. Formation and Stabilization of Molecular Chains 

In interstellar space, there are ions that attract water molecules and align their 
effective dipoles, since the configuration V2 of Figure 6 is sufficient for moderate 
electric fields. Figure 10 represents such a molecular chain in 3D. The tripoles 
are alternatively orthogonal to one another and the aligned effective dipoles are 
represented by red arrows. On the average, the chain is axially symmetric. In 
outer space, ions would thus collect water molecules and become radially 
“haired”. This does facilitate the participation of water molecules in the forma-
tion of planetary systems. 
 

 
Figure 9. Polywater with elongated cells. 

 

 
Figure 10. A single chain of water molecules. 
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Although positive and negative ions are strongly bound to one another in io-
nic crystals, they are easily dissolved in liquid water, since the small water mole-
cules are more attracted. They penetrate inside ionic crystals and dissolve them. 
In liquid water, ions will thus usually be isolated and surrounded by a “hydra-
tion sphere”, where the effective dipoles of water molecules are oriented towards 
the central charge. This polarization decreases further away, because of thermal 
agitation. However, molecular chains could also be formed and rapidly stabilized 
by attracting one another. Figure 11 represents two possibilities by means of 
three water molecules that belong to parallel chains. 

According to the dipole approximation (1), the electric field is −p/r3, when θ = 
90˚. Real dipoles would thus be antiparallel in lateral positions, but we have to 
consider chains of tripoles. Two parallel molecular chains will thus be shifted by 
the distance a with respect to one another. This allows for parallel or antiparallel 
effective dipoles. We expect that parallel ones are preferred, since the two pro-
tons of the lower molecule are then closer to the negative center of the upper 
right molecule. However, it is useful to verify if this leads to significant differ-
ences for the resulting potential energies Va and Vb. Since the potential energy of 
the upper pair is V2 = −0.093 in natural units, we get 
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The ± signs mean here that we have to sum two different terms. It appears 
that Va is 3 times lower than Vb. Agglomerations of parallel chains of water mo-
lecules are thus preferred. Moreover, the effective dipoles are already oriented in 
nearly the same way by the electric field of the ion. Molecular chains with paral-
lel effective dipoles get spontaneously assembled and stabilized. 

It is very important to realize that biologically active molecules contain electr-
ically charged parts. They explain why these molecules are easily dissolved in 
liquid water and require at least contact with saliva. Figure 12 shows some typi-
cal examples. We see that the charged parts are even situated on a branch, where  
 

 
Figure 11. Mutual attraction of molecules on parallel chains. 
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Figure 12. Biologically active molecules contain charged parts that can vibrate. 

 
they can be set in oscillation by thermal agitation of water molecules in the sur-
rounding liquid. They resonate at a particular frequency, which is characteristic 
of the active molecule. Its value is much lower than for vibrations of strongly 
bound charged particles inside molecules of any type. For active molecules, the 
resonance frequency is determined by the effective mass of its charged part and a 
weak restoring force. It results from deformations of the soft cocoon of polarized 
water molecules. These ideas are essential to unravel the puzzle of water memory.  

2.8. Single-Domain Ferroelectric Crystallites 

When the electric field of a biologically active molecule has started to assemble 
water molecules, it becomes a germ of ongoing crystallization. More and more 
water molecules are attracted and align their effective dipoles. This yields closely 
packed molecular chains, like that of Figure 10. A frontal view of the alterna-
tively orthogonal tripoles yields a square lattice. Ideal alignment of all effective 
dipoles is only achieved in “single-domain ferroelectric crystallites”. Water mo-
lecules are there more closely packed than in the surrounding water. We will 
prove that these crystallites contain many water molecules and are thus spheri-
cal. We will call them water pearls (WPs) and prove that they have the same size. 
Since they contain a great number N of water molecules, their equally oriented 
effective dipole moment p yields a very great total dipole moment P = Np for 
every WP. Each one of them creates thus an electric field, which is able to as-
semble other water molecules. This process creates an adjacent WP and even a 
spontaneously growing chain of WPs. 

To discard unnecessary objections, we mention that the solid state physicist 
Kittel realized already in 1946 that molecules of magnetite (Fe3O4) create sin-
gle-domain ferromagnetic crystallites [35]. Since they are ideal magnets, their 
discovery led to important applications, like magnetic recording. Blackmore 
discovered in 1975 that some species of aquatic bacteria collect Fe3O4 or Fe3S4 
molecules. They are then spontaneously assembled and constitute single-domain 
ferromagnetic crystallites [36]. They form chains of about a dozen beads. Mag-
netotactic bacteria produce these chains to remain in deeper layers of shallow 
waters and are able to sense the orientation of their internal compass needles in 
the inclined geomagnetic field of the Earth. They developed this stratagem to 
survive, since the oxygen content would be too high for them near the surface. 
This required the formation of specialized genes [37]. 

 

DOI: 10.4236/jmp.2018.914165 2672 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2018.914165


A. Meessen 
 

To determine the radius R of these ferroelectric crystallites is a tricky problem. 
It has been tackled for the most common ferroelectric material (BaTiO3) by 
means of the theory of phase transitions [38]. Since this approach does not apply 
to water molecules in the liquid state, we adopt another one. It does simply re-
sult from a transposition of the method that is used in electrostatics to determine 
the polarization of a homogeneous spherical particle. Figure 13(a) represents 
such a WP in pale blue color. Because of its surface charge, it orients water mo-
lecules in the surrounding liquid, but only in a limited region. The polarization 
of the surrounding water molecules is there progressively decreasing because of 
thermal agitation. This region is represented in a different color.  

We use polar coordinates (r, θ) with axial symmetry. On the average, the WP 
is electrically neutral, because of the closeness of the charges ±2q inside all water 
molecules. The internal surface charge density results from the charges ±2q at 
the extremities of every molecular chain. It occupies the surface d2 in planes that 
are perpendicular to these chains, but the surface of the sphere is inclined. The 
intersected surface is thus increased and the internal surface charge is σi(θ) = 
(2q/d2)cosθ at the positive side. The external surface charge density σe(θ) is low-
er, but proportional to the internal one. The total surface charge density is thus 
σ(θ) = σocosθ. Positive and negative surface charges on opposite sides of a WP 
create a homogeneous electric field Ei inside this sphere, as if it were composed 
of many very thin condensers. The electrostatic potential inside the WP is 
therefore ϕi(r, θ) = Eircosθ. 

Figure 13(b) defines the potential ϕ(r) = (Q/r)exp(−r/λo) that would be pro-
duced outside the sphere by the total charge Q = N2q of all effective positive 
poles of water molecules, if this charge were situated at the center of the sphere. 
The usual Coulomb potential (Q/r) is modified by screening effects, resulting 
from positive and negative charges in the polarized region of the liquid water. 
The radial decrease is characterized by the Debye length λo. Figure 13(c) defines 
the actual potential ϕe(r, θ) in the external medium. It is due to the charges ±Q 
of all positive poles and negative poles, separated by the distance a. The external 
potential depends then on Δr = (a/2)cosθ, since 
 

 
Figure 13. (a) A water pearl and the external domain of oriented water molecules; (b) A 
single charge Q situated at the center of the sphere would generate an electric potential 
ϕ(r). (c) The actual external potential ϕe(r, θ) results from two charges ±Q. 
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( ) ( ) ( ),e r r r r rφ θ φ φ= − ∆ − + ∆  for r R≥  

ϕi(r, θ) and ϕe(r, θ) are subjected to boundary conditions, which determine 
the values of R and Ei. This more technical problem is solved in the short appen-
dix, but all required physical concepts have been explained here and the result is 
that R ≈ 10λo. The value of the Debye length λo depends on the concentration of 
ions in the surrounding water. It is also proportional to the square root of the 
absolute temperature T, but this factor is nearly constant between 20 and 30˚C. 
The value of λo has been measured at 25˚C for water with different concentra-
tions of dissolved NaCl [39]. It appeared that λo ≈ 1 nm at 0.1 M (mol/liter), but 
increases for lower and higher concentrations. Actually, λo ≈ 3 nm at 0.01 M and 
5 M, which is only slightly higher than for Dead Sea water. For pure water, λo 
would depend on the concentration of H+ and OH− ions. The radius R of WPs is 
then somewhat smaller than 10 nm.   

2.9. Properties of WPs and Their Poles 

When the particle physicist Shui-Yin Lo was visiting professor at the famous 
California Institute of Technology in 1996, he adopted a research project con-
cerning properties of liquid water. He was surprised to discover that EHDs of 
HCl, NaOH or HNO3 molecules in very pure water led to the formation of “nov-
el stable structures”. Lo thought that they result from crystallization of hydration 
spheres [40], while we attribute their existence to the formation of ferroelectric 
crystallites. This explains the dipolar nature of these particles and their great sta-
bility. They subsisted when all ions had been removed by successive dilutions 
and these structures were even multiplied in the course of successive dilutions, 
but only when they were followed by vigorous agitation.  

When S. Y. Lo determined the sizes of various types of structures by means 
self-interference of scattered laser light, he found 3 distinct groups. The smallest 
particles had a diameter D ≈ 15 nm with very low dispersion. We interpret this 
result as meaning that D is the diameter of WPs in pure water. Thus, R ≈ 7.5 nm 
and the Debye length λo ≈ 0.75 nm. Since the volume occupied by every water 
molecule is d3, where d = 0.275 nm, WPs contain N ≈ 85,000 molecules. This 
huge number justifies the assumption that they are spherical. Nevertheless, WPs 
are nanoparticles, since water molecules are very small.  

The second group of structures, discovered by S.Y. Lo, had a size of about 300 
nm. We consider that this group corresponds to the length L = ND of chains of 
WPs, containing N ≈ 20 water pearls. We will explain (in Section 3.3), why their 
length L has to be limited. Its value depends on the mutual attraction between 
positive and negative surface charges on adjacent hemispheres. It is thus useful 
to replace the distributed surface charges of WPs by point-like poles. They are 
situated inside the sphere, like those of magnetized steel balls, but we can be 
more explicit. The total charge Qo on the surface of the positive hemisphere, is 
the integral of 2πrσ(θ)rdθ, where r = Rsin(θ) and σ(θ) = σocosθ, while the angle θ 
varies from −π/2 to + π/2. This yields Qo = (4π/3)R2σo. We can also calculate the 
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electrostatic potential V(x) for a test charge +1 that is situated on the symmetry 
axis at the distance x from the center O of a WP. Figure 14 shows that V(x) is 
the integral of 2πσ(θ)r2dθ divided by the distance R'. This allows us to define the 
effective charge Q(x) of the positive pole, if it were situated at the distance R/2 
from the center O. This pole is represented by a black dot and 
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The result of numerical integration is shown in Figure 15. It appears that 
Q(x) = Qo when x > 3R, but when the test charge is close to the surface of the 
WP, it does mainly interact with the nearest surface charges. This reduces the 
value of Q(x). On the surface, Q(R) = 0.68Qo. We neglected all screening effects, 
but it is only important that neighboring poles are separated by the same dis-
tance R and carry charges ±Q. 

3. The Mechanism of Water Memory 
3.1. Small Oscillatory Rotations of Water Pearls 

Because of the rapidly decreasing Coulomb forces, it is sufficient to consider the 
mutual attraction of neighboring positive and negative poles. At rest, they are 
aligned and their poles are separated everywhere by the same distance R, but 
small oscillatory rotations of WPs around their center will lead to transverse dis-
placements of the poles. They are represented in Figure 16 by red arrows. For 
clarity, we exaggerated their magnitude. The essential point is, indeed, that 
neighboring poles remain in tangential contact and that the transverse displace-
ments of the poles can vary along the chain. We characterize the instantaneous 
rotation of the nth water pearl by the variable un(t). 

Figure 17 shows that when u is the relative displacement of two neighboring 
poles, they attract one another by the force F. In natural units, its magnitude is  
 

 
Figure 14. Definition of the charge Q(x). 

 

 
Figure 15. Calculated value of Q(x). 
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Figure 16. Small rotations of water pearls in a chain are specified by dis-
placements of poles. 

 

 
Figure 17. The restoring force is the transverse component of the force F. 

 
Q2/(u2 + R2). The transverse component F is reduced by the factor u/R. It follows 
that when u R , the restoring force is 

( )F u Ku= −  where 
2

3

QK
R

=                  (5) 

This force is proportional to the relative displacement u, as for any elastic sys-
tem. When M is the effective inertial mass of poles, the equation of motion for 
the nth water pearl is  

( ) ( )1 1n n n n nMu K u u K u u+ −= − − −                 (6) 

Every dot stands for a time derivative. Since this equation is identical for all 
WPs, it describes the behavior of the whole chain. It can be simplified when the 
displacements un are smoothly varying along the chain, which is equivalent to 
saying that the diameter D of WPs is small compared to the distance where the 
relative displacements un are notably varying. We can then replace un(t) by u(x, 
t), where the coordinate x is treated as if it were a continuous variable. Actually, 

2
1 2n nu u Du D u± ′ ′′= ± + , where u′  and u′′  designate first and second order 

partial derivatives with respect to x. Equation (6) is then reduced to  
2u v u′′=  where 2 2v D K M=                  (7) 

This is the usual wave equation for vibrating strings. An infinite chain would 
allow for ( ) ( ),u x t u x vt= ± . This corresponds to a function of any shape, moving 
at the velocity v towards the right or the left. Possible attenuations of oscillatory 
rotations have been neglected in (6) and (7), but will be discussed later on. 

3.2. Standing Waves on Chains of Water Pearls  

For a chain of finite length L, we have to know the boundary conditions at x = 0 
and x = L. When both ends are free, the first and last pearls are not subjected to 
any force. Thus, ( ), 0u x t′ =  for x = 0 and x = L. In other words, u(x, t) has to 
reach maximal values at both extremities. This allows for a particular solution of 
well-defined frequency f and well-defined wavelength λ:  
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( ) ( ) ( ), cos sinu x t A kx tω=  where 2 fω = π  and 2πk λ=       (8) 

Since ( ),u x t′  is proportional to sin(kx), the boundary condition ( )0, 0u t′ =  
is satisfied, but ( ), 0u L t′ =  requires that kL = sπ, where 1,2,3,s =  . It fol-
lows that L = sλ/2 and because of (7), that the spectrum of possible frequencies is 
defined by 

2 s
v vf s f

Lλ
= = =  where 1,2,3,s =                   (9) 

The only possible frequencies are thus integer multiples of the fundamental 
frequency f1 = v/2L. For sound waves, any pair of such frequencies would pro-
duce an impression of harmony. The spectrum fs = sf1 is therefore said to be a 
“harmonic” one. These properties are well-known in physics, but everyone 
should see why a chain of WPs with free ends does only allow for standing 
waves. This means that for any particular solution (8), all WPs are set in oscilla-
tory rotations at the same frequency f, but the amplitude of these oscillations va-
ries along the chain.  

