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In this work we consider the restricted gauge theory of quantum chromodynamics
= (QCD) in one-space one-time dimension (QCD,) a la Cho et al. [1]-[14], studied
rather widely [2]-[23], and study its quantization using Hamiltonian [24], path

integral [25] [26] [27] [28] and Becchi-Rouet-Stora and Tyutin (BRST) [29] [30]

[31], formulations [24]-[31], in the usual instant-form (IF) of dynamics (on the

1. Introduction

hyperplanes: x® =t =constant ) [32] [33]. We recap the basis of this theory in
the next section where we also highlight the motivations for the present study.
The theory is seen to be gauge-invariant (GI) possessing a set of first-class con-
straints [14]. We quantize this theory under appropriate gauge-fixing conditions
(GFC’s) using the Hamiltonian and path integral formulations [24] [25] [26] [27]

*Part of this work was presented by DSK as Invited Contributed Talk at the International Conference
on Light-Cone Physics: LC2014, held at North Carolina State University, Rayleigh, NC, USA, during
May 26-30, 2014.
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[28].

However, in the usual Hamiltonian and path integral quantization [24] [25]
[26] [27] [28] of a theory under some GFC’s, the gauge-invariance of the theory
gets broken because of the gauge-fixing. In view of this, in order to achieve the
quantization of the theory such that the gauge-invariance of the theory is main-
tained even under gauge-fixing, we go to a more generalized procedure called
the BRST quantization [29] [30] [31], [27] [28] [29] [30] [31], where the ex-
tended gauge symmetry of the theory (called the BRST symmetry) is maintained
even under gauge-fixing. In fact, this also necessitates a study of the BRST quan-
tization of the theory to achieve a kind of complete quantization of the theory.

The paper is organized as follows. In the next section, we briefly recap the ba-
sics of the so-called restricted gauge theory of QCD, a la Cho et al. [1]-[13]. In
Section 3, we study its Hamiltonian and path integral formulations. Its BRST
formulation is studied in Section 4. Finally the summary and discussion is given

in Section 5.

2. Restricted Gauge Theory of QCD- a la Cho et al.: A Recap of
Basics

In this section, we recap the basics of the restricted gauge theory of QCD, a la
Cho et al [1]-[14] and others [1]-[23]. The theory makes use of the so-called
“Cho-decomposition®, which is, in fact, the gauge independent decomposition
of the non-Abelian potential into the restricted potential and the valence poten-
tial and it helps in the clarification of the topological structure of the
non-Abelian gauge theory, and it also takes care of the topological characters in
the dynamics.

The non-Abelian gauge theory has rich topological structures manifested by
the non-Abelian monopoles, the multiple vacua and the instantons and one
needs to take into account these topological characters in the non-Abelian dy-
namics. Since the decomposition of the non-Abelian connection contains these
topological degrees explicitly, it can naturally take care of them in the
non-Abelian dynamics.

An important consequence of the decomposition is that it allows one to view
QCD as the restricted gauge theory (made of the restricted potential) which is
coupled to a gauge-covariant colored vector field (the valence potential). The re-
stricted potential is defined in such a way that it allows a covariantly constant
unit isovector A everywhere in space-time, which enables one to define the
gauge-independent color direction everywhere in space-time and, at the same
time, allows one to define the magnetic potential of the non-Abelian monopoles.
Furthermore it has the full SU(2) gauge degrees of freedom, in spite of the fact
that it is restricted. Consequently, the restricted QCD made of the restricted po-
tential describes a very interesting dual dynamics of its own, and plays a crucial
role in the understanding of QCD.

On the other hand, the restricted QCD is a constrained system, due to the
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presence of the topological field i which is constrained to have the unit norm.
A natural way to accommodate the topological degrees into the theory is to in-
troduce a topological field i of unit norm, and to decompose the connection
into the Abelian projection part which leaves i a covariant constant and the

remaining part which forms a covariant vector field:

A A —inx6n+x Aﬂ+X
g

u

A,

n-A, (1a)
=1
where A* is the “electric” potential and the Abelian projection A“ is precise-

ly the connection which leaves fi invariant under the parallel transport and

makes A a covariant constant:
D,n=0,n+gA xn=0 (2)
Also, under the infinitesimal gauge-transformation:

SA,=SD,d , A, =—h-0,d , 5
g

u

t>)

=£|5ﬂo7
g (3)
6X, =-axX, , 6fi=—dxh

1%

This shows that A“ by itself describes an SU (2) connection which enjoys
the full SU(2) gauge degrees of freedom. The restricted potential A“ is de-
fined by the Abelian projection and the connection space (the space of all gauge
potentials) forms an affine space. Indeed the affine nature of the connection
space guarantees that one can describe an arbitrary potential simply by adding a
gauge-covariant piece X, to the restricted potential.

The above mentioned decomposition is known as the Cho-decomposition or
the Cho-Faddeev-Niemi decomposition. It was introduced [2]-[23] in an attempt
to demonstrate the monopole condensation in QCD. The decomposition itself and
the importance of this decomposition in clarifying the non-Abelian dynamics in
QCD, has been studied by many authors and for further details we refer to the
work of Refs. [2]-[23].

The restricted potential A“ actually has a dual structure and the field

strength made of the restricted potential is decomposed as:
F.=(F.,+H,)A F, =(0,A-0,A,) (4a)

1. N
H,, :—En-(a#nxavn)z(aﬂcv -8,C,) (4b)
where C, is the “magnetic” potential. Further, following the work of Refs.
[2]-[23], it is possible to introduce the magnetic potential as above (at least lo-
cally section-wise) in view of the following identity:

1

uv :Eeuvchpa (5)

o,H, =0, H

ueouv

which allows one to identify the non-Abelian monopole potential by:
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1. A
C#:—EnXaun (6)

in terms of which the magnetic field is expressed as

1. . A .
HWzaﬂCV—6VC‘1+gC#xCV:—EG#nXGVHZHWn (7)

With the above connection (-albeit decomposition) one has:

F, = [(Fﬂv +H,,)A+D,X, -D,X, +0gX, xv]
X, =0 (8)
‘DX, =0

>

5>

and for the Yang-Mills Lagrangian density one has: [1]-[15]:

L :[_%lfwlf”" _%(6/4)(1/ - 6‘/)(#)2 _%ﬁ#v '(Xu XXV)
9)

2

S (X%, ) A (7 —1)+z#ﬁ-x/,}

where A and A, are the Lagrange multiplier fields and

9" =g, =diag(+], ~1). The Lagrangian density of the so-called restricted
gauge theory made of the Abelian projection without X, is therefore defined
by [2]-[14]:

L {—%ﬁwﬁﬂv +A(h? -1)} (10)

The theory defined by the above Lagrangian density has a full SU (2) gauge
invariance and it describes the dual dynamics of QCD with the dynamical de-
grees of the maximal Abelian subgroup U(1) as the electric component and the
topological degrees of SU(2) as the magnetic component. It therefore represents
an important model in the QCD theory namely, in QCD, and deserves to be stu-
died more properly. One of the important steps in this direction is to construct
the quantum theory corresponding to this classical theory of QCD, by quantiz-
ing the theory. This provides motivation for the present studies and in fact, ne-
cessitates our presents studies. In the next section, we consider the Hamiltonian

and path integral formulations of this constrained theory.

3. Hamiltonian and Path Integral Formulations

We now study the Hamiltonian and path integral quantization of the above re-
stricted gauge theory of QCD, (made of the Abelian projection without X, )
defined by the Lagrangian density [2]:

L= _—% F, P+ A(f -1)} :[—%GWG’” +A(A? —1)}
=_—%(FW+HW)(FW+H‘”)+Z(ﬁ2—1)} (11)
1 L1 L1 v (A
:_—ZFWF” S FuH" = H LR +/1(n2—1)}

In the instant-form (IF) of dynamics, the above Lagrangian density reads:
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1 2 1 1 ., ~2
E:[E(aoAl—éle) +§(aOAl—alAb)cb+EcD +A(R*-1)|  (12a)

@ =0, (ix0,A)] (12b)

Here @ is another topological scalar field constructed out of the topological
field A (of unit norm) and its space derivative (9, ) as well as its time deriva-

tive (9, ), as defined above. The canonical momenta obtained for the above

theory are:
I, =a(‘2f/l):o, I’ =%:0 (13a)

E(=11")= (ngl) :(80A1—61A0)+%CD (13b)

. :a(aaﬁoﬁ):_%(aoAi—ale)(ﬁxalﬁ) (13¢)

Here I1,, I1°, E(:: Hl) , and ﬁﬁ are the momenta conjugate canonically to
A, A, A,and A respectively. The above equations however, imply that the

theory possesses three primary constraints:

n=11,=0
Q =11°=~0
w, =011, ~0 (14)

The symbol ~ here denotes a weak equality in the sense of Dirac [24]. The
canonical Hamiltonian density of the theory H, is:

HY =BE2+E61A0—/1(ﬁ2—1)} (15)

After including the primary constraint y,, Q,, and y; in the canonical

Hamiltonian density H, with the help of Lagrange multiplier field u(x,t),

v(x,t) and w(xt) which is treated as dynamical, the total Hamiltonian den-
sity of the theory H; could be written as:

H :[%E2+E81A0—/1(ﬁ2 —1)+;(lu+le+y/1W} (16)

The Hamilton’s equations of motion of the theory that preserve the con-
straints of the theory in the course of time could be obtained from the total Ha-
miltonian: H; = j H,dx' and are omitted here for the sake of brevity. De-
manding the preservation of the primary constraints y, and €, for all time

leads to the secondary Gauss-law constraints y, and €, respectively:
7, =(A*-1)~0
Q,=0,E~0 (17)

The preservation of y, for all times does not lead to any secondary con-

straint. The preservation of y, and (), also does not lead to any new con-
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straints. The theory is therefore seen to possess a set of five constraints:

p= =1"~0
P, =, =0E=0
py=x =11, ~0 (18)

P4:}(2:(ﬁ2_1):0
P5:W1:ﬁ'ﬁﬁ ~0

Matrix R, of the Poisson brackets of the above constraints p;, among
themselves is clearly singular implying that the set of these constraints p; is
first-class and that the theory under consideration is GI. In fact, the theory is
seen to be invariant under the local vector gauge transformations:

oA, zlﬁﬁﬂ&:laﬂa,éﬂ:iaoa,éﬁ =fixa =0
9 9 g (19)
S1° = 6E = &1, = A1, = 1, = A1, = &1, =0

where gauge parameter «(X,t) is an arbitrary function of its arguments. The

components of the vector gauge current (J #=3%1 1) are:

30 = jdxodxljo - Idxodxl {iala(aoAl -0,A, +£q>ﬂ
) ‘ (20)
g g

The theory is clearly gauge-invariant and could now be quantized under appro-
priate gauge-fixing conditions (GFC’s), which could e.g. be chosen as (which by
no means is an unique choice):
6 =4=0, 5, =A=0,g=A=0 21

It may be important to mention here that any set of GFC’s could be chosen here
such that the resulting set of constraints of the theory (including the set of GFC’s)
becomes a set of second-class constraints so that the matrix of the total set of
constraints becomes non-singular and consequently could be inverted.

The total set of constraints of the theory under these GFC’s then becomes:

E=p=0,=11°~0 (22a)
&=p,=Q,=0,E~0 (22b)
L=py=x=1,~0 (22¢)
& =py =12, =("-1)~0 (22d)
&=ps =y, =M-TI;~0 (22¢)
&= =4~ (22f)
=6 =A~0 (22g)

&= =A 0 (22h)

The non-vanishing matrix elements of the matrix M, of the Poisson Brack-

ets’s among these above constraints &, are:
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My =—Mg =5 (x-y) (23a)
M,, =+M,, =-0,6(x—Y) (23b)
Mg =—Mg =—=5(x—Y) (23¢)
M5 = —Mg, = +20%5(x-y) (23d)

The above matrix M, is clearly non-singular implying that the constraints ¢
form a set of second-class constraints. The theory could therefore be quantized
using the Dirac’s Hamiltonian Formulation as well as using the path integral
formulation. The square root of the absolute value of the determinant of this

matrix Maﬂ is:

[feet (., H] = 28 (5(x-y)) 35 (x-y) | (24)

The non-vanishing equal-time Dirac brackets (DB’s) of the theory are [24]:

(M (x ). ()], = (P - (x-y)  @sa
{na(x,t),ng(y,t)}DB=ﬁi( NI} —I3n° )5 (x—y) (25b)
(I (xt),n° (v.t)} =g—3(”aﬂﬁ ~IEn") 5 (x-y) (25¢)

Here one needs to remember that while making a transition from equal-time
Dirac brackets to the equal-time commutation relations using the Dirac quanti-
zation rule, one needs to take in to account the problem of operator ordering
(which occurs here because the results of the equal-time commutation relations
involve the product of the operators). Also, the roman indices a and b here, are
the color indices of the gauge theory of QCD,.

Also for the later use, for considering the BRST formulation of the theory we
convert the total Hamiltonian density of the theory into the first order Lagran-

gian density L,:
Lio =[T1,0,2+T1°0, A, + EQ, A +T1; - Oy
+I1,00u + 11,0V +I1,0,W—"H, | (26)

{ (0A -0,A)) —Tcpzm( 1)}

For considering the path integral formulation, the transition to quantum
theory is made again by writing the vacuum to vacuum transition amplitude for
the theory, called the generating functional Z[J, ] of the theory, following
again the Senjanovic procedure for a theory possessing a set of second-class con-
straints [25] [26] [27] [28], appropriate for our present theory, considered under
the gauge-fixing conditions &, in the presence of the external sources: J, as
follows [25] [26] [27] [28]:

DOI: 10.4236/jmp.2018.914150

2361 Journal of Modern Physics


https://doi.org/10.4236/jmp.2018.914150

U. Kulshreshtha et al.

z[3]= j[dy]exp[ijdx%xl (3,0 +11,8,2+ 1%, A, + E9 A
- (27)
+11; - 0,A +11,0,U + 11,0,V +I1,,0,W — H; ﬂ

where the phase space variables of the theory are: ®" =(4, A A.Au,v,w)
with the corresponding respective canonical conjugate momenta:
I1, E(Hl,HO,E,ﬁﬁ,Hu,HV,HW). The functional measure [du]| of the gene-

rating functional Z[J, ] under this gauge-fixing is obtained as:
[due) = [[ 20 (5(x- )" 00 (x-y) |[82] 0, )[04 J ¢ du][ev][aw] T,
[dr® ][dE][ drT, |[dp, ][dp, ][dp, 6] T1° ~ 0]5[,E ~0]S[IT, ~0] (28)
8| (A°-1)~ 0o A-1; ~0]6[2 ~0]5[A ~0]5[A ~ o]}

This completes the Hamiltonian and path integral formulations of the theory.

The BRST formulation of the theory is considered in the next section.

4. BRST Formulation

In the following, we study the BRST formulation of the theory. For the BRST
formulation of the model, we rewrite the theory as a quantum system that pos-
sesses the generalized gauge invariance called BRST symmetry. For this, we first
enlarge the Hilbert space of our gauge-invariant theory and replace the notion of
gauge-transformation, which shifts operators by c-number functions, by a BRST
transformation, which mixes operators with Bose and Fermi statistics. We then
introduce new anti-commuting variables ¢ and T (Grassman numbers on the
classical level and operators in the quantized theory) and a commuting variable
bsuch that [27] [28] [29] [30] [31]:

s1=Loc5A =Lo,c6A =Lac du=La,0,c (292)
g 9 9 g

A1, = 1° = SE =811, =411, = ol1, = 1, =0 (29b)

SA=6v=05w=0,5c=0,6C=hb,5b=0 (29¢)

with the property 5? =0. We now define a BRST-invariant function of the dy-
namical phase space variables of the theory to be a function fsuch that 5f =0.
Now the BRST gauge-fixed quantum Lagrangian density Ly for the theory
could be obtained by adding to the first-order Lagrangian density £, a trivial

BRST-invariant function (e.g.) as follows:

1 2 1 5
Lopst :|:E(60A1_81Ab) _ECD +l(n _1)
(30)
+(§{E[gaoﬁb+galﬁb—gaoAi +%bjﬂ

The last term in the above equation is the extra BRST-invariant gauge-fixing

term. After one integration by parts, the above equation could now be written as:
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1
I

Logpsr = |:%(80A1 _ale)z - @ +/1(ﬁ2 _1)
(1)

+%b2 + gb[aoAO -E +%®j+(806)(600)}

The last term in the above equation is the BRST-invariant gauge-fixing term.

Proceeding classically, the Euler Lagrange equation for b reads:
b =(90,A +90,A, -9, A) (32)
which in turn (with the requirement 5b=0) then implies:
0,0, =0 (33)
The above equation is also an Euler-Lagrange equation (ELE) obtained by the

variation of L ; with respect to T. We define the bosonic momenta in the

usual manner:

0

I, =— =gb 34
0 a (ao A) ) ’CBRST g ( )
but for the fermionic momenta with directional derivatives we set
I, =L, i—af' I1 —L,CB =0,C (35)
c " RST B(GOC) o~ c " 8(805) RST 0

implying that the variable canonically conjugate to cis (6,C ) and the variable
conjugate to C is (0,C). For writing the quantum Hamiltonian density from
the Lagrangian density in the usual manner we remember that the former has to

be Hermitian so that:

Hegsr = [nuaou + 11,8,V + ﬁ-ﬁﬁw+%E2 +Ed, A — AR -1)
. (36)
+2.9%07 T, — gb (004 ~ 0 A +81Ab)}

We can check the consistency of our definitions of the the fermionic momenta

by looking at the Hamilton’s equations for the fermionic variables:

d B
0,C =——Hgrsrs 0,C =
0 BRST o€ = Harsr oIl

oIl, (37)

o

We thus see that

=11 (38)

is in agreement with our definitions of the Fermionic momenta. Also, for the
operators C,C,0, and 0J,C, one needs to satisfy the anti-commutation rela-
tions of 0,c with T orof 0,C with ¢ but not of ¢, with T. In general, cand

C are independent canonical variables and one assumes that [25] [26] [27] [28]:

{I,, I} ={T,c} =0; 0,{C.c}=0; {o,C,c}=(-1){0,c,C} (39)
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where {,} means an anti-commutator. We thus see that the anti-commulators
in the above equation are non-trivial and need to be fixed. In order to fix these,

we demand that c satisfy the Heisenberg equation:

[C, Harsr | =10,C (40)

and using the property ¢*=C° =0 one obtains
[C’ Hapsr ] = {606’(:} 0oC (41)

The last three equations then imply :
(68,0} =(-1){0,¢,5) =i (42)

Here the minus sign in the above equation is nontrivial and implies the exis-
tence of states with negative norm in the space of state vectors of the theory.

The BRST charge operator Qis the generator of the BRST transformations. It
is nilpotent and satisfies Q®=0. It mixes operators which satisfy Bose and
Fermi statistics. According to its conventional definition, its commutators with

Bose operators and its anti-commutators with Fermi operators for the present

theory satisfy:
[4.Q]=(-¢), [A,Q]=0,c, [A.Q]=0,c (43a)
[A.Q]=fgge, [11,,Q]=(2Ac-TT,8,¢), (43b)
{€.Q} =My +11, +7-11,) (43¢)
{0,€,Q} =(-1)(&,E + A% -1) (43d)

All other commutators and anti-commutators of the theory involving Q and
the other phase space variables of the theory are seen to vanish. In view of this,

the BRST charge operator of the present theory could be written as:
Q=.[dxl[ic(8lE+ﬁ2—1)—iaoc(H°+Hl+ﬁ~fIﬁ)J (44)
This equation implies that the set of states satisfying the conditions:
%[y} =0,6,E|p) =011, |y) =0,(A* ~1)|y) =0, (A-TT; ) ) =0 (45)

belong to the dynamically stable subspace of states |l//> satisfying Q|1//> =0,
Le., it belongs to the set of BRST-invariant states.

In order to understand the condition needed for recovering the physical states
of the theory we rewrite the operators cand T in terms of fermionic annihila-
tion and creation operators. For this purpose we consider Euler-Lagrange equa-
tion for the variable ¢ derived earlier. The solution of this equation gives (for the
instant-form time x° =t ) the Heisenberg operators c(t) and correspondingly

T(t) in terms of the fermionic annihilation and creation operators as:

c(t)=G(t)+F(t), T(t)=G'(t)+F'(t) (46)
which at the instant-form time t=0 imply
c=c(0)=F, ct(t)=c(0)=F' (47a)
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0,¢(t)=0,c(0)=G, 0,T(t)=0,c(0)=G" (47b)
By imposing the conditions (obtained earlier):
¢’ =C% ={T,c} ={0,C,0,c} =0 (482)
(0,C.¢} = (~1){0,c,T} =i (48b)
we then obtain
F2=(F') ={F".F}={6".6}=0,{G",F]=(-){G,F'}=i (9
Now let |0) denote the fermionic vacuum for which
G|0)=F|0)=0 (50)
Defining |0) to have norm one, the last three equations imply
(0|FG™|0) =i, (0|GF'|0)=~-i (51)
so that
G'|0)=0, F'|0)=0 (52)

The theory is thus seen to possess negative norm states in the fermionic sector.
The existence of these negative norm states as free states of the fermionic part of
Harsr  is however, irrelevant to the existence of physical states in the orthogonal

subspace of the Hilbert space. In terms of annihilation and creation operators
Hepsr st

Herst = |:Huaou +I1,00v + ﬁ‘ﬁﬁW‘F%Ez +E0, A —/I(ﬁz —1>

(53)
+%(H°)2 CTI° (8, Ay — g A+, A, ) + GTG}
and the BRST charge operator of the present theory could be written as:
Q=J'dx1[iF(61E+ﬁ2—1>—iG(H°+Hﬂ+ﬁ-flﬁ)} (54)

Now because Q|1//> =0, the set of states annihiliated by Q contains not only
the set for which the constraints of the theory hold but also additional states for
which

Fly)=Glw)=0

°|y) #0,,E|y) # 0,1, |y) = 0,(A* ~1)|y) =0, (A-TT; ) ) =0 (55)

Now because Q|1//> =0, the set of states annihilated by Q contains not only
the set for which the constraints of the theory hold but also additional states for
which the constraints of the theory do not hold. However in our considerations,

the Hamiltonian is also invariant under the anti-BRST transformations given by:

S1--Log,6A =—Loc, A -—tog du=-Lo0c  (56a)
g g g g

M, =10 =5E =41, = 811, = 811, = 411, = 0 (56b)
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Eﬁ=§v=§w:o,§6=o,§c:—b,§b=o (56¢)
with the generator or anti-BRST charge:
G:Idxl[—i6(61E+ﬁ2 ~1)+io,E (10 +11, +ﬁ-ﬁﬁ)] (57)
or
ézjdxl[—iF*(alEmz—1)+iG*(n°+ni+ﬁ-ﬁﬁ)} (58)
We also have
06Q =[Q. Hapsr | =0, 8,Q =[Q Hogsr | =0 (59)
with
Hapsr = [ OX Hgpr (60)

and we further impose the dual condition that both Qand Q annihilate physi-
cal states, implying that:

Q|w)=0 and Q|y)=0 (61)

The states for which the constraints of the theory hold, satisfy both of these
conditions and are in fact, the only states satisfying both of these conditions,

since with
G'G=(-1)GG' (62)

there are no states of this operator with G' |t//> =0 and F' |t//> =0, and hence
no free eigenstates of the fermionic part of Hgpg; that are annihilated by each
of G, G', F and F'. Thus the only states satisfying Q|1//> =0 and (3|1//>:0
are those that satisfy the constraints of the theory.

Now because Q|1//> =0, the set of states annihilated by Q contains not only
the set of states for which the constraints of the theory hold but also additional
states for which the constraints of the theory do not hold. This situation is,
however, easily avoided by additionally imposing on the theory, the dual condi-
tion: Q|y)=0 and Q|y)=0. By imposing both of these conditions on the
theory simultaneously, one finds that the states for which the constraints of the
theory hold are the only states satisfying both of these conditions. This is traced
to the conditions on the fermionic variables cand T which constrain the solu-
tions such that one cannot have simultaneously ¢, ,¢c and T, 0J,C, applied to
|l//> giving zero. Thus the only states satisfying Q|l//> =0 and (j|l//>=0 are
those that satisfy the constraints of the theory and they belong to the set of
BRST-invariant as well as to the set of anti-BRST-invariant states.

Alternatively, one can understand the above point in terms of fermionic anni-
hiliation and creation operators as follows. The condition Q|l/l> =0 implies the
that the set of states annihilated by Q contains not only the states for which the
constraints of the theory hold but also additional states for which the constraints
do not hold. However, Q | l//> =0 guarantees that the set of states annihilated by
Q contains only the states for which the constraints hold, simply because
G |l//>;t0 and F' |l//>¢0. Thus in this alternative way also, we see that the
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states satisfying Q|1//>:(5 |y/>:O are only those states which satisfy the con-
straints of the theory and we also see that these states belong to the set of
BRST-invariant states as well as to the set of anti-BRST invariant states. This
completes the BRST formulation of the theory.

5. Summary and Discussion

In the present work, we have considered the restricted gauge theory of quantum
chromodynamics (QCD) in one-space one-time dimension (QCD,) a la Cho et
al [1]-[14]. We have summarized the basics of the theory in Section 2 where the
motivations of our present studies have also been discussed and are being omit-
ted here the sake of brevity. The theory under our present investigation is seen to
be GI and we have studied its quantization using Hamiltonian [24], path integral
[25] [26] [27] [28] and Becchi-Rouet-Stora and Tyutin (BRST) [29] [30] [31],
formulations [24]-[31], in the usual instant-form (IF) of dynamics (on the
hyperplanes: x° =t =constant ) [32] [33], under appropriate gauge-fixing con-
ditions.

The restricted gauge theory of QCD, a la Cho et al. [1]-[14] and others [1]-[23]
makes use of the so-called “Cho-decomposition”, which is, in fact, the gauge in-
dependent decomposition of the non-Abelian potential into the restricted po-
tential and the valence potential and it helps in the clarification of the topologi-
cal structure of the non-Abelian gauge theory. This decomposition allows one to
view QCD as the restricted gauge theory (made of the restricted potential) which
is coupled to a gauge-covariant colored vector field (the valence potential). The
restricted potential is defined in such a way that it allows a covariantly constant
unit isovector A everywhere in space-time, which enables one to define the
gauge-independent color direction everywhere in space-time and at the same
time allows one to define the magnetic potential of the non-Abelian monopoles.
It even has full SU(2) gauge degrees of freedom, in spite of the fact that it is re-
stricted. Consequently, the restricted QCD made of the restricted potential de-
scribes a very interesting dual dynamics of its own, and plays a crucial role in the
understanding of QCD. This restricted gauge theory of QCD is therefore very
important and it is important to study its quantization using the standard con-
straint quantization methods, including the Hamiltonian, path integral and

BRST quantizations, as we have done in the present work.
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Abstract

We present here a realization of Hurwitz algebra in terms of 2 x 2 vector ma-
trices which maintain the correspondence between the geometry of vector
spaces that is used in the classical physics and the algebraic foundation un-
derlying quantum theory. The multiplication rule we use is a modification of
the one originally introduced by M. Zorn. We demonstrate that our multipli-
cation is not intrinsically non-associative; the realization of the real and com-
plex numbers is commutative and associative, the real quaternions maintain
associativity and the real octonion matrices form an alternative algebra. Ex-
tension to the calculus of the matrices (with Hurwitz algebra valued matrix
elements) of the arbitrary dimensions is straightforward. We briefly discuss
applications of the obtained results to extensions of standard Hilbert space
formulation in quantum physics and to alternative wave mechanical formula-
tion of the classical field theory.

Keywords

Hilbert Spaces, Hurwitz Algebras, Zorn Multiplication

1. Introduction

While the mathematical formalism of classical physics is based on use of real
vector spaces, quantum physics is typically formulated algebraically. Hence, a
structure that allows for a connection between both these descriptions is neces-
sary. Among the possible algebras relevant to this task, Hurwitz algebra plays a
special role. It contains one-, two-, four- and eight-dimensional quadratic nor-
mal division algebras that form the only possible numerical systems. With Hur-
witz algebra, we can generate the sequence of mathematical frameworks suitable
for the description of dispersion-free [1] classical field theories as well as quan-

tum field theories that obey Heisenberg dispersion relations that use Hilbert
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modules, which are functional analytical structures similar to the usual Hilbert

spaces.

2. Matrix Treatment for Hurwitz Algebras

Consider the subsequence of those structures with real scalar products, all of
whose dynamic variables are mutually commuting and whose states are real-,

complex-, quaternion- and octonion-valued [2]:
(f.9),=Tr(f.0) (1)

where, for example, for a quaternion-valued f and g (f,g) is quater-
nion-valued as well. The same structure may be alternatively generated by the

four-dimensional vectors:
(f.9)=Tr(f,9)-eTr{(f.g)e}-eTr{(f.g)e}-eTr{(f.0)e} (2
—e(f,g)e =Tr(f,g9)-eTr{(f,g)e}+e,Tr{(f.0)e,}+eTr{(f.0)e} (3
Tr(f,g)+eTr{(f.g)e}-eTr{(f,g)e,}+eTr{(f,g)e,} (4
Tr(f,g)+eTr{(f.g)e}+eTr{(f.g9)e,|-eTr{(f,g)e,} (5
The sum of Equations (2), (3), (4) and (5) gives us:

(f’g)R ETr(f,g)zi[(f,g)—el(f,g)el—ez(f,g)ez—e3(f,g)e3] (6)

-e,(f,9)e,

(f.9)
—e3(f,g)e3

or in matrix notation

g

S
,—ezf,—e3f]* gel
2

98

(7)

€
)
|
NG
|
bl
|
’pl

Similarly, the Hilbert module with a complex scalar product is generated by

the sum of Equation (2) and Equation (3):
(f.9). ETr(f,g)—elTr{(f,g)el}:(f,g)—el(f,g)e1 (8)

In matrix notation

(¥,0), :%[f_'_elﬂ{ggej 9)

The Hilbert module with complex scalar products and octonion-valued states
is generated in exactly the same manner. The usual Hilbert space obviously fits
that procedure. This provides evidence of the existence of a uniform matrix
treatment for all Hurwitz algebras.