However, the approximation (7) is of limited validity, since it requires that 
D L . The measurements of Lo imply that chains of WPs contain a relatively 
small number of WPs (N ≈ 20). To see how far the approximation (9) is realistic, 
we have to solve the general equation (6). This is easy when we use complex no-
tations, since standing waves are then defined by 

( ) ( )e ni kx t
nu t A ω−=  where ( )2 e e 2ikD ikDK

M
ω −= + −  

Thus, 

( ) ( )sin 2
2

kD
k v

D
ω =  and ( ) ( ), sin π

π
vf D D
D

λ λ=         (10) 

The function f(λ, D) is represented by the dark curve in Figure 18. It reveals 
that the domain of possible frequencies is limited, as well as the domain of poss-
ible wavelength. It is only physically possible that λ/2 ≥ D. The approximation f 
= v/λ corresponds to the red line, which would allow for arbitrarily high fre-
quencies, but (10) imposes an upper limit (fmax = v/πD). Nevertheless, the linear 
approximation is valid for a relatively large domain of low frequencies. [Indeed, 

( ) 3sin 6x x x x= − ≈ , when 2.5x ]. Actually, the spectrum of possible fre-
quencies is fs = sf1 when s N . 
 

 
Figure 18. The general function f(λ) for chains of WPs. 
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3.3. Automatic Trimming of Chains of Water Pearls 

Figure 19 summarizes the essential steps that explain why chains of water pearls 
are the information carriers of water memory. The upper line represents a bio-
logically active molecule, where the charged part oscillates at some very low fre-
quency f. It cannot communicate these oscillations to the WPs, since the length 
of the chain L < λ/2, where the wavelength λ is determined by f = v/λ. The 
second line represents what happens as soon as the length of the chain of WPs 
reaches the value L = λ/2 = v/2f. The electric field of the oscillating charge does 
then excite a standing wave for oscillatory rotations of WPs.  

The last WP of the growing chain does suddenly start to oscillate when its 
length L = v/2f. The amplitude of this oscillation is the same as for the first WP 
of the chain, which can also be set in forced oscillation by the active molecule. It 
remains attached to it, but can now communicate its motion to other WPs of the 
chain. However, the rotation of the last pearl of the chain prevents the formation 
and attachment of an additional WP. The growing chain is thus automatically 
trimmed. Information that is characteristic of the type of active molecules has 
been encoded by means of the length L of the chain. It depends indeed on the 
frequency f. 

The third line of Figure 19 shows that when the trimmed chain is detached 
from its generator, it does still allow for a standing wave for the same length L = 
λ/2. The liberated chain of WPs conserves the acquired information. Moreover, 
it produces itself an oscillating electric field. Its frequency f is adequate to create 
more equally trimmed chains of WPs. They are thus multiplied by an autocata-
lytic process. This provides the key for a rational justification of water memory. 
It resulted from a systematic examination of all possible interactions between 
water molecules and their logical consequences. 

We might object that oscillatory rotations of WPs will be damped by friction, 
exerted by surrounding water molecules. This is true, but trimmed chains are 
also subjected to local impacts of water molecules. Although the impacts are 
random, the chain does pick-up energy when it allows for resonances at any 
frequency fs for possible standing waves. Since it is sufficient that the free ends of 
the chain can oscillate with maximal amplitude, standing waves of smaller wave-
lengths and higher frequencies can also be excited. Excitation of a standing wave 
at a higher frequency can easily be demonstrated with a flute, since “overblow-
ing” is sufficient to double the frequency for standing waves, without modifying 
the effective length for longitudinal oscillations. Oscillatory rotations of WPs at  
 

 
Figure 19. Creation of trimmed chains of water pearls, resonating at the frequency f of 
the active molecules for chains of length L. This remains true for detached chains. 
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higher frequencies imply more rapid motions and thus greater kinetic energies 
and more violent local impacts. Available energies depend on the statistical dis-
tribution of kinetic energies of water molecules in the liquid state. Although a 
chain of WPs of given length allows for a superposition of different modes of os-
cillations, those of increasingly higher frequencies will thus be excited with de-
creasing amplitudes. They are byproducts of random re-excitation, but the low-
est possible frequency f1 remains the predominant one. 

3.4. Negation of Water Memory Was Based on False Assumptions 

Benveniste’s experimental proof of water memory was categorically rejected be-
cause of prevailing beliefs. They resulted from four erroneous assumptions: 

1) Biologically active molecule can have no effects any more, when all of them 
have been eliminated by successive dilutions.  

2) Even if biologically active molecules could create substitutes, made of water 
molecules, they would have to be adaptable. Such aggregates are unknown and 
can thus not exist. 

3) Biologically active molecules can only act on their specific receptors by means 
of chemical affinities. Local structuring of liquid water would be unable to mim-
ic these processes. This is particularly implausible for various types of molecules, 
since that would require an extraordinary capacity of adaptable imitation. 

4) Extra high dilutions are also used for homeopathy, which is inefficient. The 
preparation of EHDs does even involve shaking by vigorous “successions”. This 
ritual is a sign of charlatanism. 

We have already shown that the two first objections are contradicted by the 
formation of trimmed chains of WPs. The third objection concerns the funda-
mental problem of molecular interactions. Modifications of the state of motion 
can result from direct contact (collisions), but also from actions at a distance 
(due to attractive or repulsive forces). We are accustomed to the idea that struc-
tural changes (combinations or dissociations) at molecular level result from 
chemical reactions, requiring direct contact, chemical affinities and configura-
tional conformity. However, internal modifications can also result from energy 
transfer (excitation or disexcitation) by means of force fields.  

Figure 20 summarizes the required restructuring of our ideas, because of the 
concept of ferroelectric water pearls. First of all, we have to realize that biologi-
cally active molecules contain an electrically charged part (Figure 12) that has a 
resonance frequency f. It creates thus an electric field that oscillates at this fre-
quency. The upper line of Figure 20 represents the normal process, where this 
electric field acts on a molecular receptor, which has also a charged part that can 
oscillate. Specific receptors of a particular type of active molecules contain also a 
charged part that can oscillate. It resonates at a frequency fr. It is thus sufficient 
that fr ≈ f to allow active molecules to stimulate their specific receptors. There is 
some tolerance, since the probability of interaction by resonance corresponds to 
a peak that has some width. 
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Figure 20. Water memory reveals a new type of molecular interactions. 

 
The assumption that molecular interactions are only possible according to the 

“key and slot model” of chemical reactions is not correct. Biologically active 
molecules can also interact with their specific receptors by means of oscillating 
electric fields and resonances. This allow for a bypass, represented by the second 
line of Figure 20, since the oscillating electric field of active molecules can also 
create trimmed chains of WPs. As long as they are attached to their generators, 
they resonate at a frequency f1 ≈ f. This remains true when these chains are de-
tached, but reactivation of their oscillations by thermal agitation in liquid water 
leads to a harmonic spectrum of possible frequencies (fs = sf1, where 

1,2,3,s =  ). The fundamental frequency f1 remains dominant, however. 
Standing waves on trimmed chains of WPs do produce an oscillating electric 
field of frequency f1 ≈ fr and can thus stimulate the same receptors. 

The collective electric field, generated by all trimmed chains of WPs, has even 
the capacity to create more and more equally trimmed chains. Their number is 
increased and the oscillating electric field is amplified by an autocatalytic 
process. The possibility that molecular interactions can result from oscillating 
electric fields and resonance effects had been overlooked. The discovery of water 
memory did thus reveal the existence of a mechanism that is of fundamental 
importance and even very efficient.  

The fourth erroneous assumption concerns homeopathy. Since the underlying 
mechanism was not understood, it was believed that its efficiency can only result 
from placebo effects. We wonder how they can be justified for animals and small 
children. Our purpose is not to defend homeopathy, but to restore truth, also in 
this regard. It is therefore instructive to examine the argumentation advanced by 
those who would like to eliminate homeopathy. The Australian National Health 
and Medical Research Council published in 2015 a study on “Evidence on the 
effectiveness of homeopathy” [41]. This report was sponsored by the Australian 
Government, but was not based on a scientific study of underlying physical and 
physiological process. It was merely a collection of 176 articles, supporting the 
claim that “there are no health conditions for which there is reliable evidence 
that homeopathy is effective.” 

These evaluations are essentially dependent on subjective appreciations. It was 
recognized that the general conclusion of their report was “based on all the evi-
dence considered”. Other evidence was discarded. The first report of 2012 had 
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even been concealed [42], since it was not sufficiently selective in this regard. 
The published report stated that the aim of this study was “to assist people in 
making health care choices”, but it was addressed to political deciders. The au-
thors mentioned, indeed, that they wanted to “influence policy” and to get “in-
creased funding for such research” ([41], pp. 6, 16 and 4). This report was widely 
publicized and is equivalent to lobbying.  

3.5. The Standard Procedure for Extra-High Dilutions 

It is even necessary to clarify the origin of homeopathy, which has often been 
misrepresented to denigrate it. The basic idea was due to Samuel Hahnemann 
(1755-1843). He was a regular medical doctor. After acquiring his diploma at the 
age of 24, he practiced during 5 years, but decided then to cease. He had realized, 
indeed, that it would have been better for some of his patients not to be treated 
according to the “art of healing” of his time. He was even horrified that he might 
“murder” suffering people, instead of helping them. This was an exceptionally 
honest attitude, justified by recognizing the cause of this horrible situation. Nei-
ther the chosen substances, nor the doses were determined in a rational way, al-
though Paracelsus wrote already in 1543 that “only the right dose differentiates a 
poison from a remedy”. 

Hahnemann’s linguistic gifts made it preferable for him to translate books and 
to search there for possible improvements of medical practice. In one of these 
books, it was claimed that the bark of a Peruvian tree was able to treat malaria. It 
is known today that the bark of “cinchona” trees contains quinine. Most efficient 
medicines were actually discovered by trial and error. It was already known in 
Antiquity, for instance, that leaves of willow trees can stop pain. A chemist dis-
covered in 1853 that the active molecule is C9H8O4, which became famous as as-
pirin. Even elephants, apes and other animals know how to cure or avoid ail-
ments [43]. The textbook attributed the beneficial effects of cinchona powder to 
its taste, but Dr. Hahnemann could not believe this claim. Nevertheless, he de-
cided to verify if there were any detectable effects and was amazed that it pro-
duced malaria-like symptoms.  

By experimenting with other substances, he realized that medicines could be 
discovered in a more rational way, by adopting the “law of similars”. This was 
merely an empirical rule, but such rules were often followed before understand-
ing why they are valid. [Even Newton’s law of gravity was expressed in terms of 
actions at a distance. It did account for observed phenomena, but the real cause 
is a gravitational field, which corresponds even to modifications of the metric of 
space and time.] Since Hahnemann tried to discover medications by means of 
tests, performed on healthy persons, he had to use the lowest possible doses. He 
adopted thus the method of successive dilutions. If the result was beneficial, such 
an EHD could also be administered to patients in a secure way. We recall that 
Hahnemann was a learned medical doctor and was thus able to verify if a prepa-
ration is helpful of not. 

 

DOI: 10.4236/jmp.2018.914165 2681 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2018.914165


A. Meessen 
 

As an example, we mention Apis mellifica. Until recently, it was customary in 
medicine to use Latin, also for anatomy, to overcome language barriers. The 
European honey bee is called “Apis mellifera” and the main component of its 
venom is mellitine. This molecule has also anti-inflammatory properties and 
honey bees do even protect their larvae from infections by means of very effi-
cient substances. Hahnemann presented his discovery already in 1796 in a Ger-
man medical journal, by formulating the rule that “like cures like”. Objections 
that are based on the finite divisibility matter are anachronistic. [The ancient 
concept of atoms had been reintroduced by Boyle in 1661 and elaborated by the 
chemist John Dalton in 1804, but the atomic theory was only accepted at about 
1860, since the kinetic theory of gases did prove that Avogadro’s hypothesis was 
correct. Nevertheless, Mendeleev did not yet dare to use the concept of atoms in 
1869.] 

Hahnemann could thus assume that even when a substance has been diluted 
many times, there remains something of this substance. In 1810, he presented a 
first collection of results and one year before his death, the 6th edition of his 
“Organon of the Rational Art of Healing” was ready for publication. It is easily 
available [44]. It should also be obvious that successive dilutions required always 
homogenization before the next step. Hahnemann did this by holding the vessel 
in his hand and stroking it with vigor on a semi-elastic surface, like leather. 
Modern chemists use mechanical vortexing to insure homogenization of mix-
tures. This is merely a simpler method. We will show in the following section 
that these “successions” do also have another effect. Although Hahnemann was 
only concerned with practical medicine, he discovered already the bypass of 
Figure 20. Neither he nor his detractors were aware of this fact. Even when 
Benveniste did empirically prove the biological efficiency of EHDs, it was cate-
gorically declared to be impossible. 

3.6. The Quasi-Periodic Variations of Biological Efficiency 

Sir John Maddox, long-term editor of Nature (1966-73 and 1980-95) accused 
Benveniste of self-delusion, although his article contained two figures, displaying 
results of measurements [1]. Figure 21 reproduces one of them. It is undistorted  
 

 
Figure 21. Measured quasi-periodic variations of the biological efficiency of EHDs, pub-
lished by Benveniste et al. [1]. 
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and was extracted from a publication in Japanese. We see 9 peaks. The first one 
is higher than the following ones. Since every peak did result from several mea-
surements, the investigators should have realized that the quasi-periodic varia-
tions cannot result from “disregard of statistical principles” and “sampling er-
rors”. The investigators proclaimed even that Benveniste’s experimental results 
were merely due to self-delusion [2]. What would result from the theory of water 
pearls? We begin with a description of the underlying processes in usual lan-
guage by means of Figure 22. The first frame (a) shows some of the initially di-
luted active molecules, their charged parts (in red) and attached trimmed chains 
of WPs. We know that their length L = λ/2 and depends on the frequency f of 
the oscillating electric field of the active molecules. The second frame (b) illu-
strates the situation immediately after the first dilution and vigorous agitation. 
The concentration of active molecules has been reduced and agitation lasted 
long enough to detach all chains from the remaining ones, but some chains of 
WPs were broken.  

The third frame (c) shows that after a relatively short time interval, the re-
maining active molecules had again formed trimmed chains of WPs. Broken de-
tached chains did grow and new ones were generated by the global oscillating 
electric field. These chains have the same characteristic length L, allowing for 
standing waves at the frequency f1 as well as harmonics ( 1 12 ,3 ,f f  ). Some 
chains may have reached the length 2L. It allows for a mode of oscillation where 
2L = λ, which is equivalent to L = λ/2 and allows for the frequency f1. There did 
also appear some “associated chains”, resulting from mutual attraction of 
trimmed chains. Figure 23 shows how two parallel chains of WPs will be at-
tached to one another, but more than two chains are also possible. However, as-
sociated chains do not resonate at the same frequency or not at all. 
 

 
Figure 22. Decoding the standard procedure for preparing EHDs. (a) Active molecules 
and attached trimmed chains of WPs; (b) Detached and broken chains, immediately after 
dilution and agitation; (c) Reconstituted chains; (d) Excess of associated chains. 

 

DOI: 10.4236/jmp.2018.914165 2683 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2018.914165


A. Meessen 
 

 
Figure 23. A simple associated chain of water pearls. 
 

The fourth frame (d) of Figure 22 represents a state where nearly all single 
chains of WPs got bound to one another. The biological efficiency of the result-
ing EHD is then much reduced, but associated chains can be broken by vigorous 
agitation. Single chains can then be multiplied again during successive dilutions, 
until there are so much of them that association will be favored. The global re-
sult is that the biological efficiency of EHDs has to vary in a quasi-periodic way. 
It is not perfectly periodic, since these processes allow for statistical fluctua-
tions. 

3.7. Kinetics of Water Memory 

It is useful to express these ideas by means of equations, since they allow for log-
ical deductions. Let Xo be the initial number of active molecules, dissolved in a 
given volume of twice distilled water. This concentration is reduced by succes-
sive dilutions, where the same fraction of the homogenized solution is eliminat-
ed at every step. Usually, this fraction is 9/10 or 99/100. It is replaced by pure 
water to get always the same volume. When successive dilutions follow one 
another at identical short time intervals Δt, the concentration of active molecules 
becomes a function X(t) that decreases step-wise, since  

( ) ( ) ( )X t t X t tX tα+ ∆ = − ∆  

The value of αΔt = 0.9 or 0.99. For smalltime intervals, X(t) can be treated as if 
it were a continuous function. It decreases then according to the equation: 

X Xα= −  so that ( ) ( )expoX t X tα= −              (11) 

The exponential decrease does necessarily end up with X(t) = 0 when 
1t α , but this does not prove that the biological efficiency of EHDs has to 

vanish. Active molecules are able to generate trimmed chains of WPs with a 
probability g per unit time and they do generate more of them with a probability 
β par unit time. The concentration Y(t) of trimmed chains of WPs increases thus 
according the equation: 

Y gX Yβ= +                          (12) 

When the sequence of EHDs starts without previously formed trimmed 
chains, the initial value Y(0) = 0. Because of (11) and (12), we get then 

( ) e et tAY t β α

α β
− = − +

 where oA gX=              (13) 

It appears that Y(t) = At when t → 0. The initial increase of Y(t) is thus linear 
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and very rapid when A is great. When the generation of new substitutes exceeds 
losses (β > 0), the concentration Y(t) does eventually increase like exp(βt). This 
constantly accelerated increase would only stop when the whole amount of liq-
uid water has been solidified. This might even apply to oceans and would be ca-
tastrophic, but is prevented by forming associated chains. Their concentration 
Z(t) varies also, but  

( ) 2expY A t Y ZY Yα β ε ε ′= − + − −                (14) 

2
oZ ZY Y Zε ε γ′= + −                      (15) 

Equation (15) accounts for the fact that Z(t) increases by combining already 
existing associated chains with single ones. The average rate ε is greater than for 
association of two single chains, because of more possibilities. (12) is replaced by 
(14), since associations imply that Y(t) decreases by the same amount. However, 
every associated chain has also a probability γo per unit time to be destroyed by 
vigorous agitation. Figure 24 presents the results of numerical integration of 
(14) and (15). The unit of time is τo = 1/α = 1. We assumed that A = 50 and that 
β = 0.5, ε = 0.1, ε' = 0, γo = 1.5. The measured efficiency is proportional to Y(t). 
This function is thus represented by a thicker line.  

The red line describes the exponential decrease of the concentration X(t) of 
active molecules and the thin blue line represents the variations of the concen-
tration Z(t) of associated chains. It was a “hidden variable” for Benveniste and 
his team. The first peak of Y(t) is greater than the other ones, since X(t) does still 
contribute to the generation of substitutes. The initial increase is linear and very 
rapid when A = gXo is great. This accounts for Figure 21. The following peaks 
were not always identical, but they had nearly equal heights. They are perfectly 
periodic in Figure 24, since we assumed constant parameters in (14) and (15). 
We assumed that Y(0) = 0 and Z(0) = 1, since ε' = 0 requires that one of the ini-
tial values Y(0) or Z(0) is different from zero to initiate the periodic variations. It 
should be noted that the peaks for Y(t) are dissymmetric. The increase is pro-
gressive, but the decrease is precipitated, since single chains are more frequently 
associated with already existing ones when their concentration Z(t) is great. This 
was not obvious in Figure 21, but has been demonstrated by Montagnier (Sec-
tion 4.1). 
 

 
Figure 24. Decrease of the concentration X(t) of active molecules and the periodic varia-
tions of the concentrations Y(t) and Z(t) of single and associated chains of WPs in the 
course of successive dilutions. 
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It is simply a matter of fact that if Maddox had tried to understand the expe-
rimental results, he would have discovered that similar variations were already 
known since 1910 for autocatalytic reactions and so-called “chemical clocks”. 
Periodic variations attracted even more attention in the 1920th, since they were 
also observed for variations of the population density of predators and their 
prey. Predators proliferate when pray is abundant, but when the population of 
victims has been decimated, the predators have greater difficulties for their own 
survival and reproduction. Fewer predators allow the population of potential 
victims to grow again. This phenomenon was described by the famous 
Lotka-Volterra equations, which are identical to (14) and (15), when A = 0 and 
ε' = 0. 

After developing the present theory, we found the book of Francis Beauvais 
[10]. He provided many examples of similar results obtained by Benveniste and 
his team and referred even to the Lotka-Volterra equations. Without the concept 
of WPs, he had to assume the formation of negative and positive molds. This 
hypothesis was only mentioned as an example, but proves that Maddox could 
have referred to the Lotka-Voltera equations, if he had tried to understand the 
unexpected experimental results.  

Thomas Kuhn analyzed the process of scientific revolutions [45]. He distin-
guished different stages. When “anomalies” appear and cannot be explained by 
means of “normal science”, the first reaction is to declare that they are impossi-
ble. Confirmation of the reality of these anomalies opens a period of “crisis”. 
Various types of approaches are then tried and momentarily permitted. [For in-
stance, Michelson’s experiments of 1881 and 1887 did prove that the velocity of 
light with respect to the Earth is identical for any direction. This was not com-
patible with the concept of light waves propagating in ether with respect to the 
moving Earth. It was proposed at first that the ether could be entrained by the 
Earth, but Einstein realized that no luminipherous ether is needed. This hypo-
thesis can be dropped, indeed, when we accept that results of space and time 
measurements depend on the chosen reference frame. Only the velocity c of light 
in vacuum has always the same value for any inertial frame.] This “paradigm 
shift” resulted thus from reexamining previous assumptions and correcting 
them. This is also necessary for water memory, because of the third assumption 
in Section 3.4.  

3.8. Properties of the Limit Cycle and Aging 

Consequences of (14) and (15) can also be expressed by displaying the variations 
of Y(t) versus those of Z(t). Any particular point (Y, Z) defines then the state of 
the system at some instant t and the evolution of this state is represented by a 
continuous line. The dark curve in Figure 25 is equivalent to Figure 24. The 
green curve results from identical parameters, but starts at (0, 10), instead of (0, 
1). Since the presence of more associated chains does immediately reduce the 
concentration of single chains, the first peak of Figure 24 is reduced. However,  
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Figure 25. Parametric representation of the evolution of EHDs. 

 
maximal and minimal values of Y(t) are always reached when Z = β/ε. Those of 
Z(t) require that Y = γo/ε. These facts result from (14) and (15) when 0Y = , 

0Z =  and ε' = 0.  
Figure 26 shows what would happen for ε' = 0.0001, when all other parame-

ters have the same values as for Figure 24. We assumed again that A = 50, but 
the first peak of Y(t) is greater, since Z(t) was immediately increased by ε'Y2. 
However, the amplitude of the periodic variations of Y(t) is decreasing. The ar-
ticle of Benveniste [1] contained a second figure for a longer series of EHDs. It 
suggests a possible decrease of Y(t), but ε' was surely smaller than 0.0001.  

Equations (14) and (15) allow us also to answer two important questions con-
cerning aging. Should the sequence of successive dilutions be stopped at an in-
stant where the biological efficiency has a high value? Does the efficiency of ho-
meopathic preparations not totally vanish after some time? To answer these 
questions, we solve Equations (14) and (15) after the instant t = 0, where the 
process of EHDs was stopped. We assume that all active molecules were already 
eliminated (A = 0), but without shaking, the values of β and γo are smaller. 
Figure 27 shows the results of numerical integrations when β is reduced from 
0.5 to 0.1 and γo from 1.5 to 1, while ε and ε' are not modified. The black curve 
results from Y(0) = 30 and Z(0) = 1, while the red one would be due to Y(0) = 5 
and Z(0) = 10. We see that the initial conditions are irrelevant for the final re-
sult, although we assumed that ε' = 0.0001.  

It follows indeed from (14) and (15) that Y(t) → γo/ε = 10 and Z(t) → β/ε = 1 
for ε' = 0, when 0Y =  and 0Z = . The correction for small values of ε' can be 
obtained by introducing the lowest order approximation in the same equations. 
The reduction of the final values is negligible when ε' = 0.0001. It is remarkable 
that the alternative dominance of single and associated chains continues during 
the initial period of aging. We have also to stress the fact that preservation of the 
biological efficiency of EHDs requires that the system has not been perturbed. 
This can happen by heating and ultrasound, but also in another way. 
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Figure 26. Possible variations of Y(t) for many successive dilations. 

 

 
Figure 27. Effects of aging after stopping serial dilutions. 

3.9. Crosstalk and Beat Phenomena 

Official tests, performed in 1993, led to an unexpected fiasco (Section 5.2). It 
appeared, indeed, that the biological efficiency of EHDs was lost, while samples 
of pure water, needed for blind tests, turned out to be efficient. Benveniste was 
confronted to authorities, who concluded that the results did merely confirm 
their conviction that water memory is not a real and reproducible phenomenon. 
Since Benveniste knew that this was not true, because of numerous tests, he tried 
to understand the new observed facts. He realized that tubes with genuine EHDs 
of active molecules had been placed during some time near tubes that contained 
merely pure water. Benveniste thought therefore that the invisible structures, 
which are responsible for water memory, have to emit “signals”, allowing them 
to transfer their biological efficiency to pure water. It was not clear why this in-
formation transfer was possible and why this could result in silencing authentic 
EHDs. However, Benveniste succeeded in proving, by means of purely empirical 
means, that the assumed signals do really exist.  

He could detect them by merely putting a sample of some EHDs in a coil. This 
did yield an electric signal that could be amplified and applied to pure water. 
This involves physical processes that will be explained later on, but we know al-
ready that biologically active molecules stimulate their specific receptors by 
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means of an oscillating electric field and resonance effects. Trimmed chains of 
WPs allow for standing waves and create an oscillating electric field that has the 
same effect inside EHDs. Normal interactions between active molecules and 
their receptors can also be bypassed (Figure 20). 

We noted that resonance effects allow for some tolerance. It is thus sufficient 
that f ≈ f1 ≈ fr, where f1 is determined by the length L of trimmed chains (f1 = 
v/2L). However, it follows from Lo’s measurements that L = ND, where N ≈ 20. 
The fundamental frequency f1 for standing waves will thus not always be pre-
cisely equal to the frequency f that is characteristic of the chosen type of active 
molecules. It can happen, for instance, that the chosen type of active molecules 
did initially create attached trimmed chains where N = 20 or N = 21. Autogene-
ration of equally trimmed chains of WPs during successive dilutions is governed 
by a collective electric field that oscillates then at one of these frequencies. EHDs 
are thus able to “breed” identically trimmed chains. However, the resulting 
“strains” can be slightly different for two EHDs of the same substance. This is 
irrelevant when f ≈ f1 ≈ fr. However, two EHDs with trimmed chains of nearly 
equal length produce electric fields of slightly different frequencies ( of f f± = ± ∆ , 
where of f∆  ). When these EHDs are contained in vessels that are put side by 
side, these fields are superposed. The resulting electric field does then oscillate at 
the average frequency fo with a modulated amplitude. Indeed,  

( ) ( ) ( ) ( )cos cos 2cos coso o of f t f f t f t f t− ∆ + + ∆ = ∆  

( ) ( ) ( ) ( )cos cos 2sin sino o of f t f f t f t f t− ∆ − + ∆ = ∆  

This beat phenomenon is well-known in acoustics. Even when the proximity 
of two slightly different EHDs was only temporary, their already strong electric 
fields generate together both types of trimmed chains. When this happened only 
during a short time, they will continue to produce both types of chains and 
therefore “mixed signals”. Their biological efficiency will vary in a periodic way, 
but at a very slow pace. The relative phase of the superposed fields is also im-
portant, since the sum of two signals of equal amplitude will double their ampli-
tude of oscillation. For the difference, the signals annihilate one another, but 
become strong again from time to time.  

Momentary proximity of a genuine EHD with pure water can create there a 
small number of trimmed chains that resonate at one of the two possible fre-
quencies. The sample of pure water becomes biologically active by “breeding” 
always the same strain of trimmed chains of Water pearls. Although Benveniste 
ignored the underlying mechanism, he had discovered that information transfer 
is possible. It proved the existence of signals and that they were responsible for 
water memory. Nevertheless, these signals had also extremely disconcerting ef-
fects. Beauvais used the term of “coherent discordances” to designate “wild 
transfers” and the fact that one operator did even “erase” the imprint [10] (p. 
429, 450 and 453). These facts were enigmatic, but reproducible. For us, these 
parasitic effects do corroborate the theory of WPs. 
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3.10. Confirmations by Physico-Chemical Measurements 

Vittorio Elia and his collaborators performed remarkable experiments with the 
“long term goal” of clarifying the problem of water memory [46]. They began in 
1999 with measuring the heat of mixing when EHDs of active molecules (like 
As4S4) were dissolved in twice distillated water. It appeared that addition of 
EHDs of NaOH resulted in energy release. It was concluded that EHDs contain 
aggregates of water molecules that are able to create new ones. Elia insisted on 
the fact that these structures have the capacity of “self-organization”. In terms of 
WPs, we can say that the added ions do also create trimmed chains of WPs. 
They are different, but bonds do always correspond to negative energy states. 
Mixing had thus to liberate more energy in the form of measurable heat. 