First of all, let us consider 2 x 2 matrices. We have no difficulty in representing
reals, complex and real quaternions, but the underlying Cayley-Dickson proce-
dure prevents extending the 2 x 2 matrix to the 8-dimensional algebra of real
octonions. In addition, the matrix obtained via Cayley-Dickson realization of

real quaternions
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—i —ig. —
q:{qo ds ql_qzj
—10,+4, Qo +1G,
yields a physically erroneous mapping of space-time geometry

ct+z x-iy
X! lth -
(xy )j(x+|y ct—zj

(10)

(11)

since it violates the assumed isotropy of the space continuum. We, therefore

modify the geometric vector matrix approach originally introduced by M. Zorn

[3] [4] as follows:

1) For real numbers

_ X 0
X—XO:(O XoJ

2) For complex numbers
X, X X i
X:x0+x1izx0+>?:(; J:[O_ Xl]

3) For quaternions

3 X % X lexiei
_ " 0 i
X=X+ %6 =X +X =
i=1

4) For octonions

7 X
X =X+ %€, zx0+>”<:( 0
i=1

and the multiplication rule is defined by

zzxovz(f on()@ yj
XX Y Y%
B X Yo +X-y X ¥+ Yo X +Xxy
XY+ Yo X+ XX X, Yo + X+ Y
where
& € =0
X-y==%Yy, =YX

XXV =&y XY8 =—YxX;

(12)

(13)

(14)

(15)

(16)

(17)

& are structural constants in the corresponding multiplication table (see

Appendix). For quaternions this is usual a totally antisymmetric three-dimensional

tensor; in the case of octonions it may also be considered as a Levi-Civita tensor

in seven-dimensional space.

Explicitly, for quaternions we have

X% 7=(x2y3 —x3y2)81+(x3y1—x1y3)e2 +(X1y2 _Xzyl)es

(18)
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and for octonions
KXY =XV = XY, )& + (XY — X Y5 )€ + (XY, =%, Y1 )&
+(XsYs =XV )& + (X Yo =X Yo )€ +(Xo Y5 — X5 Y, )€
+(XgYr =X Y0 ) e+ (XY — X Y7 )€ +(XaYs — XY )€
+(Xe Yo — X6 Ya )€ + (X0 Yo — X V1 )€ + (X, Vs — X6 Y1) €5
+(XsY7 =X Y5 )& +(Xe Yy — X, Y5 ) € + (X Yo — X, Y7 )&y
F(XeY7 =X ¥ )& + (X Vs = Xs Y7 )€ + (X ¥s — X6 Y5 ) € (19)
F(XeYs =Xy Y5 )€ +(XsYs — X5V )€ +(XgYs — X3 Ya )€
Obviously,

XxX=0 and X-X=-Y x? (20)

_ ~ [xo —)‘(’]
X=X —X=>| _ (21)

and this satisfies the standard requirement

X=X
(which follows immediately from (21)).

XOY =Y OX (22)
Proof:
W:[ %Yo+ XY —xoy—yoia—fxvj 23)
—Xoy—yOX—XXy Xoyo"'X y

(29)

Now we are in the position to prove the following statement: The algebras de-
fined by Equations (12), (13), (14), (15), (16) and (17) are quadratic normal divi-
sion algebras.

Proof:

1) Tr(X)=X+X=2x, (25)

2) Det(x)sN(x)zon:(

x| X
X X
N—
<
|
=<
x| S
< |
ST X
N—
Il
7 N\
>
o N
|
o
PNl
x|
=<
(=3 N}
|
o
Pl
P
N——

Then
X2 -Tr )X+N( )
X

Tr(X
=[Xf XJO(XB J 2xo[xf Xj+(x§—z-x)|=o (26)
X X% X X X X%

From the uniqueness of the Hurwitz algebras it follows that the realization

discussed above has the following properties:
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1) In one-dimensional algebra of reals and in two-dimensional algebra of
complex numbers

XOY =YOX (commutative)

XO(Y0Z)=(X0Y)0Z (associative) (27)
2) In four-dimensional algebra of real quaternions
XO(YOZ)=(X0Y)0Z (associative) (28)
3) In eight-dimensional algebra of real octonions
X20Y = X0(X0Y) (left alternative) (29)
XOY? =(X0Y)OY (right alternative) (30)

Indeed, the validity the above statements may be demonstrated through direct
matrix calculations. However, as they are rather cumbersome, we will only pro-
vide the useful relations for it:

1) All Hurwitz algebras hold

X-y=y-% (31)
Xxy=-yxX (32)
X-(yxZ)=7-(Xxy)=y-(ZxX) (33)

2) For quaternions
Xx(yxZ)=(X-y)ZI—(X-7)y (34)

Using relations (33) and (34) we have
(x0y) 0z —x0(y0z)
=[(Xx¥)-2=(§x2)-X|+[(X-7)Z=(F-2)X+(Xx V) xZ-%x(yxZ)] (35)

=0
3) For octonions
Xx(Xx¥)=—(X-¥)X+(X-X)¥ (36)
Using (33) for the scalar component of the alternator we have
(Xxy)-Z—-(yxZ)-x=0 (37)
Therefore,
Tr[(x0y)0z | =Tr[x0(y0z)] (38)

Thus, calculation of scalar products in the real Hilbert module with octo-
nion-valued states may be performed neglecting their non-associativity. Ob-

viously, we also have
Tr[(x0y)0z |=Tr[ 20(x0y)] (39)

We have obtained the properties of associativity and commutativity which are
both needed to formulate a dispersion-free field theory [2].
A detailed discussion of self-adjoint operators (dynamic variables) in those

frameworks will be presented in a separate publication.
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Using (36) for the vector component of the alternator we have

(7( )”()y—(f(- y))?—)?x()?x )7)
N e N i N i (40)
=(X-X)y—(X-y)X+(X-y)X—(X-X)y=0
or
x*0y = x0(x0y) (left alternative) (41)
Similarly,
()? )7)7—()77)7(+(7(><7)><)7 2)
=(X-y)y = (V- ¥)X=(X-¥)y+(y-¥)x=0
or
yox? = (yox)0Ox (right alternative) (43)
Then the flexibility and the Moufang identities follow
(x0y)0x = x0(y0x) (44)
(x0a0x) 0y = x<>[a<>(x<>y)] (45)
yo(x0a0x) = [(yOx)Oa] Ox (46)
(x0y)0(adx) = x0(yoa)ox (47)

Consider now matrices of arbitrary dimension with matrix elements belong-
ing to one of the Hurwitz algebras. Then the product matrix is defined by the

usual multiplication rule:

211 le Zln X11 X12 xln Y11 le Yln
R R S I
an Zn2 Znn an XnZ Xnn Ynl Yn2 Ynn
n
Zy =2 XYy 1,j=12n (49)
k=1
where
, (77 =Zn:(xi0k xikjo[yfj yij
i =5 o - 0
' Z; Zi? k=1 \ X, Xi?< Yi Yy (50)
_ i Xi?( yl?j + X - Yy Xi?( Y + ij i + X X Yy
k1 Xi?( Y + yl(()j i + X X ¥y Xi?( ij + X Vi

VX Yy, Zy elements of R, C, H and O algebras.

Thus, the product matrix is defined as the usual sum of pairs of multipliers
and the product of each pair is defined by the vector multiplication introduced
above. The trace and determinant of the product matrix are always real and are

defined according to the usual rules. For example,
n
Tr(z)=>.2{ (51)
i1

Therefore, the result of the calculation is unambiguous.
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3. Conclusions

Having discussed the geometric extension of conventional matrix multiplication
which is uniformly valid for all quadratic normal division algebras, I would like,
in conclusion, to emphasize that the suggested matrix realization is of crucial
importance for quaternion and octonion extensions of standard functional anal-
ysis since the real as well as the complex Hilbert modules require the use of mul-
ticomponent states. The results obtained allow for the introduction and investi-
gation of the operators necessary for the description of the system dynamics as
well as for the observables (self-adjoint operators) [5] [6]. In addition, the transi-
tion from the vector matrix to the standard one may provide an alternative me-
chanism for spontaneous breakdown of internal symmetries as suggested by the
comparison of Equations (10) and (14). Historically, the multiplication opera-
tion over real numbers was first extended to physically relevant three-dimensional
space and only later to spaces of arbitrary dimensions and signatures [7]. The
invention of scalar matrix multiplication was an alternative to this generaliza-
tion. It seems reasonable to expect that the vector matrix multiplication sug-
gested here may be extended to additional types of algebras (Clifford, Lie, Jor-

dan, etc.), but that lies outside the scope of this investigation.
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Appendix

For readers who would like to verify the statements in this paper by direct calcu-

lation, I reproduce here the multiplication tables of Hurwitz algebra.

Table Al. Complex numbers.

eO el
) & €
e e -6,
Table A2. Quaternions
eﬁ el eZ e3
e e, e e, e
g, e -6, e e,
e, e, —e, —€ &
g, e e -8 —e,
Table A3. Octonions.
e e, e, g, e, e, e, e
e, e e, e, €, e, e, e, e
e e, -6, e e, g -6, e, -e,
e e, e, -6, e, e, e -e, -6,
e, e e, -6 -€, -6, e, e, -e,
e, e, -e, -6, e, -6, e, e, e
e, e, e, -e, -e, e, -, -8 e
e, e -6, e, -e, -e, e -e, e,
e, e e, e, e, -, -e, -6, -6,
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Abstract

We argue that in contrast to the classical physics, measurements in quantum
mechanics should provide simultaneous information about all relevant rela-
tive amplitudes (pure states and the transitions between them) and all rele-
vant relative phases. Simultaneity is needed since measurement changes the
state of the system (in both quantum and in classical physics). We call that
measurement procedure holographic detection. Mathematically, it is de-
scribed by a set of mutually commuting selfadjoint operators that are similar
and closely related to projections. We present explicit examples and discuss
general features of the corresponding experimental setup which we identify as
the quantum reference frame.

Keywords

Hilbert Spaces, Holographic Detection, Quantum Reference Frames

1. Introduction

Debates about the connection between hidden laws of nature and our ability to
extract the information necessary to formulate these laws have a long history,
perhaps as long as study of physics itself. This paper, while not related to the
philosophical or metaphysical aspects of those discussions, puts forth certain
point of view without intention to defend it or to convince the reader that it is
only possible approach. We simply present how the process of knowledge acqui-
sition is realized within that approach. We explore the analogy to the structure
of field theories (classical electrodynamics, general relativity and non-relativistic
quantum mechanics) and make a distinction between unobservable kinematical
quantities which characterize a physical system and the measurable variables

which define its dynamics. Since the main distinction between classical and
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quantum physics is the presence of new kinematic quantities—phases—we need
to know how to measure the corresponding phase differences. We demonstrate
that this measurement may be obtained by using a special experimental ar-
rangement that we call quantum reference frames. This allows for communicat-
ing the required hidden unobservable information to the instruments of the ob-
server. This simultaneously explains why the elementary unit of communication
is given in terms of an indivisible bit.

The notion of the eigenschaften operator was first introduced by J. von Neu-
mann [1] as a necessary ingredient of his theory of measurements. He suggested
assigning that role to projection operators which define not only the space of
quantum mechanical states but also the structure of that space and its complete,
orthonormal basis. In our model, it is logically consistent to use eigenschaften
operators that closely relate to projection operators but act on the whole space
without distortion; that is, eigenschaften operators that are unitary.

The main feature of the measurement process is that measurement devices are
macroscopic, obeying the laws of classical physics, whereas the systems being
tested belong to the microscopic world and behave quantum mechanically. In-
deed, the measurement setup should assure that the results obtained represent
objective properties of the physical system being investigated and not the subjec-
tive imagination of the observer. Using classical physics, we complete that task
by introducing reference frames such that the location of the detector defines
both the frame’s origin and the set of auxiliary macroscopic devices. This allows
for establishment of a connection between frames that are separated by a finite
space-time interval (comparison of the empirical data obtained must always be
performed by the same observer). Similarly, in order to measure the relevant
quantum dynamical variable a set of auxiliary macroscopic devices should be in-
cluded in the classical setup to produce the necessary beam-splitting. Then the
required phase differences can be measured in the usual way. This setup and re-
cording procedure may be viewed as general holographic detection.

The organization of this paper is as follows:

Section 2 presents a discussion of the relevant kinematics of the quantum
theory. Section 3 introduces the unitary, self-adjoint operators which we identify
as adequate eigenschaften operators.

Section 4 discusses the quantum frames of reference making a close analogy to

the inertial frames of classical physics.

2. The Kinematics of Qquantum Mechanical Theory

We restrict ourselves to discussion of single particle states, avoiding complica-
tions introduced by special relativity. We use an orthodox kinematic approach
based on the mathematical framework of Hilbert metric spaces. That means that
we assume that there exists at least one self-adjoin operator that generates this
space. That operator is supposed to describe the dynamics of a single particle

that is completely isolated from the external world. All measurable quantities are
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also described by self-adjoint operators. In particular, projection operators, den-
sity matrices, etc. are treated as special kinds of observables, whereas the funda-
mental quantity associated with the state of the physical system is treated as a
wave function [2]. In contrast to operators that are geometric transformations of
the given vector space, wave functions are vectors that form that space and are
both unobservable and incapable of being measured directly, at least in prin-
ciple.

The transition from the sterile situation of a single isolated particle to the
real-life physical system is achieved through introduction of the local interac-
tions of the test particle with the fields generated by the rest of the external
world. These interactions are introduced using the principle of local gauge inva-
riance. The required complexity emerges from the statistical nature of the envi-
ronment. This approach is identical to the conventional one that has long been
established in the development of classical physics over the centuries except that
the definition of (fundamental) interactions is now connected to the new phys-
ics, since we are dealing with matter waves.

The fundamental property of the quantum mechanical states is as expressed in
terms of the linear superposition principle is:

If |¥,) and |¥,) aretwo different states of the system, then

|W)=a|W¥,)+b|¥,) (1)

is also a state of the system. Equivalently, we may write:

o) e

O AT SR U S IS

or

However, that seemingly innocent-looking mathematical expressions leads to
a dramatic change in the physics of the described system, since the presence of
the second orthogonal component is the necessary and sufficient condition that
now the above function describes the extended object:

Theorem [3]:if A* = A and <‘I—’1|‘I’2> =0; (‘I—’l|‘I’1> =<‘I’2|‘I’2> =1;

Then

Alw,)=a|w,)+b|w,) @)
a=(¥,|Alw,)=(A)=A (5)
Iof =bb = (A2 —a?)|',) = (aA)’ (6)

can be decomposed.

Proof:

(0] (A ) ) = (o, A7),
(a(®,|+b" (¥, |)(alw,)+b|¥,))-a® =Dbb’
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Therefore, what we need to reconstruct in the properly performed quantum
mechanical measurement is a picture. Since equations of motion are intrinsically
complex, the quantum mechanical system must be described by a two-component

state function at least, due to the Euler relation:
exp(ip)=cosp+ising.

In contrast to classical physics, quantum mechanics is the physics of extended
objects; it is the theory of matter fields. Now, due to D. Hilbert’s spectral de-
composition theorem [4], any A, such that A=A’ may be expressed in terms

of one-dimensional projectors:

A=Y 1P, %
where
|£\)n+:|3n;’\n’\m:é‘nmlsm;Z:’\n:i\; (8)
or, in Dirac notation:
P, =|e.){2 |5 9)

A, are eigenvalues of operator A and |qon> are its eigenfunctions. The set of
eigenfunctions forms a complete orthonormal basis. Thus, the space obtained is
the metric space suitable for physical applications, hence, Operator (9) defines a

pure state. More generally, one introduces the density matrix
p=lo)e]
Py = (0 |2]ey)=(ale){ole;) (10)
Py = (o] e)o|0)
or

p=22, |2 ) (20 (11)

We may try to use linear algebra in order to clarify the difference between

uni- and multi-component states. Using Heisenberg-Schrodinger notation, we

ﬁ—lo-ﬁ—oo (12)
lo o) 2 (01

+P, =1

may write:

>
>

[N

We consider the two-component case only for its simplicity, generalization to
the non-generate finite dimension case is straightforward:

Now consider the two-component wave function. Then

i=e(o)2(i)-(3)

aa" +bb" =1

The corresponding density matrix

DOI: 10.4236/jmp.2018.914152 2381 Journal of Modern Physics


https://doi.org/10.4236/jmp.2018.914152

D. Sepunaru

~ [aa" ab’ (14)
P ba" bb

may be obtained using Kronecker product multiplication
~ a
= ®(a*,b* 15
p (bj (a,b%) (15)
However, equation (14) still describes a pure state, since

p=p"s pP=p; Trp=1 (16)

Let us introduce the notation

-~ (aa® 0} (0 O
p:( 0 o]{o bb*j a7
Then,
ﬁ=/3+[ ° ab*j (18)
ba 0
Obviously,
p=p"; Trp=1 (19)
But
p2#p if ab#0 (20)

2 a 0
p is a mixture of two pure one-particle states [OJ and (b] Clearly, this

cannot be treated as a single particle state. In order to demonstrate this let us

calculate the dispersion of the projection operator p :
(p) ETr(ﬁf)) = (aa’ )2 +(bb* )2 =1-2(aa")(bb"). (21)
If ab=0, then
1>(p)>0 and 1>(p)’ >0

Therefore,
(Ap) ETr(,sz,%)—(Tr(,s,B))z :Tr(ﬁﬁ)[l—Tr(,[)/g)J >0 (22)

which contradicts the spectral decomposition theorem. Hence, the system state
in our example is a pure state.

The operator p (Equation (14)) preserves the clear geometrical meaning of a
one-dimensional, dispersion-free projector. If one starts with a well-defined ref-
erence frame, the complete set of those projectors allows the rotation of that new
reference frame to the new axes. However, that set does not allow the extraction
of information about the dispersions contained in the measurements of the tran-
sition amplitudes. The next section discusses the self-adjoint operators that allow

for doing just that.
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3. Eigenschaften Operators

From the logical point of view, it is natural to expect that projection operators do
not provide an adequate means for obtaining information about all possible al-
ternatives, since they destroy the orthogonal subspace of the Hilbert space: A

true eigenschaften operator must be unitary. Together with the requirement of

being observable (H* = H ), that leads to the following theorem:

Theorem:
If H* =H ™ (unitary)and H* =H (self-adjoint),
Then
Az
Proof: (23)
1) Suppose
A=A,
then
A=A =T
2) Suppose
H2=1 and H*=H?,
then
A -n
From H?=1 wehave
(H-T)-(H+T)=0 (24)
Let us first consider the two-dimensional case. From Equation (24)
A=1; 4, =-1 (25)
and due to the spectral composition theorem, we have
H, =P -P, (26)
Since
5 +P =1 (27)
we finally obtain
o ih,
i o
P, = 5 2
Now in terms of matrix mechanics we have
H, 1) = oy |W,)+ B0 [\¥,) = ¥5)
H,|'W,) = e |¥,) +a,|¥,) =|¥,) (29)
with
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(W[ W,)=(¥;|¥,) = (30)
Then,
B-(ay+a,)=0
a12+ﬂ2:1 (31)
ai+pr=1

Since we are discussing here the measurement of the relevant parameters of
quantum mechanical systems with non-vanishing dispersion, we consider only
the =0 case. Then,

a=-a,=a (32)
or
Tr(ﬁz) =0 (33)
The matrix elements
(F1[H, 1) = (¥, |H,|¥,) =« (34)
and
(o[ H,[¥,) = pe (35)

are all we need to know about the quantum state. Both are measurable, (I—AI2 )11
defines the spectrum and (ﬁz)lz defines the dispersion. The basis introduced
above |‘I—’3> and |‘I—’4> is distinguished by the fact that it allows for simulta-
neous measurement of both spectrum and dispersion. The example of a

two-level system should make this even clearer:

H, (e““"lt

‘Pl)) = oo W)+ pe )
. _ _ (36)
H, (e*"“’z‘ |‘P2>) = pe | ¥, ) —ae | P,)

Then dropping the overall phase factor, we obtain
H,|W,)=a|¥,)+pe )" |¢,)

. . (37)
H,|¥,)=ge N v ) -a|¥,)

Using the relations in (31) we obtain the most general solution:

~ cosy e .siny

H, =[ TV (38)
e’ .siny  —cosy

In particular, for Ap=0 and y =45 we obtain the Hadamard matrix of

lowest order (N=2)

- 1(1 1

H =— 39

i ﬁ(l —J )
that is well-known in image processing applications.

Now we demonstrate that the solution obtained is intrinsically consistent with

the general statement [3] referred to above. The density matrix in our example
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(Equation (14)) is

2 : g
e )
Then
<QJETdﬁ#ﬁ:T%F?y gmgemj=0%7=a (a1)
<I:|22>5Tr(l:|22;3)=Tr/3:1 (42)
and
(a6.) = (A2)~((Ro)) =1-costr=sin =g @)

Consider now the three-component case (an analog to three-level quantum
mechanical systems).

We prefer to explicitly discuss the three-component and the four-component
cases, rather than the general n-dimensional situation which follows directly

from the results obtained.

We have
Ho W) = o | W, )+ B |9, ) + vei | ¥,) = | ¥,)
Hy|W,) = Be % |, ) +a, | W, ) + ™ | ¥, ) = | W) (44)
Ho[W,) = re ™% |,) + ue ™% | W, ) + a, | W,) = | W)
with

(W[ W)= (¥, |¥,) = (¥s|¥s) =1
(Wo| ) =(Ps[Ws) = (¥s|¥5) =1
(W[ W,) = (¥ |Ws)=(¥,|¥5)=0
(Wo|s)=(Va[Ws) = (¥s[¥5)=0

(45)

Then, the matrix elements of I—A|3 are connected by the following relations:

(Tr(l:|3))2 :(a1+a2+a3)2 =1

Tr(Hy)=+1
ﬂz = (1$ al)(l‘T‘az) (46)
7 =(15o)(17 )

H=(1Fa,)(1Fay)
Ap; =Ap, —Ag,
Let us establish the connection between the eigenschaften and the projection

operators here. Consider the uni-dimensional projection operators

100 000 000

5 =|0 0 0;R,=/0 1 O[;R,=l0 0 O, A
000 000 001 47)

5 4P, +P =1

DOI: 10.4236/jmp.2018.914152 2385 Journal of Modern Physics


https://doi.org/10.4236/jmp.2018.914152

D. Sepunaru

Again, the most general one-dimensional projector may be written in the

form

a
p=|b|®a"bc)
c

(48)
pr=p;pt=p;Trp=aa” +bb" +cc* =1
Then using spectral decomposition
Hy = AR + 4P, + 4P (49)
HZ =1
we have
- A Ao
Hg) =-hth+h
H§2): 1— R th (50)
A
H; = 1t —h
Thus, we obtain
5 _T-HY
o2
. foAe
2 = 2 ! (51)
r a3
5 _I-Hy
2
However, only two equations are linearly independent
AY 4 AR /O - (52)
and form the following commutative algebra
HO . [0 - _[06
RO (53)
[AY AP ]=0ii,j=123

We conclude with a demonstration of the four-component case. The H 4

operators ( I-A|4+ =H , and H 2= I') have the form:

—iAp —iAp, —iAgpy
o pe ye oe

. iApy —iAgpg —iApg
A, = feewz #Zi% ﬂea zz_m% (54)
3
é‘eiA(pA UeiA% ézeiA(/)e a4
Ap, =Ap, —Ap,
A¢5 = A(/)4 _A(/’l (55)
Aps =Ap, —Ap,
Now we have
Tr(H,)=-20.2 (56)
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If Tr(l:l 4):i2 , the transition amplitudes (dispersions) are related to the

spectrum through the following equations:

(57)

Notice that these relations are universally valid and thus are subject to direct

experimental verification.

As in the above, we may establish relations between eigenschaften and projec-

tion operators. For example, for Tr( ) 2 we obtain
[P 4P 4B 4P
RO~ P 4B +B 4P ——28
AP BB 4B +B=T-28,
AP = +B - B =2
A =B+, B -, = 25,

Again, we have
SAD

and
|:|£1) |_A|§2) - |_A|§1) +H® _[06 _HA£4)
(A AP =0, j=1234

and so on.

For the case Tr ( H ) 0, we may write

A% -1 eh,
AP -H,®|
S -, ®h,

since

Then we have

Hz(tl)z 1— R tR—R
A =R 6P P,
HEB): 1R TRtE

and

(58)

(59)

(60)

(61)

(62)

(63)
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~ 1r~ o~ A ~
l=Z[|+H§”+H§2)+H§3>]
5, =2 [T-AY AP A ]
) (64)
= 2[TeAn AR A ]
~ 1r~ o~ - -
4=Z[I—H£1)—H£2)+H£3)J
Again we have
HAgl) H"‘(lz):H"‘(f)
- (65)

We assume that the way to further generalization is obvious.

4. Holographic Detection: Quantum Reference Frames

Perhaps nobody needs an explanation of the mathematical formalism discussed
in the previous section: we hope it speaks for itself. Nevertheless, we devote this
section to the description of the physical “picture” behind the approach pre-
sented since that was the guideline that led us to it.

We address the following questions:

1) What is the difference between “on-off” and “or-and” switches in terms of
quantum mechanical self-adjoint operators (observables)?

2) How are transition amplitudes between stationary (pure) states naturally
and symmetrically incorporated within the amplitudes of these states?

3) Is it possible to measure A and AA simultaneously and how is the re-
quired setup arranged?

4) If it is possible, may measurements be performed using only macroscopic
devices?

5) What does the Heisenberg Dispersion Relation (HDR) have to do with
those measurements?

Our answer to the last question: almost nothing. It is well known [5] that the
product of two noncommuting self-adjoint operators is not a self-adjoint opera-
tor and that the dispersion of their product is also not a self-adjoint operator.
Therefore, there is no way to assign physical meaning to its numerical value. The
theoretical importance of HDR tells us that quantum physics is the physics of
extended objects and not the physics of material Newtonian points. The results
of measurements are “pictures” and cannot in principle be treated as an image of
a single point in space-time. The projection operators extensively used by J. von
Neumann in his attempt to formulate his theory of measurements obviously play
therole of “on-off” switches that define the basis of state vectors in Hilbert space.
Therefore, it is reasonable to expect that “or-and” operators should be connected
to them but in a slightly different way. Hadamard transformations [3] [6] which
find their applications in image processing and quantum information theory

seem to be suitable candidates. In addition, the notions of bits and qubitsnaturally
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appear as two-component wave packets. Finally, in order to provide a laboratory
realization of the simultaneous measurement of the relevant amplitudes (relative
generalized coordinates) and phase differences one should assure that wave
packets arrive at every point on the detector screen.

Let us expose the content of our discussion to the eyes of the Schrodinger cat
totally confused by the endless debates about its destiny. The usual justification
for the apparent uncertainty refers to HDR. But empirical evidence tells us that
the initial assumption that the cat may be considered as a quantum mechanical
system containing inherent indeterminacy which then “becomes transformed
into macroscopic indeterminacy” [7] is clearly wrong. If the state of the system
(the “cat”) is defined, one can measure its dispersion. Now, if in that given state
the dispersion is not zero, we are dealing with an extended object and the ex-
pected result of the measurement should be represented by a picture of an un-
fortunate cat “mixed or smeared out in equal parts” [7]; if not, the cat was and
will remain in the pure (definite) state, hopefully alive! Now, let us remember
that in classical physics where only measurements of amplitudes are required,
nobody doubts that the “moon is there” and that it is the same for all inertial
reference frames, for example (Figure 1).

Here the lossless beam splitter is the macroscopic device which actively parti-
cipates in the detection procedure ( I-A|2+ = I-AI2 ).

By contrast, in the microscopic quantum mechanical world (quantum optics)
we are also required to measure the phase differences in order to obtain all exis-
tent and necessary information about the original object. This may be done us-
ing a similar setup, for example, see Figure 2.

However, in both cases the mirror and the lossless beam splitter participate
only passively in the detection; they do not cause the wave function to collapse,
but allow for extracting information on phase differences, since the referential

component of the wave packet arrives a teach point of the detector screen

Figure 1. Classical optics measurement systems.

Figure 2. Quantum optics measurement systems.
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together with the tested wave packet (within the inherent dispersion of the
quantum mechanical space-time continuum). Then there is no reason to expect
that the picture obtained would not provide an adequate image of the original
object. It seems that now we are better equipped to formulate the dynamic (rela-
tivistic) laws of quantum physics. Ultimately that should lead to deeper under-

standing of the geometry of the space-time continuum.
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Abstract

In 1899, Max Planck integrated the Planck constant A with the gravitational
constant G and the speed of light ¢, discovered a set of physical constants, and
created Planck Units System. Since 20th century, the development of physics
made the gravitational constant, the speed of light, and the Planck constant
the most important fundamental constants of physics representing classical
theory, relativity, and quantum theory, respectively. Now, the Planck Units
have been given new physical meanings, revealing the mysteries of many
physical boundaries. However, more than 100 years have passed, Planck
Units System not only failed to get rid of the incompatibility between the ba-
sic theories of physics, but also cannot surpass the limitations of existing
physics theories. In Cosmic Continuum Theory, physical dimensions can be
transformed under the principle of equivalence. Planck units system not only
integrates into the axiom system of Cosmic Continuum Theory, but also es-
tablishes a benchmark for the unity of physical dimensions. The introduction
of the abstract physical dimensions “JX” and “X]J” makes the physical dimen-
sion of existence quantity and dimension quantity unified respectively.

Keywords

Cosmic Continuum, Axiomatic Physics, Fundamental Constants of Physics,
Gravitational Redshift, Planck Units, Dimensional Analysis

1. Introduction

The fundamental constants of physics are the passwords of the universe and
important scientific discoveries. Among all the physical constants, the
well-known gravitational constant G, speed of light ¢, and Planck constant 4 are

the three most fundamental constants of physics. These three fundamental con-
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stants of physics represent the different epoch-making basic theory of physics
respectively. The gravitational constant G represents classical theory, the speed
of light ¢ represents relativity, and the Planck constant / represents quantum
theory.

However, because these three basic theories of physics have different logical
preconditions, they are regarded as three different cosmologies. There are dis-
putes between high speed and low speed, macroscopic and microscopic, conti-
nuous and discrete between the three parties, and no consensus has been
reached so far.

Cosmic Continuum Theory is an axiomatized physics system built on the
mathematical continuum model. In Cosmic Continuum Theory, the universe is
a continuum consisting of an existence continuum and an existing dimension
continuum. The existence continuum is composed of mass bodies, energy bodies
and dark mass bodies. The existing dimension continuum is composed of space,
time and dark space. Mass, energy and dark mass are collectively called the exis-
tence quantity, and the quantity of space, time and dark space is called the di-
mension quantity [1] [2] [3].