The same team measured also the electric conductivity χ at 25˚C. Dissociation 
of NaOH produced ions that contributed to the measured electric conductivity. 
Ions liberated from the walls of the vessels did that also, but addition of EHDs of 
active molecules produced a significant excess conductivity χE. Since it was al-
ways proportional to the measured heat of mixing, both phenomena had a 
common cause [47]. The added active molecules increased the concentration of 
trimmed chains and thus also the electric conductivity inside molecular chains 
by the von Grotthuss mechanism. 

Elia and his team made two other remarkable discoveries by measuring the 
excess conductivity χE for homeopathic dilutions of Arnica Montana during ag-
ing. The active substance is helenalin, (C15H18O4, containing charged oxygen 
atoms). Its EHDs displayed wave-like variations of χE, but at an extremely slow 
pace [48]. In 4.4 years, there appeared only 4 peaks, which had nearly the same 
form, but their amplitude increased [49] [50]. We can now understand this fact 
in terms of beat phenomena. It appeared also that the excess conductivity χE was 
much greater for smaller volumes of EHDs. Initial conditions are usually irrele-
vant for aging (Figure 27), but Y(t) → γo/ε. This value will thus be increased 
when the probability ε for creating associated chains is reduced by surface ef-
fects.  

4. More Evidence of Ferroelectric Water Pearls 
4.1. The Measured Frequency Spectrum 

Benveniste discovered that EHDs of biologically active molecules produce “sig-
nals” that can be detected by means of a coil. The output was an electric tension 
that could easily be amplified and stored in analogical or digital form. The 
waveform was similar to that of noise, resulting from a superposition of simpler 
signals, randomly shifted with respect to one another. The predicted spectrum is 
a harmonic one: 

1sf sf=  where 1,2,3,s N=                  (16) 

This results from (9), which is an approximation of (10). Montagnier did pub-
lically show the results of Fourier analysis, nicely displayed on a computer screen 
[13]. The frequency spectrum did correspond to equidistant bell-shaped peaks. 
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Moreover, their heights varied in the course of successive dilutions. Montag-
nier’s patent US2010323391 contains the spectrum obtained by Fast Fourier 
Analysis [51]. It yields clearly separated spectral lines for shorter extracts. For a 
particular type of active molecules, the reported values were 

1000,2000,3000,4100,5100 and 5500 Hzsf =  

The three lowest values do precisely correspond to (16). Since higher frequen-
cies than f1 result from molecular agitation in liquid water, they are excited with 
decreasing intensities. This implies greeter uncertainties. Important results of 
normal Fourier analysis were presented in an article [14], even for several sub-
stances and different stages of dilutions. They are especially interesting, like hie-
roglyphs, when we understand their meaning. For the first dilutions, there was 
only one great peak at the fundamental frequency f1. We can attribute it to 
trimmed chains that are still attached to active molecules. Further dilutions led 
to the appearance of additional peaks, according to (16). Their average height 
increased during successive dilutions, but was maximal for dilutions D-9 to 
D-12. It did strongly decrease for D-13. 

These facts agree with Figure 24 and confirm the predicted dissymmetry of 
peaks of activity. For the purpose of these authors, it was not necessary to con-
tinue the sequence of dilutions. They wanted only to get EHDs of maximal effi-
ciency. It could be reliably predicted by observing the height of the peaks at 
higher frequencies. It corresponds, indeed, to the first stage of successive dilu-
tions where Y(t) and the biological efficiency are maximal. It may be astonishing 
that the peaks for some harmonic frequencies fs were depressed, but this due to 
interference effects, also for musical instruments [52]. 

4.2. Water “Balls” and Their Alignments  

S.Y. Lo measured the diameter (D = 15 nm) of WPs. The second group of struc-
tures had variable sizes of about 300 nm. This yields the length L of chains of 
WPs. Montagnier and his collaborators tried to measure the size of the required 
information carriers of water memory by means of filters. This method sug-
gested a size between 20 and 100 nm [15]. No one knew that the carriers of water 
memory are single chains of WPs and can thus be broken by filtering. If L = ND 
were always shorter than 100 nm, these chains would contain at most N = 7 
WPs. The resolution for distinguishing different types of active molecules would 
then be too small to be efficient. By the way, the measured values of L = λ/2 ≈ 
300 nm and f1 = v/λ ≈ 1 kHz, allow us to determine the velocity v = 2L/f1 ≈ 0.6 
nm/s for any chain of WPs.  

Lo found also by means of interference measurements a third group of su-
pramolecular structures. Their size was much more variable, but of the order of 
3000 nm [40]. The X-ray spectrum confirmed that they were only constituted of 
water molecules, even without silicon contaminations from the vessels. These 
structures could be created by solutions of different types of initiators, but re-
quired high concentrations of chains of WPs. Excitation by UV light produced 
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fluorescence at 298 nm, which is absent for pure water and ice. These “water balls” 
survived after short heating at 80˚C, but were decomposed by vigorous agitation. 
They were then spontaneously reassembled after about 15 min. Figure 28 re-
produces, with kind permission of World Scientific Publishing Company, two 
pictures that were published the same year [53]. 

The left image proves that these balls tend to be aligned and the right image 
that they can be deformed. We propose therefore that water balls are constituted 
of chains of WPs, loosely bound to one another with global quasi-ferroelectric 
ordering. Water balls are thus dipolar, but contain also water molecules that can 
be expelled. They were said to be examples of “soft matter”. Lo discovered also 
that when these balls are very numerous, they constitute extremely long align-
ments, visible by optical microscopy [54]. Spectacular images of these align-
ments were published in 2009 and reproduced in a book [55]. It gathers all ar-
ticles of Lo and his collaborators concerning the discovery and empirical analysis 
of structured water. These images are also contained in the open-access article of 
Mae-Wan Ho [56].  

It is very remarkable that these alignments are branching-off sideways, always 
at the same angle of 78˚. Figure 29 shows that this astonishing fact can be ex-
plained. Since water balls contain chains of WPs, they have to be attached to one 
another at points, where all effective dipoles are oriented toward the center of 
neighboring water molecules. These dipoles are represented by red arrows, but 
parallel molecular chains are shifted with respect to one another by the distance a. 
 

 
Figure 28. Transmission electron-microscopies, realized by Lo [51]. They show deforma-
ble “balls”, constituted of chains of water pearls. 
 

 
Figure 29. Chains of water molecules allow for strong bonds when they meet one another 
at the angle ψ = 78˚. 
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Since the centers of adjacent water molecules are separated by the distance d, 
molecular chains meet one another at an angle ψ, which appears in Figure 29 at 
two different places, indicated by dots. It follows that cosψ = a/d = 0.6/2.9. Thus, 
ψ = 78˚. This result does strongly confirm the validity of the proposed theory. 

4.3. Proposed Explanation of Water Bridges  

What would happen if liquid water were subjected to very strong electric fields? 
This question has been raised long ago by the British lawyer Willian George 
Armstrong, who became a respected engineer, inventor and scientist. He had a 
powerful source of high electrostatic potential differences and used it to find out 
if they produce very intense electric currents in liquid water. He knew that these 
currents would result from motions of H+ and OH− ions, but he discovered sur-
prising facts. He presented them in 1893 to a general audience as being enter-
taining, but mentioned that they might “be interesting to experts” [57]. Actually, 
he filled two wine glasses up to the rim with pure water and put them in contact 
with one another. He immersed a long cotton thread in one of them and intro-
duced one wetted end of it in the other glass. He was amazed to see that a high 
potential difference between water in the adjacent glasses did transfer the whole 
cotton thread to the other glass. Why did this happen? 

The spongy cotton thread had to be entrained by motions of charges. Since 
OH− ions have a greater mass than H+ ions, the thread should move towards the 
positive pole. This is what Armstrong observed, but the water level remained 
constant in both glasses. This was confirmed when Armstrong used a vessel 
where a thin tube allowed to see more precisely any variation of this level. He-
mentioned that during a few seconds after the complete transfer of the cotton 
thread, a “rope of water” remained suspended between the two glasses. When 
Elmar Fuchs was studying physics in Austria, he heard about this phenomenon 
and reproduced it with a source that could sustain high currents at 15 kV, for 
instance.   

The first results were published in 2007. He found that the cotton thread was 
not necessary to produce a “floating bridge” of liquid water [58]. It remained 
stable as long as the high electric field was applied. This phenomenon did raise a 
fundamental problem [59]: how is it possible that a strong electric field modifies 
the interaction between water molecules in the liquid state so much that it be-
comes able to resist gravity? The generation of the water bridge was itself a com-
plex process. At first, the water surface became agitated in both vessels. Then, a 
very thin filament of liquid water established contact, but it lasted only a fraction 
of a second. Its diameter was then suddenly increased to yield a cylinder of cir-
cular section, indicating strong surface tension. It remained suspended in air like 
a catenary, even when its length was slowly increased up to 2.5 cm at 25 kV. 
Fuchs started then a systematic study of this strange phenomenon with various 
collaborators, to discover the cause of this “new state” of liquid water.  

Since water bridges provided direct visual evidence, it would have been diffi-
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cult to negate the reality of these observations, but the basic problem was the 
same as for water memory. What could be observed? In regard to electric con-
ductivity, it was confirmed that the transport of charges is bidirectional [60]. 
Protons (H+) and proton-holes (OH−) are passing through the bridge. By mea-
suring the complex impedance between 100 Hz and 10 MHz, it appeared even 
that the charges were moving like nearly-free conduction electrons in metals 
[61]. Raman scattering indicated also that vibrational modes in liquid water were 
not modified with respect to usual ones in bulk water [62]. Charge transport was 
due to the von Grotthuss mechanism, but we have to solve two problems. 1) 
Why is cohesion of water molecules in the liquid state enormously increased by 
applying a very intense electric field? 2) How can many H+ and OH− ions move 
in opposite direction, without hindering one another?  

The first question has to be related to the higher density of liquid water near 
the surface of the bridge. This was proven by X-ray scattering for two-dimensional 
beams of submillimeter extension [63]. Since neutron scattering is sensible to 
hydrogen atoms, it yields complementary results [64]. The stability of water 
bridges has been attributed to higher surface tension [65], but that is not sufficient, 
since longitudinal stretching of the “liquid cable” requires greater bond-strength 
along this direction. We propose that the stability of water bridges is due to the 
formation of very long chains of WPs. 

We can then understand the sequence of events. At first the water surface be-
came agitated in both beakers, since growing chains were formed near the elec-
trodes and then moving around, until contact was established between water in 
both vessels. At first, there were only few chains, constituting a capillary bridge, 
but once the way was open, more and more chains of WPs were rapidly formed 
by the very intense electric field. Statistical fluctuations of the traffic of protons 
and proton-holes along the thin bundle of chains of WPs led to repulsion. It be-
came more efficient to push parallel chains towards the surface of the liquid 
bridge. The capillary bridge was, indeed, replaced by a thicker one to achieve a 
new equilibrium. Since WPs are constituted of more densely packed water mo-
lecules than in liquid water, chains of WPs, situated at the surface of water 
bridges should there produce a greater density. This explains also the observed 
birefringence for linearly polarized light. Moreover, higher potential differences 
and greater electric currents require more chains of WPs at the surface of the 
liquid bridge. This should increase the diameter of the bridge and does agree 
with observations [66].  

An increase of the applied potential difference allows also for a greater length 
of the catenary. This fact is due to the polarization of water molecules, as shown 
in Figure 30. The left part represents a molecular chain like that of Figure 10 for 
a moderate electric field, while the right part indicates that a very intense electric 
field E does strongly polarize the water molecules. The usual angle of 106˚ be-
tween OH bonds is reduced and the distance between proton pairs and the nega-
tive cores of oxygen atoms is also reduced by deformations of the usual, nearly  
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Figure 30. Aligned water molecules get more tightly bound by a strong electric field E. 
 
spherical shape. Very strong polarization of water molecules would thus increase 
the mutual attraction of neighboring water molecules. This is also true when the 
bonds are due to intramolecular exchange effects (Figure 6). Electric conduction 
by the von Grotthuss mechanism would thus be facilitated, but regulation of 
opposite traffic of protons and proton holes is imperative for very intense elec-
tric currents passing though the water bridge.  

Some observations indicated that this might happen in a helicoidally coordi-
nated way [65]. This makes sense, when we adopt the model of Figure 31. 
Groups of positive and negative charges are there represented by red and blue 
dots. They are distributed in a plane, to constitute a lattice like that of ionic 
crystals, but this plane rotates around the axis, while the charges are advancing 
along different lanes, represented by red and blue lines. [This double helix is 
similar to Da Vinci’s famous stair case of the chateau of Chambord in France. It 
contains two flights, allowing for simultaneous upward and downward traffic.]  

4.4. Lack of Evidence for Coherence Domains 

Emilio Del Giudice et al. proposed in 1988 a bold hypothesis concerning proper-
ties of bulk liquid water at very small scales [67]. Basically, they assumed that in-
side some water molecules that belong to small spherical domains, electrons can 
remain in an exited state. Since the ionization energy of water molecules is 12.6 
eV, they considered excitation to an energy level at 12.06 eV. To keep the elec-
trons in this weakly bound state, they assumed constant emission and reabsorp-
tion of virtual photons, trapped inside the small spherical volume. This required 
that electrons should be accumulated at the surface of the sphere, while positive 
charges had to be expelled and would be homogeneously distributed in the sur-
rounding liquid water. The accumulated electrons should constitute a barrier 
that reflects virtual photons. It was also necessary to postulate that the ensemble 
of excited electrons inside such a sphere are oscillating in phase with the EM 
field of all virtual photons. Because of the selected excitation energy, the wave-
length would be close to 100 nm and determine the size of these coherence do-
mains (CDs). It was estimated that they contain about 1000 water molecules, 
since only a fraction of the internal electrons would be excited.  

Although this theory was initially conceived for bulk water [68], it was as-
sumed later-on that it should even account for exclusion zones, water bridges 
and water memory. Because of the prestige of quantum field theory and the need 
of a rational justification of the mysterious phenomenon of water memory, the 
theory of CDs had increasing impact. However, we have also to mention what 
happened in 1993. It had already been decided that Benveniste’s Unit 200 would  
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Figure 31. Opposite motions of bunched charges along a double helix. 

 
be closed, but he found a more objective method for detecting the biological ef-
ficiency of EHDs. He was thus allowed to prove the reality of water memory by 
means of blind experimentation, subjected to rigorous control of Georges Char-
pak. He was the 1992 Nobel Prize laureate in physics, since he invented a new 
type of particle detectors for CERN. Benveniste tried to convince him, by refer-
ring to the article of Del Giudice et al. [67]. 

Since this article concerned condensed matter physics, Charpak asked the 
opinion of Pierre-Gilles de Gennes, also Nobel Prize winner in physics. He ans-
wered that this theory is “worth nothing”, since it is based on “false hypotheses” 
([6], pp. 154, 168). Beauvais mentions that de Gennes had asked Philip Nozières 
([13], pp. 395, 398 and 402). He was the top theoretical physicist in France for 
new properties of condensed matter. Since such a harsh judgment might have 
been influenced by controversies, we have to know why the concept of CDs has 
been proposed. The theoretical physicist Giuliano Preparata (1942-2000) made 
important contributions to elementary particle physics, before becoming inter-
ested in applying quantum electrodynamics (QED) to condensed matter physics 
[68]. He viewed the existence of CDs as being a general property of pure liquid 
water in the sense of a “two fluid picture”. He stated even that “the concept of 
H-bonds is merely phenomenological”, since liquid water should rather be 
viewed as a “condensed vapor” than “molten ice” ([68], pp. 38, 196, 197). Liquid 
water would locally be condensed, before becoming ice.  

Preparata was coauthor of the official article on CDs [67], presenting the same 
idea in Physical Review Letters. The primary author, Emilio Del Giudice 
(1940-2014), was one of the pioneers of string theories and explained why he got 
interested in CDs [69]. Since his youth, he did feel that the whole universe con-
stitutes a profoundly integrated entity and studying physics, he developed a 
sense of wonder in regard to quantum mechanics (QM). He got especially inter-
ested in “entanglement”. Since this concept provided his motivation for consi-
dering CDs, we have to clarify its origin and physical meaning.  

Albert Einstein had contributed to the development of quantum mechanics, 
but in 1927 he learned about new ideas and discussed them with Niels Bohr at 
the Solvay conference in Brussels. He perceived very keenly that this theory at-
tributed peculiar properties to measurements. He developed this idea in the 
famous EPR article of 1935, by means of a thought experiment. We describe it in 
equivalent terms, by considering two particles that have a property that can be 
precisely measured, but allows only for two possible values: +1 and −1. Since 
QM accounts for limited knowledge, we can define a state where it is only 
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known that the values ±1 are equally probable. It is then sufficient to determine 
by means of a new measurement that the value is +1 for one particle, to be in-
stantly sure that it is −1 for the other particle. It does not matter how far these 
particles are separated from one another at that instant.  

In classical physics, that would require the existence of a physical link. Eins-
tein asked therefore: are such “spooky actions” at a distance physically possible 
or not? He did only raise the problem, while Schrödinger had developed a theory 
where causal relations were preserved for the propagation of wave functions in 
space and time. He insisted on the need of causal relations and did not like the 
idea of “quantum jumps”. They do not allow for further analysis. Since Einstein 
had described in a vivid way that some measurements seem to imply universal 
connections, he coined the word of “entanglement” to account for them. They 
would require that instantaneous information transfer is possible at any dis-
tance, although this is excluded by the theory of relativity. Actually, it is suffi-
cient to accept that QM is a theory of possible knowledge, limited by universal 
restrictions that Nature imposes on some measurements.  

Classical physics postulated that totally precise, simultaneous knowledge of 
positions and velocities is possible. It implied continuity and strict causality, but 
this assumption has to be corrected. The basic paradigm of QM is that the con-
stant h imposes irreducible uncertainties. The concept of “virtual photons” re-
sults from the fact that during short time intervals Δt, the energy of a system can 
only be known with a minimal uncertainty (ΔE ≈ h/Δt). Since the theory of rela-
tivity imposes that the energy (mc2) of particles of given mass is finite, the num-
ber of identical particles cannot be precisely known during short time intervals. 
This applies also to photons and leads to some observable effects. 

Del Giudice was convinced that virtual photons are even able to establish a 
link between physical systems when they are separated by arbitrarily great dis-
tances. He expressed this idea [70] by stating that telepathic communications are 
possible, but he knew that physical theories are only justified by their agreement 
with observations. He tried thus to show that the concept of CDs accounts for 
unexplained phenomena, like water memory, exclusion zones and the stability of 
floating water bridges. This idea was diligently propagated, but does it really ac-
count for water memory?  

Bellavite and other health specialists at Italian universities reviewed in 2013 
the status of research concerning EHDs [71]. They concluded that “evidence 
strongly supports the notion that the structuring of water and its solutes plays a 
fundamental role”, but the mechanism is not yet understood. Two hypotheses 
had been proposed: hydrogen bonded clathrates and coherence domains. After 
examining the evidence, they concluded that “none is fully convincing”. The 
concept of ferroelectric water pearls was not yet known. It explains essential 
properties of EHDs, like the observed quasi-periodic variations of their biologi-
cal efficiency, the measured frequency spectrum of signals created by local 
structures and even the angle of 78˚ between alignments of water balls. In his 
regard, we have to mention that Mae-Wan Ho tried to explain alignments of 
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water balls [56], by assuming that expelled protons are not homogeneously dis-
tributed in liquid water. They could be more concentrated between the charged 
CDs, but that is not sufficient to explain the observed angle of 78˚ for chains of 
water balls.  

Benveniste was sure that water memory is real, because of the often verified 
quasi-periodicity of the biological efficiency of EHDs and detection of signals. It 
was thus obvious that a physical explanation had to be possible. Since CDs 
seemed to offer an explanation, Montagnier accepted the help of scientists who 
advocated this approach. They stated even that water memory involves the 
“gauge theory paradigm of quantum fields” and “the framework of sponta-
neously broken gauge symmetry theories” [72]. These words are familiar to 
those who know the jargon of quantum electrodynamics (QED). They are im-
pressive, but are they necessary? We recall that Thomas Kuhn distinguished 
three periods in the process of scientific revolutions [45]. At first, the observed 
anomaly is declared to be impossible, since it does not agree with conventional 
knowledge. When it is confirmed and cannot simply be denied anymore, it 
comes to a “crisis”, where any hypothetical explanation may be proposed.  

The theoretical chemist Tamar Yinnon published a series of articles, where the 
concept of CDs was elaborated, by postulating the existence of various types of 
these structures. He presented them in 2015 as being “predictions of QED”, but 
we found only a catalogue of assumed structures [73]. The original CDs were 
renamed CDelec. Their diameter would thus be about 100 nm. Greater structures, 
called CDplasma, were assumed to contain some molecules of the solvated sub-
stance, but also more water molecules. Their effective dipoles would be oriented 
by the electrically charged active molecules or ions inside these domains. The 
resulting hydration spheres were said to be subjected to (monopolar) plasma os-
cillations with overall coherence. The size of these domains would be of the or-
der of 1000 nm = 1 μm. A third type of CDs should reach sizes of 10 - 100 μm. 
They were called CDrot and assumed to contain only water molecules, but all of 
them would have nearly parallel effective dipoles. They would be large elongated 
ferroelectric particles. Moreover, agglomerated CDplasma and CDrot entities con-
stitute “supra-domains”. 

4.5. Forced Oscillations of Water Molecules in EHDs  

Instead of commenting these respectable attempts to find an explanation of wa-
ter memory, we continue to collect experimental results and to test the validity 
of the concept of WPs. Adriana de Miranda measured, for instance, the dielec-
tric response of water molecules that interact with supramolecular structures 
[74]. She used 14 lots of LiCl, prepared by pharmaceutical laboratories and de-
termined the spectral distribution of the real and imaginary parts of the imped-
ance in the frequency range of 1 kHz - 13 MHz. She defined these variables by 
means of an equivalent circuit and compared the results to those of the meas-
ured dielectric response of EHDs of H2O molecules in pure water, prepared in 
the same way. To understand the underlying physical processes, we consider the 
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response of the effective dipoles of water molecules to an oscillating electric field 
at various frequencies. The center of these molecules remains practically mo-
tionless, while the positive tip of the effective dipole is displaced by a small dis-
tance u(t) along the direction of the applied electric field. When n is the density 
of water molecules, the instantaneous polarization density is P(t) = n2qu(t), 
where the displacement u is subjected to the equation of motion  

( ) ( )u u q m E tτ= − +  

Indeed, 2q is the charge and 2m the effective mass of the pair of protons. 
When the applied electric field E(t) is suddenly extinguished at the instant t = 0, 

( ) ( ) ( )0 expu t u t τ= − . The value of the relaxation time τ depends on all possi-
ble interactions in bulk water. For an electric field that oscillates with some con-
stant amplitude at a given (angular) frequency ω, we get  

( ) ( ) ( )2 cos exp .E t E t E i t c cω ωω ω= = − +  and the instantaneous polarization 
density is ( ) ( ) ( )exp .P t E i t c cωβ ω ω= − + . The complex conjugate (c.c) re-
quires merely that ω is replaced by −ω. It follows that 
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The function β1(ω) specifies the average orientation of effective dipoles. At 
low frequencies ( 1ωτ  ), they are oriented along the direction of the applied 
electric field. The polarization drops quite suddenly when ωτ ≈ 1 and is reduced 
to zero when 1ωτ  . The imposed rhythm is too fast to allow the molecules to 
follow, because of friction. The imaginary part β2(ω) varies like x/(1 + x2), when 
x = ωτ. This yields a peak that is centered on x = 1. The function β2(ω) describes 
the energy-loss of water molecules, because of friction. It is maximal when ω = 
1/τ. Since increased friction leads to lower values τ, a higher frequency is then 
required to achieve great energy losses. In QM, higher frequencies correspond to 
higher energies and in QED even quasi-static electric forces are due to exchanges 
of virtual photons. Miranda found that the values of relaxation times were si-
tuated between 40 and 100 kHz for EHDs of LiCl and H2O molecules in pure 
water. This means for us that friction resulted from the creation of trimmed 
chains of WPs that had different lengths. However, the height of the peak for the 
energy-loss function varied in the course of successive dilutions of LiCl in such a 
way that it was maximal for D-9. Since friction is proportional to the concentra-
tion Y(t) of single trimmed chains of WPs, this agrees with our theoretical pre-
dictions (Figure 24).  

4.6. Discovery of Highly Remarkable Resonances 

Since we expected that stationary waves on trimmed chains of WPs can be ex-
cited by an electric field, we did search relevant data and found the results of the 
Indian electrical engineer Chitta Ranjan Mahata [75] [76]. He had witnessed the 
healing power of homeopathy and wanted to understand how this is possible. 
Studying the literature [77], he discovered the proposition of Barnard [78]. He 
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declared already in 1965 that homeopathy is in need of a “surer foundation” 
than to refer to positive results. This should be possible, since homeopathy re-
quires that EHDs create substitutes of the initially dissolved active molecules. 
Since they should merely be constituted of water molecules, Barnard thought 
that they might “join up to form long molecular chains”. This idea was probably 
suggested by the concept of polywater, which was in vogue at that time. Barnard 
proposed that these molecular chains may be wrapped around active molecules 
and that their length would thus provide the required specificity.  

We were surprised that some important ideas had already been formulated 
more than 20 years before Benveniste’s discovery. Specificity was even related to 
the length of local structures, composed of water molecules. Barnard was aware 
of the hypothetical nature of this proposition, but insisted that it indicates “the 
kind of experimental research in physics and chemistry needed now to establish 
the truth of homeopathy.” Mahata realized that he could test this hypothesis, 
since ordered molecular groups in liquid water should lead to resonance effects. 

Before describing and explaining his results, we have to mention that Barnard 
and Stevenson provided more details in another article [79]. They reviewed what 
was known about properties of EHDs, prepared for therapeutic purposes. It had 
already been established that their capacity of healing is subjected to “rhythmic 
variations” in the course of successive dilutions. It was also mentioned that bio-
logically active molecules contain electric charges and that Alphonse Gay had 
developed in the early 1950th a method for measuring the dielectric response of 
EHDs [80]. It was complicated, but sufficient to identify EHDs of NaCl after 27 
centesimal dilutions. [We thank Dr. van Wassenhoven for his help to get access 
to this paper.] 

Mahata was not aware of these measurements and developed with his colla-
borators a much more efficient technique. In 2007, it was ready [81] and in 2010, 
they presented results for the spectral distribution of the real and imaginary 
parts of the dielectric constant [75] in a large frequency domain (100 kHz - 50 
MHz). They found typical features of resonances for preparations of Cuprum 
met, but also for pure water. In 2013, they provided more results [76] and did 
interpret them in terms of Barnard’s model. There were resonances, but we 
noted four perplexing anomalies: 

1) These resonance frequencies were always very high: about 25 MHz instead 
of the expected ones at about 1 kHz. 

2) There was only one resonance frequency, without harmonics.  
3) A resonance was even observed for pure water.  
4) The energy-loss functions were not symmetric, as required for usual re-

sonances. 
This did not correspond to expectations for single chains of WPs, but we rea-

lized that the third anomaly could be explained, since pure water contains H+ 
and OH− ions. Their electric fields might be sufficient to produce at least isolated 
water pearls. The observed high value of the resonance frequency would then 

 

DOI: 10.4236/jmp.2018.914165 2700 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2018.914165


A. Meessen 
 

require a very strong restoring force. For single WPs, it could only be due to 
their surface charges. They are represented by red and blue rims in Figure 31. 
For low resonance frequencies (~1 kHz), it was licit to assume that the oriented 
water molecules remain oriented towards the surface of the WP. However, at 
high frequencies (~25 MHz), the solid substrate is moving too fast to allow them 
to be reoriented so rapidly. Miranda’s measurements indicated, indeed, that reo-
rientation of water molecules occurs at lower frequencies. Because of the prox-
imity and spatial distribution of the internal and external charges, this would 
then lead to a very strong restoring force.  