This theory holds that a fundamental constant of physics should not only
serve a certain physical basic theory. As cosmic codes of physics that gradually
discovering in the course of continuous advancement, they are human’s basic
understanding of the natural world and should be an important basis for the un-
ity of physics.

It was Max Planck himself who tried to unify fundamental constants of phys-
ics and achieved remarkable success. In 1899, he combined the Planck constant
A with the gravitational constant G and the speed of light ¢, and found a series of
physical constants. These physical constants are the so-called Planck units, and
the following four constants are related to the existence quantity and the dimen-
sion quantity [4].

1) Planck mass: m, = \/m ~2.17651x10°® (kg).

2) Planck energy: E, = hCS/G ~1.9561x10° (J).

3) Planck time: t, =+/hG/c® ~5.39106x10™* (s).

4) Planck length: 1, =\/hG/c® ~1.61619x10°* (m).

They are given corresponding physical meanings, such as: the mass of the
ground state particles cannot be greater than the Plank mass; the energy cannot
be greater than or equal to the Planck energy, otherwise it will collapse into a
black hole; Planck time is an observable event Minimum process time; Planck
length is a measure of Plank’s quality black hole, unable to distinguish events
within a distance less than Planck length; unable to describe events occurring
within Planck time when the universe was born, etc. However, the Planck Unit
cannot resolve the logical contradiction with the continuous space-time of the
theory of relativity, because the space-time structure derived from Planck’s
length and Planck’s time is discontinuous. Even for quantum field theory,

Planck length and point particle models are in conflict [5]-[21].
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2. The Physical Boundaries and Their Conversion of Planck
Units System

In the following, we include the Planck units in the axiom system of Cosmic

Continuum Theory for discussion.

2.1. Fundamental Concepts and Lemmas

This article uses the fundamental concepts and axioms system in [1]. The fol-
lowing lemmas are cited in [1], these lemmas will be used in later proofs.
Lemma 1: The existence quantity has its elementary unit e, (Proof see

(1]).

This lemma is equivalent to the quantification hypothesis.

n

Lemma 2: The interaction force between the initial fields of the existences Z;
and Z, is: f~2,Z, / r?, and the action direction is along the line connecting
Z, and Z,, where, ris the distance between Z, and Z, (Proofsee [1]).

This lemma contains the law of universal gravitation. When the existence is a
mass body, the theorem is the law of universal gravitation.

Lemma 3: An existence has a maximum speed and the speed of an energy
body is the maximum speed (Proof see [1]).

This lemma includes the speed of light postulate.

Lemma 4: An existence has a maximum frequency v,,, (Proofsee [1]).

Lemma 5: When the particle reaches its maximum speed, it will be converted
to a quantum; when the particle or quantum reaches its maximum frequency, it
will be transformed into dark particle (Proof see [1]).

Lemma 6: The existence quantities of mass m and energy E=mc’ are
equivalent: m=E . “=” is the “equivalent” symbol (Proof see [1]).

This lemmas contain mass-energy relation E =mc?.

Lemma 7: The dimension quantity of 1-second of time is equivalent to that of
c-kilometer space: 1 second = ¢ km, where, c indicates the speed of light (Proof
see [1]).

Lemma 8: In a cosmic system A, the elementary particle, elementary quantum
and elementary dark particle have equivalent inertia size: m_;, =, =dn
(Axiom in [1]).

Lemma 9: A dimension quantity has its elementary units w,

min

, and the di-
mension quantities of elementary space quantity s, , elementary time quantity

tmin

Wmin = Smin = tmin = gmin (PI‘OOf see [1])

min

and elementary dark space quantity W, are equivalent:

Lemma 10: The existences are coupled with each other by energy, And in the
presence of different structural levels, by the corresponding quantum from the
role of convergence. If there is a structure at the structural level of the quantum
of g connection, e the corresponding amount of existence, the corresponding
structure of the particle m, dark particle dis also the amountof e m=d=q=e
(Axiom in [1]).

Lemma 11: There are only three basic forms of existence: particle, quantum,
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and dark particle (Axiom in [1]).
Lemma 12: The interaction force between the initial fields of the existences
Z and Z, is: f~2Z, / r?, and the action direction is along the line con-

necting Z, and Z,, where, r is the distance between Z, and Z, (Proof see

(1]).

2.2. Derivation

1) Planck mass m,

According to Lemma 2, the gravitational potential energy of two existing bo-
dies with a distance of rand a mass of mis Gm?/r, where Gis the gravitational
constant.

Let the vibration period of mass body m be £ then its frequency is:

v=1t (1)
Also set its speed to V; then its movement distance in a period ¢is:
r=Vvt (2)

The search for Planck unit is to define the boundaries of physical events. Ac-
cording to Lemma 3, the velocity boundary of the microscopic particles is the
speed of light ¢ so the change in the gravitational potential energy between the

two bodies of Planck mass m, in one cycle #should be:
limGmg J(Vt) =Gm? /(ct) 3)
According to Lemma 1, the quantification hypothesis, we get:
Gm} /(ct) =ho (4)
Substituting (1) into (4) yields:
Gm? /(ct) =h/t (5)
From the formula (5), we can get the Planck mass m,:
m, =/nc/G (6)

2) Planck energy E,

Planck energy E, can be obtained from Lemma 6:
2
E,=m,c (7)
Substituting (6) into (7)) gives Planck energy E,:
E, =4/hc’/G (8)

3) Planck time ¢,
According to Lemma 1, the Planck time t, can be found by:

E, =ho, 9)
where v, is the frequency of the Planck time t, period:
v, =1L, (10)
Substituting (10) into (9) yields:
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E, =h/t, (11)

Substituting (8) into (11) yields:

Jhe*/G =hyt, (12)

Obtain t, from (12):

t, =y/hG/c® (13)

4) Planck length 1,
Planck length |, can be obtained from Lemma 7:

I, =t.c (14)

Substituting formula (13) into formula (14) yields:
1, =/hG/c? (15)

2.3. Corollary

Conversion is one of the core ideas of Cosmic Continuum Theory. The mutual
transformation of mass, energy, and dark mass makes the universe colorful.
However, these transformations are not arbitrary, but are determined by the ex-
istence boundaries of particles, quantum, and dark particles. With the mutual
conversion between particles, quantum, and dark particles, space, time, and dark
space also follow.

Corollary 1: When the mass of particles reaches Planck mass m, the par-
ticles are converted into quantum and the mass is converted into energy.

Proof: From (3), we can see that Planck mass m_ is obtained by taking the
speed as a variable to obtain the limit. According to Lemma 5, when the particle
reaches the limit velocity ¢, it will turn into a quantum. According to the concept
in [1], the energy body is a body composed of quantum, so when Planck mass is
m, , the mass has been transformed into energy. Q.E.D.

Corollary 2: When quantum energy reaches Planck energy E,, quantum is
transformed into dark particles and energy is converted into dark mass.

Proof: According to corollary 1, m  =E,. From (3), we can see that Planck
mass M, is obtained by taking the particle velocity as a variable and finding the
limit. However, it is impossible for the particles to reach the limit velocity ¢ so
that the mass of the particles cannot reach Plank mass m, , and thus the quan-
tum cannot reach Planck energy E,. According to Lemma 4, the quantum fre-
quency has a maximum value. As a limit value, if the quantum energy reaches
Planck energy E,, the frequency v, of the quantum must reach a maximum
value of v, . According to Lemma 5, when the quantum reaches the maximum
frequency, it turns into a dark particle. According to the concept in [1], the dark
mass is a body composed of dark particles. Therefore, when the quantum reach-
es a maximum frequency of v,
mass. Q.E.D.

Corollary 3: Planck mass m is equivalent to Planck energy E;: m =E,.

Planck energy E, is converted to a dark
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Proof: From (7), we can see that Planck energy E, is obtained from Planck’s
mass M, based on Lemma 6, according to Lemma 6, then m, =E . QE.D.

Corollary 4: When the amount of time is less than or equal to Planck time
t,, the time is converted to dark space.

Proof: From (9), we can see that Planck time t, is derived from the Planck
energy E; and the frequency v, of the quantum. However, to reach Planck
energy E,the frequency v, of the quantum must reach a maximum of v, .
According to corollary 2, the quantum is transformed into dark particles and the
energy is converted into dark mass. According to the concept in [1], dark space
is the existence dimension of dark masses. Therefore, when the amount of time
is less than or equal to Planck time t,, the time will be converted into a dark
space. Q.E.D.

Corollary 5: When the amount of space is less than or equal to Planck length
|, the space is converted to a dark space.

Proof: From (14), Planck length |, is the distance traveled at the speed of
light in Planck time t, . According to corollary 4, when time is less than or equal
to Planck time t,, time has been converted to dark space. Therefore, when the
amount of space is less than or equal to Planck length |, the space will also be
converted into a dark space. Q.E.D.

Corollary 6: Planck time t; isequivalent to Plancklength I : t =1 .

Proof: From (14), we can see that Planck length |p is obtained from Planck
time t, based on Lemma 7. According to Lemma 7, then t, =1, . Q.E.D.

The above 6 inferences fully demonstrate that Planck units do not have any
logical contradictions and conflicts in the continuum of the universe and can

perfectly express the physical boundaries and their transformation.

3. Unity of Physical Dimensions

The Planck unit system cleverly integrates the three fundamental constants of
physics of Planck constant A, gravitational constant G, and speed of light ¢, and
realized their dimensionless processing. Unfortunately, the physical significance
of Planck units system is far from being fully reflected due to the inconsistency

between the existing physical basic theories.

3.1. New Understanding of the Benchmark Value of Planck Units

The establishment of any physical dimension must be based on a certain
benchmark. There are two kinds of benchmarks, one is the maximum, such as
the speed of light ¢ the other is the minimum, such as the Planck constant A.
There are many such benchmarks in the Planck units.

Corollary 7: The elementary unit of energy is 0, =h J. A is Planck con-
stant.

Proof: According to Lemma 1 and Formula E =hv, where E refers to the
energy of the quantum and v refers to the frequency of the quantum, it can be

known that Planck constant 4 is actually the energy of the unit frequency. This
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means that any energy body cannot be less than energy 4, so Planck constant 4 is
the elementary unit of energy. Q.E.D.

Corollary 8: The elementary unit of mass is m,;, =h/c? kg. & is Planck
constant, and cis the speed of light.

According to Corollary 7, the elementary unit of energy is 0, =h. Accord-
ing to Lemma 8, the inertia of elementary particles and elementary quanta in an
universe system is equivalent: m_; =(,, - According to Lemma 6, the existence
quantities of mass m and energy E=mc’ are equivalentt m=E , so
h=m,, c*. From this, we get: m__ =h/c*.QE.D.

Corollary 9: The elementary unit of time is t,,, =t, s. t, isPlanck time.

Proof: According to corollary 4, when the time is less than or equal to Planck
time t, the time is converted to dark space. This shows that Planck time t, is
the minimum value of time. That is, the elementary unit of time dimension
tin =t,. QED.

Corollary 10: The elementary unit of space is s,;, =1, m. I, is Planck
length.

Proof: According to Corollary 5, when the length is less than or equal to
Planck length 1, the space is converted to dark space. This shows that Planck
length |, is the minimum value of space. That is, the elementary unit of length
Smin =1, - QE.D.

Corollary 11: The maximum value of frequency is v, =1/t, Hz. t, is
Planck time.
pr b 8
Planck time. This means that for any vibration cycle of the existing body T

Proof: According to corollary 9, the elementary unit of timeis t, =t

T>t,, and frequency v=YT, so for any frequency: v=1/T <t , ie.
Umax =1/t, . QE.D.

Corollary 12: The maximum value of quantum energy is E , =E, J. E,
is Planck energy.

Proof: According to Corollary 11, the maximum value of frequency is
Umax =4/t, > 1, is the Planck time. The energy of quantum is E=hv, 4 is
Planck constant, so E, =ho,, =h/t,. By (11), we can see that E, =h/t,,
therefore E  =E .QE.D.

Corollary 13: The maximum value of particle mass is m,, =m, kg. m, is
Planck mass.

Proof: According to Lemma 10, The existences are coupled with each other by
energy, And in the presence of different structural levels, by the corresponding
quantum from the role of convergence. If there is a structure at the structural
level of the quantum of g connection, the corresponding structure of the particle
mis also the amount of ¢ M= (. According to corollary 3, Planck mass m, is
equivalent to Planck energy E : m =E . This shows that m  and E, are
in the same structure level. According to corollary 12, The maximum value of

quantum energy is E , =E_ , E_ is Planck energy. That is, E  is at the

p p

maximum structural level. Therefore, m, is also at the structural level of
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maximum, that is, m
Q.E.D.

Corollary 7-13 allows us to obtain the elementary unit of energy, the elemen-

, is the maximum value of particle mass: m,, =m,.

tary unit of mass, the elementary unit of time, the elementary unit of space, the
maximum of frequency, the maximum of quantum energy, and the maximum of
particle mass 7 limit constants, this shows that the Cosmic Continuum Theory
further develops the benchmark value of the Planck units.

3.2. Equivalent Abstract Physical Dimension

In the system of Planck units, the values of A, G, cand Planck units are all equal
to 1, and the mass-energy equation is simplified to E =m. It looks a bit similar
to Lemma 6: the existence quantities of mass m and energy E =mc® are equiv-
alent: m=E . In reality, it is not. The former is a numerical simplification and
is a non-dimensionalized process, represented by the “=” symbol. The latter is
the physical equivalent of mass and energy, and it is the unity of physical dimen-
sions, represented by the “=” symbol. In Lemma 6, the physical dimension of m
is kilogram, and the physical dimension of £is Joule; When it satisfies E =mc?,
m=E expresses: mkg= E]J.

Corollary 14: The physical dimensions of existence quantity can be unified on
abstract physical dimensions.

Proof: According to Lemma 1, Lemma 8, the elementary unit of mass m,;, ,
the elementary unit of energy (., , and the elementary unit of dark quality
Ain
tity €nin: €min = Miin = Oin = Ay -

Set e, =1JX, then:

equivalence, which results in the existence of the elementary unit of quan-

13X =m,;, =h/c*(kg) (16)
1IX =0, =h(J) (17)
1JX =d,,, Unit (18)

Due to the fact that there is no international standard unit for the amount of
dark mass, it is temporarily replaced by “Unit”. According to Lemma 11, there
are only particle, quantum, and dark particle three basic forms, thus we have
unified the physical dimension of existence quantity to an abstract physical di-
mension “JX”:

e, =1IX=h/c kg=hJ=d_ Unit (19)

So the physical dimensions of existence quantity can be unified on abstract
physical dimensions. Q.E.D.

Corollary 15: The physical dimensions of dimension quantity can be unified
on abstract physical dimension.

Proof: According to Lemma 9, the elementary unit of space S ,the elemen-

min >
tary unit of time t_;, , and the elementary unit of dark space g,,;, are equivalent, so
as to produce the elementary unit of dimension W,;,: W, = Syin = tin = Opin -

Set w,;, =1XJ, then:
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1XJ =t =t, =y/hG/c® (s) (20)
1XJ= sy, =1, =4/hG/c* (m) (21)

1XJ=g,,, Unit (22)

Similarly, there is currently no international standard unit for the amount of
dark space, it is temporarily replaced by “Unit”. According to Lemma 11, there
are only three basic forms of particle, quantum, and dark particle. According to
Concept 4, Concept 5, and Concept 6, there are also only three basic dimension-
al forms: space, time, and dark space. Therefore, we have unified the physical

dimension of dimension quantity to an abstract physical dimension “XJ”:

Wy, =1XJ =/hG/c® s=/hG/c* m=d,,, Unit (23)

So the physical dimensions of dimension quantity can be unified on abstract
physical dimension. Q.E.D.

Corollary 16: All changes in the universe can be equivalent on abstract phys-
ical dimensions.

Proof: All changes in the universe are changes in the quantity and dimension
of existence. According to Corollary 14, the physical dimensions of existence
quantity can be unified on abstract physical dimensions; and according to Co-
rollary 15, the physical dimensions of dimension quantity can be unified on ab-
stract physical dimension. According to Lemma 8 and Lemma 9, the unity of
physical dimensions is based on physical equivalence, so all changes in the un-
iverse can be equivalent on abstract physical dimensions. Q.E.D.

Obviously, this physical dimensions system is exactly the same as the Planck
Units System. However, the two physical dimensions “JX” and “X]J” are essen-
tially different from our existing physical dimensions. Existing physical dimen-
sions are specific physical dimensions, including Planck units. There is no con-
nection between different specific physical dimensions. But the “JX” and “X]J”
are abstract physical dimensions. The function of an abstract physical dimension

is to achieve the unity of specific physical dimensions.

3.3. A New Interpretation of Gravitational Redshift

The following is an attempt to solve the gravitational redshift problem by apply-
ing the equivalent unified scheme of physical dimensions proposed in this paper.
We know that the energy of a photon E'is:
E=ho (24)
A is the Planck constant and v is the photon frequency. According to Lemma
6, The existence quantities of mass m and energy E =mc® are equivalent:
m = E . Therefore:

E = hv =mc® (25)

cis the speed of light. So we can get:
m = ho/c? (26)
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According to Lemma 12, it can be seen that the photon escapes from a certain
celestial body M to a distant place of R, and the change of gravitational potential
energy E  is:

E, =-GMm/R (27)

G is the gravitational constant. According to corollary 14, the physical dimen-
sions of existence quantity can be unified on abstract physical dimensions. Subs-
tituting (26) into (27) gives:

E, =-GMhu/Rc? (28)
The amount of change in the gravitational potential energy of a photon is the

amount of energy change of this photon. According to the formula (24), if the

photon frequency change amountis v, , then:

v, =E,/h (29)
Substituting (28) into (29):
v, =-GMu/Rc? (30)
Deform (30) to get:
v, /v=-GM/Rc’ (31)

The result is consistent with the gravitational redshift formula derived by
general relativity. This shows that the introduction of the concept of relativistic

mass is equivalent to the unification of physical dimensions.

4. Conclusion

The new fundamental constants of physics often represent a new basic theory of
physics, and the logical unity of basic physical constants is essentially the unity
of physics. The Planck system of units profoundly reveals the physical boundary
problem, but it has always been constrained by inconsistencies between the basic
theories of physics. In Cosmic Continuum Theory, Planck Units System com-
pletely escapes the incompatibility of the physical basis. The axiomatization of
Planck Units System enables the logical unity of fundamental constants of phys-
ics that represent different physical foundations to be realized. In particular,
based on Planck unit, 7 limit constants were deduced, giving a unified bench-
mark for physical dimensions. The introduction of abstract physical dimensions
“IX” and “XJ” to achieve unity of physical dimensions will sweep away another

barrier for the unification of physics.
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Abstract

In our previous works, we suggest that quantum particles are composite
physical objects endowed with the geometric and topological structures of
their corresponding differentiable manifolds that would allow them to imitate
and adapt to physical environments. In this work, we show that Dirac equa-
tion in fact describes quantum particles as composite structures that are in a
fluid state in which the components of the wavefunction can be identified
with the stream function and the velocity potential of a potential flow formu-
lated in the theory of classical fluids. We also show that Dirac quantum parti-
cles can manifest as standing waves which are the result of the superposition
of two fluid flows moving in opposite directions. However, for a steady mo-
tion a Dirac quantum particle does not exhibit a wave motion even though it
has the potential to establish a wave within its physical structure, therefore,
without an external disturbance a Dirac quantum particle may be considered
as a classical particle defined in classical physics. And furthermore, from the
fact that there are two identical fluid flows in opposite directions within their
physical structures, the fluid state model of Dirac quantum particles can be
used to explain why fermions are spin-half particles.

Keywords

Dirac Equation, Wave Mechanics, Stan, Fluid Mechanics, Stream Function,
Velocity Potential, Potential Flow, General Relativity, Maxwell Field
Equations, CW Complexes, Differential Geometry, Topology, Differentiable
Manifolds, Topological Transformation

1. Introductory Summary

In our previous works on spacetime structures of quantum particles, we suggest
that quantum particles should be endowed with geometric and topological

structures of differentiable manifolds and their motion should be described as

DOI: 10.4236/jmp.2018.914154 Dec. 13, 2018 2402 Journal of Modern Physics


http://www.scirp.org/journal/jmp
https://doi.org/10.4236/jmp.2018.914154
http://www.scirp.org
https://doi.org/10.4236/jmp.2018.914154
http://creativecommons.org/licenses/by/4.0/

V.B. Ho

isometric embeddings in higher Euclidean space. We also suggest that all quan-
tum particles are formed from mass points which are joined together by contact
forces as a consequence of viewing quantum particles as CW-complexes [1] [2]
[3]. Fundamentally, we show that the three main dynamical descriptions of
physical events in classical physics, namely Newton mechanics, Maxwell elec-
tromagnetism and Einstein gravitation, can be formulated in the same general
covariant form and they can be represented by the general equation

V,M =k (M

where M is a mathematical object that represents the corresponding physical

systemand V, is a covariant derivative. For Newton mechanics,

M :%mZ:i:l(dX”/dt)2 +V and J=0. For Maxwell electromagnetism,

M = F“ =* A" —8" A*, with the four-vector potential A* = (V,A) and /can
be identified with the electric and magnetic currents. And for Einstein gravita-
tion, M =R” and / can be defined in terms of a metric d,, and the Ricci

scalar curvature using the Bianchi identities VﬁR"ﬂ :Eg”ﬁVﬂR, that is,

J= % gV 4R . If we use the Bianchi identities as field equations for the gravita-

tional field then Einstein field equations T, = k(RW —%Rg o tAY uvj , as in

the case of the electromagnetic field, should be regarded as a definition for the
energy-momentum tensor T, for the gravitational field [4]. An interesting
feature that emerges from Equation (1) for the gravitational field is that we can
derive the Ricci flow 09,,/0t =«R,, for a vacuum field J =0. Mathemati-
cally, the Ricci flow is a geometric process that can be employed to smooth out
irregularities of a Riemannian manifold [5]. From the definition of the
four-current j“ =(p,}j;) 219“/} V,R for the gravitational field, by comparing
with the Poisson equation for a potential Vin classical physics, V?V =4mp , we
can identify the scalar potential V' with the Ricci scalar curvature R and then ob-
tain a diffusion equation 0,R =kV’R _whose solutions can be found to take the
form R(x, 2 Z,t) =(M/(M)3)ei(x v )/4“ , which determines the prob-
abilistic distribution of an amount of geometrical substance A/ which is defined
via the Ricci scalar curvature R and manifests as observable matter [6]. It is
worth mentioning that in fact a similar diffusion equation can also be derived
from the Ricci flow 8gaﬁ./5t =kR,; of the form OR/dt= AR+2|RiC|2, where
A is the Laplacian defined as A=g“V,V ; and |Ric| is a shorthand for a
mathematical expression that we will not be concerned with in this work [7].
Therefore, the Bianchi field equations of general relativity in the covariant form
given in Equation (1) can be used to formulate quantum particles as differenti-
able manifolds. For example, we showed that the Ricci scalar curvature R associ-
ated with a differentiable manifold that represents a quantum system, such as
the hydrogen atom, can be expressed in terms of the Schrodinger wavefunction

w in quantum mechanics as

R= k(Zi:l(dx“/dt)z ~(fm) (@ + X0, (6 t) f )|
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On the other hand, we have also shown that Maxwell field equations of elec-
tromagnetism and Dirac relativistic equation of quantum mechanics can be
formulated covariantly from a general system of linear first order partial differ-
ential equations [8] [9]. An explicit form of a system of linear first order partial

differential equations can be written as follows [10] [11]

n n a r
ZZa” I _kZblz//,Jrkc r=12, (2)
]

i=1 j=1

The system of equations given in Equation (2) can be rewritten in a matrix

form as

(i ox Jw kiow +k,J (3)

where y =(y, v, w,) , Ow/ox = (O, [ox, ,81//2/8X,,~-,61//n/6xi)T, A,
o and J are matrices representing the quantities aIJ , b and c", and k
and Kk, are undetermined constants. Now, if we apply the operator
Zin:lAG/ 0X; on the left on both sides of Equation (3) then we obtain

n n 82
ZA +ZZ(AA +AA)———
i=1 j>i 6 6X
(4)
=k’cy + kK, +k ZA@—
i=1 i
In order for the above systems of partial differential equations to be used to
describe physical phenomena, the matrices A must be determined. We have
shown that for both Dirac and Maxwell field equations, the matrices A must

take a form so that Equation (4) reduces to the following equation

n 2
[ZAZ%]Wzkfazy/+kkaJ+k ZA@— (5)
i1 G

i=1 |

To obtain Dirac equation we simply set AA; +AA =0 with A? =+1, and
in this case the matrices A are the matrices y; given as [12]

100 0 0 0 01
01 0 0 0 0 10
"Zloo 1 0o 10 0
00 0 -1 10 00
0 00 i 001 0 ©
00 i O 0 00 -1
“Zlo i oo™ 100 0
00 0 010 0

For Maxwell field equations, in order to specify the matrices A we need to
use the form of Maxwell field equations established in classical electrodynamics
[13] [14]. And the matrices A take the forms
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10 0 00 0 00000 O
0 -1 0 000 000 00 -1
0 0 <100 0 00001 0

A=1o 0 0 100™ 00000 o
0 0 0 010 00 -100 0
0O 0 0001 01000 0
0000 01 00 00 10
000000 00010 0

p_|0 00100l 000000 -
001000 0100 0 0
000000 1000 0 0
100 0 00 00000 O
4 0 0000
0 #0000
00 2000

A=100 0100
000010
000001

Besides the covariant formulations of classical and quantum physics as de-
scribed above, we have also discussed the topological transformation of quantum
dynamics by showing the wave dynamics of a quantum particle on different
types of topological structures in various dimensions from the fundamental
polygons of the corresponding universal covering spaces [15]. We presented our
discussions in the form of Bohr model in one, two and three dimensions using
linear wave equations. For the clarity of our presentation in terms of Bohr
model, we want to mention here that in order to successfully construct a model
for the hydrogen atom which predicts correctly the spectrum of the energy radi-
ated from the atom, Bohr proposed three postulates which state that the cen-
tripetal force required for the electron to orbit the nucleus in a stable circle is the
Coulomb force mv? / r =kg’ / r’, the permissible orbits are those that satisfy the
condition that the angular momentum of the electron equals n7, that is
mvr =n% , and when the electron moves in one of the stable orbits it does not
radiate, however, it will radiate when it makes a transition between the stable or-
bits [16]. Furthermore, in his work on the concept of matter wave, de Broglie
proposed that an electron has both a wave and a particle nature by regarding the
electron as a standing wave around the circumference of an orbit, as shown in
Figure 1 [17].

It is seen that de Broglie’s requirement leads to the wave condition 2zr =nAi.
This is equivalent to assuming that the standing wave around a circle, which is a
1-sphere, is similar to a standing wave on the fundamental interval of a straight
line which is the universal covering space of the circle S', where the transla-
tions taking the interval to the next images will generate the holonomy group

[18]. If we apply de Broglie wavelength A defined in terms of the momentum
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Figure 1. de Broglie waves around a circle.

of a quantum particle p=mv as A=h/mv, then using the wavelength also
given by A1 =2aR/n we obtain h/mv =2aR/n, that leads to the Bohr’s postu-
late of the quantisation of angular momentum mMVR =n#. Then the energy
spectrum E, can be calculated from Coulomb’s law mv? / R=kq’ / R as
E, =-mk’q’ / 21°n’ , where R now is the radius of the nth stationary orbit.

In mathematics, the fundamental polygon in one dimension is an interval and
the universal covering space is the straight line and in this case the standing
wave on a finite string is transformed into the standing wave on a circle which
can be applied into the Bohr model of the hydrogen atom. In two dimensions,
the fundamental polygon is a square and the universal covering space is the
plane and in this case the standing wave on the square is transformed into the
standing wave on different surfaces that can be formed by gluing opposite sides
of the square, which include a 2-sphere, a 2-torus, a Klein bottle and a projective
plane. This may be seen as an extension of the Bohr model of the hydrogen atom
from one-dimensional manifolds of the 1-sphere and 1-torus embedded in the
ambient two-dimensional Euclidean space R into two-dimensional manifolds
embedded or immersed in the ambient three-dimensional Euclidean space &. In
three dimensions, the fundamental polygon is a cube and the universal covering
space is the three-dimensional Euclidean space. It is shown that a 3-torus and
the manifold K xS' defined as the product of a Klein bottle and a circle can be
constructed by gluing opposite faces of a cube therefore in three-dimensions the
standing wave on a cube is transformed into the standing wave on a 3-torus or
on the manifold K xS'. We also discuss a transformation of a stationary wave
on the fundamental cube into a stationary wave on a 3-sphere despite it still re-
mains unknown whether a 3-sphere can be constructed directly from a cube by
gluing its opposite faces. In spite of this uncertainty, however, we speculate that
mathematical degeneracy in which an element of a class of objects degenerates
into an element of a different but simpler class may play an important role in
quantum dynamics. For example, a 2-sphere is a degenerate 2-torus when the
axis of revolution passes through the centre of the generating circle. Therefore, it
seems reasonable to assume that if an n-torus degenerates into an n-sphere then

wavefunctions on an n-torus may also be degenerated into wavefunctions on an
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n-sphere. Furthermore, since an n-sphere can degenerate itself into a single
point, therefore the mathematical degeneracy may be related to the concept of
wavefunction collapse in quantum mechanics where the classical observables
such as position and momentum can only be obtained from the collapse of the
associated wavefunctions for physical measurements. This consideration sug-
gests that quantum particles associated with differentiable manifolds may pos-
sess the more stable mathematical structures of an n-torus rather than those of
an n-sphere.

The above formulation of quantum particles in terms of differentiable mani-
folds and the consideration of their intrinsic geometric and topological charac-
teristics raise the question of how the standing waves that represent quantum
particles could be established physically. The aim of this work is to answer this
question by showing that Dirac equation in fact describes quantum particles as
composite structures that are in a fluid state in which the components of the
wavefunction can be identified with the stream function and the velocity poten-
tial of a potential flow formulated in the theory of classical fluids. In this case
Dirac quantum particles can manifest as standing waves which are the result of
the superposition of two fluid flows moving in opposite directions. For example,
if two opposite waves are represented by the function 1//1(r,t) = asin(kr—vt)
and v, (r,t) = asin(kr +Vt) then the resultant standing wave can be obtained
as y,(r,t)+y,(r,t)=2asin(kr)cos(vt). We also show that even though a
Dirac quantum particle has the potential to transfer energy in opposite direc-
tions to establish a standing wave within its physical structure, for a steady mo-
tion without an external disturbance a Dirac quantum particle can be considered

as a classical particle defined in classical physics.

2. Two-Dimensional Hydrogen-Like Physical System

In this work we will show that quantum particles can be described as physical
systems in a state of fluids that can be formulated in terms of the fluid dynamics
in two dimensions. Since such systems can be seen to have the physical structure
of a two-dimensional hydrogen-like atom therefore in this section we will ex-
amine further how they can be described in terms of quantum mechanics. First
we need to extend our formulation of Maxwell field equations of electromagnet-
ism and Dirac relativistic equation from a general system of linear first order
partial differential equations to that with an external field. Such system of equa-
tions is given as follows [19]
n

n a : n n
ZZaﬁaTw'zzll(Z;bgvj+c{jy/i+dr,r:1,2,~~,n (8)
i =\

i-1j=1

The system of equations given in Equation (8) can be rewritten in a matrix

form as

[iA%Jw:—i(iqBM +m0'jl//+\] 9

i=1
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where = (v, 0y, 0,) 5 Ow/O% =(0y,/0X 0y, [0% -, 0w, [ox) with
bi, ¢! and d',

i> B> C
which are assumed to be constant in this work. While the quantities g, m and J

A, B, oand Jare matrices representing the quantities a;

represent physical entities related directly to the physical properties of the parti-
cle, and the quantities V; represent an external field, such as the potentials of
an electromagnetic field. By applying the operator Zn A0/dx on the left on
b’

ij> M

both sides of Equation (9), with the assumption that the coefficients a

and c" are constants, then we obtain

R U AP R I

Since the quantities A, B;, 0, ¢ mand Jare assumed to be constant, Equa-

tion (10) becomes

e

i=1 i=1 j>i

({grafgeonm)y

_i(iqsivimaj([zn:Aj ™ J ]+ZA (11)

i=1

Dirac equation for an arbitrary field can be formulated from the system of
linear first order partial differential equations given in Equation (9) by setting
B=A=y, o=1, J=0 and AAj +AJ-Ai =0. In this case, in terms of the

operator y;, Equation (9) becomes
[Z}’I ]V/__I(qulvl-’_mjl// (12)

Equation (12) can be written in a covariant form as Dirac equation for an ar-

bitrary field as
(r*(ia, —av,)-m)y =0 (13)

Equation (11) also reduces to the following equation

L0 v oV,

[Z}/iz j = —IZquI)/I 1 i +2|qu}/iVi -m’ly  (14)
i=1 8xi i=1 j>i a

Even though in the following we will examine only physical states of Dirac

quantum particles in which V, =0 where the physical quantity V, is assumed

to be associated with an external field, however, if we consider quantum particles

as differentiable manifolds which are formed by mass points joined together by
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contact forces then we may suggest that they are endowed with intrinsic geomet-
ric and topological structures and in this case the quantity V, may be consid-
ered as an internal field that is responsible for the stability of the physical struc-
ture of a quantum particle. As we will show below this is in fact the case when at
least part of a quantum particle exists as a two-dimensional structure in which
the intrinsic angular momentum can take half-integer values. The problem that
we considered can actually be started with Dirac equation given in Equation
(13). It can be shown that in the non-relativistic limit, Dirac equation reduces to

the Pauli equation for stationary system as [20]

[i(—ihV—qA)z —%(o" B)+q¢ju/(r) =Ey(r) (15)
In the case when A=0, B=0,and q¢=k/r then we have
W, k
A v/ - =E 16
2" ()= v(n)=By(r) (16)

Now let us examine a physical system that is described by the Schrédinger
wave equation given in Equation (16) from the viewpoint of an observer who
sees it as a planar system [21] [22] [23]. It is shown that if we consider physical
systems whose configuration space is multiply connected, such as the physical
system of a hydrogen-like atom in two rather than three dimensions, then mul-
tivalued wavefunctions can be used to describe the system [24]. In two-dimensional
space, the Schrédinger equation in the planar polar coordinates takes the form

Wwilo( 0 10 k
—— | | r= |+ |p(r,¢)——w(r,¢) = Ew(r, 17
Zy{rar[ arj r? a¢z}/l( /) rw( #)=Ev(r9) 17
Solutions of the form y (r,¢)=R(r)®(¢) then reduce the above equation

to two separate equations for the functions ® and R

d*®

~+M® =0 (18)
2 2
d §+ld_R_m_2R+2_§‘(5_EjR:o (19)
dr rdr r ac\r

where m is identified as the angular momentum of the system. From the system
of ordinary differential equations given in Equations (18) and (19), the energy

spectrum can be found as

E=- K (20)

2 (n+m+1/2)°
It is seen that if the physical system is the Bohr model of two-dimensional hy-
drogen-like atom then the angular momentum m must take half-integral values.
Hence, the topological structure of a configuration space of a physical system
can determine the quantum nature of an observable of the system. This result
should be expected in quantum mechanics since we know that the quantum be-

haviour of a particle depends almost entirely on the configuration of an experi-
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ment. If, in a particular experiment, the electron of a hydrogen-like atom is con-
strained to move in a plane, then the orbital angular momentum of the electron
must take half-integral values if we use the Schrédinger equation to study the
dynamics of the electron and want to retain the same energy spectrum as the
Bohr model. As a consequence, it might seem possible to invoke the result to ex-
plain the Stern-Gerlach experiment without the necessity of introduction of spin

into the quantum theory.

3. Dirac Real Equation

In this section we show that Dirac equation for a free particle can be used to de-
scribe the state of a fluid of the quantum particle formulated in the theory of

classical fluids. For free Dirac quantum particles, Equation (13) reduces to

(iy“e,—m)y =0 (1)
By expanding Equation (21) using the matrices y; given in Equation (6), we
obtain
oy, . 0o .0 oy,
L imy, =| ——i— |y, + 22
R @
oy, . o..8) v
2 imy, =| —+i— |y, — 23
o ¥, {6X 8}’}[/3 P (23)
oy, . 0 .0 oy,
—imy, =| ——+i— |y, ——* 24
a ( X ay]"’2 P -
v, o _.a) o,
—Im = —-———]— + 25
o Y, ( ox ayj‘/ﬁ o (25)

First, it is observed that with the form of the field equations given in Equa-
tions (22)-(25), we may interpret that the change of the field (l//l,l/lz) with re-
spect to time generates the field ((//3,!//4) , similar to the case of Maxwell field
equations in which the change of the electric field generates the magnetic field.
With this observation it may be suggested that, like the Maxwell electromagnetic
field which is composed of two essentially different physical fields, the Dirac
field of massive particles may also be viewed as being composed of two different
physical fields, namely the field (l//l,l/lz), which plays the role of the electric
field in Maxwell field equations, and the field (1/13,1//4) , which plays the role of
the magnetic field. The similarity between Maxwell field equations and Dirac
field equations can be carried further by showing that it is possible to reformu-
late Dirac equation as a system of real equations. When we formulate Maxwell
field equations from a system of linear first order partial differential equations
we rewrite the original Maxwell field equations from a vector form to a system of
first order partial differential equations by equating the corresponding terms of
the vectorial equations [9]. Now, since, in principle, a complex quantity is
equivalent to a vector quantity therefore in order to form a system of real equa-

tions from Dirac complex field equations we equate the real parts with the real
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parts and the imaginary parts with the imaginary parts. In this case Dirac equa-

tion given in Equations (22)-(25) can be rewritten as a system of real equations

as follows
_al//]_ :al//4 +a!//3 (26)
ot OX oz
_aWZ :al//3 _6W4 (27)
ot oX oz
_Ovs _ 9y, O (28)
ot OX oz
_6l//4 :8l//1_8l//2 (29)
ot OX 0z
0
Ya — my, (30)
oy
oy T ™ (31)
oy
oy s (32)
dy
El =my, (33)

If the wavefunction y satisfies Dirac field equations given in Equations

(26)-(33) then we can derive the following system of equations for all compo-

nents
82‘/4 2
——-m7y, =0 (34)
o’y v
d*y, %y, O,
1/2/. _ '/2. _ ‘/g. -0 (35)
ot OX oz
Solutions to Equation (34) are
v =cy (X 2)e™ +cy (x,2)e™ (36)

where ¢; and C, are undetermined functions of (X,z). The solutions given
in Equation (36) give a distribution of a physical quantity along the y-axis. On
the other hand, Equation (35) can be used to describe the dynamics, for exam-
ple, of a vibrating membrane in the (X, Z) -plane. If the membrane is a circular
membrane of radius a then the domain Dis givenas D = {X2 +2° < az} . In the
polar coordinates given in terms of the Cartesian coordinates (X,z) as
X=rcosd, z=rsind, the two-dimensional wave equation given in Equation
(35) becomes

=0 (37)

c® ot or? ror  r? o6

The general solution to Equation (37) for the vibrating circular membrane
with the condition y =0 on the boundary of D can be found as [6] [11]
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w(r.o0.t)= iJo( %mr)(COm €08 /gy, Ct + Dy, SiN /?.t,mct)

+ iJn( inmr)(/\]m cosnd + B, sinng) (38)

m,n=1
x((Cnm €08 /Ay, Ct + Dy, SiN \/mct))

where Jn( lnmr) is the Bessel function of order 2 and the quantities A,
B

is also observed that at each moment of time the vibrating membrane appears as

.n> Cnm and D, can be specified by the initial and boundary conditions. It
a 2D differentiable manifold which is a geometric object whose geometric struc-

ture can be constructed using the wavefunction given in Equation (38) as
2 2
R= (2(‘//11‘//22 ~(v22) )/(1+‘//12 ‘H//zz)

where :ay//ax” and vy, :821///8X”8XV [25]. Even though elementary
particles may have the geometric and topological structures of a 3D differenti-
able manifold, it is seen from the above descriptions via the Schrédinger wave
equation and Dirac equation that they appear as 3D physical objects that em-
bedded in three-dimensional Euclidean space. Interestingly, in the following we
will show that the solution given in Equation (38) can be used to describe a
standing wave in a fluid due to the motion of two waves in opposite directions.
For a steady state in which the system is time-independent, the system of equa-

tions given in Equations (26)-(29) reduces to the following system of equations

al//z +al//1 =0,al//1 _al//z =0 (39)
OX oz OX oz

al//4 +al//3 20781//3 _al//4 :O (40)
OX oz 15)4 oz

It is observed from Dirac equation for steady states that the field (l//l,l//z)
and the field (l//3 W, 4) satisfy the Cauchy-Riemann equations in the (X, Z) -plane.
We will now discuss whether it is possible to consider Dirac quantum particles
as physical systems which exist in a fluid state as defined in the classical fluid
dynamics as substances that retain a definite volume, have the ability to flow and
deform continually, hence they can exhibit a wave motion. For references in the
next section we will outline the main features in the theory of classical fluids, es-

pecially, in two dimensions.

4. Fluid Dynamics in Two-Dimensions

In fluid dynamics, quantities that satisfy the Cauchy-Riemann equations can be
identified with the velocity potential and the stream function of an incompressi-
ble and irrotational flow [26] [27] [28] [29]. In two-dimensional fluid dynamics,
a streamline is a theoretical line that is assumed to be tangential to the instanta-
neous velocity, therefore there is no flow that can cross the streamline. For a
continuous stream of fluid, the streamlines can form continuous lines or closed

curves. As an illustration, in the following we will consider a free or potential
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vortex flow whose streamlines are concentric circles in the (X,Z) -plane as
shown in Figure 2.
In two-dimensional incompressible flow, the stream function ¥ is defined

as a volume flux through a curve given by

Y= j(vxdz —v,dx) (41)

From the definition given in Equation (41), we have d¥ =v,dz—v,dx. On the
other hand, the total derivative of the stream function V¥ 1is given by
d¥ =(0¥/ox)dx+(0¥/oz)dz , therefore we obtain the following relationships
between the velocity components (V v ) and the stream function ¥

X!z

oY oY
V>< :_’VZ = - (42)

o4 OX
If the stream function W is defined in terms of polar coordinates (r,H) as
¥ =¥(r,0), then we have d¥ =(0¥/or)dr+(0¥/d6)d6. As shown in Fig-

ure 3, we also have d¥ =v, (rd@)-v,dr.

Figure 2. Circular streamlines.

Figure 3. Fluid flow in terms of stream function in polar coordinates.

DOI: 10.4236/jmp.2018.914154

2413 Journal of Modern Physics


https://doi.org/10.4236/jmp.2018.914154

V.B. Ho

Therefore we also obtain the following relationships between the velocity
components (Vr,vg) and the stream function ¥

1% v

" rae T @

From the definition of the stream function we see that the radial component
of the velocity of a vortex flow is equals to zero, Vv, =0, since there is no flow

that can cross the streamlines. In fluid dynamics, the circulation I" around a

closed curve is a line integral of velocity v defined as
F=<.[>v-ds=<j>vsds (44)
where v, is the tangential velocity. By Stokes’ theorem, the circulation T is
related to the vorticity @ =V xv as
r=¢ v-ds=|[ @-dS (45)
It is seen from the above equation that the flux of vorticity is the circulation.

In particular, for a two-dimensional flow in the (X,Z) -plane, the circulation

becomes

r :J’ (avz o dedz (46)
ALOX oz

A flow for which the circulation is equal to zero, @ =V xv =0, is called a po-
tential or irrotational flow. In two dimensions it is seen from Equation (46) that
the condition for potential flow is

ov, ov

L X=0 47
ox 0z “7)

It should be mentioned that in potential flow we have F=ggasv-ds=0

therefore closed streamlines cannot exist in such flow. In general this result pre-
vents us from identifying the components of Dirac equation y; as closed
stream function at the same time identifying w, as velocity potential. However,
it is seen that the result of I' :q5v-ds =0 may not be valid if the region of
space is multiply-connected since the velocity circulation may not be zero if the
closed contour cannot be contracted to a point. This important feature can be
discussed further as follows. For a two-dimensional irrotational flow given in
polar coordinates, it can be shown that the flow velocity v, and the radius r
satisfy the following relationship rv, =C, where Cis a constant. The constant
C can be established by using the singularity in the irrotational vortex flow
where to velocity becomes infinite at the centre of the vortex with the vorticity is
given by the relation @ =—(dV, /0r +V,/r). In this case the circulation around a

circular streamline can be found as
I =¢v-ds=v,ds = 2mry, (48)
It is also interesting to note that in the Bohr model of the hydrogen atom in

which the electron is assumed to move around the nucleus in stationary circular

orbits with v, =v then the angular momentum is quantised as mrv=na. If
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we now also assume that Dirac quantum particles are in fluid states whose cir-
culation I' is also quantised as the angular momentum then we obtain the fol-

lowing quantisation for the circulation

2nnh _ m (49)
m

I'=2nrv=

Since v, =0, the stream function ¥ =¥(r,6) can be obtained as follows
r r nh
Y =—|v,dr = —| —dr =——In(kr)=-—In(kr 50
Jlg f27‘cl’ o (1) m (l) (50)

where k; isan undetermined constant.
In fluid dynamics, another important concept that is connected with an irro-
tational flow is the concept of the velocity potential ® which is defined in the

(x,2) -plane as
D= jvsds = jvxdx +v,dz (51)

It is seen from Equation (51) that the velocity components can be expressed in
terms of the velocity potential as follows
0D 0D

V, =V =—
“ox 't oz

(52)

In polar coordinates (I’, 49) , the velocity potential and its relationship with the

velocity components are given as

® = [v,ds = v,dr +v,rdo, (53)
oD 160

V, =V, == (54)
or r oo

Similarly, the velocity potential @ can also be obtained using the relation
d® =rv,df+v.dr as

T nh nh
O=|rv,df=|r|— |[d@=|r| — |d@ =—6+k 55
J ’ I (anj I [mr) m T (55)

where k, is an undetermined constant. From the relationships given in Equa-

tions (42) and (52) we then obtain the Cauchy-Riemann equations

00 oY oY o0
+—=0, =

— ————=0 (56)
ox oz oX oz

5. Fluid state of Dirac Quantum Particles

By comparing Equation (56) to Dirac equations given in Equations (39) and
(40), the field (l//l,l/lz) may be identified as the stream function and the veloc-
ity potential of one fluid flow and the field (!//3,1//4) with another fluid flow.
However, the main problem that we want to deal with now is whether the two
fields (l//l,l,zlz) and (1/13,1//4) are connected and, most importantly, how such
connection would lead to the prospect of using them to describe a Dirac quan-
tum particle as a standing wave. In the following we will show that in fact this is

the case by using the relationships between the components of these two fields
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given in Equations (30)-(33). For convenience we rewrite these equations as fol-

lows
i?:mwb%gzm% (57)
i;3:—mWP%%1:—mw3 (58)
a@%‘—mzyxi =0 fori=1234 (59)

If the physical quantity m, which is identified with the inertial mass of a
quantum particle, is assumed to be positive, m >0, then it is observed that it is
possible to describe the physical structure of a Dirac quantum particle as a spin-
ning top if we consider solutions to Equation (59) as hybrid functions of the

form

c(x,z)e™ fory<O0
%={“( ) ’ (60)

Cy(x,z)e™ fory>0

For simplicity, instead of the hybrid form given in Equation (60), in the fol-
lowing we will show only for the case in which y >0 since similar results can
be obtained for which y < 0. The solutions given in Equation (60) can be re-

written in the following forms
v =Cu(x2)e™ p, =CpH(x,z)e™ (61)
vy =Cu(X,2)e™,p, =Cp(x.z)e™ (62)

Using the equations given in Equations (57) and (58), we further obtain the
conditions C,, =—C, and C, =C,,.If wewrite C, = f(X,z) and
C,, =0(X,2) then we have

= 1 (x2)e ™, = g (n2)e™ (63
wy=9(x2)e™,p, =—f(x,z)e™ (64)

From the above forms of solutions given to the components y; of the wave-
function y we can show how a standing wave can be established from the su-
perposition of a wave associated with the field (l//l,?/z) and a wave associated
with the field (l//3,?/4). Let y, = f(x,z)e™ be identified with the velocity
potential and w, =@ (X, Z)efmy with the stream function of one fluid flow. Now
we have two different descriptions that can be given to the field (1//3,1//4) . If we
identify the component ;=g (X, Z)efmy with the velocity potential and
w, =—f(x,z)e™ with the stream function of another fluid flow then we have
the stream function of the first flow equals the velocity potential of the second
flow, and the stream function of the second flow is a reflection of the velocity of
the first flow. Even though this kind of identification may be used to describe a
particular type of fluid flow of Dirac quantum particles, it does not give rise to

the physical structure that we are looking for, that is a standing wave. However,
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—my

if we now identify the component y, =g(x,z)e™ with the stream function

and v, =—f(x,2)e

—my

with the velocity potential of the second flow then the
two flows are identical except for their flow directions, which are opposite to
each other, and in fact this is what we want to obtain because they can form a
required standing wave. It is also observed that for a steady motion a Dirac
quantum particle does not exhibit a wave motion even though it has the poten-
tial to establish a wave within its physical structure. Therefore, without an ex-
ternal disturbance a Dirac quantum particle may be considered as a classical
particle defined in classical physics. Furthermore, we may also speculate that the
two opposite fluid flows associated with the physical structure of a Dirac quan-
tum particle may be related to the concept of spin-half that is introduced into

quantum mechanics.

6. Conclusion

In our previous works on spacetime structures of quantum particles, we suggest
that all quantum particles are formed from mass points which are joined to-
gether by contact forces, which is a consequence of viewing quantum particles as
CW-complexes. Being identified with differentiable manifolds, quantum parti-
cles therefore should be endowed with geometric and topological structures of
differentiable manifolds and their motion should be described as isometric em-
beddings in higher Euclidean space. In particular, we show that quantum parti-
cles may have the geometric and topological structures of a 3D differentiable
manifold which can be described as standing waves which are solutions to the
Schrédinger wave equation and Dirac equation. In this work we have extended
our previous discussions by showing that Dirac equation can be used to describe
quantum particles as composite structures that are in a fluid state in which the
components of the wavefunction can be identified with the stream function and
the velocity potential of a potential flow formulated in the theory of classical
fluids. With this fluid composition, physically, Dirac quantum particles can
manifest as standing waves which are the result of the superposition of two fluid
flows moving in opposite directions. However, for a steady motion, a quantum
particle whose physical structure is constructed in terms of Dirac equation does
not exhibit a wave motion even though it has the potential to establish a wave
within its physical structure. Therefore, if there are no external fields acting on
it, a Dirac quantum particle may be considered as a classical particle defined in
classical physics. It is also noted from the fact that there are two identical fluid
flows in opposite directions within their physical structures, the fluid state model
of Dirac quantum particles can be invoked to explain why fermions are spin-half

particles as discussed in Section 2.
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Abstract

We propose a representation of the basic laws, namely the zeroth, first,
second and third law, in quantum thermodynamics. The zeroth law is
represented by some parameters (© ’s) that specify respective quantum states.
The parameters are the elements of thermodynamic state space M, . The in-
troduction of such parameters is based on a probabilistic nature of quantum
theory. A quantum analog of the first law can be established by utilizing these
parameters. The notion of heat in quantum systems is clarified from the
probabilistic point of view in quantum theory. The representation of the
second law can be naturally described in terms of these parameters intro-
duced for the respective quantum systems. In obtaining the representation of
quantum thermodynamics, consistency between quantum theory and classic-
al thermodynamics should have been preserved throughout our formulation
of quantum thermodynamics. After establishing the representation of the
second law, the third law is discussed briefly. The relationship between ther-
modynamic temperatures and the parameters in M, is also discussed.

Keywords

Basic Laws of Thermodynamics, Thermodynamic State Space, Probabilistic
Nature of Quantum Theory, Notion of Heat, Entropy Principle, Adiabatic
Accessibility

1. Introduction

Thermodynamics is one of the theories which have high universality since
thermodynamics as itself has been unchanged even if we now have a well-developed
quantum theory. Classical thermodynamics has been well established by

different approaches [1] [2] [3]. Lieb and Yngvason made the mathematical
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structure transparent by axiomatic approach [3]. Thermodynamics is a theory
not only for classical but for quantum systems. Above all, the theoretical
importance of thermodynamical consideration in quantum systems (quantum
thermodynamics) is emphasized in text books [4] [5]. When we consider the
thermodynamics for quantum systems, the important is the change in entropy
since entropy is a constant of motion under the unitary transformation
generated by a system Hamiltonian [6] [7]. A quantum heat engine has been
investigated theoretically [8] [9]. Bender ef al studied a quantum Carnot cycle
by considering a single quantum mechanical particle confined in a quantum well
[9]. In their study, they found that the efficiency is equal to that of the Carnot
cycle for classical case and proposed that the internal energy U plays the same
role as temperature. It should be however mentioned that in quantum system
one cannot describe thermodynamic equibria in terms of a parameter like a
temperature as in classical system [3].

This paper deals with the following questions that must be answered: Can
thermodynamical laws refer to the variation of states of a system represented
by the quantum states such as those states (eigenstates) of the Hamiltonian for
a single quantum mechanical particle confined in a quantum well? If
thermodynamical laws exist in quantum thermodynamic systems, how can they
be expressed? To answer these questions, we need a representation which
connects thermodynamic states and quantum states.

In classical thermodynamics, states are represented by points on a state space.
A typical example of the state space is just a collection of P (pressure) and V
(volume), ie., a P-Vplane. In quantum mechanics, what space should be used in
order to describe thermodynamic states for quantum systems? In quantum
mechanics, quantum (pure) states are expressed by the elements of a complex
Hilbert space H . However, the Hilbert space itself does not play the same role
as the state space in classical thermodynamics since comparing one state vector
with the others in H must be done by comparing the components of each
vector. Thus we start with introducing a set M, of the state vectors in H in
order to obtain a suitable set which plays the same role as the state space in
classical thermodynamics. That is, we introduce a set M, which plays the
same role as the state space and derive a correspondence between M, and
M, . After that, we will show that the first law of quantum thermodynamics can
be described by the elements in M, and the internal energy of a quantum
system can be described as a function on M, . We will also discuss the relation
between those parameters ®’sin M, and thermodynamic temperatures.

The first law of thermodynamics is a law of conservation of energy and states
the equivalence of heat and work. We will discuss the equivalence between work
and heat in quantum thermodynamics. We assume that the energy of a system
(ie, the internal energy) is given by the expectation value of the Hamiltonian
7 U= («// > = Zipi E,. In this expression, E, is the outcome of the
expected energy state corresponding to a definite probability p, in a specified
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maximal test. Indeed, this probabilistic nature of quantum system plays a key
role to establish a representation of the first law. Differentiating U formally,
we obtain the expression, dU =Zi(Eidpi +p,dE;). The first term ZiEidpi

implies there exists a non-mechanical source that induces a change in the
internal energy of the system since a change in quantum states is in general
determined by the unitary operator which does not change the definite probability
(Ze, dp; =0). The second term ZipidEi implies a mechanical source that
induces a change in the internal energy since we can trace the origin of dE; toan
external parameter. As will be shown in Subsec. 3.2, the following identifications,
dQ=) Edp, and dW =) pdE , are justified and are ensured by the
existence of respective parameters ® and L. We will show that the internal
energy of quantum system is generally expressed in terms of parameters ® and
L, respectively, describing the equivalence relation among quantum states and
external parameters. Therefore, the first law of quantum thermodynamics can be
uniquely represented by these parameters. Once establishing the representation of
the first law, it is worth to investigate the remaining thermodynamical laws (the
second and third laws) for a quantum system described by quantum states.

In this paper, we propose a representation of the thermodynamical laws for
quantum system in terms of the respective parameters and develop a theory
of quantum thermodynamics based on the axiomatic theory of classical
thermodynamics by Lieb and Yngvason [3]. In their formulation, the second law
refers to the possible adiabatic transition of any two states in a state space.

This paper is organized as follows. In the next section, we present a brief
review of classical thermodynamics. In Sec. 3, we state the basic notion of our
formulation of quantum thermodynamics, and introduce a thermodynamic
state space M, and a quantum state space M, and discuss the connection
between them. In Subsec. 3.1 we show the existence of the zeroth law of
quantum thermodynamics in the state space M . In Subsec. 3.2, the first law of
thermodynamics and an adiabatic process are discussed. In Subsec. 3.3, we
define entropy and give a representation of the second law, and discuss a relation
among the adiabatic transitions, entropy and the term d'Q. We refer to the

third law in Subsec. 3.4. Finally, we give the results and discussion in Sec. 4.

2. Classical Thermodynamics

There are few approaches in thermodynamics [1] [2] [3]. Lieb and Yngvason’s
approach is helpful to understand the logical structure of thermodynamics. If
thermodynamical laws exist in quantum systems as well as in classical systems,
there must be the same logical structure in both systems. According to
their formulation, a structure of adiabatic accessibility on a state space
(thermodynamic state space) is characterized by an entropy inequality, Z.e., the
second law of thermodynamics. In this section we present a brief review of
classical thermodynamics due to Lieb and Yngvason [3]. Thermodynamics is a

theory which discusses a transition between equilibrium states. The second law
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refers to the feasible transitions in adiabatic process.
We start with introducing a formulation of the axiomatic thermodynamics
proposed by Lieb and Yngvason [3]. In their formulation, the second law of

thermodynamics is represented by the entropy principle.

Entropy principle: There is a real-valued function on all states of all systems
(including compound systems), called entropy and denoted by S . Entropy has
the following properties:

e Monotonicity: When X and Y are comparable states', then

X <Y if andonly if S(X)<S(Y). (1)

o Additivity: If X and Y are states of some (possibly different) systems
and if ( X ,Y) denotes the corresponding state in the composition of the

two systems, then the entropy is additive for these states, ‘e,
S(X,Y)=S(X)+S(Y). (2)

e Extensivity : S is extensive, ie, for each t>0 and for each state X

and its scaled copy tX,
S(tX)=tS(X). 3)

It should be noted that entropy is determined by the physical (or
thermodynamic) state of the system. In the entropy principle, X and Y (eg,
energy and volume) describe equilibrium states and are the elements of a state
space (denoted by I'). A system is then represented by the state space I' on
which a relation “<” of adiabatic accessibility is defined. The definition of

adiabatic accessibility is as follows:

Adiabatic accessibility: A process whose only effect on the surroundings is
exchange of energy with a mechanical source. This means that as a state arrives
at new one, a state of surroundings is the same as before, in other words, the
device returns to its initial state at the end of the process.

Lieb and Yngvason [3] proved that existence and uniqueness of entropy are
equivalent to certain simple properties of a relation “<” (A1~A6) and a
comparison hypothesis (Ch):

Al. Reflexivity: X X

A2, Transitivity: X <Y and Y <Z implies X <Z.

A3. Consistency: X < X' and Y <Y’ implies (X,Y)=<(X"Y').

Ad4. Scaling invariance:If X <Y ,then tX <tY for Vt>0.

AS5. Splittingand Recombination: For 0<t<1, X 2 (tX (1-t)X ) .

A6. Stability : If, for some pair of states, X and ¥, (X,EZO) < (Y,eZl) holds
for a sequence of €’s tendency to zero and some states Z, and Z,, then
X=<Y.

"The word “comparable” used in this paper means that any two states, X and Y , in the same
state space hold the relation, either X <Y or Y < X, with respect to the relation “< . In this
context, X and Y arecomparable and these states are called comparable states.
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Ch. Comparison hypothesis : The Ch holds for a state space T' if any two

states X and Y on the space are comparable states, 7.e, X <Y or Y <X .

In the axiom Al, the symbol 2 denotes that two states X and Y are
adiabatic equivalent; It describes a situation where both of the relations, X <Y
and Y < X, hold. It should be noted that the axioms, A3, A5 and A6, are
defined on the product of state space I'xI", where (X,Y)GFXF. The Ch
asserts that any two states on the same state space are comparable. Generally, the
structure on the state space I' is determined by the axioms (A1~A6) and the
comparison hypothesis (Ch) under the condition of adiabatic accessibility.