We test the validity of this hypothesis, by comparing its logical consequences 
to Mahata’s experimental results. The component E(t) of the applied electric 
field, which is normal to the symmetry axis of the WP sets the positive and nega-
tive poles of the WP in forced oscillation. The equation of motion for small dis-
placements uo(t) of these poles is 

( )2 expo o ou u u C i tωγ ω+ Ω + = −                   (17) 

The (angular) resonance frequency Ω is determined by the strong restoring 
force and the effective inertial mass of the poles. Energy losses by friction are 
characterized by γ, while Cω is proportional to the amplitude of the electric field 
E(t). Thus, ( ) ( ) ( )expou t B E i tωω ω= −  for constantly forced oscillations. The 
polarizability β(ω) of pure water that contains a given concentration of isolated 
WPs is proportional to B(ω). When we normalize β(ω) to get always the same 
static polarizability β(0) = 1, it follows that  

( )
2 2

2 2 2 2 2 2 2

2  i
i

β ω
ω ωγ ω ω
Ω Ω ΩΓ

= ≈ +
Ω − − Ω − Ω − − Γ

            (18) 

We simplified the real part β1(ω) to insist on the fact that without friction, this 
function would diverge when ω = Ω. At low frequencie (ω ≤ Ω), the average 
orientation of an ensemble of isolated WPs is identical to that of the applied 
electric field. It is opposite when ω ≥ Ω, but WPs cannot follow the applied field 
when ω Ω . The function β2(ω) describes energy losses. They are maximal 
when ω ≈ Ω. The peak is symmetric and we can set γ/2 = Γ. The height of the 
peak is then Ω/2Γ and its width at half height is equal to Γ. Figure 32 shows (in 
black) the frequency dependence of β1 and (in red) the spectral distribution of 
the energy-loss function β2 when the resonance frequency f = 25 MHz and Γ = 5 
MHz.  

These results had to be expected for a normal resonance, but Mahata’s expe-
rimental results for β2 did correspond to curves like the blue one. The height of 
the observed peak has been adjusted in Figure 33 to coincide with the height of 
the normal peak and β2exp → 0 when ω Ω . Measured energy-loss functions 
are thus asymmetric. This feature did also appear for EHDs of various biologi-
cally active substances. Only the values of Ω and Γ, as well as the mysterious 
“dip” of the energy loss functions were slightly different. All these facts will be 
explained later on (in Section 5.4). Before we do that, we continue the equally 
necessary search of more evidence. 
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Figure 32. Rapid oscillatory rotations of a single water peal, excited by an electric field. 
 

 
Figure 33. The spectral distributions of the real and the imaginary parts of the polariza-
bility β, predicted for oscillators that resonate at 25 MHz. The blue curve represents typi-
cal results for Mahata’s resonances. 

4.7. Complementary Experimental Evidence 

The Swiss biochemist Louis Rey did prove in 2003 that EHDs of NaCl and LiCl 
in ultrapure water produce local structures that are preserved after freezing [82]. 
He kept the EHDs during 24 h at −20˚C and reduced then the temperature to 77 
K. When he exposed the transparent disk to a high dose of ionizing radiation, 
most excited electrons did immediately return to their normal state in ice, but 
some of them were trapped in local defects. To leave enough time for diffusion 
of electrons, the ice remained during one week at 77 K. After reaching equili-
brium, the sample was warmed up at constant rate. The trapped electrons were 
thus progressively raised to states of higher energy, allowing for light emission. 
This thermoluminscence is a standard method for examining defects in insula-
tors, since it determines the excitation energies that are required to liberate elec-
trons from various traps.  

There appeared a glow for T ≈ 120 K and a more intense one at T ≈ 166 K, 
especially when NaCl had been dissolved in heavy water (D2O). Since electron 
traps were different for NaCl and LiCl, at least some of them were due to Na+ 
and Li+ ions. Rey concluded that these results prove “without any ambiguity” 
that liquid water has been structured in a lasting way. Since the glows appeared 
only when serial dilutions were followed by vigorous shaking, Rey thought that 
it might produce nanobubbles, attracted by ions [83]. The basic facts did not 
depend on this interpretation and were brilliantly confirmed by van Wijk et al. 
[84]. We can conclude that EHDs did produce trimmed chains of WPs, where 
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the molecules are more closely packed and so strongly bound to one another 
that the ferroelectric crystallites do even subsist in normal ice (Figure 4).  

Demangeat et al. studied the effects of EHDs by means of nuclear magnetic 
resonance [85]. Protons have indeed a magnetic moment that tends to be paral-
lel or antiparallel to the direction of a constant magnetic field Bo. The energy 
difference is proportional to the magnitude of this field and the transition can be 
stimulated by EM radiation of adequate frequency. When the excitation ceases, 
the system returns to its ground state, but there are two different relaxation 
times, T1 and T2, for components of the magnetic moment of protons along the 
direction the magnetic field Bo and perpendicular ones. The ratio T1/T2 depends 
on their environment. For EHDs, the results of measurements did prove that 
“water is a self-organizing system” [78]. Van Wassenhoven et al. presented more 
detailed results of NMR studies, confirming this conclusion [86] and providing 
additional information. 

Other very important facts were discovered in Russia. They did prove that 
water molecules can also constitute stable structures without having to apply the 
standard procedure to get EHDs. Konovalov and Ryzhkina presented in 2014 a 
review [87], where they stated that the following conditions have to be satisfied: 
1) only one type of molecules should be dissolved in pure liquid water at ex-
tremely low concentration, 2) these molecules have to carry an electric charge 
and 3) be subjected to low-frequency EM fields. This was verified for different 
types of molecules and the resulting structures were also observed by Atomic 
Force Microscopy (AFM). The authors insisted that these entities do not result 
from the formation of nanobubbles, but are associations of water molecules. 
This is essential to justify the concept of WPs, although the hypothesis of nano-
bubbles is closer to conventional ideas. 

Burkin and his collaborators [88] performed light scattering measurements 
for very low concentrations of diluted molecules and interpreted their results in 
terms of bubble clusters around ions. This hypothesis leads to inconsistencies 
[89]. The Indian chemical engineer Chikramane and his collaborators used ho-
meopathic drugs, prepared by means of EHDs of various metals (Au, Ag, Cu, Sn, 
Zn and Pt). They did yield local structures of sizes that ranged from 214 to 325 
nm. They could thus be trimmed chains of WPs of length L ≈ 300 nm, but these 
authors claimed that x-ray analysis demonstrated that they do contain particles 
of the initially dissolved metals. They assumed therefore that minute gas bubbles 
were formed during agitation and stabilized by attachment to small metal par-
ticles. Moreover, they thought that these entities rise to the surface and consti-
tute there a thin layer that is reconstituted during subsequent dilutions. This 
would raise unanswered questions. NMR and other measurements of Van Was-
senhoven for copper particles did not confirm this hypothesis [86]. Maybe, some 
procedures for preparing EHDs allow that charged metal particles get attached 
to WPs, because of their surface charges.  

Demangeat thought also that vigorous agitation could produce nanobubbles. 
He proposed even that they might account for water memory by creating a “ste-
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reospecific shell” around active molecules [90]. How could these molds be de-
tached, remain stable and allow for replication? Nevertheless, the concept of 
nanobubbles was attractive in the context of the “crisis”, which resulted from the 
unsolved puzzle of water memory. It required a specific experimental investiga-
tion. The Slovenians Sedlák and Rak combined light scattering with rapid cen-
trifugation and established that biologically active molecules at very low concen-
tration produce real material entities [91]. Their measured sizes ranged from100 
nm to 400 nm for various substances. It was explicitly noted that the mechanism 
of formation of these supramolecular structures and their nature were not yet 
known. However, the exclusion of nanobubbles and the reported sizes are com-
patible with trimmed chains of WPs. 

Elia et al. produced supramolecular aggregates in pure water by repeated con-
tact with a polymer, called Nafion [92]. It is strongly hydrophilic, because of its 
electrically charged sulfonate group (-SO3H). It produced structures in liquid 
water, subsisting after freeze-drying. In solution, they had a high electric con-
ductivity, attributed to proton hopping. They exhibited UV absorption at 270 
nm and modified IR absorption, associated with the OH stretching mode of vi-
bration. Solid residues after evaporation displayed clustered particles of about 40 
to 400 nm. It appeared that these aggregates of water molecules produce circular 
dichroism [93]. This means that plane polarized light, decomposed in left and 
right circular polarized light, does not lead to equal absorption of these compo-
nents. Dichroism indicates the presence of left-handed and right-handed struc-
tures, which can be tripoles in ferroelectric crystallites.  

5. New Types of Molecular Interactions 
5.1. The Sense of Smell 

The most important consequence of water memory and its elucidation is that 
molecules do not only interact with one another by direct contact. This discov-
ery belongs to a trend that began with trying to understand the sense of vision. 
John Dalton had described in 1794 his color blindness. Actually, he was unable 
to distinguish green from red. The British physician and physicist Thomas 
Young was intrigued by this anomaly, which led him to raise again the basic 
question: what is light? Newton had discovered that light of different colors can 
be separated by refraction. This could be explained by assuming that light is 
composed of particles, moving at constant velocity in any homogeneous, trans-
parent medium. Why is it constant and depends on the medium remained mys-
terious, but refraction would then simply result from acceleration or decelera-
tion at the interface.  

However, Young discovered in 1801 that when light passes through two very 
narrow and close holes or slits, there appear dark fringes. He explained these re-
sults in terms of superposed “undulations”, similar to those that can be observed 
on water surfaces. These interference effects led to the concept of light waves. 
Colors were then determined by their wavelength. They can be measured by 
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means of gratings, but our eyes do not perform this kind of spectroscopy. Young 
realized that color vision requires only three types of receptors in our retina, 
mainly sensible to red, green and blue. Dalton had no green sensible receptors. 
These receptors had to absorb energy. [During about one century, it was as-
sumed that light corresponds to waves. Actually, it is composed of photons, 
which are particles that carry energy and momentum, defined in terms of fre-
quencies and wavelength. Photons behave even according to laws that are valid 
for waves. This synthesis transcends the idea of a dual nature of light.]  

The English physiologist William Ogle tried to understand the sense of smell. 
Since anomalies could provide a clue, he collected and analyzed cases of “anos-
mia”, i.e. partial or total loss of the sense of smell. He concluded in 1870 that 
odors are not perceived by means of chemical processes. It requires receptors 
that detect waves [94]. Ogle proposed that they should correspond to “undula-
tions of the ether”. [The concept of EM waves emerged only in 1873, through the 
development of Maxwell’s theory. He gathered the laws of electricity and mag-
netisms, established for static or slowly varying electric and magnetic fields. He 
found that they are inconsistent when they are extrapolated to high frequencies, 
but harmony could be restored by adding a new physical law. It implied that 
electric and magnetic fields can constantly be transformed into one another, 
without needing the presence of electric charges. The theoretically predicted ex-
istence of electromagnetic waves was experimentally confirmed in 1887 by Hei-
nrich Hertz.]  

Because of QM, it became also clear why molecules can emit photons of 
infrared light and that this type of spectroscopy allows us to distinguish different 
types of molecules from one another. Malcolm Dyson proposed therefore in 
1938 that the sense of smell is due to receptors that detect vibrational frequencies 
of molecules by energy absorption [95]. How is that possible without compli-
cated instruments? This problem has been solved in 1996 by the biophysicist 
Luca Turin. Being a specialist of perfumes, he wanted to understand how odo-
rants can be perceived and differentiated. Since olfactory receptors of insects, 
animals and humans are very small, he was looking for very compact detectors. 
Thus, he explored the domain of solid state electronics. Eventually, he found that 
this can be achieved by means of inelastic electron tunneling [96]. He told the 
story of this discovery in a very interesting book [97].  

The Japanese Leo Esaki had invented in 1957 an efficient diode. It was based 
on properties of two n or p type semiconductors, separated by a very thin gap. It 
blocks the passage of electrons or electron holes, when the conduction band on 
one side meets a forbidden band on the other side. However, these bands can be 
shifted with respect to one another by applying a potential difference. Charge 
carriers can then pass through the intermediate potential barrier by wave-mechanical 
tunneling. The Norwegian Ivar Giaever applied this method to prove in 1960 
that the BCS theory of low temperature superconductivity is correct. It had as-
sumed that electrons can constitute bound pairs and predicted the existence of a 
forbidden band for possible energies. Giaever shared the Nobel Prize with Esaki 
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for demonstrating that this is true.  
Somewhat later, physicists realized that it is not necessary to apply a potential 

difference when the passage of electrons through a very thin gap between two 
semiconductors is not possible. It is sufficient that electrons of higher energy 
lose some kinetic energy inside the gap by collisions with other particles. Turin 
understood that this method allows us to distinguish molecules from one anoth-
er, since this is equivalent to determining the energy required to excite vibra-
tions inside these molecules. This is a simplified version of infrared spectrosco-
py, but requires specific receptors for different odors. That is a matter of genet-
ics, as for color vision. Our color-space is usually three-dimensional, while the 
odor-space is multidimensional. Honeybees have 174 types of receptors and ants 
have even about 400 different ones [98]. This fact led to a system of communica-
tions that determines the peculiar structure of these societies. There is no priva-
cy. Information is locally shared.  

5.2. The Nature of Signals Discovered by Benveniste 

Dr. Benveniste discovered the existence of water memory, but this phenomenon 
could not yet be explained in 1988. Since his experimental results were attributed 
to error or fraud, he was constantly searching simpler and more objective me-
thods to prove the reality of water memory. In 1990, he began to use the system 
of Langendorff ([6], p. 123). It is based on an allergic reaction of isolated hearts 
of guinea pigs or rats and modifies the coronary flow by about 20% ([10], pp. 
337-343, 354). He used empirical methods, but had heard about the theory of 
Coherent Domains, where EM fields seemed to be involved. He tried thus to ve-
rify if magnetic fields of 50 Hz, easily produced by means of the European elec-
tric distribution system, might have some effect. About 100 experiments were 
performed in 1990 and 1991 with physicists of the Central Laboratory of Mag-
netism in France. It appeared that these fields could annihilate the biological ef-
ficiency for EHDs of histamine ([6], pp. 126-128). 

This fact suggested that EM signals might be involved in water memory, but 
how could that be proven? Benveniste spoke in 1992 to a friend, who was an 
electronics hobbyist and thought that if molecules are able to produce EM waves, 
it might be possible to detect them by means of a coil. He constructed a kit, used 
for amplifying telephone sounds. It turned out that this method was sufficient to 
detect signals, created by an EHD that was contained in a tube, simply placed in-
side a coil. The wire delivered an electric signal that could be amplified ([6], pp. 
128-132) by means of an electronic circuit that is valid for microphones, detect-
ing audible sound waves. The detected signal varied thus at low frequencies (20 
Hz - 20 kHz). When the amplified signal was applied to a second coil and when 
another tube, containing only pure water, was placed in this coil, it acquired the 
capacity to stimulate the same receptors than the original EHD. This fact did 
prove that EHDs produce “signals” that allow for information transfer. Beauvais 
called this a “molecular telephone” ([10], p. 336). 
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It was not possible anymore to attribute the published results to errors or 
sloppy work. Benveniste tried thus to restore his credibility in 1993 by means of 
experiments, performed with the system of Langendorff and controlled by phy-
sicists in Georges Charpak’s laboratory in Paris. Charpak told Benveniste that if 
molecular communications were possible by means of ELF waves, that “would 
be the biggest discovery since Newton, if it were true”. However, he was con-
vinced that some fakers in Benveniste’s laboratory did “arrange” the experimen-
tal results ([6], pp. 155-157). Nevertheless, it was decided that two types of mo-
lecules (acetylcholine and ovalbumin) should be used for preparing EHDs. They 
would be blindly treated by means of coding, but the results were catastrophic. 
For 11 of 18 series of tests performed in 1994, the reaction of the isolated hearts 
was inversed. Authentic EHDs had no biological efficiency anymore, while pure 
water produced positive results.  