Let us consider a meaning of the entropy principle. Let X, X",Y,Y',-- be the
elements of the state space I'.Imagine that we have a list of all possible pairs of
states X, Y such that Y is adiabatic accessible from X . The foundation of
thermodynamics and the essence of the second law are that thislist, X and Y,
such as X <Y, can be simply encoded by the entropy function S defined on
a set of all states of systems (including compound systems). This means that Y
is adiabatic accessible from X, ie, X <Y if and only if S(X)<S(Y)
(entropy inequality). The entropy function should be kept consistency with the
structure of the state space T' characterized by A1~A6 and Ch. Thus, we can
characterize the structure based on the definition of adiabatic accessibility on the
state space ' by using the entropy inequality. Combining the axioms (A1~A6)
and the Equation (2), one can describe the entropy principle for systems
including a compound system.

Let us consider a compound system in which X, X' and Y, Y’ are the
states of system A and system B, respectively. In this case, the entropy principle

is mathematically expressed as follows:
(X,Y)<(X"Y") if and only if S(X)+S(Y)<S(X")+S(Y'). (4)
Note that all states (X',Y') such that X <X’ and Y <Y’ are adiabatically
accessible from (X ,Y) . It is then important to notice that (X ',Y') can be
adiabatically accessible from (X,Y) even if X' is not adiabatically accessible
from X . In such a case, entropy increase, S (Y ') -5 (Y) , in the process
compensates for a loss, S (X ') -S (X ) , 80 as to satisfy the statement (4). Therefore,
the inequality, S (X ) +S (Y) <S (X ') +S (Y ') , characterizes the possible adiabatic

transitions for the compound system even when S (X ) >S5 (X ') . It means that it

is sufficient to know the entropy of each part of the compound system in order
to decide which transition is feasible due to the interactions between the two
subsystems.

For later use we write the entropy principle [the statement (4)] in terms of U
and V , where U, V denote the internal energy and the volume of a system,
respectively. Putting X = (U A,VA) and Y = (UB,VB) , one obtains from the

statement (4):
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((UAVR): (U V) < ((UAVX). (U5 V3))

©)
if and only if S(U,,Va)+S(Ug,Vg)<S(UaVa)+S(Ug,Vg).

It should be noted that the state of the compound system composed of system
A and system B is described by (U A,UB) only in the case where the volume is
invariant during the process. The statement (5) makes sense in the case where
X is an extensive variable. However, there exists a particular case in which X
is an intensive variable.

One of the aims in this paper is to obtain a representation of entropy

inequality for quantum system corresponding to the statement (4).

3. Quantum Thermodynamics

In order to obtain the representation of the zeroth, first, second, and third laws
for quantum thermodynamics, we have to introduce a state space in order to
describe thermodynamic states of quantum system. In the previous section, we
have seen that the thermodynamic states of classical system denoted by capital
Roman letters, X,Y,Z, etc. defined as the elements of state space T' satisfy
certain simple properties of the relation “<“ (A1~A6) and the comparison
hypothesis (Ch). From the mathematical point of view, we expect that the
thermodynamic structure of quantum thermodynamics should also have the
same structure as that of classical thermodynamics.

In order to develop a representation of quantum thermodynamics, we must
introduce a thermodynamic state space for quantum system since in quantum
theory, quantum system is described by the complex Hilbert space H and the
states of quantum system are in general described by the elements in H: |‘Pa> ,
|‘P ﬁ,> , etc. Here, Greek letter (subscript) denotes the label of respective states of
quantum system. In the following, we use a symbol M, for quantum state
space and a symbol M, (instead of I' in classical case) to represent
thermodynamic state space for quantum system. Our aim in this section is to
show the relation between M, and M, in order to obtain the representation
of quantum thermodynamics. To define the state space for quantum
thermodynamics, namely thermodynamic state space in quantum systems, we
have to establish the relation between M, and M, . In this section we shall
introduce a thermodynamic state space M, and obtain the representation of
the zeroth law of quantum thermodynamics.

We first define a set M, as a quantum state space:
My ={¥,) [¥,), ). (6)

The set M, includes those elements which are linear combinations of the

elements in M, ; eg,

‘Py) :|‘P€>+c|‘P§>, where ¢ is a complex number (a
relative phase between |‘P€> and |‘I’ §> ). The importance of this statement is
well recognized in quantum theory [5]. All state vectors are thus found in the set

M, and they represent respective quantum states of the system. Now we would
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like to relate each element of thermodynamic states in M, to those state
vectorsin M, .

To find out the representation of the zeroth law associated with the property
of Al for quantum thermodynamics, we introduce a set M, as a thermodynamic
state space. It should be noted that the elements in M, = {@a,®ﬁ,®7,--~}
have to be comparable each other in a context of the zeroth law of classical
thermodynamics. As will be shown below, introducing these parameters @’s
enables us to compare the quantum states in M, in thermodynamic sense.

We start with discussing the existence and uniqueness of ® for quantum
state |‘P> representing a quantum system. Let us introduce the propositions of
quantum theory, Q1 and Q2: [5].

QIl. A state is characterized by the probabilities of the various outcomes of
every conceivable test.

Q2. If a quantum system is prepared in such a way that it certainly yields a
predictable outcome in a specified maximal test’, the various outcomes of any
other tests also have definite probabilities. In particular, these probabilities do
not depend on the details of the procedure employed for preparing the quantum
system. Therefore, the quantum system so prepared yields a specific outcome in
the given maximal test. It should be noted that the quantum system prepared in

such a way is said to be in a pure state.

Any complete orthogonal basis, [i), 1=12,-i,--, represents a realizable

maximal test. Therefore one can obtain the definite probability p, for state i
from a probability amplitude: [10]

a =(i|¥). )

It should be noted that the definite probability is given by p, = |ai |2 .

Now we introduce a lemma (L1) on the existence of parameter ©;

(j=a,[)’,y,---):

L1. There exist parameters ©,,® gt in M, for respective state vectors,

), i M.

Proof of L1. We treat a case for a label ¢ . Other cases, f,7,::+, could be

proved in the same way. From Equation (7), one can obtain a sequence

.

2 2
satisfies the condition Zi:1|ai“| =1 and it is clear that 0< |ai"| <1. Then each

a.“z

a

a
a| |

, } . By normalizing a state vector |‘Pa> , the sequence

element of the sequence describes a definite probability for the respective state i
Hereafter, we shall omit superscript « for simplicity. Let us introduce a

probability function P(©;X) so as to satisfy P(O;x=i)=|a |2 for any i In

*Maximal test is defined as follows: Let NV (assumed to be finite for simplicity) be the maximum
number of different outcomes obtainable in a test of a given quantum system. Then, any tests that
have exactly N different outcomes are called maximal (complete). Such tests are called maximal test.
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P(®;x), © is a parameter and X is a random variable. Therefore, the
parameter ©; (j=a.B.y,--) exists for the representation of a state vector
). .

The L1 ensures the existence of parameters ®’s which correspond to
respective state vectors |‘P j>’s in M, through probability functions P(@ J.;x) ’s.
It is noted that a parameter is thereby found in each probability function for
respective labels, j=a,f,y,---. Since Greek letters refer to the respective

quantum states,

‘Pj> corresponds to @, (j=a.B,7,---). In L1, we saw that
there exists unique parameters ©’s assigned for every state vector in M, .
However, in order to represent the zeroth law in terms of ®’s, the elements in
M, must be mathematically comparable each other. Thus, it is required to
utilize the same maximal test in order to obtain the equivalence relation for the
element ®; from the corresponding equivalence relation for the state vector
|‘}’j> for j=a,p,-.

Adopting this requirement, it is ensured that those elements in M, are
comparable each other and the Ch holds for ©;’s once entropy is defined as a
function of ®. Therefore, the zeroth law of quantum thermodynamics can be
uniquely established for quantum systems by making use of parameters ©;’s.
In order to prove the existence of the zeroth law and to discuss the parameter

®, we have to introduce a proposition of quantum theory, Q3:
Q3. |‘P> describes the same state as C|‘P> , where cis a complex number.

Here, we discuss the parameter ® associated with the proposition Q3. Let us
introduce a map f: M, > M; , where M, is a set defined by
Mg = {C|‘Pa>,c|‘}’ﬁ>,---} . From the Q3, M, = M since it is required that
the set M, isinvariant under the scalar transformation f . Therefore, the set
M, is also invariant under the scalar transformation, Ze,, f : M, > Mg. This
can be described in terms of their elements, Ze, f:0; O, (i=a. Boy,).
Thermodynamically, this means that the parameter © 1is an intensive variable.
It should be noticed that the zeroth law is invariant under the scalar transformation
of state vectors.

Let us derive the thermodynamic state space M, from M, , where the
elements in M, correspond to respective state vectors in M, . It should be
noted that in order to obtain the corresponding equivalence relation for these
elements ©; from the equivalence relation for |‘I’j>, (i=a.B.y,+) we
have to use the same maximal test. In other words, when we compare the
quantum states, those vectors in M, representing the states must be
comparable and hence their components must be described by the same
complete orthogonal basis. Adopting this requirement, it is ensured that the
elements in M, are comparable each other and can specify the respective

states of quantum system. Though M, should be written as M, , where L
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denotes a label of maximal test, L will be omitted when we consider a fixed L
for the sake of simplicity.

Now one can compare two quantum states in thermodynamic sense since
those parameters ®’s can be used to describe two or more systems being
equivalent. This leads to the zeroth law of quantum thermodynamics.

3.1. The Zeroth Law of Quantum Thermodynamics

Let us prepare three systems, M/, MS and M, where superscripts indicate
the labels of respective systems. The equivalence relation among quantum states

is described by
If @8 =02, then|\¥, )" =|w,)°, (8)

where ©7 e M/ and G)[B; e M2, respectively. In this relation, a symbol =
means that the state in the left-hand side is equivalent to the state in the

right-hand side. Later this relation (8) reaffirm the zeroth law of thermodynamics.

Proof of the zeroth law. Let ®" and @2 be the elements of M, and

ME, respectively. By L1, it is clear that ©) = ®; implies |‘}’a>A = |‘I’ﬁ,>B . 0O

We are now in a position to discuss some consequences obtained by
introducing the parameter ©; to specify the corresponding thermodynamic
states of quantum systems. It is clear from Equation (8) that the transitiveness
lawholds:

If © =06} and @ =067, then|\ya>Aﬁ|\y7>°_ 9)

We have established a representation of the zeroth law of quantum
thermodynamics (equivalence relation among quantum states). The zeroth law

can be expressed in terms of parameters in M, .

3.2. The First Law of Quantum Thermodynamics

The first law of thermodynamics is the law of conservation of energy and it

assures equivalence between heat and work. It is written as

du =dQ+dWw, (10)

where dU is a small change in the internal energy of a system, d'Q is the heat
transferred to the system and dW is the work done on the system. Though
Equation (10) is for classical system, we will show the same expression holds for
quantum system.

We consider a quantum system described by Hamiltonian 7 . Here we only
assume that the internal energy of the system, U, is given by the pure state

expectation value of Hamiltonian .7

U=(7)=YpE, (11)

*The energy of an isolated system may be described by the sum of kinetic and potential energies,
represented by Hamiltonian.
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where p; denotes a definite probability having the outcome E, in a specified
maximal test for the quantum system. Since the internal energy (11) can be
expressed as U =U (O,L), we can obtain the representation of the first law of
quantum thermodynamics in terms of ®’sand L'sin M, (see below).

Let us consider a small change in the internal energy. Differentiating Equation

(11) formally, we obtain

du = > (Edp; + p,dE;). (12)

This indicates that the change in U is originated from the two independent
source, Le., an outcome E; anda definite probability p;. The two terms in the
right-hand side of Equation (12) can be identified with the respective terms of
Equation (10) for the expression of the first law of thermodynamics. The first
term Z:iEidpi is a consequence of the change in probabilities. We shall see that
it corresponds to the hAeat flow into the system. This implies that the effect of
heat transfer is to change the definite probabilities of the various outcome of E;.
The second term ) p,dE; relates to the change in the outcome dE; . This term
shows that change in the internal energy partially comes from the change in
outcome. We shall show below that this corresponds to the work done on the
system, Ze, d'W . It must be emphasized that the validity of Equation (12) is
ensured by Equations (13) and (19), ie., existence of parameters, ® and L, as
will be shown shortly.

In order to understand that the second term corresponds to d'W , we first
note that the work done on the system is related to the variation of an external
parameter (work coordinate) and the outcome should depend on the size
(volume) of the system: E; = E; (V). The work done on the system is due to the
change of the volume of the system. Accordingly, without loss of generality we
ascribe the change of the volume to the change of the work coordinate denoted
by L: the energy of state i, ie, outcome E;, which is the eigenvalue of the
system’s Hamiltonian .~ , depends thus on the work coordinate L :
E; = E,(L). This expression states that one can identify the work coordinate L
with the label of a maximal test introduced in the last section. Since E; is a
function of L, we can write that the change in the outcome E; is expressed in

terms of the work coordinate:

dE, = (L) dL. (13)
oL
Then
2hdE =2, %dL- (14)

In Sec. 3, it was shown that p, =P(®;x=i). This indicates that p, is a

function of ©® . Thus we can write Equation (14) as

0 0
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A change in the internal energy of the system is generally related to a “force”
defined by
ou (L)

- (16)

so that Equation (15) and hence Equation (14) can be expressed as
> pdE; = —FdL. (17)

This indicates that the term )’ p,dE; corresponds to the work dW done on

the system and it is generally expressed by*

dW =Y pdE; (L) =—FdL, (18)

where the definite probability p; can then be replaced by the probability
function P(@; X= i) . It is important to notice that Equation (18) expresses the
work d'W with respect to the change in L (work coordinate) in a quasi-static
process. Hence, the invariance of an external parameter L implies d'W =0.
Thereby we have dU =d'Q. Then the term ) E,dp, corresponds to the
change in the internal energy of the system that occurs when no work is done;
this is what we understand as heat flow.

It should be emphasized that the heat entering the system, d'Q, is expressed
in terms of the variation of p, = P(G); X= i) while the work done on the system,
dW , is expressed in terms of the variation of E,(L). Since p, =P(©;x=i),

we can write dp;, as

P(O:x =i
dp, =%d®, (19)

sothat d'Q isexpressed in termsof ©:
40 =S Edp - YE PLOX=1) g (20)

i i 00

In general, unitary operator generated by the Hamiltonian of a system does
not change the definite probability p,. Therefore, the term E;dp, representing
the heat cannot be explained by the Hamiltonian itself. In the present theory, the
effect of heat is expressed as a change in the definite probabilities having various
outcomes E; in the maximal test. It should be noted that an adiabatic process
is characterized by the case where dp, =0 in the definition of heat, see
Equation (20). After all, the representation for the heat in the present theory is
consistent with a well-known adiabatic equivalence and the first law of
thermodynamics for quantum systems can be represented by the elements in
M, asseen in Equations (18) and (20).

As a consequence of the previous section (see the proof of L1) and the

discussion above, the following corollaries, C1 and C2, can be drawn:

C1. The internal energy U is specified by the parameter ® and L:

*We note that Equation (18) is a quantum analog of the expression d'W =-PdV in classical case.
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U=uU(e,L). (21)

Proof of C1. Once a maximal test is chosen for a fixed L, respective outcome
E, (i=12,--+) for the system is uniquely determined and the definite probability
p, is then described as P(®;x=i) by the proof of L1. Therefore, it is clear that

the internal energy is specified by the parameters ® and L. O

We note that Cl1 states the internal energy U can be specified by the
parameters, © and L. We will omit L in U(®,L) for simplicity when we

consider a fixed L.
C2. d'Q=0 implies the consequence of adiabatic equivalence.

Proof of C2. By the proof of L1, no change in the probability function implies
that the absolute values of the expansion coefficients |a;|’s remain the same.
This implies p, remains constant. Thus d'Q is equal to zero throughout the
operation (during the process). ]

In the statement of C2, the consequence of adiabatic equivalence is as follows:
if the system is isolated, the absolute values of the expansion coefficients |ai| s
would remain constant [11]. It should be noticed that the notion of heat arises
only when the state (internal energy) of a system changes, where dU = d'W . As
in classical thermodynamics, heat in quantum systems is also defined as a form
of energy movement. Once the internal energy of a quantum system is well
defined, heat is also well defined. The notion of heat in quantum systems will be
discussed further in a separate paper [12].

3.3. The Second Law and Entropy

In this section we will give a definition of entropy to describe the entropy
principle (namely, the second law of thermodynamics) for quantum systems.
The entropy principle states that the adiabatic accessibility of any two states is
described by an entropy inequality. Here we should refer to the adiabatic process
since the second law treated here is defined for the process. The process is
characterized by d'Q =0. This is ensured when P(@; X) remains unchanged
throughout the process (see C1 and argument below). In other words, adiabatic
process is a process such that P(®;x) remains unchanged. It should be noted
that adiabatic process allows to change a value of L since it only affects work
dW . This is consistent with adiabatic process defined by Lieb and Yngvason
[3].

Let us define an entropy function as a map from the set M, to a real

number R:
S:My R (22)

We note that this general definition for entropy can describe all types of
entropy functions including well known Boltzmann, Gibbs, and Shannon

entropies. The entropy S defined by the map (22) is clearly a state quantity
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and ensures that Scan be defined for a//states in terms of ©.

In order to obtain a representation of the second law in terms of ® for
quantum systems, however, it must be shown that determining a parameter ®
as a state variable means to determine an internal energy U as a state quantity.
We have already shown that U is specified by ®’sand L’s (ie, the elements
of Mgy, ) as described in C1 and can be expressed by a function on M .
Thus the following /emma (L2) is established:

L2. There exists U specified by each element of Mg .

Proof of L2. Without loss of generality, one can consider a fixed maximal test,
where outcome of the maximal test is uniquely determined: The internal energy
is represented by U =) pE =) P(0®,;x=i)E, whereby ©, specifies the
internal energy U . Therefore, U can be labeled as U_. As in the same way,
respective internal energies, U;,U ,---, can be specifically specified by
0,0, . O

Since the existence of correspondence between an internal energy U and a
parameter ® was established by L2, we can obtain one-to-one correspondence
between S(X) and S(®). This keeps consistency between an entropy
function defined in the entropy principle and the statement (22). Put U instead
of X in the statement (1) in Sec. 2 and we finally obtain a representation of the

second law of quantum thermodynamics in terms of @:

®, <0, if andonlyif S(0,)<S(0,). (23)

This describes the entropy principle for quantum system. It should be noted that
each ©® can depend on different values of L. Thus, Eq. (23) is able to give the
information as to a complete structure in M, , which enables us to compare
©’s that depend on different values of L’sin a context of adiabatic accessibility
(recall that one can compare state vectors when L’s are fixed). We should note
that two quantum states represented by ®, and ©, are adiabatic equivalent
if and only if S(®,)=5(®,) for a fixed work coordinate L (cf, Al for
classical case and the argument therein).

Now we consider the case corresponding to the statement (4) in Sec. 2. This
states that the second law can refer to a possible adiabatic transition of a
compound system consisting of system A and B when the compound system is
thermally isolated from any other environment. From L2, we can immediately
obtain the following relation: For a given arbitrary pair of states represented by
(@a , ®ﬁ) and (@a, 0, ) , the following relation holds:

(0,.0,)<(0,.0,) if andonlyif $(©,)+5(0,)<5(0,)+5(0,), (24)

where ©;, j=a,p, -, is the element of the state space M, x M, . It should
be noted that each ® can depend on different values of L. This is the entropy
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principle expressed in terms of ®’s for a quantum compound system. The
statement (24) means that (@a,,® ﬁ,) is adiabatically accessible from
(@a,® ﬁ). We note that this statement is useful when one considers the heat
transfer between quantum systems, e.g, thermal contact. We will discuss
thermal contact in a separate paper [12].

Now we consider a relation between parameter ® and thermodynamic
temperature T . We start with introducing thermodynamic temperature T
that is defined as a partial derivative of entropy S with respectto U

1._05(U,V)

T ou ’ 25)

v
where U and V denote the internal energy and volume (work coordinate) of
a system, respectively [2] [3]. In the definition (25), differentiability of the
entropy function S may be ensured by a concavity of the entropy function.’

Here, we introduce a corollary C3:
C3. There exists a one-to-one correspondence between T and ©.

Proof of C3. From the definition of thermodynamic temperature (25), the
value of T is defined for the respective values of U owing to a uniqueness of
the differential coefficient of a concave function S.Let E be a value of internal
energy U (= E) . By Cl, the value E has one-to-one correspondence with the
value of ®. Therefore, thermodynamic temperature T can be determined by
the parameter ® in M, introduced in Sec. 3. O

This corollary establishes the consistency between the parameter ® and
thermodynamic temperature T. Let us consider the partial derivative in the
right-hand side of Equation (25). We note that a value of T is determined by
® and L. This implies that an internal energy plays the same role as
temperature in quantum system (see C1). This agrees with the proposition of
Bender et al [9]. Equation (25) is useful to obtain the relation between
thermodynamic temperature and quantum states characterized by ©. This is
also useful to obtain a structure in the thermodynamic state space M, .

In this section, we have established the representation of the second law in
terms of the entropy S for quantum systems as a function of parameter ©, so
that one can define thermodynamic temperature T as a function of a state
parameter ©: T =T(0).

3.4. The Third Law

Let us briefly discuss the third law of thermodynamics for quantum systems. The
third law requires quantum states [1]. Therefore, it must take into account the

probabilistic nature of quantum theory. The probability function P(@) is

>A relation between thermodynamic temperature and concavity of the entropy function is discussed
by Lieb and Yngvason [3].
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found from probability amplitudes (see L1 in Sec. 3). Accordingly we can obtain
the representation of the third law: The entropy S is equal to zero only when

the probability function satisfies the condition:

P(®;x=i)=1 for arbitrary i. (26)

At the absolute zero temperature, one can expect a state of quantum system

being in a single state such as
|¥)=a|i) for arbitrary i. (27)

The single state here means that only one outcome is obtained with a

probability one by maximal tests.

4. Results and Discussion

In this paper, we presented a representation of the basic laws in thermodynamics
for quantum system in a pure state and investigated a relationship between
thermodynamics and quantum theory. We obtained the representation of the
zeroth, first, second and third laws in quantum thermodynamics, which affords
the key to treat quantum system thermodynamically. In the derivation of the
zeroth law that assures the existence of a property called “temperature” in
classical thermodynamics, we proposed parameters © that characterize the
equivalence law among state vectors, leading to the zeroth law of quantum
thermodynamics. We showed that the existence of such parameters depends on
the probabilistic nature of quantum theory (L1). It should be however noted that
the parameters ©’s introduced in our formulation make sense only when there
exists the map M, > M, ie, M, is an injection of M, . Therefore, in
order to establish the representation of the zeroth law in terms of the elements in
M, same maximal tests must be performed to obtain the corresponding
elements of M, from the respective elements in M, . Though this statement
can refer only to the case where the work coordinates are fixed, the second law
releases this restriction.

We established the representation of the first law, where the internal energy of
quantum system as a state quantity is specified by the parametersin M, (C1).
From the first law, when the state changes from ©®, to ©,, heat entering the
system is represented by d'Q=U (®/f)_u (©,) in the case where dW =0
(i.e., the work coordinate is fixed). Thus one can measure the quantity of heat in
terms of ®’s for quantum systems. By considering the adiabatic process
(d'Q=0), one can also quantify the work done to the system in terms of @ ’s in
the present theory. Since the term W is due to a shift of the outcomes caused
by the variations of work coordinate, one can measure the work dW in terms
of the changes in the internal energy as dW =U(©,,L,)-U(0,,L) when we
consider an adiabatic process, where ®, remains constant. Here U (@a, L1)
describes the internal energy of the final state. This is useful to obtain the
relation among {./\/l@J_1 Mo, ,} and the relation gives a structure in

thermodynamic state space M, | .
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We also obtained the representation of the second law of thermodynamics for
quantum system. The representation depends on L2 and assures the entropy
principle. The representation of the second law (entropy principle) proposed
here would give some insight into the structure (order relation) in M, for
quantum systems. Therefore, this would afford one to investigate what
thermodynamic structure exists in a state space describing thermodynamics of
quantum systems in terms of those parametersin M, .

The third law requires as a principle that entropy should be zero at the
absolute zero temperature [1]. In our representation, entropy can take the value
of zero when the state is described by |‘I’J> =b;|i) (ie., the state of the system
is characterized by a single state for each ensemble j). Since one can see the
existence of a unique function of © that describes the thermodynamic
temperature, there is 20 necessity of referring to an explicit form of the function.
Let | i> be an energy eigenstate of the system. At the absolute zero temperature,
the state is occupied from the lower states and the state |‘I"> =b; i) should
correspond to the lowest energy level i Therefore, we required one more
condition to the statement Equation (26), that is, the only state 7 is reserved for
the description of the lowest energy level. It should be noted that this
requirement is consistent with Fermi and Bose statistics at the absolute zero
temperature and the state is free from the type of Hamiltonian for quantum
system, establishing the third law of quantum thermodynamics. By the third law
along with the definition of entropy function (22), one can determine the
absolute value of entropy.

Finally we consider the problem of thermal contact. This problem makes the
notion of heat transfer much clear. Let us consider a compound system
comprised of subsystem A and B whose initial states are characterized by
(©,,0,), respectively. Without loss of generality we could use the same value of
the work coordinate for both systems. The compound system as itself is isolated
from any other environment. After thermal contact the state of each subsystem
becomes (©,,0, ) due to the heat transfer between subsystems. For such a case,
one can predict a possible value of ©, . Since the case satisfies the inequality
(24), we could evaluate the values of ® by obtaining the probability function
P(@; X) . Therefore one can verify the order relation among ®’s (ie., whether
(@a,@) ﬂ)<(®7,®y) is true or not). In other words, by studying the order
relation among parameters ®’s through the study of respective entropies,
thermodynamic structure hidden in quantum systems could be elucidated.

Now we discuss again the validity of the zeroth law (8) from a viewpoint of
the thermal contact. If the subsystem A and B are in thermal equilibrium, then
there is no heat transfer between them. Thus one can say ®’s are the
parameters which characterize respective thermal equilibrium states of
subsystems A and B.

By applying the quantum thermodynamics presented in this paper,

thermodynamic nature of quantum systems could be studied in all temperature
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without considering detailed mechanics of quantum systems. This is the

advantage to utilize quantum thermodynamics presented in this paper. We hope

that the present theory sheds light on further understanding a relationship

between thermodynamics and quantum theory.
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Abstract

We discuss hole-induced magnetic solitons and metal-insulator transition of
transport properties in diluted magnetic semiconductors Ga,_ Mn As from
the standpoint of a field theoretical formulation, and analyze experimental
data of transport properties, using the supersymmetry sigma formula and the
effective Lagrangian of diffusion model.

Keywords

Diluted Magnetic Semiconductor, Magnetic Soliton, Metal-Insulator
Transition, Localization

1. Introduction

Diluted magnetic semiconductors (DMSs), which are formed by substitution of
several percent of cation sites in a host semiconductor with magnetic impurities,
are actively investigated both theoretically and experimentally, due to their po-
tential applications in new generations of semiconductor spintronic devices [1].
Because the carriers in DMSs are considered to mediate the magnetic interaction
between the magnetic ions [2], these materials are very important for semicon-
ductor-based spintronic devices to control the spin degree of freedom of the car-
riers. Due to the mediation mechanism, the ferromagnetism in DMSs is called
carrier-induced ferromagnetism. Prototypical DMS systems such as Ga,_ Mn As
and In,__ Mn As show severely limited chemical solubility due to the substitution
of divalent Mn atoms for the trivalent Ga or In sites. In order to prevent phase
separation, these materials should be grown at low temperature (7 from 200°C

to 300°C), which results in an abundance of different types of crystal defects. As a
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result, a theoretical study of DMSs is very difficult owing to two factors (strong
disorder and exchange interaction), which must be taken into account nonper-
turbatively.

Understanding the mechanism behind the carrier-induced ferromagnetism is
of significance for further development of semiconductor spintronic devices.
Several theoretical models for carrier-induced ferromagnetism in (Ga, Mn)As
have been proposed [1]-[6]. In addition, interesting phenomena such as the
photo-induced magnetic polaron in DMSs have been reported [7] [8] [9] [10].
These studies stimulate us to investigate the hole-induced magnetic solitons. It
has been required to consider the behavior of the hedgehog-like magnetic soli-
ton and the domain wall from a viewpoint of quantum theory. Kanazawa [11]
has discussed the hole-induced magnetic solitons in DMSs from the standpoint
of a field-theoretical formulation. Metal-insulator transition (MIT) and large
magnetoresistance (MR) effects in DMSs (Ga, Mn)As have been reported [12]
[13] [14] [15] [16]. Kanazawa and coworkers [17] [18] [19] [20] [21] have dis-
cussed these anomalous properties in DMSs theoretically.

In this study, the anomalous transport properties in DMSs are discussed using
a field-theoretical formulation. Then we analyze some conductivity data in
DMSs (Ga, Mn)As, using the gauge-invariant effective Lagrangian density and

quantized magnetic solitons.

2. A model System and Hole-Induced Magnetic Solitons

According to the aggregation of hole-induced magnetic solitons, the non-monotonic
temperature dependence of the transport properties of (Ga, Mn)As is qualita-
tively explained as being due to the hole localization around the Mn ions. It has
been suggested that the ferromagnetic ordering might be due to a dou-
ble-exchange-like interaction and the remarkable change of spin exchange in-
teraction among Mn ions by the hole seems to be cooperative and non-linear
(Yang Mills like). Kanazawa and coworkers [22] [23] [24] [25] have proposed
that in quasi-(2 + 1) dimensions in a quantum antiferromagnet the hole-induced
magnetic disorder leads to hedgehog-like solitons, which are composed of the
doped hole and the cloud of SU(2) Yang-Mills fields with spin disorder around
the hole. In addition, based on the important ideas in Refs. [26] [27] [28] [29], it
has been proposed that the hedgehog-like soliton in a three-dimensional system
is specified by rigid-body rotation, which is related to gauge fields of SO(4)
symmetry for $° [30] [31] [32] [33] [34].