Benveniste tried to understand this fact. He knew that the tubes had not been 
exchanged, since he did transport them himself, but they had been placed side by 
side. The capacity of genuine EHDs to provoke biological reactions could thus 
have been transferred to pure liquid water, even without needing intermediate 
detection and amplification. To test this hypothesis, he did shield all samples by 
means of thick aluminum foil, but such a Faraday cage was not sufficient to 
suppress the unexpected information transfer. We conclude that it was not 
merely due to oscillating electric fields, but for Charpak, the idea of information 
transfer from tube to tube was even more abstruse than water memory. Actually, 
he wrote in July 1995 to Benveniste that he advances “the most baroque reasons 
to explain the failures” ([6], p. 166). This reaction was revolting for Benveniste. 
He was accustomed to attach primary importance to experimental evidence, but 
was now confronted with the conviction that “a phenomenon that cannot be ex-
plained with present-day knowledge cannot exist.” ([6], p. 90).  

Benveniste considered, on the contrary, that the new, objectively established 
facts demonstrated that information transfer is possible. It has to result from 
signals, which could be “intrinsic to molecular activity” ([6], p. 164). How this 
might be achieved remained mysterious, but Benveniste continued to improve 
his experimental methods ([13], pp. 336, 461, 519, 542, 584). His now very small 
laboratory acquired in 1995 a computer with a program for sound analysis. The 
electric signals, obtained by means of a coil could be digitalized before applying 
them to the second coil ([10], p. 461). Pure water became active, when it was 
exposed to this signal, even when it was digitally transmitted between different 
continents. He described these results in an article, submitted for publication to 
the Journal of Immunology. The final answer was that “the protocol and expe-
riments are perfect, but the article cannot be published without precisions con-
cerning the exact physical nature of the signal” ([6], p. 179).  

It was only known that molecules can emit and absorb EM waves in the fre-
quency domain of microwaves or infrared light. That molecules are able to 
emit signals of very low frequencies seemed to be impossible. Moreover, it was 
believed that biologically active molecules can only stimulate their receptors 
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according to the model of chemical reactions. Since water memory transgressed 
this dogma, the well-known neurologist Changeux called it a “scientific heresy” 
([6], p. 194). Why did referees and “experts” not verify if the reported facts are 
true? Why did the physicist Charpak not help to identify the nature of the sig-
nals? Benveniste recognized that “classical biologists” are not competent in elec-
tro-physics, since they use “structural models” ([6], pp. 180, 184). He mentioned 
also that he had only “adopted the hypothesis of an electromagnetic nature of 
the molecular signal” to organize empirical research ([6], p. 211). He was scien-
tifically isolated and Charpak told him even: “your experiments challenge ele-
mentary laws of physics and common sense” ([6], p. 212). As far as we know, the 
nature of the relevant signals has never been identified. We summarize our ex-
planation in Figure 34. The upper line corresponds to the description that we 
used so far. Electrically charged parts of active molecules do create an oscillating 
electric field.  

We could compare the frequency f of the oscillating electric charge of active 
molecule to the message that has to be transmitted to potential receptors. This 
can be done in a direct way or by means of a bypass, as indicated in Figure 20. 
Trimmed chains are then the information carriers and could be compared to 
messengers. Anyway, the information has to be expressed or encoded in a par-
ticular way. For usual language, it could be encoded in oral or written form. For 
water memory, the vehicle can be an oscillating electric field, but this is not the 
only possibility. This results from the fact that oscillating electric charges are 
equivalent to electric currents. They create an oscillating magnetic field. [Initial-
ly, Oersted did use Volta’s pile to show that motions of electric charges inside a 
wire do heat this conductor, but he noted that the current caused a rotation of a 
nearby compass needle. This phenomenon was totally unexpected, since it was 
only known that magnetic materials are able to do that. Oersted described in 
1820 the properties of the new type of “magnetic forces” in terms of actions at a 
distance, as Newton did for gravitational forces and Coulomb for electric forces.] 

The concepts of electric and magnetic fields were introduced by Faraday. [He 
discovered in 1831 that imagined “lines of magnetic forces” passing through a 
closed loop of a conductive wire induce there an electric current, but only when 
the flux is varying. It can increase, decrease or oscillate. In 1845, he used the  
 

 
Figure 34. Communications by means of oscillating electric and magnetic fields inside 
EHDs, with the aid of two coils (C and c). 
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more general concept of electric and magnetic fields, defined for any point in 
space and time by means of a fictitious experiment. These fields can then vary in 
space and time.] The second line of Figure 34 shows that oscillating electric 
fields can be replaced by oscillating magnetic fields. For Benveniste and Mon-
tagnier these fields were hidden in “black boxes”. They become now mentally 
transparent and even brilliant. Charpak could have explained what was in these 
black boxes, but did not even care, since they were irrelevant for him.  

The second line of Figure 34 indicates also that when a tube with an EHD of a 
particular type of active molecules is placed inside a coil C, the oscillating mag-
netic field exerts a force on charged particles in the wire. This force produces a 
current when the circuit is closed or a tension between the extremities of an 
open circuit. [This fact results from Faraday’s discovery.] The resulting electric 
signal can be amplified and applied to a second coil c. It produces a current in 
the wire of this coil and thus again a magnetic field. It oscillates at the same fre-
quency and exerts a force on electric charges. Benveniste compared the relevant 
signals to radio waves. This analogy was helpful, but they were merely electric 
and magnetic fields, oscillating at low frequencies. They require the presence of 
electric charges, while EM waves consist of electric and magnetic fields that are 
constantly transformed into one another and can even propagate in vacuum. 
They are characterized by the relation f = c/λ, where the velocity c ≈ 3 × 108 m/s. 

5.3. Stimulation by Low-Frequency Magnetic Fields 

After realizing that water memory is transferable to pure water, Benveniste de-
veloped “digital biology” with the engineer Didier Guillonnet, who joined the 
team in 1996 ([13], p. 596). Their common patent [99] indicates that informa-
tion transfer is even possible when pure water is simply flowing through the 
second coil (c). This means that the formation of new trimmed chains of WPs is 
a rapid process. It would even be sufficient to create one trimmed chain of WPs, 
since it will generate other equally trimmed chains of WPs. This fact is also im-
portant for beat phenomena, since equally trimmed chains of WPs are then re-
produced inside the initially pure water. Benveniste had noted that shaking of 
the receiving tubes was not required, but Benveniste and Guillonnet found that 
“it is possible to improve the performance” of this system by adding a signal that 
corresponds to white noise. It covered the whole low frequency domain (1 Hz to 
20 kHz). They mentioned that they were surprised when they discovered this 
fact. Konovalov and Ryzhkina noted also that the formation of supramolecular 
structures is favored by low-frequency EM fields [87]. 

Montagnier and his collaborators [14] placed the test tubes, which contain 
“informed” and “naive” water in different coils (C and c), but inside a greater 
coil (C’). It was subjected to an electric current, oscillating at 7 Hz. This fre-
quency was chosen since it is close to “Schumann frequencies”. They correspond 
to genuine EM waves, generated by thunderstorms in the terrestrial atmosphere 
and reflected by the surface of the Earth and the ionosphere. Since these waves 
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are propagating in a spherical layer, they correspond to standing waves and their 
wavelength λ is of the order of the circumference of the Earth. It follows that 
their frequency f = c/λ ≈ 300 (thousand km/s)/40 (thousand km) = 7.5 Hz. The 
measured fundamental frequency for Schuman resonances is close to 7.8 Hz. 
However, the coil C’ creates only an oscillating magnetic field and not an EM 
field, similar to radio waves of extra low frequencies.  

The term of “electromagnetic fields” was probably used by Benveniste and 
Montagnier in the general sense of being related to electric and magnetic phe-
nomena. To realize the difference, we note that standing waves on trimmed 
chains of WPs could be compared to standing waves for oscillating electrons in 
an antenna that radiates EM waves. Their wavelength λ would then be deter-
mined by the length of these chains (L = λ/2 ≈ 300 nm), but their frequency 
would be extremely high (f = c/λ ≈ 5 × 1014 Hz). The inverse process corresponds 
to an EM wave that excites standing waves for oscillating electrons in a receiving 
antenna. For 7 Hz, the wavelength λ = c/f ≈ 43,000 km. 

Nevertheless, a coil C’ and low frequency currents were beneficial. To explain 
this fact, we recall that water molecules are bound to one another in bulk liquid 
water by hydrogen bonds (Figure 4(a)), but are constantly exchanged at the 
time scale of 10−12 s. The applied magnetic field is oscillating at a much lower 
frequency (7 Hz or 1 Hz - 20 kHz) and does reorient the effective dipoles of wa-
ter molecules at this frequency. They will thus be liberated from their usual 
bonds. This facilitates the formation of water pearls and trimmed chains of WPs.  

We recall also that “wild transfers” were not suppressed when the test tubes 
were shielded by means of aluminum foil. It did only suppress electric fields. 
That was not sufficient, since magnetic fields do also allow for information 
transfer. However, it is possible to eliminate magnetic fields by means of 
mu-metal. Benveniste had already discovered that it abolishes crosstalk and beat 
phenomena ([10], p. 565) and Montagnier [14] did interpose a sheet of mu-metal 
between the primary coil C and the secondary coil c. Empirical discoveries do 
not require that their cause is already known.  

5.4. Resonances for Pairs and Chains of Water Pearls 

We come now back to the important and still unsolved problem of the asymme-
try of the energy-loss functions for Mahata’s resonances (Figure 33). The model 
of single WPs has to be corrected, since WPs would be subjected to Brownian 
motion. They attract one another and will thus constitute pairs of WPs. Oscilla-
tory rotations are then possible for both WPs, even at a frequency Ω ≈ 25 MHz), 
because of surrounding water molecules. However, mutual attraction of neigh-
boring poles would yield an additional restoring force, which could have notice-
able effects.  

To acquire more physical insight, we consider two identical pendulums (Figure 
35(a)). They would oscillate at the same frequency Ω, but can be coupled by 
means of a weak spring. [A normal string is sufficient, when it is somewhat longer 
than the separation of the masses at rest and when a small mass is attached to  
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Figure 35. (a) Low and high frequency modes for free oscillations of two coupled pendu-
lums; (b) Resonances correspond to quantum mechanical transitions, allowing for excita-
tion at the frequency Ω+ and emission at the frequency Ω. 
 
the middle of the string.] Free motions of the coupled pendulums depend on the 
chosen initial conditions and can be quite complicated, but there are two special 
cases, shown in Figure 35(a). It is intuitively clear that both masses will oscillate 
at the frequency Ω for strictly parallel motions, since the length of the interme-
diate spring is not modified. It is higher for antiparallel motions (Ω+ > Ω). These 
coordinated motions are called normal modes of oscillation, since the system 
behaves like a single oscillator. It is possible to produce forced motions of both 
pendulums, by applying an oscillating force to one of them.  

Figure 35(b) recalls that QM is a generalization of classical mechanics. The 
lowest possible energies for any single harmonic oscillator are then separated by 
intervals that are proportional to the resonance frequency. This can be Ω or Ω+. 
Classically described forced oscillations are then replaced by transitions. It 
should thus be possible to absorb EM energy at the frequency Ω+ and to restitute 
a part of it at the lower frequency Ω. This happens for fluorescence and Mahata’s 
energy-loss functions β2(ω) displayed always at the side of lower frequencies 
(Figure 33).  

Figure 36 shows that we get also two normal modes for small oscillatory rota-
tions of the coupled WPs. As for Figure 35(a), displacements of neighboring 
poles can be parallel or antiparallel. They are perpendicular to the symmetry axis 
and represented by red arrows. To account for possible resonances, we have to 
consider two coupled equations of motion:  

( ) ( )2 2
1 1 1 2 1 1 expou u u u u C i tωω γ ω+ Ω + − + = −              (19) 

( ) ( )2 2
2 2 1 2 2 2 expou u u u u C i tωω γ ω+ Ω − − + = − −             (20) 

They apply to the left part of Figure 36 and Ω ≈ 25 MHz is the resonance fre-
quency for independent oscillations, while ωo ≈ 1 kHz accounts for interactions. 
They correspond to opposite forces. For the right part of Figure 36, it is suffi-
cient to change the sign of u2. Both water pearls are subjected to viscous friction, 
but it is not identical, since the resulting motions of the surrounding liquid wa-
ter can hinder or facilitate one another. To assume that u1 > u2 implies that γ1 < 
γ2. When we set γ1 = γ − η and γ2 = γ + η, the sum and the difference of (19) and 
(20) yield two equations for u± = u1 ± u2: 

2 0u u u uγ η+ + + −+ Ω + − =                      (21) 

( )2 2 expu u u u C i tωγ η ω− + − − ++ Ω + − = −                (22) 
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Figure 36. Two modes of forced motions for pairs of WPs. 

 
The pair of WPs behaves thus as if there were two oscillators that resonate at 

the frequencies Ω or Ω+, where 2 2 22 oω+Ω = Ω + . However, only the mode u−  is 
directly excited by the oscillating electric field of angular frequency ω. The mode 
u+  is then excited by entrainment, but forced oscillations require that 

( )     2 expu A C i tω ω± ±= −  

Because of (21) and (22), the amplitudes A±  are determined by the equa-
tions: 

0a A i Aωη+ + −+ =  and 1a A i Aωη− − ++ =  

where 2 2a iω ωγ+ = Ω − −  and 2 2a iω ωγ− += Ω − − . Thus, 

iA A
a
ωη

+ −
+

= −  and ( )2

1a A
a

ωη
− −

+

 
+ = 

  
 

Forced oscillatory rotations of pairs of WPs involve both modes of oscillation. 
The polarizability is thus 

( ) ( )2 A Aβ ω + − += Ω +  

It is normalized to get β(0) = 1. When Ω and ωo correspond to 25 MHz and 1 
kHz, there are only two adjustable parameters: γ and η. They specify the average 
energy loss and energy transfer by viscous friction. The resulting values of a± and 
A± allow us to calculate the spectral distribution of the real and imaginary parts 
of β(ω). When γ = 20 and η = 0.01 (MHz), the calculated spectral distributions 
of β1(ω) and β2(ω) are shown in Figure 37. The energy-loss function presents a 
dip, like the experimentally observed one (Figure 33). The concept of water 
pearls accounts thus also for the asymmetry for pairs of WPs.  