Then the Yang-Mills fields A} induced by the doped hole have a local SO(4)
symmetry. Here we have thought that the SO(4) symmetry fields A} are spon-
taneously broken around the hole through the Anderson-Higgs mechanism, in
the III-V-based diluted magnetic semiconductors with magnetic manganese
ion-doping. Through the spontaneous symmetry breaking <0|¢a |0> = <0, 0,0, y) ,
the effective Lagrangian density has been introduced [11] [19]. That is, the effec-

tive Lagrangian density reveals that the ferromagnetically aligned Mn spins create
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the cluster, in which the hole is trapped, with the radius R, ~1/m, . Katsumoto
et al. [16] have shown that the localization length |, of the wave function of
holes plays an important role in the metal-insulator transition in DMS (Ga,
Mn)As. It is suggested strongly that the | might correspond to R, ~1/m, . In
III-V-based DMSs, the resistivity increases remarkably as the temperature de-
creases. In addition, in the same temperature region, the negative magnetoresis-
tance grows rapidly as the temperature decreases. To explain the electron hop-
ping and spin dynamics, we introduce an effective Hamiltonian, A, for the
magnetic soliton O(ri-) [18] [20]

H=—J<%cos( /2) (r)- ( )+ KY ———— ofr )o(r)

=] |r—r|

(1)

Here the first sum z<”> is taken only over nearest neighbors (the distance
between each magnetic soliton is < 2R_ ), while the second sum is taken over all
pair(i~¢ ] means ‘I} —I’]‘ > 2R, ) [18] [20]. &ﬁ is the angle between N. and
N;. Here N; and N; represent the effective spins of the solitons O(r.l-)
and O(rj ), respectively. N. is the summation of the ferromagnetic spin, N;,
of Mn within ~ (4/3)nR} (f) around the hole at the site I.. /is defined in
Equation (2). K, which is introduced in Ref. [18], is the effective long-range in-
teraction constant. The first term shows short-range ferromagnetic ordering in-
teraction and the second one shows long-range frustration.

2 -myr 2
y=-% ~-92 me™ (2)
dn r | 1 4n

m

is the short-range attractive potential, which is derived from massive gauge fields
A,, A’,and A’ exchange interaction. When the magnetic soliton, O(T:),
with the effective spin N is located at the nearest-neighbor site of the mag-

netic soliton, O(I’ ), with the effective spin N, holes are hopping between the

two solitons O(r,fj) and O(ri ) If N; is parallel to N;, the p-d exchange
interaction induces large reduction of the kinetic energy. The hopping term be-
tween the nearest neighbors of hedgehog-like solitons (clusters) leads to an addi-
tional term in the o~-model describing a coupling of the supermatrices, Q., cor-
responding to different magnetic solitons (clusters) [18]. We discuss the trans-
port properties of DMSs for connected clusters, where the radius is R, ~1/m,,
of DMSs. Approximately we introduce the following approximate free energy by

using the formula for the model of granulated clusters [35] [36]

'E(Q):Str[_<Z>JﬁQrQi +%(w+i5)ZAi-lAQj' (3)
i i

where J; =1 COS(H / Z)LA Then A; is the mean energy level spacing at
(|

the hedgehog-like soliton (cluster) O(r.l-) and J >0. The diffusion coefficient

D, isintroduced as follows,
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D, N%;Jﬁ(ﬁ' _ri)z
N%Z]:J cos(6'.q/2)%(ri~—ri)2 (4)

Ni;J cos(¢9ﬁ/2)(r.I~ - )2

A

Here A= and v is the density of states of the carriers at the Fermi

2

vaR;

surface. In the case of the low frequency limit of ®, the localization length L,

is shown as follows,
2. D2 2. o2 4 2
L, o n2vR?D, ~ nvR? n—AZ]:J cos(8; /2)(r; -1;) (5)

We shall consider the variable range hopping conductivity and the system

length L> L, asfollows,

loc

o o exp [—(A/T )I/(d”)J (6)
where dis the dimensionality of the system.
1 d/(d+1) 1 d/(d+1)
Acc|—— ~| =nin (7)
Lioc T VvR; D,

Figure 1 shows the temperature dependence of the conductivity o for
as-grown and annealed samples (experimented data) [15] and the fitting lines

(solid lines) of Ga,yosMn, (sAs. The annealing is performed at 310°C for 15 mins.

Figure 1. Temperature dependence of conductivity of the diluted semiconductor
Gay4sMng4;As [15]. The anniling time is 15 min. The solid lines have been fitted to the
measured data.
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The as-grown sample and the sample annealed at 310°C show insulating behav-
ior above ~30 K and ~50 K, respectively. The annealing at 310°C increases the
conductivity. Annealing might reduce concentration of As antisites and intersti-
tial Mn. As the conductivity o increases, the high-temperature structure moves
to higher temperatures, which means T, (Curie temperature) increases. Thus
the concentration p of mobile holes and T, are enhanced by the annealing.
The experimental data are fitted well with Equations (6) and (7), as shown with
solid lines in Figure 1. Comparing the experimental data (annealing at 310°C)

with those (as grown), it is thought that the value of L, (after annaealing at

loc

310°C) is much larger than of those (as grown), as seen from Equation (7).

3. Conclusion

The hole-induced magnetic solitons and metal-insulating transition of transport
properties in DMSs have been discussed based on a field theoretical formulation.
We have analyzed experimental data on the transport properties of GaMnAs by

using the effective Lagrangian of diffusion model.
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Abstract

There are two main theories about the origin of the Universe that show simi-
litude with the Genesis writings, though in different verses: the Big Bang' and
the eternal Universe® (an eventual quantum fluctuation). However, it is possi-
ble to partially include the quantum theory in the Big Bang thanks to the na-
ture of photons, to obtain a simple model. It is assumed as the origin of the
Universe (space, time, matter and physical laws). A subsequent enormous
expansion has been explained by a supposed brief Inflation period, followed
up today by a constant adiabatic expansion acceleration. This paper assumes
that the Universe is the total Space which contains the Physical Universe cov-
ered by an external, empty Space, both expanding at a constant Hubble acce-

http://creativecommons.org/licenses/by/4.0/

leration I';; [1]. A Big Bang design is intended by a deduction of the energy

and number of primeval photons, from the present CMB value; they would
have reacted whether to generate the Physical Universe or to decay till the
CMB level. It follows an approach to the Universe expansion work, based on
the Hubble field (V}) as well as on Thermo-dynamics. They are calculated:
the time and angular momentum required for the Physical Universe to reach
the maximum internal velocity ¢ as well as, simultaneously, a ¢ tangential ve-
locity. The Universe luminosity at different periods and the adequate expres-
sions of parameters (Q), ¢, k) are revised. It is proposed a modification in the
equation of the H(#) parameter and the A, value. The operator of convective
derivative is applied to obtain an equation of continuity for the photonic
energy; an adiabatic Jacobian gives similar results. This essay differs from
others based on black box radiation, since the Universe has no walls and the
photons energy decays continuously.

Keywords

Hubble Parameters, Space Acceleration, Photonic Equation of Continuity,
Universe Angular Momentum

*Retired Professor.

'Genesis, Chapter 1, Verse 3: And God said “let there be light” and there was light.

“Genesis, Chapter 1, Verse 2: “The earth was without form and void... and the spirit of God was ho-
vering over the face of waters”.
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1. Introduction
1.1. Previous Models

Reference [2] describes the extensive research developed to determine the CRB
variations, which may suggest a spectral distribution of the Big Bang original
photons. Reference [3] is a complete text on Statistical Physics though its chapter
on photon gas is mainly oriented to black body and cavities radiations. A pre-
vious classical book [4] mentions the Wien constant, necessary to determine the
maximum energy density, though it is exemplified only by solar radiation. Ref-
erence [5] assumes that the photon gas is a carrier for electromagnetic waves in a
very complex model. However, it was not found a Big Bang thermo-dynamical

model that would, probably, exist.

1.2. The Selected Universe Model

The Einstein gravitational equation, including the cosmological constant A, was
modified by De Sitter for an empty Universe [6]. In reference [7] the Ag,, tensor
was substituted by a Hubble tensor (whose scalar equals 3H?); it implies a Hub-
ble positive potential field V(r) and the expansion acceleration I';;. The photonic
model has been selected because the Planck temperature represents an initial
energy about 10* (Mev), which overpasses the binding energy of any mass, from
neutrino to Higgs particle. For simplicity it is initially assumed as a mono-
energetic photonic source, which could later be modified as function of a proba-
ble Planck Length indetermination.

1.3. The Light Speed in Dense Matter

A doubt could be elicited due to the use of the ¢ value in Planck parameters be-
cause, at that time, the linear speed of initial photons could not be higher than
that of the space expansion. However, such an obstacle may have overcome by
the results of a research on opaque bodies [8] which concluded that the total tra-
jectory of light through a big number of collisions per second corresponds to c.
That would confirm the light velocity as a true constant in the Physical Universe,
provided that the internal mean free path in the mass would be wide enough to
admit a wavelength displacement; obviously, the ¢ value had been confirmed in

vacuum.

2. Some Universe Parameters
2.1. Previously Published Parameters

The maximum velocity of matter into the physical Universe is ¢ (Figure 1); the
present time is ¢, = 14 Gy. It has been assumed that the Big Bang duration was #,,
=10" (s) [9] or 3.2 x 10* (y). Besides, the maximum velocity of matter into the
physical Universe has been limited to ¢ which was freely manifest at the Un-
iverse expansion time £ = 1.1 x 10" (s); the corresponding Universe scale factor
R_ (Universe radius r.), where velocity expansion ¢ freely occurred, was r. = 1.7

x 10% (cm). Otherwise, it has been shown [1] that the space acceleration
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Figure 1. Universe expansion velocity as a time function. A: expansion velocity of Space,
Equation (1). B: constant velocity of light in the Physical Universe.

I';; (cm's™?) is a constant, independent of mass presence. Present time is ¢, The

Space expansion velocity is:
v, =T, -t (1)
The value of the Hubble parameter has been here corrected to A, = 3.2 x 107"

(s') assuming a maximum speed of 100 (km/sMpc) in the definition equation.
So, the intensity of the Hubble field is T ;= 2.65 x 107 (cm-sec™*) (Figure 2).

2.2. Additional Parameters

1) The critical condition of the Universe has been defined in two ways: respect
to a ratio Q) [10] of present and critical densities and respect to a net acceleration
[11] as:

Q=p,/py (2)

T, =T, -T, 3)
T, = H?r = constant (4)
', =GM/r? (5)

Though Equations (4) and (5) may be here applied, Equations (2) and (3)
should not because of the following: Equation (2) is not adequate for the De Sit-
ter model since the vacuum density of the external empty space is p, = 0 and,
therefore, Q2 = 0, independently of the density of the physical Universe. A critical
point could rather correspond to the z time, when the expansion velocity of
Space and the internal velocity in the Physical Universe diverge; at that time, the
gravitational acceleration is T'; ~ 107 times lower than the space acceleration T,
(Figure 2). Even more, the eventual numerical equality in Equation (3) occurs at

a time ¢, ~ 2t, without any physical consequence.
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Figure 2. Evolution of the Hubble (I';) and gravitational () acceleration (cm-s) as
function of the radial factor (R), Equations (4) and (5).

2) Another important factor is the so-called deceleration factor g, defined [12]
by the equation:
q, =—-RR/R (6)

This expression was considered adequate at the time when the Universe acce-
leration was assumed negative, accordingly to the second Friedman equation
[13]:

R 411G 3p
= il 7
R 3 (p+ CZJ (7)

In these two equations R is the scale factor of the Universe, R isthe expan-
sion velocity and R is the acceleration; as well, p is the Universe density and p
is its pressure.

To date, at a positive acceleration, the minus sign should be discarded from
Equation (6).

3) The curvature of an spherical Universe may be estimated by the classical
expression k = 1/(R,)>. If obtained from the first Friedman equation, this gives
the following results: at early times, when the Hubble parameter was higher than
today, k£ would be negative, ie. a hyperbolic geometry; now, at the smaller mag-
nitude of H,, the & value is still negative though in a rank of 10™ (¢cm™) that
suggest a flat Universe. Otherwise, the FLRW equation admits 3 possible values
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for k£ (+1, 0, —1) to cover all of curvature possibilities.
4) The Laplacian for the Hubble potential was deduced [1] as V*V, = 0, since

V3 is not a function of the mass presence.

3. The Hubble Parameters

1) The original parameter was defined by A. Hubble as the relation H = v/g
later, it has been defined by its own units (s™) in successive concepts: from a
universal constant (), to a single reciprocal function of time, A = (1/¢) and
even to A = 2/3tin the Einstein-De Sitter model.

2) The Hubble time has been defined as ¢, = 1/H. However these equations
have been applied for a Universe whose expansion velocity was assumed con-
stant. If the acceleration (T}, is the true constant, the Hubble time should be ex-

pressed as:
ty =v2/H(t)(s) (8)
3) The Hubble Length, as known nowadays, is defined by the equation:
L, =c¢/H, (cm) 9)

Substitution of Equation (8), gives:
L, =ct,/v/2 (cm) (10)

Equation (9) is equivalent to that for an inertial frame: r = v, if v had the ¢
value. Equation (10) was obtained for an accelerated frame, I';,. So, this equation
would be valid for the case when the expansion velocity would be higher than ¢

as: v, = nc, where n > 1, so giving, for the present Hubble length:
L, =nct, /2 (cm) (11)

4) The Hubble velocity of Space expansion may be obtained, as a function of
time, from the above mentioned Equation (1) if v}, is substituted by R, as
R =T, -t (la) (cm-s™).

4. The c Factor

It has been assumed [14] that the space expansion velocity could overpass ¢ since
the space is not in an inertial frame; rather, it contains all of reference frames.
So, the concept of co-moving coordinates would be better applied to Space.
From the above results, the £, time has occurred at one fourth of the Universe
age, near after the starting of the Physical Universe formation. That means that
the light velocity into the Physical Universe has been evidently constant during
the last three fourths of the Space age. There is a possible explanation for that:
the expansion velocity of Space is not limited to ¢ though matter velocity, into
the Physical Universe, is really limited due to the space-time curvature origi-
nated by the mass density. However, to obtain a probable image of these sub-
jects, there is no other way but to apply the available means [15] [16]. So it is

possible to assume that, in the co-moving coordinates of Space, the expansion
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would be referred to the Big Bang origin (¢= r= m=0).
In order to determine the light velocity c as a function of the gravitational po-
tential @, at a given distance, Einstein [17] did propose the following equation:
c(®)=c, £1+2;j (12)

C

0

¢, is the present, known velocity. However, when applied to a higher potential
corresponding to a smaller radius of the Physical Universe, the increase in c re-
sults almost negligible; it would confirm the constancy of ¢ since the tiny ob-
tained difference obeys, rather, to the imprecision of data applied in this paper.
Therefore, there are two realities: into the Physical Universe ¢ is a true con-
stant; in the Space, its expansion velocity pulls all matter (including photons) at
higher velocities v > ¢. A possible reason for the ¢ constancy could be the con-
servation of the angular momentum in the Physical Universe rotation that, at the
t. time, would have had a tangential velocity ¢ which has been necessarily de-
creasing till the present time. So, if the total angular momentum of the Physical

Universe ( £ ) is calculated at the £ time, as:
L, =M, o (13)

by substitution of the relation v, = w-r_ it gives:

L, =M, T, xV, (14)

So, the constant value of the Physical Universe angular momentum at the . time
it results: £ = 4.8 x 10** (erg-s); then, the to date tangential velocity of the
Physical Universe Limit (R,,), ie. z= 11, would be thu =2x 10" (cm/s).

It has been mentioned that a low gravitational potential has a very few influ-
ence in the case of an equilibrium temperature. However, in the non equilibrium
temperature and a higher potential case, it seems that such influence would re-

main small.

5. The y Factor

The Space expansion velocity (v,) has really surpassed the ¢ value after the £
time and S. Hawkings [18] did mention the possibility of an imaginary time.
Without a known theory about the empty space kinematics and too far from any
gravitational interaction, the Special Theory of Relativity can be applied to ob-
tain some expressions for a frozen and imaginary time, by means of the proper

time (7) equations:

T=t/y (15)
where:
5 \05
Vv
C
Le.
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T =t(1—v2/cz)o'5 (17)

So, If v= ¢, y= oo, 7= 0 (that means a time singularity). If v> ¢, rhas an imagi-
nary value, 7. It may be determined the precise value of this imaginary number,
by the yfactor: If v> ¢, it means that v= fc, being f a real number higher than
Lso f>Lif w=1-f, w <0 and, from Equation (14),

T, :t(wz)o‘5 =t-wi (18)

Therefore, when the velocity of some matter reaches v = ¢ and 7= 0, that
would mean a singularity (a time freezing at a physical Universe radius r,),
reached at one fourth of the present time. After that time (¢£> £), at an expansion
velocity R > the proper time of space would become imaginary. Otherwise,
as the physical Universe has maintained constant its maximum internal velocity
¢, the proper time of photons and some leptons in the Physical Universe are re-
ally constant, Ze, 7 = 0; that means that they remain into a singularity. That
would be a strange situation into the physical Universe since the 7. time till to-
day. Otherwise, the General Theory maintains the ¢ limit for photons in the
presence of mass; this one, in its turn, generates the curvature of space-time. The
curvature decreases as the distance to a given point increases, similarly to the
gravitational attraction does. At this point (z,), the negative gravitational inten-

sity I';is 107> times lower than the positive expansion intensity I';.

6. The Thermo-Dynamical Expansion of the Universe
6.1. The Photonic Primeval Energy

The Big Bang has been assumed, from the G. Lemaitre concept, as a “primeval
atom”. Though it could not exist any type of atom at the Planck temperature, it
really would mean a suddenly created energy accumulation, Ze. a photonic
source; those photons applied to build the Physical Universe have generated a
luminosity in the order of [, = 10* (erg/s) [9]. Taking into account the assumed
duration of the Big Bang of 10" (s) ~ 3 x 10* (y), the total energy generated in
the Physical Universe formation would have been about 10” (erg). However, by
including the original energy of CMB photons, a much higher value of the ener-
gy produced in the Big Bang could be obtained.

The original energy corresponding to the CMB can be obtained from the
present density of such relic [19], ie. 416 (photons/cm?). By applying the cos-
mological principle, the total quantity of CMB photons in the Universe volume
(7.4 x 10® cm’) should now be 3 x 10* (photons). Since their average tempera-
ture is ~2.7 (K), it may be estimated an energy of 3.7 x 107" (erg/photon) which
means a total present energy of 1 x 10 (erg) for all CMB photons. From data of
reference [20] it may be assumed that the zfactor, for a frequency variation since
the Big Bang to the CMB, would be ~10*, (a similar z value may be deduced
from the temperature variation) which means a total energy in the Big Bang pe-
riod of 2 x 10%® (erg), equivalent to a luminosity L; =2 x 10* (erg/s). At the Big
Bang end there would exist equal number of photons as they are today as CMB
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(3 x 10*?), plus a small fraction devoted to generate the Physical Universe; so, the
average energy of each one should have been ~E,= 3 x 10" (erg/photon). How-
ever, the energy of just one photon whose maximum wavelength would equal
the Planck length (as assumed here), it should have been about 1.5 x 10"
(erg/photon). That means that the average wavelength of original photons must
rather be ~5 times longer than L, which implies a lowering factor of 5 in the
original photons energy to give now 3 x 10'® (erg/photon) and a total energy at
the Big Bang end of 2 x 10" (erg). So, the luminosity at the Big Bang end would
have been L ~ 2 x 10* (erg/s). This correction factor 5 in the wavelength of
original photons doesn’t match with the assumed Planck length. However, there
are two possibilities for a coincidence: the first is that the “true” dimension of
the Planck length would be 2.5 times bigger than the one here applied; the
second possibility is that, accordingly to the quantum theory, a photonic wave is
stable in a potential well if it displays an entire multiple of a half wavelength; that
is a fact that permits to accept 5 different values of the (1/2) parameter, so gene-
rating a mixture in the original energy spectrum of the Big Bang. Otherwise, the
CMB fluctuations could have been provoked by dispersive interactions of origi-
nal photons with the subsequent condensed matter.

Besides, the Higgs photon may have energies as high as ~150 GeV; that means
~0.25 (erg/photon). So, it would be feasible that every one of the original pho-
tons could generate the necessary number of Higgs photons to start the immi-
nent mass condensation.

The total energy was, apparently, applied to only two purposes: one was the
generation of the Physical Universe mass, whose value results ~2 x 107 (erg) if
the mass would have a value ~2 x 10*" g [21]. It means that a minimal fraction
(107") of the Big Bang energy was applied to generate the Physical Universe.
Accordingly to reference [9] a similar fraction would have been applied to the
Physical Universe expansion work. The rest (>99.9%) was left as the relic of the
Big Bang. It would imply that the present electromagnetic spectrum, from radio
to gamma and cosmic rays, as well as some leptons, would not come from the

Big Bang but from astronomical objects such as the Sun, galaxies and quarks.

6.2. The Expansion Work of the Physical Universe

In this expansion, temperature, pressure and volume continuously vary, though
entropy does not because there is not any intake or lost of heat in the Universe.
The conservation equation for the internal energy of the Universe () is, from

the 1st Law of Thermodynamics:
E=Q-W (erg) (19)

Q would be the total heat content, and W the work performed by the matter
expansion. Initially, at a time lower than Planck’s one, the work expansion W
may be assumed to be nil and therefore the internal energy U would be equal to
the heat content (£ = Q). After, in the non-isothermal, non isobaric and adia-

batic (though irreversible) case of the Physical Universe, the expansive work will
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be made at expenses of a small fraction of the original internal energy: (W =
—OE). So, E is the original internal energy of the Big Bang, which was above cal-
culated as 2 x 10 (erg); dE,, corresponding to the mass generation, is 2 x 107
(erg), as previously mentioned. By derivation of Equation (19) respect to time
and substitution of the density variable, the conservation equation for adiabatic

expansion it results:
p+32(p+£2j=0 (20)
a c

where aand & refer to the scale factor and its time derivative.

However, additional considerations must be made: accordingly to reference
[10] “it cannot be pressure forces in a homogeneous universe because such ef-
fects can only be generated by a pressure gradient... so, pressure does not pro-
vide a force that causes the Universe expansion. Rather, its contribution is en-
tirely through the work done during the expansion”. So, it has not sense to
search for a pressure value in the Universe expansion process. Otherwise, the

state equation for different types of matter has eventually been proposed as:
p = wpc’ (21)

For vacuum energy, w = —1, so assuming that an external negative pressure is
the cause of Universe expansion. Such possibility has been discarded by both A
and Hubble models.

There are three ways to determine the work developed in the Physical Un-
iverse expansion: to apply the Hubble potential, by means of a classical ther-
mo-dynamical process, and to include a quantum criteria.

1) The Hubble potential acts on the masses present after the decoupling time;

s0, the to-date work value could be:

W =M, R, (erg) (22)

M, is the mass of the physical Universe and R, is the radial function corres-
ponding to the physical Universe expansion period, £, = (¢, — £,,). Substitution of
known values gives a total expansion work of the physical Universe W, ~ 10 x
107 (erg) that was delivered at the spherical shell R,, ie. during the evolution
time of the physical Universe, which represents a luminosity of L = 2 x 10%
(erg/s), similar to that of reference [9] for the physical Universe. The negative
external pressure would be 0 since the empty space density is 0 (different to that
of a quantum vacuum). Anyway, the sum of the Physical Universe mass and its
expansion work, remain in a fraction lower than 107" of the Big Bang energy.

2) The classic thermo-dynamical expansion work is given by the equation:
W =PV, =nkT (dyne/cm?) (23)
where, nhas been calculated as 2.7 x 10* (photons), k= 1.38 x 107'® (erg/K-photon);

if T, ~ 2 x 10" (K), when the lepton era ends, the product gives PV = 7.5 x 107
(erg).
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3) The quantum method [22] applies the Wien factor b = 7.6 x 107"
(erg/K-cm?), obtained from statistical physics, to get the thermal pressure; how-
ever, since it was derived for an isothermal process, it may not be here applied to
an adiabatic expansion. Anyway, the quantum method includes a correction
factor for the classical Equation (23) that was here employed, so arriving to a re-
sult W, = 6.7 x 107° (erg). The luminosity, in this case, is similar to that corres-

ponding to the evolution of the physical Universe: L~ 1.3 x 10% erg/s.

6.3. A Big Bang Design

Before making additional calculation in the photonic gas, it must be recalled the
classical Bose-Einstein statistics for 0 spin particles in a non-isothermal process,

Le.
f(E)=1/(Ae™ -1} (24)

that is applied to obtain the distribution of photons as a function of temperature
[23]; it may not be used here because it represents an equilibrium state at a given
temperature 7, when photons energies vary and most photons accumulate at the
lowest energies; it is an ideal though opposed situation to that of the Universe
where the photons accumulation happened at the highest temperature. There-
fore, it is possible to assume that the only reducing factors of the initial photons
energy will be a gravitational (delaying) red-shift and, after the decoupling time,
the normal zlowering process driving to the CMB.

In order to prove the initial conditions for the validity of a physical law, it
would be important to calculate the expansion velocity of the Big Bang in com-
parison to that of the Hubble acceleration. So, the general Equation (23) is as-

sumed to represent the adiabatic expansion work of the photonic nucleus; then:
\2
(R) =2nkT/M,, (25)

So, R =5 x 10° (cm-s™') would be the final velocity of the Big Bang period,
while the velocity obtained from the Hubble acceleration results: =2.7 x 10°
(cmes™). This difference must have been much higher at shorter times, which
means that the Hubble acceleration law was not significant before the end of the
Big Bang period (3 x 10* y). Therefore, this period could be assumed as the one
corresponding to inflation. Taking the Planck length Z, = 1.6 x 107> (cm) as the
diameter of an spherical Big Bang, its volume would be V, =2.15 x 107 (cm’).

In Table 1, they are shown the values of expansion velocity R, (cm/s) and
scale factor R, (cm) of the Space, corresponding to times (s): Planck (z,); 107%% 1;
Big Bang end, #,; decoupling time #; Physical Universe formation time ¢,; ¢
time, ¢; and present times: ¢, for the Physical Universe and ¢, for Space. Four
values for luminosity L (erg/s) are also shown for times ¢,,, ¢,and ¢, times, as well
as to the period (£ — #,.). The present scale factor of the Physical Universe is as-
sumed as the observable Universe: the distance to the most distant object
(GN-Z-11), R, ~ 2 x 10 (cm).
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Table 1. Expansion velocity (v), and scale factor (R) of the Space, according to the Planck
parameters (first line) and to the Hubble acceleration (next 8 lines). The luminosity L
(erg/s) of Space is shown in the fourth column for: the Big Bang end (#,,), the decoupling
time (¢,), the (£) time and the present time (£,).

£(s) R (cm/s) R (cm) L (erg/s)
t,=54x10" c L,=16x107
t=1071 2.7 x 1077 R,=1.4x 107
t=1 2.7 x 1077 R =14x107
.= 10" 2.7 x 10° R,.=1.5x107 Lpe=2 % 10%
t;=1.5x 10" 3.7 x 10° R;=46x10" Ly=6x 10%
t,=3.1x10" 0.3¢ R, =3.0x10*
t.=1.1x10" c R =16x107 L(t.— t,) =4.5x 10%
th=t,—t, 3c R, =2.0x10¥
t,=4.4x107 4c R,=2.6x10% L,=5x10"

7. The Photonic Equation of Continuity

The operator of the convective derivative has been usually applied to density and
time variables such as velocity, momentum and kinetic energy. The same opera-
tor may also be applied to these parameters when they are not expressed as func-
tion of masses but of frequencies, such in the photons case. Applying the con-

vective operator to the photon energy, £= Av, if £(r, §), it gives:

Dhv/dt = ohv/ét +cohv/or (26)
Substitution of cin Or drives to the equation of continuity:
BE _an (a_vj @7)
dt ot

This rather unexpected result may be applied to an example with the above
mentioned parameters if hOv would be assumed as AE= (E.- E,,) and ot as
At=(t.— t,,) to give:

DE AE
P Z[E} (erg/s) (28)

where, the sub-fix ,, refers to the Big Bang end time (#,,) and . to the ¢, time. Eq-
uation (22) gives a result DE/dt= 45x10% (erg/s); it would be the rate of
outgoing energy, since the Big Bang end time till the ¢ time. This is the luminos-
ity (Z,) of the Universe corresponding to the period (¢ - #,,). The Jacobian for

this energy in adiabatic expansion may be expressed as:

J(E,S) (oE
J(E,S)=—F=|— 29
ES)=Tws) [atl 29
Substitution gives a similar result:
(DE/dt), =4.3x10 (erg) (30)
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8. Conclusions

1) It has been assumed that, at the Big Bang, there were created four realities:
time, space, matter and physical laws. Several references [24], [25], [26] ask
about the time creation of the physical laws. If the above mentioned constancy of
the Space acceleration I'y; is correct, it would represent the first physical law
created at the Big Bang, respect to Space, together with the gravitational law I';,
respect to matter; however, I'; would appear evident only after the Big Bang end,
as well as ¢ would be freely manifest till the #. time. Additional parameters, such
as Luminosity, are summarized in Table 1. It is also assumed that the Universe
is the total accelerating Space that contains the Physical Universe and an exter-
nal vacuum Space.

2) The Big Bang was not an instantaneous event; it remained for 10" (s) or 3 X
10* (y) [9]. Given both the length and the expansion velocity at this stage, it may
be assumed to correspond to the Inflation period.

3) The ctime (#) was defined as that when Space and the Physical Universe
reached together the c value of expansion velocity; at such time, both Space and
Physical Universe had a radius r.. In spite the gravitational law had continuously
been opposed to the Physical Universe expansion, the Space expansion has in-
dependently occurred due to the constancy of the Hubble acceleration expressed
by I' . However, inside the Physical Universe, matter velocity has kept a maxi-
mum velocity ¢ as a universal constant, a consequence of the space-time curva-
ture. So, the furthest tangential velocity of the Physical Universe, at the £ time,
could also have been ¢, an assumed data that had permitted to calculate the
Physical Universe angular momentum as £ = 4.8 x 10* (erg:s).

4) According to Special Relativity, at ¢ velocity the proper time becomes nil,
ie. =0, which implies a time freezing, as well that matter felt in a singularity; it
would be difficult to define the meaning and length of such singularity. Also, it
has been mentioned [18] the theoretical possibility of an imaginary time (7)) if
the limits of the Physical Universe overpasses the ¢ velocity. It has been shown in
a simplified Euclidic Space’® [26].

5) The to-date called Hubble Length, L, = ¢/H, had been defined as the dis-
tance where the space expansion rate R is just ¢ so, farther L, R >c
However, H is usually assumed as constant though it should rather be deter-
mined as H,, ie. a function of the present scale factor R, obtained from the con-
stant value of I',. Besides, the A, value deduced in reference [1] has been mod-
ified in this paper to A, = 3.2 x 107'® (s™'); the value of T, is 2.65 x 1077 (cm-s™).

6) The parameter Q) has no sense at the expanding limit of the Physical Un-
iverse since the density of the external space is 0. As well, the g parameter must
be >0 in an expanding Physical Universe, because every one of its factors is >0.
Respect to the Hubble parameter, it was here deduced the equation

H (t) = \/E/ t (8) for an expansive Universe.

’The Euclidic name has been proposed by S. Hawkings for a Euclidean Space that includes an im-
aginary time coordinate [18].

DOI: 10.4236/jmp.2018.914157

2454 Journal of Modern Physics


https://doi.org/10.4236/jmp.2018.914157

J. G. Lartigue

7) The expansive work calculation was intended by 3 ways: the Hubble poten-
tial, the thermo-dynamical process and a brief quantum concept. They gave W ~
7.4 x 107° (erg).

8) The Big Bang was a source of photons, staying for 3 x 10* years to liberate a
total energy of 2 x 10”7 (ergs) at a constant true velocity ¢ that seemed impossible
into the Big Bang tangle. A minimum part of this energy (~107*') was applied to
build and expand the Physical Universe; the rest of photons decayed necessarily
till the present known CMB energy, without any foreseeable task.

9) The convective operator was applied to photons energy, as a function of
frequency, to get an Equation (27) derived from the assumption that energy is a
function of time and distance. As well, the Jacobian obtained for the adiabatic
expansion gave a similar result for Luminosity.

10) The above calculated initial energy of photons is high enough to generate
the necessary number of Higgs photons in order to produce mass condensation.
The above mentioned totality of initial photons would not be mono-energetic;
their variation is tied, between several factors, to the Heisenberg indetermination
of the Planck length, which results ~5 times the proper length. Fluctuations of
CMB photons could be originated by dispersive interactions with the Physical
Universe matter.

11) Some conclusions require the experimental determination of the true

Space acceleration expansion, here deduced as T';= 2.65 x 107 (cm-s ).
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Abstract

We report results from ab-initio, self-consistent density functional theory
(DFT) calculations of electronic, transport, and related properties of chro-
mium disilicide (CrSi,) in the Aexagonal C40 crystal structure. Our computa-
tions utilized the Ceperley and Alder local density approximation (LDA) po-
tential and the linear combination of atomic orbitals (LCAO) formalism. As
required by the second DFT theorem, our calculations minimized the occu-
pied energies, far beyond the minimization obtained with self-consistency
iterations with a single basis set. Our calculated, indirect band gap is 0.313
eV, at room temperature (using experimental lattice constants of a = 4.4276 A
and ¢ = 6.368 A). We discuss the energy bands, total and partial densities of
states, and electron and hole effective masses. This work was funded in part
by the US Department of Energy, National Nuclear Security Administration
(NNSA) (Award No. DE-NA0003679), the National Science Foundation
(NSF) (Award No. HRD-1503226), LaSPACE, and LONI-SUBR.

Keywords

Band Gap, BZW-EF Method, Density Functional Theory, Band Structure,
CrSi,

1. Introduction and Motivation

Chromium disilicide, CrSi,, belongs to a list of semiconducting metal-silicides. It
has a C40 hexagonal crystal structure, with a space group of P6,22 [1] [2] [3] [4],
as depicted in Figure 1(b). It is a highly degenerate p-type semiconductor with a
narrow-forbidden band gap [5] [6]. CrSi, exists in several compositions [7] [8],
ranging from 65.7% to 67.7% silicon [9]. The compound has three (3) formula
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Figure 1. (a) Brillouin Zone for Hexagonal CrSi, and (b) Primitive unit cell of CrSi,.
Large spheres represent Cr atom positions while small spheres represent Si atom posi-
tions.

units per hexagonal unit cell [9]. It belongs to a group of semiconducting met-
al-silicides which have gained enormous attention in recent years, due to its
properties and several areas of important applications. It has been the most stu-
died representative of the metal-silicides since its initial characterization as a
0.35-eV bandgap semiconductor in the mid-1960’s [10]. Due to the semicon-
ducting nature and thermal stability of CrSi,, it has special applications in op-
toelectronic devices, infrared detectors within silicon-based microelectronics
components [3] [9] [11] [12]. CrSi,, as a high-temperature compound, has been
epitaxially grown on Si (111) substrate [1] [4] [13]. The preceding property of
CrSi, makes it a potential material in the production of thermoelectric genera-
tors as well as for photovoltaic applications, in the middle of the infrared region
[14]. As a narrow band gap semiconductor, CrSi, is a very good candidate in
micro- and nano-electronics, respectively, and for photo-thermo converters and
sensors [4] [15]. CrSi, belongs to a group of refractory silicides with a melting
point at 1763 K, which makes it a potential candidate for high-temperature ap-
plications. CrSi, films are widely used in the area of new semiconductor device
manufacturing due to their excellent electronic properties, high thermal stability,
smooth surface and remarkable compatibility with the traditional silicon tech-
nique [12]. Krivosheeva et al [16] reported that one of the most interesting and
well investigated compounds is chromium disilicide which has the smallest lat-
tice mismatch, as compared to other transition metal silicides [17] [18], with
mono-crystalline silicon. CrSi, has a high electrical conductivity and a strong
oxidation resistance which make it more attractive in microelectronics [12].
CrSi, is a potential candidate for optoelectronic devices, photo-voltaic cells, and
thermoelectric conversion elements operating at elevated temperatures [1] [17]
[19] [20] [21] [22].

Some experimental data have been reported for hexagonal CrSi,. However, a
consensus has not been reached, as far as its band gap is concerned; one reason

for this situation stems from the lack of measured band gap values for bulk
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CrSi,. Bost et al. [9], in optical studies on well characterized CrSi, polycrystalline
thin films, in 1988, obtained experimental results that provide evidence for the
semiconducting nature of CrSi,. Results from their measurements showed that
CrSi, exhibits an indirect band gap of 0.35 eV [9]. Additionally, in a study of
optical properties of CrSi,, Henrion et al [23] reported a band gap of 0.50 eV for
CrSi, polycrystalline thin films, in 1992. Experimental studies of CrSi, films syn-
thesized by high current Cr ion implantation resulted in band gap values of 0.7
eV and 0.84 eV [24] for CrSi, layers under different experimental conditions.
Energy band gaps of 0.30 eV [25] to 0.35 eV [26] were obtained for CrSi, from
Hall-effect measurements. Nishida [27] measured a band gap of 0.32 eV for
CrSi, single crystals grown by using the floating zone melting technique. This
author did not state whether the measured band gap was direct or indirect. Re-
sults from ellipsometry [28] suggested an indirect band gap of Eg < 0.36 eV for
CrSi,. All of the experimental band gaps reported so far for CrSi, are indirect
except for the work of Nishida and of Galkin et al. [29]. While the former did
not specify the nature of the gap, the latter found a direct band gap of 0.37 eV,
for CrSi, epitaxial films. Clearly, results provided from past experimental works
are not in total agreement. However, a general consensus points to a band gap in
the range of 0.27 - 0.8 eV for various films of CrSi,. Table 1 shows experimental
band gap values reported for CrSi,.

Table 1. Results from Experimental Measurements of the Band Gap of Hexagonal CrSi,.
Except for the one indicated to be direct, all band gaps below are indirect. These band
gaps are for films of various thicknesses, except the 0.32 eV band gap value estimated
from the temperature dependence of resistivity for a single crystal.

Growth Or Measurement Method E, (eV)
Laser-assisted Synthesis of semiconductor chromium disilicide films 0.2
Polycrystalline samples grown by amorphous b
. . . 0.27 £0.01
thin films of Cr and Si in double electron-gun evaporation system.
Hall Effect measurements of Si-doped and Mn-modified CrSi, crystal 0.30 - 0.35¢
Single crystals of CrSi, grown using the floating zone melting technique. 0.32¢
Energy gap estimated from the temperature dependence of resistivity. '
Synchrotron Radiation Photoemission measurement of epitaxial CrSi, 0.32°
films prepared on Si (111) substrate at room temperature and 20K ’
CrSi, films prepared by molecular beam epitaxy on 0.34f
CrSi, templates grown on Si (111) Substrate ’
Polycrystalline thin films of CrSi, grown on silicon substrates 0.35¢
(Samples annealed at 1100°C) ’
Ellipsometry of polycrystalline thin films of CrSi, <0.36"
Optical absorption measurement of CrSi, thin films 0.35-0.5'
Transmittance and Reflectance Spectroscopy Study of o
. R 0.37 direct
A-type Epitaxial films 100nm thick grown by the Template method
Optical Spectra measurement of CrSi, polycrystalline thin films 0.50*
Synthesis of CrSi, films by high current Cr ion implantation 0.7 and 0.8'

l2IRef. [15], 'Ref. [28], [“Ref. [25] [26], [YRef. [27], 'Ref. [30], TRef. [31], E'Ref. [9], MRef. [28], Ref. [23]
[32], URef. [29], ™ Ref. [10], "Ref. [24].
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Several theoretical calculations have been reported for the electronic structure
of CrSi,. While some of the calculations [31] have argued that CrSi, is semi-metallic
in nature, others have predicted semiconductor properties for this material.
Dasgupta et al [4] obtained an indirect band gap of 0.35 eV, using the aug-
mented spherical wave (ASW) method [33] [34] and the generalized gradient
approximation (GGA) potential parameterized by Perdew et al [35]. However,
another calculation [20] performed with a similar method led to indirect and di-
rect band gaps of 0.21 eV and 0.39 eV, respectively. Bellani et al. [28] reported a
theoretical indirect band gap value of 0.38 eV using the linear-muffin-tin-orbital
(LMTO) method, within the local density approximation (LDA). Two (2) calcu-
lations [19] [36] using the same method, within the local density approximation
(LDA), obtained indirect band gaps of 0.29 eV and 0.25 eV, respectively. Anoth-
er calculation [37], utilizing the LMTO method within the atomic spheres ap-
proximation (ASW), obtained a gap of 0.38 eV. L. F. Mattheiss [11] [38] re-
ported an indirect band gap of 0.30 eV for bulk CrSi,, using the linear aug-
mented plane wave method (LAPW) and a local density approximation (LDA)
potential. Mattheiss [39] used a scalar-relativistic version of the linear aug-
mented-plane-wave (LAPW) method and obtained an indirect band gap of 0.30
eV. In another DFT calculation [16], with the full-potential linearized-augmented-
plane-wave (FP-LAPW) led to an indirect band gap of 0.30 eV. A DFT approach,
similar to the preceding, was applied in another calculation to obtain a band gap
of 0.30 eV [10]. Zhou ShiYun ef al [12] obtained a gap of 0.353 eV in their study
of optical properties of CrSiy; they employed the plane-wave pseudo-potential me-
thod. Finally, recent DFT calculations performed in 2013 by Bhamu et al. [40]
produced an indirect band gap of 0.28 eV for CrSi,. The above calculation me-
thods, potentials, and results are listed in Table 2.

Many of the results obtained from both experimental and theoretical calcula-
tions of CrSi, have been extensively reviewed in the preceding section. It is clear,
however, from the contents of Table 1 and Table 2 that these results do not to-
tally agree. While the disagreement can be seen among theoretical results, on the
one hand, and between experimental results, on the other hand, there exists also
a disagreement between experimental and theoretical results. This disagreement
between theoretical results can be partly attributed to differences in computa-
tional methods. These disagreements strongly suggest that the correct band gap
of bulk CrS§i, is yet to be established unambiguously. This situation is a key mo-
tivation for our work. Also, the many current and potential applications of CrSi,,
as discussed at the beginning of this section, also motivated this work. These two
motivations are supported by the fact that our method, to be discussed below,
has led to the correct band gaps of well over 30 semiconductors. This method
correctly predicted the band gap and related properties for more than three (3)
semiconductors. Our aim, therefore, is to obtain accurately, through our
BZW-EF, ab-initio self-consistent calculations, the true band gap as well as other
electronic, transport and related properties of CrSi,, Our BZW-EF ab-initio,
self-consistent method has been successfully applied in several calculations
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Table 2. Results from previous theoretical calculations of the band gap of hexagonal CrSi,.
except for the one indicated to be direct, all the gaps in the table are indirect.

Computational method Potentials E, (eV)
Augmented-Spherical-Wave (ASW) LDA 0.21°
Linear-Muffin-Tin-Orbital (LMTO) LDA 0.25°

Linear Combination of Atomic Orbitals (LCAQ) LDA 0.28¢
Semi-relativistic Linear Muffin-Tin-Orbital LDA 0.29¢

Linear Augmented-Plane-Wave (LAPW) LDA 0.30°

Scalar Relativistic Linear Augmented-Plane-Wave LDA 0.30°
Plane-Wave Pseudopotential Theory LDA 0.3538
Full-Potential-Linearized-Augmented-Plane Wave (FL-APW) LDA 0.35"
Semi-linear theory of relativity of the linear-muffin-tin-orbital (LMTO) LDA 0.38'
Linear Muffin Tin Orbital (LMTO) LDA 0.38

Linear Augmented Plane Waves (LAPW) GGA 0.30 (direct)®

Full-Potential-Linearized-Augmented-Plane Wave (FP-LAPW) GGA 0.30'
Augmented Spherical Wave (ASW) GGA 0.35™

l2IRef. [20], ™'Ref. [19], “Ref. [40], [Ref. [36], /Ref. [11] [38], TRef. [39], [Ref. [12], M'Ref. [37], URef. [28],
UIRef. [28], MRef. [10], "Ref. [16], ™ Ref. [4].

[41]-[52] in the past and has proven to produce accurate properties of semicon-
ductors. Therefore, this work is expected to follow in the same light.

2. Our Distinctive Method and Computational Details

Our computational method has been extensively discussed in previous publica-
tions [41]-[49], [53] [54] [55]. Two components of this method are commonly
utilized in most calculations, ie., the choice of a density functional potential
(LDA or GGA) and the linear combination of atomic orbitals (LCAO). Our
software package actually employs the linear combination of Gaussian orbitals
(LCGO). We selected the LDA potential of Ceperley and Alder, as parameterized
by Vosko et al. [56] [57].

The distinctive feature of our method consists of our utilization of successive,
self-consistent calculations, with augmented basis sets, in order to minimize the
energy content of the Hamiltonian. This process ultimately leads to the absolute
minima of the occupied energies (ie., the ground state), as required by the
second theorem of density functional theory. This feature in our calculations is
known as the Bagayoko, Zhao, and Williams (BZW) method [41] [58]-[63], as
enhanced by Ekuma and Franklin (BZW-EF) [47] [48] [49] [54]. Unlike the
BZW method, where orbitals representing unoccupied states are added in the
order of increasing energies (in atomic or ionic species), the enhanced version
(BZW-EF) adds, for a given principal quantum number, p, d and f orbitals,
when applicable, before adding the corresponding s orbital. An orbital is appli-
cable if it is occupied in any of the atomic species in the system. The BZW-EF
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method reflects the realization [46] that polarization orbitals, for valence elec-
trons, have primacy over the spherically symmetric s orbital [46] [47] [48] [49]
[53] [55]. We describe below the actual implementation of the method using the
program package developed at the Ames Laboratory of the US Department of
Energy (DOE), Ames, Iowa [64] [65].

Our calculations for CrSi, started with a small basis set that was not smaller
than the minimum basis set. This first self-consistent calculation was followed by
Calculation II whose basis set was that of Calculation I as augmented with one
orbital representing an excited state. Every augmentation of the basis set in-
creases the dimension of the Hamiltonian by 2, 6, 10, or 14, depending on the s,
p, d, or f character of the added orbital, respectively. We compared the self-
consistent eigenvalues of the two calculations, graphically and numerically.
Some occupied energies from Calculation II were lower than corresponding ones
from Calculation I, as expected. After augmenting the basis set of Calculation II,
Calculation III was performed self-consistently. The comparison of the occupied
energies of Calculations II and III showed that some occupied energies of Calcu-
lation IIT were lower than corresponding ones from Calculation II. This process
continued until three (3) consecutive calculations led to the same occupied ener-
gies, within our computational uncertainty of 5 meV, indicating that the ground
state was reached. The first of the three (3) consecutive calculations was selected
as the one providing the DFT description of the material; the basis set of this
calculation is referred to as the optimal basis set [49]. As shown in the Section on
results, this calculation was Calculation IV that produced the same occupied
energies as V and VI. The selection of the optimal basis set in the BZW-EF me-
thod is based on the crucial fact that the charge density from this calculation is
the same one obtained in the calculations following it. Hence, the Hamiltonian
for this calculation, in light of the first theorem of DFT, is the same as those cal-
culations following it, even though the Hamiltonian matrices will be different,
given their different dimensions. Bagayoko [53] explained the reason the calcu-
lation with the optimal basis set is the one providing the DFT description of the
material. Self-consistent iterations, up to the calculation producing the optimal
basis set, yield eigenvalues that are due to interactions in the Hamiltonian. Cal-
culations with basis sets larger than the optimal one and that contain the optimal
one do not change the Hamiltonians or the occupied energies from their respec-
tive values obtained with the optimal basis set. However, these calculations can
produce unoccupied energies that are lower than their corresponding values ob-
tained with the optimal basis set. Given that the Hamiltonians of these calcula-
tions are the same as that obtained with the optimal basis set, the unoccupied
energies lowered below their values obtained with the optimal basis no longer
belong to the spectrum of the Hamiltonian, a unique functional of the charge
density [53].

Computational details for this work follow. Chromium disilicide (CrSi,) has a
hexagonal C40 structure. It is in the space group of 76,22 (Dé1 ) [1] [2] [3] [4].
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Its primitive cell contains a total of three (3) CrSi, formula units with individual

atoms arranged as shown in Figure 1(b). The space group is non-symmorphic,

C C
containing non-primitive translations (T=§ and ?) which interchange

individual CrSi, layers [11] as in Figure 1(b). Each Cr and Si atom in each of
hexagonal layers of CrSi, has six (6) nearest neighbors at d = 2.557 A. Each Cr
and Si atom also has four (4) interplanar neighbors which are tetrahedrally
coordinated. The hexagonal Bravais lattice for the primitive cell of CrSi, is gen-

erated from the primitive vectors: £, £ and £, each described in Equation (1) as
t, :(a/2)<\/§f— ]) t,=aj, t, =ck (1)

where a and c are the lattice constants. The internal atom position coordinates
(& ¢ n) for the primitive unit cell of CrSi, are in the units of the primitive vectors
in Equation (1). These position coordinates of Cr and Si, within the hexagonal
C40 primitive unit cell of CrSi,, are given in Table 3, where xis the Si-atom po-
sition parameter. The position parameter of the Si-atom does not have an exact
value. However, a value of x=1/6 [64], corresponding to an ideal geometry
[11], is normally used. In the ideal geometry, each Cr and Si atom has six nearest
neighbors (d= 2.55 A) [11], within each hexagonal CrSi, layer.

The standard hexagonal Brillouin zone for CrSi,, as shown in Figure 1(a), was
generated from the reciprocal-lattice vectors that correspond to Equation (1).

These reciprocal-lattice vectors are described by Equation (2) as given below.

Table 3. Position coordinates (& ¢ 77) of Cr and Si atom within the primitive unit cell of
hexagonal C40 CrSi, in units of primitive vectors.

Atom Site '3 n ¢
k. 0 i

2 2

Cr 3d 0 1 1
2 6

1 1 1

2 2 6

X 2x 1

2

-X -2x 1

2

2x X 1

6

Si 6j

-2x -X 1

6

1
X -X -

6

1
—x x _=

6
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b, :(4n/\/§a)iA, b, :(ZH/«/ga)(f+\/§]), b, 2(27[/0)12, (2)

where a and care the lattice constants.

Our non-relativistic, self-consistent calculations were performed using room
temperature (293K) experimental lattice constants [4] of a = 4.4284 A and ¢ =
6.36805 A. We first performed ab-initio calculations for the ionic species, Cr**
and Si’, to generate input orbitals for the solid calculation. Our program package
expanded the radial part of the atomic wave functions in terms of Gaussian
functions by utilizing a set of even-tempered Gaussian exponents. For Cr**, our
computations utilized 18, 18 and 16 even-tempered Gaussian exponents for the
s, p> and d orbitals, respectively. For Si'", we utilized 18, 18 and 16 even-tempered
Gaussian exponents for the s, p, and d orbitals, respectively. Our maximum ex-
ponent for Cr** is 1.1 x 10°, while the minimum exponent is 0.317. Similarly, our
maximum exponent for Si~ is 9.85 x 10°, while the minimum exponent is 0.4045.
Our computations utilized a mesh of 24 k-points in the irreducible Brillouin
zone. However, in the band structure calculation, we utilized a total of 141
weighted k-points while a total of 144 weighted k-points was used in generating
the energy eigenvalues for the electronic density of states. Self-consistency was
reached after 60 iterations; then, the difference in potentials from any two con-
secutive calculation was equal to (or less than) 107°.

In the next section, we present results from our calculation of the band struc-
ture, density of states (DOS) and partial density of states (pDOS), and hole effec-
tive masses, respectively, using the LDA BZW-EF method.

3. Results

We list below, in Table 4, the valence orbitals in the successive calculations de-

scribed above, along with the resulting band gaps. The orbitals in bold are the

Table 4. Successive, self-consistent calculations for CrSi,, along with the valence orbitals
and the resulting, indirect band gaps. The utilized room temperature lattice constants are
a = 4.4284 A and ¢ = 6.36805 A. Calculation IV, whose number is in bold in the first
column, provided the DFT description of the material, with the corresponding, calculated,
indirect band gap of 0.313 eV.

No of Indirect Energy

o grmmoonsemen o "G
Functions [L - M]
I 3s?3p°3d*4p 2s% 2p° 3s? 3p® 168 0.121
II 3s? 3p° 3d* 4p 2s% 2p° 3s? 3p® 4p 204 0.162
I 3s?3p°3d*4p 4d 2s% 2p° 3s? 3p® 4p 234 0.295
v 3s? 3p°3d* 4p 4d 4s 2s% 2p° 3s? 3p® 4p 240 0.313
A 3s*3p°3d* 4p 4d 4s 25 2p° 3s? 3p° 4p 4s 252 0.314
VI 3s*3p®3d* 4p 4d 4s 5p 25 2p° 3s? 3p° 4p 4s 270 0.318
VII  3s*3p®3d*4p 4d 4s 5p 2s% 2p° 3s* 3p® 4p 4s 5p 306 0.310
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ones representing excited states. Calculation IV was the first one to produce the
minima of the occupied energies; the same occupied energies were obtained with
Calculations V and VI, signifying that these minima are the absolute ones and
represent the ground state, as opposed to being local minima. Figure 2 shows
the electronic energy bands for chromium disilicide, along with the bands from
Calculations IV and V. As explained above, the two calculations result in the
same occupied energies.

Figure 2 shows the electronic band structure of CrSi, as obtained with Calcu-
lation IV. The same figure shows the band structure from Calculation V. As
stated above, the occupied energies from these calculations are identical. How-
ever, for conduction band energies above 4 eV, the two band structures are dif-
ferent, as explained in the Section on our distinctive, computational method.

Given the large number of bands immediately below and above the Fermi lev-
el, in Figure 2, a clear appreciation of their features is difficult. The magnified
bands between —3 eV and +3 eV are shown in Figure 3 that provides a clearer
view of the features of the DFT band structure in the vicinity of the Fermi level.
In this figure, the valence band maximum (VB,,,,) is clearly at the L point, while
) is at the M point. The LDA BZW-EF
calculated indirect band gap, from L to M, is 0.313 eV, while the smallest direct

the conduction band minimum (CB,,;,
band gap, at L, is 0.517 eV. This value is only slightly smaller than the L to H and
L to K indirect band gaps of 0.533 eV and 0.537 eV, respectively. The values of
these gaps can be simply read in Table 5.

Table 5 lists the eigenvalues between —2.748 and +6.094 eV. We expect its
content to be useful in comparisons of future experimental findings with our
results. Such findings could include optical transition energies and band widths,

among others.

Figure 2. Graphical comparison of Calculations IV and V. Solid line represents Calcula-
tion IV while dotted lines represent Calculation V. The Fermi energy level is set at the
zero point as denoted by the dashed line at the top of the valence band.
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Figure 3. Electronic band structure of CrSi,, as obtained from our ab initio calculations,
using ours LDA BZW-EF optimal basis set of Calculation I'V.

Table 5. Calculated electronic energies (in eV) of CrSi,, between —2.748 and +6.094 eV, at
the high symmetry points in the Brillouin zone, as obtained from Calculation IV. The
Fermi energy is set equal to zero. Our calculated indirect band gap is 0.313 eV.

I-point M-point K-point A-point L-point H-point
3.229 5.197 5.426 4.025 5.625 6.094
3.149 4.666 5.003 3.908 4.833 4.036
3.149 4.568 4.985 3.908 4.364 4.036
2.630 4.470 3.752 3.221 4.270 3.425
2.472 4.066 3.752 2.698 3.712 3.424
2.472 3.793 2.819 2.698 2.866 3.339
2.437 2.477 2.819 2.034 2.821 3.193
2.437 2.194 2.756 2.034 1.914 1.780
2.401 2.150 2.096 1.788 1.365 1.780
2.009 1.411 2.096 1.751 1.090 1.496
1.766 0.774 0.810 1.751 1.056 1.063
1.765 0.609 0.810 1.644 0.934 1.063
1.284 0.313 0.537 1.176 0.517 0.533

-0.383 -0.251 -0.411 -0.396 0.000 -0.260
-1.934 -0.563 -0.475 -0.397 -0.663 -0.782

-2.103 -0.711 -0.475 -1.874 -1.117 -0.782

-2.103 -1.266 -1.645 -2.155 -1.912 -1.024

-2.615 -1.339 -1.859 -2.155 -1.921 -1.024

-2.616 -1.943 -1.859 -2.394 -1.931 —2.481

—2.748 -2.061 —-2.086 -2.557 -2.149 -2.516
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The total density (DOS) and partial densities (pDOS) of states, shown in
Figure 4 and Figure 5, respectively, provide further insight on the electronic
structure. We employed the linear tetrahedron method [66] for the calculations
of these densities of states, using the energy bands obtained with the optimal ba-
sis set, as shown in Figure 2. The broad peak features of the total density of
states reflect the presence of three formula units per primitive cell. While both
Cr and Si contribute to this feature between —5 and +5 eV, Si contributions
clearly dominate outside this range, as per the partial densities of states. The
calculated total width of the valence is 14.38 eV. The inset in Figure 4 shows a
detailed view of the boundaries of the band gap.

We have calculated the electron effective masses, in the immediate vicinity of
the minimum of the conduction band, at the M point and the hole effective
masses, at the maximum of the valence bands, at M. Our calculated electron ef-
fective masses along MTI, MK, and ML directions are 0.81, 0.77, and 1.38, respec-

tively, in units of free electron mass (m,). The calculated hole effective masses

Figure 4. Results from the calculation of the density of states (DOS) for CrSi,, as obtained
using the bands from Calculation IV.

Figure 5. Results from the calculation of partial density of states (pDOS) for CrSi,, as de-
rived from the bands resulting from Calculation IV.
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along LA, LH, LM, and LI"axes are 1.3, 1.25, 1.19, and 1.07, respectively, in units
of free electron mass. The electron and hole effective masses have been pre-
viously calculated by Mattheiss [11] who found that the components of the hole
effective mass along LA, LH, and LM axes are 1.2 m, 1.3 m,, 0.9 m,, respectively.
This author also reported electron effective masses of 0.7 m,, 0.7 m,, and 1.4 m,,
respectively. While our results for the electron effective masses are only slightly
larger than or equal to the corresponding findings of Mattheiss, our hole effec-
tive masses, in the LA and LH directions, are much larger than those reported by
Mattheiss. Our values somewhat are similar to those found by Mattheiss who
used a completely different method (LAPW). Our calculated values for the effec-
tive masses are substantially smaller than the corresponding, empirical values of
~3 m, and ~20 m, for hole and electron effective masses, respectively, as deter-
mined from an analysis of transport data [25]. Clearly, more experimental mea-

surements of effective masses in CrSi, are needed.

4. Discussion

There is a clear need for additional experimental studies of bulk CrSi,. Indeed, as
per the content of Table 1, only one (1) of the 11 experimental values for the
band gap is for bulk CrSi,. The author who reported this value of 3.2 eV did not
specify whether the gap was direct or indirect. The other results are indirect
band gaps for films of various thicknesses, fabricated by diverse growth tech-
niques. In light of issues of quality of these films and in particular, the well-
known quantum confinement effect, which tends to enlarge the gaps of films as
compared to bulk materials, there is not much merit in comparing the calculated
values for the bulk to these film gaps. The theoretical band gaps in Table 2 are
generally around 3.0 or 3.5 eV, except for the lower value of 0.21 eV and the
negative one of —0.35 eV. Even though most of these theoretical results are not
too far from the experimental one of 3.2 eV, the fact remains that our finding of
0.313 eV is the closest to this experimental finding. This agreement is partly ex-
plained in the Section on our method. Indeed, the BZW-EF method strictly ad-
heres to the conditions of validity of a DFT calculation, ie., keeping the total
number of particles constant and, verifiably, attaining the absolute minima of
the occupied energies (the ground state) [53]. The latter condition is imposed by
the second DFT theorem. As already noted, this condition is generally far from
being met by results from self-consistent iterations with a single basis. A single
basis set leads to a stationary solution among an infinite number of them. The
relatively better agreement between our calculated band gap and the only expe-
rimental one for the bulk stems from the fact that our results possess the full

physical content of DFT.

5. Conclusion

We have reported results for the ground state electronic structure and related
properties of CrSi,, using the BZW-EF method. Our LDA BZW-EF calculated
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band gap of 0.313 eV is indirect. Our results for the band gap, total and partial
densities of states, and the electrons and hole effective masses are expected to be

confirmed by future experimental studies.
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Abstract

It is commonly assumed that a wire conducting an electric current is neutral
in the laboratory frame of reference (the rest frame of the lattice of positive
ions). Some authors consider that the wire is neutral only in a symmetrical
frame of reference, in which the velocities of electrons and protons have equal
norm and opposite direction. In this paper, we discuss the Lorentz transfor-
mation between different frames of reference in the context of the special
theory of relativity for a current-carrying conducting wire and a probe charge
in motion with respect to the wire. A simple derivation of the Lorentz force in
the laboratory frame of reference for the assumed neutrality in a symmetrical
frame of reference is presented. We show that the Lorentz force calculated
assuming neutrality in the symmetrical frame of reference and the one as-
suming neutrality in the laboratory frame of reference differ by a term cor-
responding to a change in the test charge speed of one half the drift velocity
of the electrons.