However, Mahata found similar curves for EHDs of various types of active 
molecules. This would not be compatible with the excitation of a standing wave, 
if all positive poles were displaced along the direction of the applied electric field 
E. However, the lowest possible excitation energy would only require that the 
rotation of one water pearl is inversed. Figure 38 shows an example. Even the 
excitation of standing waves on trimmed chains of WPs at high frequency and 
the asymmetric resonances can thus be explained by the proposed theory.  

5.5. The Stabilizing Effect of Lactose 

Homeopathic preparations are often presented in the form of pills of lactose. 
Opponents of this medical practice claim that lactose is merely used because of 
its sweet taste. Initially, Hahnemann used lactose for grinding hard substances to 
reduce their concentration before dissolving them in pure liquid water. Mahata 
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Figure 37. Predicted spectral distribution of the realpart (β1) and the imaginary 
part (β2) of the polarizability of pairs of coupled water pearls in pure water. 

 

 
Figure 38. Resonance for trimmed chains of WPs. 

 
knew that lactose is also used to insure better preservation of the biological effi-
ciency of EHDs. He wanted thus to find out if the association of EHDs with lac-
tose modifies the measurable resonance curves. When he dissolved lactose 
powder in pure water, he found a resonance at 50 MHz and the energy-loss 
function was symmetric [100]. We have thus also to explain these facts. From 
the point of view of condensed matter physics, lactose is an insulator. It attracts 
thus charged particles by image forces. Since lactose has many pores, nearly all 
single WP would be attached to lactose, but the applied electric field would si-
multaneous set the WP and its image in oscillation. They are subjected to iden-
tical restoring forces. The resonance frequency will thus be doubled, but attach-
ment of single WPs would keep the resonance symmetric, as for the red curve 
in Figure 33.  

When Mahata added EHDs of Cu-Met-30 to the dissolved lactose powder, the 
resonance frequency was reduced to about 45 MHz, but the peak of the ener-
gy-loss function remained symmetric. Because of image forces, the trimmed 
chains of WPs would usually be parallel to the surface of the insulator. This will 
also lead to a high resonance frequency, but its value would be somewhat lower 
than 50 Hz. The essential result is, of course, that the protective role of lactose is 
due to adhesion by image forces.  

5.6. A New Type of Molecular Interactions and Medical  
Applications  

The empirical discovery of water memory and its elucidation modify the tradi-
tional paradigm that molecular interactions are only possible according to the 
“key and slot” model of chemical reactions. Even normal interactions between 
biologically active molecules and their specific receptors are due to oscillating 
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electric fields and resonance effects (upper lines of Figure 20 and Figure 34). 
Dr. Hahnemann wanted only to select medications in a rational way and to in-
crease safety of medical practice. Dr. Benveniste did prove that this is due to the 
phenomenon of water memory. He asked INSERM several times that “interdis-
ciplinary teams” could come to help him to interpret what he observed. Scientif-
ic institutions should have provided intellectual and materiel assistance, instead 
of “isolating” him. Benveniste felt that these authorities did even “strangle” him 
([10], p. 89). The case of water memory has to be remembered as a monument of 
what should not happen, especially in science.  

Moreover, it is not unusual that new phenomena are discovered without un-
derstanding their cause. We mentioned many examples that illustrate this fact. 
Christian Huyghens discovered in 1665 that pendulum clocks tend to be syn-
chronized, but this phenomenon has only recently been explained [101]. Collec-
tive oscillations are also very important in plasma physics and provide for in-
stance the key for understanding the occasional appearance and peculiar proper-
ties of ball lightning [102]. Oscillations of the charges of biologically active mo-
lecules and standing waves on trimmed chains of water pearls create electric and 
magnetic fields that tend also to be synchronized. This favors the autocatalytic 
generation of new trimmed chains and does more effectively stimulate the rele-
vant receptors.  

Since oscillating electric charges do also produce oscillating magnetic fields 
(Figure 34), we could try to pursue investigations by means of modern magne-
tometers. Squids are used for magneto-encephalography, but a new, less expen-
sive and very efficient technology is now available in the form spintronics. This 
word is an abbreviation of spin-electronics. Instead of exerting forces on the 
electric charge of electrons, it is indeed possible to exert also forces on their spin. 
This technology has medical applications [103]. New magnetic detectors of this 
type have a very high sensitivity in a large frequency domain (in the picotesla re-
gion for frequencies below 100 Hz). Their small active areas allow for unprece-
dented spatial resolution (down to tens of nanometers). They seem thus to be 
ideal tools for trying to study interactions between active molecules and their 
receptors. They could open new avenues for future research in biology, medicine 
and pharmacology, if it were possible to detect low resonance frequencies of bi-
ologically active molecules and their specific detectors. 

This has already been achieved by means of EHDs and there are observations 
that indicate the usefulness of such measurements. The collaboration of Mahata 
with the medical doctor Chattopadhyay, an Indian specialist of homeopathy, led 
indeed to are markable discovery [104] [105]. They found that EHDs of the 
blood serum of patients did also produce resonances at about 25 MHz. They 
were similar to those of EHDs of biologically active molecules. This proves that 
they have charged parts that can also oscillate and create trimmed chains of 
WPs. Moreover, Chattopadhyay found that for patients, having ailments that 
can be treated by means of homeopathic medicines, preparations that led to a 
closer match of resonance curves were more efficient. It was concluded that it 
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should be possible to “make a selection of medicines based on scientifically 
measurable parameters.” The reported results require independent confirma-
tions, but it would not be prudent to discard this possibility without further ob-
jective studies.  

The basic claim of Montagnier’s patent US2010323391 [47] was that hidden 
infections in humans and animals can be detected by a non-invasive method. It 
requires only to collect blood samples and to prepare EHDs of them. This al-
lowed for spectral analysis of signals that were detected by means of coils. 
Another patent added that “any human or animal fluid, e.g. blood, urine, various 
secretions” can be used for this purpose. Even the unexplained resurgence of 
some sicknesses might result from water memory, since Montagnier [14] [15] 
found that DNA molecules do also produce similar signals.  

Another potentially important question concerns Hahnemann’s empirical rule 
that “like cures like”. Is it possible to prove the existence of a link between re-
ceptors and the sickness they can cure? Present-day knowledge and already ac-
quired experience in the domain of receptors and neurology could be used, for 
instance, to verify if some sicknesses are related to particular receptors, by exit-
ing them. Research is motivated by curiosity, whatever may be found.  

6. Conclusions 

The objective of this study was to find out if water memory is possible or not. 
We treated this problem in terms of condensed matter physics, but it illustrates a 
much more general and fundamental difficulty: the recurrent conflict between 
facts and ideology. In science, it is not unusual that empirical research uncovers 
phenomena without understanding the underlying mechanism. It does even 
happen that the framework of existing theories cannot explain them. Past expe-
rience and commonsense tell us that previous assumptions may have to be cor-
rected in such a situation. Kuhn has shown [45] that the discovery of an anomaly 
with respect to “normal theory” does often lead to initial rejection. This was also 
true for water memory. It is thus necessary to be aware of the fact that scientific 
progress can be drastically slowed down by so-called “skeptics”, who are not 
skeptic enough in regard to their own preconceptions and beliefs.  

It is true that “extraordinary claims require extraordinary evidence,” but this 
slogan does only displace the basic problem. What is valid evidence? In science, 
it can merely be recognized by referring to reality. This is well-known, but un-
fortunately, there is a strong tendency to rely only previously acquired ideas and 
theories, although they could have been based on hypotheses that were only va-
lid in a limited domain. They may have to be replaced by more general ones. The 
case of water memory illustrates such a need in a rather exemplary way.  

Physics is also confronted today with a similar problem. It results indeed from 
observations that there are only certain types of elementary particles and that 
our Universe contains an enormous amount of Dark Matter. The accelerated 
expansion of space is caused by Dark Energy, but we are unable to explain all 
these facts. It is thus necessary to ask if present-day theories do not contain an 
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assumption that was simple and useful, but merely an approximation. In this 
regard, we learned even from the development of the theory of relativity and 
quantum mechanics that Nature can impose restrictions on our measurements. 
It appeared that they are related to the existence of two universal constants (c 
and h). Nevertheless, we continue to believe that space and time are continuous. 
This is equivalent to postulating that there is no finite limit for the smallest 
measurable distance. How do we know? We can only say that until now, we did 
not yet meet such a limit. However, we can try to find out what would happen if 
there did exist a universally constant quantum of length (a) and thus also a un-
iversally constant quantum of time (ca).  

The value of a is surely very small, but we cannot assert that a = 0. If this value 
were finite, all physical laws for particles and fields that involve variations in 
space and time would not be expressed anymore by differential equations, but by 
finite-difference equations. [The differential wave Equation (7) was also an ap-
proximation of the more general finite-difference Equation (6), but for another 
reason.] When we did that for any type of particle and force fields, it turned out 
that the generalization would not lead to logical inconsistencies when a ≠ 0. 
However, some ideas have to be changed. The highest possible energy, which has 
to be attributed to the whole Universe, would be finite. The behavior of fields at 
the smallest possible scale in space and time would be described by hitherto un-
known quantum numbers. They account for all possible types of elementary 
particles, in agreement with already known facts [106]. This applies also to Dark 
Matter. It is known to be present in our Universe, but is composed of particles 
that have not yet been identified by means of accelerators. In cosmology, it is al-
so possible to account for the accelerated expansion of space and Dark Energy 
[107]. This enlargement of the foundations of physics widens the domain of 
possibilities, but the concept of a “space-time continuum” is so deeply rooted in 
our minds and our culture, that it will take time to be able to modify this idea. 

This is also true for the conviction that biologically active molecules can only 
interact with their specific receptors according to the model of chemical reac-
tions. The possible existence of water memory seemed to be absurd, but the real 
problem was merely that it could not yet be explained. Of course, ferroelectric 
crystallites of water molecules and trimmed chains of water pearls are merely 
concepts. These entities are not directly observable, but they allow us to make 
verifiable predictions. An increasing part of science follows this pattern. Theory 
and experiment are complementary. On one hand, we have to imagine what 
might be possible, to draw logical consequences from the proposed hypotheses. 
On the other hand, we can establish what it real or not. Sometimes the observa-
tions precede their explanation and sometimes, they can be used to test the va-
lidity of hypothesis and theories.  

In regard to water memory, we found that the concept of trimmed chains of 
WPs accounts for the quasi-periodic variations of the biological efficiency of 
EHDs (Sections 3.4 and 3.5), the measurable frequency spectrum (Section 4.1) 
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and the peculiar angles for junctions of large-scale structures (Section 4.2). It is 
at least probable that very long chains of WPs explain the stability of liquid water 
bridges (Section 4.3). The von Grotthuss mechanism can be understood in terms 
of intramolecular exchange effects for delocalized protons (Section 2.5). They 
are also relevant for 2D polymerization of water molecules (Section 2.6). The 
perplexing effects of cross talk can be attributed to beat phenomena (Section 
3.7). Physicochemical and other types of measurements make sense (Sections 3.8 
and 4.5). It is also possible to understand the physical nature of detected signals 
(Sections 5.2 and 5.3). Even Mahata’s unexpected high frequency resonances can 
be explained (Sections 4.6, 5.4 and 5.5). 

Of course, there are still open questions, inviting to pursue research (Section 
5.6). We wonder for instance if low-frequency resonances can be detected for 
single chains of WPs. Preliminary results for dielectric responses of EHDs indi-
cated that a resonance could be excited at about 3 kHz [108]. Miranda did per-
haps not detect them [74], since that would have required greater initial concen-
trations of LiCl or various types of biologically active molecules. The now highly 
developed methods of X-ray and neutron scattering could also be applied to 
EHDs of initially very great concentrations of ions or active molecules. We men-
tion that Mahata obtained images of elongated entities that constituted a super 
lattice. These structures were observed by scanning probe microscopy [100]. Can 
variations of the distance between oxygen ions near the surface of water bridges 
subjected to different high tensions be measured diffraction of X-rays? Can os-
cillating magnetic fields be detected at molecular levels by means of modern 
magnetometers? Could water memory have contributed to the emergence of life 
on Earth?  

Water is a very familiar substance, but still a fascinating domain of research. 
Moreover, it concerns not only experimental and theoretical results, but also 
truth and justice. 
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Appendix: The Size of Water Pearls 

The basic ideas were presented in Section 2.8. Since ( ) ( ) ( )r r r r rφ φ φ′± ∆ = ± ∆ , 
where the prime indicates derivation with respect to r, the potential in the ex-
ternal medium (r ≥ R) is   

( ) 2

1 1, cos e or
e

o

r P
rr

λφ θ θ
λ

− 
= − + 

 
 while ( ), cosi ir E rφ θ θ=  

is the potential in the internal medium (r ≤ R). P is the total dipole moment of 
the WP and Ei the electric field inside this nanoparticle. In the external medium 
it is 

( ) ( ) 3 2 2

2 2 1, , cos e or
e

o
e

o

E r r P
r r r

λθ φ θ θ
λ λ

− 
′= − = + + 

 
 

The radius R is then determined by the boundary conditions: 

( ) ( ) ( ), ,e e i iE R E Rε θ ε θ σ θ+ =  and ( ) ( ) ( ), ,e iR R wφ θ φ θ θ= +  

The first relation results from Gauss’s law, since the electric fields point away 
from the interface, which carries a surface charge density σ(θ) = σocosθ. The 
second relation accounts for the dipole density w(θ). It results from the inner 
and external surface charge densities σicosθ and −σecosθ. They are separated by a 
distance R R∆  , but σe = ϰσi and σo = σi − σe, while w(θ) = σeΔRcosθ is neglig-
ible. Moreover, εi = 0. The boundary conditions yield then the following rela-
tions:  

3 2

1 1    e oR
i

o

E P
R R

λ

λ
− 

=− + 
 

 and 3 2 2

2 2 1    e oR o

eo o PR R R
λ σ

ελ λ
− 

+ + = 
 

 

We know that P = Nq2a, where N = (4πR3/3)/d3 and σi = 2q/d2. Thus, σo/εeP = 
(1 − ϰ)(3d/4πεeaR3) and 

( ) ( )22 2 e 0.015 1ηη η − =+ + −  where oRη λ=  

We ignore the value of ϰ = σe/σi, but it results from the last equation that η is 
nearly constant. Indeed, η = 9.5 or 10.5 when ϰ = 0.5 or 0.8. Even when ϰ = 0.2, 
we get η = 9.1 and η = 11.5, when ϰ = 0.9. We conclude that R ≈ 10λo. 
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