Keywords

Special Theory of Relativity, Current-Carrying Wire, Neutral Frame,
Symmetrical Frame, Lorentz Force, Drift Velocity

1. Introduction

The Lorentz force between a current-carrying wire and a charge in motion in the

laboratory frame of reference, where the conductor is at rest, is often expressed as:
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F=qvxB (1)

where Bis the magnetic flux density generated by the wire current, which can be
calculated by using Biot-Savart’s Law [1]. B depends only on the current magni-
tude regardless of the physics of the motion of the charge carriers in the wire. In
(1), g is the charge and v is its velocity. Equation (1) is correct only under the
assumption that the wire is neutral in the laboratory reference frame. Otherwise,
a second component of the force due to the electric field should also be consi-
dered.

The question of the frame of reference, in which the current-carrying wire is
neutral, has been the subject of debate in the past years [2]-[10]. Some authors
suggest that a neutral wire corresponds to the rest reference frame of the lattice
of positive ions (e.g., [2] [6] [7] [8]), considering that electrons are a free ensem-
ble and, therefore, their distances do not change upon acceleration [3]. Others
(e.g., [4] [9]) assume that the distances between electrons are also subject to the
Lorentz contraction and, therefore, the wire is neutral only in a symmetrical
frame of reference in which both electrons and protons have the same speed but
move in opposite directions. Although they are conceptually important, to the
best of our knowledge none of these theories has been experimentally proven
since the drift velocity of the electrons is small and, hence, the effects are neglig-
ible. It is therefore necessary to investigate the mechanisms involved in the tran-
sition process from no-current wire to current-carrying wire to answer the ques-
tion of the neutral frame. A more detailed discussion about the issue of the de-
termination of the reference frame in which the current-carrying wire is neutral
can be found in [2] and [3].

In this paper, we will first present a simple derivation for the Lorentz force by
assuming the Lorentz contraction of distances between electrons and assuming
that the wire neutrality occurs in a symmetrical frame of reference (as in [4] [9]).
This assumption leads to a modification of (1). The Lorentz force will depend on
the physics of the motion of the charges. In Section 2, we will derive the Lorentz
force for the classical example of a charge moving parallel to a current-carrying
wire [10] (see Figure 1 for the geometry of the problem), for a symmetrical
frame of reference. In Section 3, we will derive the same force considering a la-
boratory frame of reference (at rest with respect to the lattice of positive ions),
by transforming the force from the symmetrical frame of reference. Conclusions

will be given in Section 4.

2. Symmetrical Frame of Reference

Let us first examine the theoretical model from [10]. Figure 2 shows the prob-
lem considering two different reference frames moving with respect to each oth-
er at a speed v. The first one (left panel) will be labeled S, and the second (right
panel) S'.

Let us imagine that in the symmetrical frame of reference S, we have a straight,

infinitely-long wire containing positive and negative charges, characterized by
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Figure 1. Force between a current-carrying wire and a charge g at a distance r. The
charge is moving in the direction parallel to the wire with a speed v.

Figure 2. Frame of reference S (left panel) and frame of reference S' (right panel) for | >
|v;|. Probe charge g. A, and A_ are the line charge densitiesin S. A/ and A’ are the line

charge densities in S,

linear charge densities A, and A_. The positive wire charges move with a constant
velocity v, in the positive x direction, while the negative wire charges move with
a constant velocity-v;. These two charge densities are measured in the S frame of
reference (Figure 2, left panel), with respect to which the positive and negative
charges are moving. If we assume that both charge densities are equal in absolute
value (JA,| = |A|), the wire is electrically neutral. Now, let us examine a probe
charge g at a distance r moving with a velocity v along a line parallel to the wire
in S. In what follows, we will refer to g as the probe charge and to the charges
composing the linear charge densities as wire charges.

Let us calculate the force on the probe charge g. Frame S' is moving with a
speed vrelative to S so that the probe charge q is not in motion in S'. The veloci-
ties of the positive and negative line charges in S' can be calculated from the ve-

locities in S by way of the Lorentz transformation:

V' = Vo —V vV = (_VO)_V (2)
! 1_m ) 1 V(_VO)
c? e
C

Clearly, if vis not equal to zero, Vv, and v’ will have different values. Con-

!
sequently, the distance between the individual positive charges will experience a
different contraction compared to the distance between the individual negative
charges. We therefore expect different line charge densities 4] and A’ in S

As a result, the wire will not be neutral in S'.

Let us introduce the following parameters [10]:
% 1
p=2, y=—r ©)
c 1-B
V, 1
R @
¢ 1- 5
’ VJIr ’ 1
R ©
¢ 1-p.
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By dividing (2) by ¢, we can now rewrite B! and g’ as[10]:
' ﬂo -p _ ﬂo +p

1 T s

Let us now consider two other frames of reference: 1) the rest frame of refer-

(6)

ence of the positive wire charges S, moving with respect to S with velocity v, in
the positive x axis direction, and, similarly, 2) the rest frame of reference of the
negative wire charges, S_ moving with respect to S with a velocity -, Since the
linear charge densities are the same in S and since their rest reference frames, S,
and S_, are moving with the same speed with respect to S, they experience the
same contraction. As a result, the linear charge density of the negative charges in
S_ will be the same in magnitude as the linear charge density of the positive
charges in S,. If we label the magnitude of the linear charge density in Sas A (1=
|A,| = |A]), the linear charge density in the rest frame of reference is simply
+A/y,, where the sign depends on the wire charge polarity. Now, transforming

from S to S', the linear charge density in terms of A can be expressed as:

YR T 7)

Yo Yo

From Equation (7), the overall charge density in §' can be expressed as [10]:

, , , , A , A A 1 1
ﬂ’overall :ﬂ’++ﬂt:y+}/__7f}/_:y_ v'2 - V'z
0 0 0 / " ’ _
1- c2 1- c2 (8)
A 1 1 2y W,
== - = —20ffy = -1
2 {./1—@’2 Jl—ﬁ_’zJ ’ ¢’

The electric field from a uniform line charge in S' at the position of the probe
charge is given by:
ﬂ/l
E'(r)=— overall 9
y( ) 2me,r ©)
As mentioned before, no magnetic force is exerted on the charge since its

speed is zero. The total force can therefore be calculated as

AI
Fyr(r):_q overall (10)

2me,r

Making use of the Lorentz transformation, the force in reference frame S is
[10]:

Fy(r): = 2 (11)

Now, considering that
I

| = AV, +(=4)(—v, ) =24v, and B(r)= > (12)
2me,C°r
and plugging these relations into (11), we obtain the more familiar equation:
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F,(r)=quvB (13)

This classical example is often used to show the relativistic background of eq-
uation (1). In the following section, we will use this derivation to get an expres-

sion for the Lorentz Force in the laboratory frame of reference.

3. Laboratory Frame of Reference (Rest Frame of Reference
of a Lattice of Positive Charges)

Let us now consider the same case of an infinitely-long current-carrying wire in
a laboratory frame of reference. If there is no applied voltage, the random mo-
tion of the charges is described with quantum mechanics [11]. If we apply a vol-
tage on the wire, the motion of the electrons will be a superposition of their
random motion and that caused by the applied electric field. To a first approxi-
mation, the motion can be described as if all electrons were moving with a con-
stant drift velocity [12]. Positive charges are stationary (in lattice) in the consi-
dered frame of reference, referred to as the laboratory frame of reference (shown
in Figure 3). It is assumed that a voltage is applied between the wire ends at in-
finity, with the left end at a higher potential. The charge gis at a distance rto the
wire and it moves with a constant velocity v, in the positive x direction, paral-
lel to the wire.

We will now calculate the force applied on the charge in this frame of refer-
ence. First, we will transform to the symmetrical frame S (in which the wire is
assumed to be neutral) where we will call the speeds of the positive and of the

negative charges v, and v_ such that:

V. =-V_=V (14)

In this frame of reference, the force is given by Equation (11), in which the
value of v, which will be calculated below, is the velocity of the test charge (v,
in the laboratory frame of reference) with respect to the symmetrical frame of
reference. The Lorentz transformation of the positive and negative wire charge

velocities to S from Sy, is given by

V, =-Vg, V =~ 0] s (15)

+

in which v, is the velocity of the frame of reference S with respect to S.

Substituting Equation (15) in (14), we obtain:

Figure 3. Laboratory frame of reference. Electrons are moving with the drift velocity ¥,
and positive ions are stationary. The rectangle above the wire represents a differential
wire segment illustrating the speeds of the positive and negative charges.
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VD 2
C—zvs —2vs =V, =0 (16)
Since the drift velocity v}, is in the order of a few mm/s and v;is even smaller,
to a first approximation we can neglect the first term in Equation (16) and ob-

tain the classical Galilean transformation:
VD

VS :—? (17)

In the symmetrical reference frame S, the velocity of the charge is, therefore:

\"
Vqlab - [_ ;j

v — =7 (18)

F = 2 (19)

g neoczr

In which A is the magnitude of the positive or the negative charge density in
the symmetrical frame of reference in the same way as it was defined in the pre-
vious section (1 = |A,| = |4]). The Lorentz transformation of this force to the la-

boratory frame of reference S,,, can be expressed as:

V
Fylab = = (20)
Vv V
v —Dj v?D
7e|1- 22 Vs | 1+ —% |me,C’r
where:
1
Vs = > (21)
v
C
The negative charge density in Sy, is:

A
ﬂlab— =——7 (22)

7s

in which

1

yo=—— (23)
(%)
C
Let us now define:
a= ! and 6 = ! (24)
Yo ,, vVo
1+ 2 1% 1+ 2
c? c?
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Plugging (18) into (20), expressing A in terms of A, from (20), and us-
ing (23) and (24), the Lorentz force in S, is:
V,
Vqlab +7D VD

ars (_ﬂlab—) a 2

=

yeo sy, Ome,Cr (25)

V Vv
~ q (Vqlab + ;j I q (Vqlab + ;J B

- 2y, dame,C’r - 7,0a
where B and 7 are defined for the laboratory frame of reference, and where the
current is only due to the motion of the negative charges.
Since v, < C, the relativistic coefficient in Equations (23) and (24) is ap-

proximately equal to one and (25) can be written as:
vD
I:ylab ~(q Vqlab +? B (26)

In the laboratory frame of reference (rest frame of the lattice of positive
charges), the negative wire charges are moving, as opposed to the positive
charges that are stationary. Therefore, they have a higher linear charge density
than the stationary positive charges. The overall wire is negatively charged and it
produces an electric force in the direction of the magnetic force in the examined
case. If the probe charge is moving in the positive direction of the x axis as in
Figure 3 (opposite to the drift of the electrons), force in (1) is increased by
qvpB/2 in (26).

It is worth noting that in opposite case when drift velocity of negative wire
charges is positive, the sign of force due to probe charge movement will change
due to change of sign of current and consequently of magnetic field. However,
contribution of this half drift velocity correction term will remain to be directed
toward the wire due to change of sign in (17). This is because wire will again be
negatively charged in laboratory frame. There will be also change in denomina-
tor of two terms in (24), but these terms can be neglected as in (26).

Figure 4 shows comparison of forces calculated in the laboratory frame of
reference assuming neutrality in S, and in the symmetrical frame of reference S
for the case of B=1T and g =1 C. As the charge velocity increases, the differ-
ence between the forces becomes negligible. The drift velocity [12] is very small,
making these effects hard to measure since they are hidden by some other
real-scenario forces, such as the zero-order effect of the electrostatic force
created by an image charge inside the conducting wire, the first-order force re-
sulting from the resistive nature of the wire, and second-order forces originating
for example from the curvature of the wire [4] [13]. In order to mitigate the do-
minant effect of the zero-order effect force, one may exploit the fact that this

force will decay as 1/ while (26) exhibits a slower 1/r decay.
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(®)

(®)

Figure 4. Force applied on the charge calculated assuming neutrality in the laboratory
frame of reference given with Equation (26) (dashed red curve) and in the symmetrical S
frame of reference given by Equation (1) (solid blue curve). For low values of the v,,,/v;,

ratio (a) and for high values (b). For the case of v;,< 0 and v,,,,> 0.

4. Conclusion

In this paper, we presented a derivation of the Lorentz force in the laboratory
frame of reference for the case of a metallic, current-carrying wire under the as-
sumption of neutrality in the symmetrical frame of reference. The Lorentz force
is a combination of the electric and the magnetic forces and, depending on the
physics of motion of the charges, the electric field will also be present. We
showed that the Lorentz force calculated assuming neutrality in the symmetrical
frame of reference and the one assuming neutrality in the laboratory frame of
reference differ by a term corresponding to a change in the test charge speed of
one half the drift velocity of the electrons. The derived equations make it in
principle possible to experimentally test the hypotheses of neutrality. The drift
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velocity being usually in the order of mm/s, an accurate measurement of these

effects might be, however, very challenging, compared to other forces that are in

play.
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Abstract

The paper is concerned with the history of the spherically symmetric static
problem solution of General Relativity found in 1916 by K. Schwarzschild [1]
[2] which is interpreted in modern physics as the background of the objects
referred to as Black Holes. First, the modern interpretation this solution
which does not exactly coincide with original solution obtained by K.
Schwarzschild is discussed. Second, the basic equations of the original
Schwarzschild solution are presented in modern notations allowing us to
compare existing and original solutions. Finally, a modification of the
Schwarzschild approach is proposed allowing us to arrive at the exact solu-
tion of the Schwarzschild problem.

Keywords

General Relativity, Spherically Symmetric Problem, Schwarzschild’s Solution,
Black Holes

1. Spherically Symmetric Static Problem of General

Relativity

Spherically symmetric problem is one of the most discussed problems of General
Relativity Theory (GRT) widely described in the literature [3] [4] [5] [6] [7].
This paper is concerned with the analysis of the original Schwarzschild solution
of this problem in association with its modern interpretation and possible gene-

ralization.

The line element for the spherically symmetric problem is traditionally taken

in the following form:

ds* = g°dr’ + p* (d6” +sin” 6dg” ) - h*c’dt? (1)

Here r,0,¢ and t are space spherical and time coordinates, ¢,p,h are the

DOI: 10.4236/jmp.2018.914160 Dec. 27,2018

2482 Journal of Modern Physics


http://www.scirp.org/journal/jmp
https://doi.org/10.4236/jmp.2018.914160
http://www.scirp.org
https://doi.org/10.4236/jmp.2018.914160
http://creativecommons.org/licenses/by/4.0/

V. V. Vasiliev, L. V. Fedorov

metric coefficients that depend on the radial coordinate r only. The basic equa-
tions of the General Relativity Theory (GRT) link the Einstein tensor E' with

the metric coefficients as [3]

E! :iz_izﬂ(£+ﬂ] 2)
p° 9 plp h
1 h” p" pl hI g! glhl
E=El=——| —+ -+ | —— = [-=— 3
L gz{h p p[h 9) gh ®
IZ n P!
oLl L (ﬂ] 20" 209 @
Pt 9| lp P P9

where ()' =d(...)/dr . The components of the Einstein tensor are proportional
to the energy tensor Tii , Le.

E/ =T,/ (5)

where
x =8mny/c* (6)
is the GRT gravitational constant depending on the Newton constant y and

the velocity of light ¢. Finally, the energy tensor (and the Einstein tensor which is

proportional to it) must satisfy the following conservation equation:
’ 2pl hl
1 2 1 1 4\ _
(1)) —7(T2 -1, )+F(T1 -T.})=0 7)

We use mixed components of the tensors £ and 7 because for the problem
under study they coincide with the corresponding physical components. The

energy tensor depends on the space structure. Particularly, for the empty space
T'=0,(i=1234) (8)
and Equations (2)-(4) are homogeneous. Inside a solid sphere with radius a,
T =0T, =T} =0, T = uc’ )
where o, and o, are the radial and the circumferential stresses and u is

the material density.

Consider the external space (r=>a). Taking E; =0, we can reduce Equa-

i{ﬂ] . 10)

dr 9?

tion (4) to the following form:

Equation (10) can be readily integrated to give

2
g2 = pe(PL) ()
pe+Cl

« »

where C, is the integration constant and the functions with subscript “&” cor-
respond to the external space. Substituting this result in Equation (2), taking

E; =0 and integrating, we get
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h? =C, [1+&] (12)

e

It looks like substituting Equations (11) and (12) into Equation (3) in which
E; =0, we can determine the function p, (r). But this is not the case—under
such substitution, Equation (3) is satisfied identically for any function p,(r).
This result can be predicted—since the components of the Einstein tensor E
satisfy Equation (7), Equations (2)-(4) are not mutually independent and any
solution of two of them identically satisfy the third equation.

Thus, we have only two Einstein equations for three unknown functions
g(r), p(r) and h(r). The fact that the set of GTR equations is not complete
and must be supplemented with some coordinate conditions was first mentioned
by D. Hilbert [8]. By now, the general form of these conditions has not been de-
veloped, though some particular forms (e.g., the so-called De-Donder-Fock
harmonic coordinate conditions) have been used in spherically symmetric prob-
lem [9].

Not knowing the function p, (r), we can make some qualitative conclusions
about its behavior. It is natural to suppose the for r— o we should have
p. = I and Equations (11) and (12) should reduce to the corresponding results
of the Newton gravitation theory, according to which [10]

2 2
g2=1-2 n =142 (13)
c c
where @ =—ym/r is the Newton gravitational potential and m is the mass in-

ducing the gravitation field. Equations (13) allows us to determine the constants

in Equations (11) and (12) and to present the result as

(o2) I
: =m, h? =1—;ge (14)
Here,
r, =2my/c? (15)

is the so-called gravitational radius sometimes referred to as the Schwarzschild
radius (though K. Schwarzschild did not use this term).

Consider the internal space (0<r<a). For an elastic sphere with known
density, we have totally four equations, ie., Equations (2)-(4) in which the
left-hand parts are specified by Equations (5) and (9) and Equation (7) in which
the energy tensor should be expressed with the aid of Equation (9). These equa-
tions include five unknown functions—the metric coefficients g, p,h and the
stresses o, and o,. To solve the problem, we must supplement the GRT equ-
ations with the equations for stresses similar to the compatibility equations of
the Theory of Elasticity. Such equations can be derived [11], but we restrict our-
selves to a particular solution obtained by K. Schwarzschild for a sphere consist-
ing of a perfect incompressible fluid. In this case, o, =0, =—p(r) in which p

is the pressure in the fluid and the fluid density g, doesnot depend on pand r.
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Taking Ej = K/JOCZ in Equation (4), we can reduce it to the form [12]

d i ’ r
Equation (16) can be readily integrated to give
(0’
gr=— ) (17)
1-2%p! -Cy/p,
where
A% = %KIUOCZ (18)

and the functions with subscript “7” correspond to the internal space. We do not
know the function p (r), but can make some reasonable prediction concerning
its behavior. Particularly, it is natural to suppose that at the sphere center
p, =r=0. Then, in accordance with the symmetry condition at the sphere cen-

ter, we should take C; =0 and Equation (17) becomes

g2 = (pi,)z
L 1A%

(19)

Continue the derivation and consider Equations (2) and (7). Taking E11 =—Kkp

and T'=T/=-p, T, = ,uocz , we arrive at

1 o (A 2h—’J N 2
— - O - kp, pP+—(p+pc®)=0 (20)
S [pi h h ( 0 )

Consider the first Equation. Substituting Equation (19), express the time me-

dh, dp, , 1) 1
o G I
3 Pi Pi Pi

tric coefficient h,, ie,

and rewrite the second equation of Equations (20) as
dh :
dp+h—i(p+yoc ):0 (22)

Substituting Equation (21) and using Equation (18), we arrive at the following
equation for the pressure:

A% p,dp, 3p
+ﬁ(p+ﬂoc2)(“7):0 (23)

The solution of Equation (23) that satisfies the boundary condition on the free
sphere surface I =a according to which p ( P = pa) =0 is

o N1-22p! —\1-2%p]
JL-A2pE =31-22p?

where p, = p,(r=a)=p,(r=a). To determine h, integrate Equation (22) to

P=—t4C (24)

get hi(p+,uocz):C4 in which C, is the integration constant that can be
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found from the boundary condition on the sphere surface r=a according to
which h, (p, = p,)=h (o = p,). Using the second equation in Equations (14),
we finally have

h _Vh /e (3\/1—/12,35 _ 1= 277 ) (25)
2\1-2%p?

It should be noted that substitution of the obtained solutions g; (). ()
and p(p,) in the Einstein Equation (3) where E; =—«p, does not allow us to
find the function p,(r) because Equation (3) is identically satisfied for any
function p, (r) The situation is similar to the external space and for the same
reason—since the right-hand parts of Equations (2) and (3) satisfy Equation (7),
only three of Equations (2)-(4) and (7) are mutually independent.

Thus, Equation (1) which specifies the metric forms of the external and inter-

nal spaces of the fluid sphere can be presented as

2
' d 2
ds? :%+p€2 (d92 +sin? 9d(p2)—(l—r—chzdt2 (26)
g pe €
.2 er
ds? =(1p|/1%+pi2 (d¢92 +sin? (9d(p2)
l—[:’i /p 2 @7
" 9lPe (32757 - 122 f) c2dt?
4(1_12105)( \/ pa \/ p

To fulfill the solution, we need to find two functions p,(r) and p,(r) such
that allow us to satisfy the boundary conditions at the sphere surface r=a, ie,
p.(a)=pi(a), g.(a)=g:(a) (28)
However, the equations allowing us to determine these functions are missing
in GRT. The same problem exists in the general case—as known, the set of Eins-
tein equations is not complete. In the four-dimensional Riemannian space, this
set consists of 10 equations
El = 4T (29)
for ten components of the metric tensor g . However the Einstein tensor satis-
fies equations which are analogous to Equations (7). As a result, only six of Equ-
ations (29) are mutually independent and to determine the metric tensor we
should supplement Equations (29) with four coordinate conditions for g".
Some authors declare that these conditions cannot be covariant because there
forms depend on the particular coordinate frame [3] [8]. Consider some partic-

ular cases.

2. Modern Interpretation of the Schwarzschild Solution

Traditional description of the Schwarzschild solution can be found elsewhere
[3]. The coordinate condition mentioned in the closure of the previous section is

taken in the form

pe(r)=pi(r)=r (30)
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though K. Schwarzschild did not use directly this relationship. Applying Equa-
tions (30) to Equations (14) and (19), we can specify the metric coefficients for

this case and present the metric form in Equation (1) as

2 r
s2 = dr +r2(d¢92+sin2 Hdgoz)— 1--2 |c%dt? (31)
1—rg/r r
dr? .
2 2 2 2 2
dSi —H—2r2+r (de +SIn Hd(D ) (32)
1-r /a ( 2
/% (312t - 122 f) c2dt?
4(1—/12a2) =2

To fulfill the solution, we need to satisfy the boundary conditions (28) on the
sphere surface r =a. The first condition is satisfied automatically, whereas the

second one yields
r, =A%a’ (33)

However, the parameters r; and A? are specified by Equations (15) and
(18) and are known. So, Equation (33) cannot be satisfied in the general case and
the second boundary condition in Equations (28) is violated. Substituting for-
mally Equations (15) and (18) in Equation (33), we arrive at the following ex-

pression:
4
m=m, = Eny0a3 (34)

which specifies the mass of a homogeneous solid sphere in the Euclidean space.
However, the space in GRT is not Euclidean and the mass of the sphere with the

metric coefficients corresponding to Equations (19) is

m = 4my, [ g;rdr = %na,uo (isinl Ja—1-2%a? j
0 A Aa
(35)
~m, 142 202 4.
128

As can be seen, the obtained result does not coincide with Equation (34) and
the second boundary condition in Equations (28) is not satisfied. The reason for
this discrepancy is associated with Equations (30). Equation (4), being originally
of the second order, under transformation in accordance with Equation (30) re-
duces to the equation of the first order. As a result, the solution does not contain
the proper number of integration constants allowing us to satisfy the complete
set of the boundary conditions.

Thus, the coordinate conditions in Equations (30) do not look suitable for the

problem under study.

3. Original Schwarzschild’s Solution

In 1916 K. Schwarzschild presented the solution of the external spherically
symmetric problem [1]. He did not use the final version of the Einstein equa-

tions, however the field equations that he applied can be now associated with
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Equations (2)-(4). We can suppose that he understood that only two of these
equations were mutually independent because he attracted for the analysis only
two equations, Ze. Equations (2) and (4), and ignored Equation (3). The third
equation which is necessary to solve the problem, was obtained under the fol-

lowing condition imposed on the determinant of the metric tensor:
|G| =1 (36)

Introducing this equation, K. Schwarzschild followed A. Einstein who used it
in general theory to specify the coordinate frame [13]. Governing equations of
GRT contain symbols F:} which include derivatives of the determinant and
become zero under condition (33) thus simplifying the equations. However, Eq-
uation (33) cannot be directly applied in spherical coordinates in which the vo-
lume element in the three-dimensional Euclidean space is dv =r’sin&drd@de .
To overcome this problem, K. Schwarzschild introduced new variables x; such
that

x =r%/3, x, =—c0s6, X, =¢, X, =t (37)

In new coordinates, the volume element becomes dv = dx,dx,dx, and the line
element takes the form

2
ds? = f,dx2 + f, de)z(z +(1—x§)dx§}— f,dx; (38)
2

Three functions f,, f,, f, can be found from Equations (2) and (4) supple-
mented with equation f,ff, =1 which follows from Equation (36). The final

solution is

(3% +A° )_4/3

_ t_(3 3\2/3
' 1—a(3X1+ﬁ3)’1/3 2 (X1+ﬁ)

, fo=1-a(3%+ )™ (39)

in which @ and f° are the integration constants. As stated in the Schwarz-
schild paper, this solution identically satisfies Equation (3) (which should be the
case).

The final part of the paper can hardly be understood. Directly following K.
Schwarzschild, consider the function f, which can be a source of singularity.

Equating the denominator to zero and using Equation (37) for x, we get
a(rt+p) " =1 (40)

Let singularity take place at the origin r=0. Then, Equation (40) yields

S = a . Introducing the new variable
R=(r’ +(23)1/3 (41)
and using Equations (38) and (39), K. Schwarzschild arrived at the following fi-
nal result of his paper:
dr?

ds? =
1-a/R

+R?(d6? +sin’ 0dg® )~ (1-a/R) cdt? (42)
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This form formally coincides with Equation (31), but it should be taken into
account that R is not the radial coordinate r. The constant « is declared to de-
pend on the mass located at the origin, but is not found.

As can be seen, the first term in Equation (42) becomes singular if R=«a or
r=0. Thus, the original Schwarzschild solution has only one singular point—
r=0.

However, it looks like Equation (42) is not correct. To show this, change Rto r
in Equation (42) with the aid of Equation (41) to get

3, 3\Y3 a2
(r +a ) r i/rs +(r3+a3)2/3(d¢92+Sin29d(p2)
1—a(l’3+063) (43)

—[l—a(r3 + a3)71/3}czdt2

ds? =

As can be proved, the first term of this equation becomes zero at r=0
which cannot be true. The origin of the mistake is in Equation (40) from which
it follows that f=c .

To demonstrate the alternative approach, substitute Equations (39) in Equa-
tion (38) and return to spherical coordinates with the aid of Equations (37). The
resulting equation is

3, p3 442
ds? = (r th ) ' i:’g +(r3 +ﬁ3)2/3 (d6?2 +sin? Hdgoz)
1—a(r3+,83) (44)

_[l—a(r3 + )71/3}czdt2

-4/3

As can be seen, the first term has the proper behavior at r =0 if we take
P =0 (not f=q asinthe Schwarzschild solution). The resulting expression

dr?
1-a/r

ds? = +r(d6? +sin? Bdgoz)—(l—%jczdtz (45)
completely corresponds to the modern interpretation of the Schwarzschild solu-
tion in Equation (31), if we apply the asymptotic Equations (13) which give
a= rg .

Consider the solution of the internal problem that was published by K.
Schwarzschild in 1916 [2]. This solution was not supported by A. Einstein [14]
because the concept of an incompressible fluid involves infinitely high velocity
of the wave in the fluid which does not correspond to the basic GRT concept.
However, the solution for compressible fluids does not demonstrate qualitative
deviation from the Schwarzschild solution [15] which is discussed below

The method of the solution is the same that for the external problem, ie., the
new variables in Equations (37) are introduced and the field equations are sup-
plemented with Equation (36). Further, another variable y is introduced in

accordance with the following equation:

sin;(z/l(r3+773)]/3 (46)
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where A is specified by Equation (18) (in the original equation ¢=1) and 7
is the integration constant. The final original result for the space part of the me-

tric form is
1 3 1 ?
ds? :I[dgz +sin® 7 (d6” +sin® 0dg’ )]—(Ecos;(a —Ecoszj c2dt? (47)

where y, = y(r=a).
To discuss the result obtained by K. Schwarzschild, change y to rusing Eq-

uation (46). Then, Equation (47) becomes

(r*+n° )74/3 rtdr?

2/3

ds? =
1- 22 (r3 +773)

2
—%[3\/1—/12 (a*+n° )2/3 —\/1—12 (r3 +773)2/3} cAdt?

The first coefficient becomes zero at r =0, which cannot be true. To obtain

+(r3 +773)2/3 (d6?2 +sin? Qd(oz)

the realistic metric, we must take 7 =0 and arrive at the expression

dr? . 1 2
2 _ 2 2 2 2 2,2 2.2 2442
dSi —m‘f‘r (dH +Sin qu) )—2(3\/1—1 a —\/1—1 r ) codt (48)

In the closure of his paper, K. Schwarzschild analyzed the obtained solution.

Particularly, the sphere mass was found in the form

67 1.
m=— —-=sin2 49
{r-gan2n | 4s)

which coincides with Equation (35) after transformation with the aid of Equa-
tion (46). The first term in Equation (48) becomes singular at some critical
sphere radius a, =1/4. This radius coincides with the gravitational radius r,
only under the condition imposed by Equation (33). If this equation is valid, the
metric form in Equation (48) coincides with Equation (32). But then, the sphere
mass is specified by Equation (34) which corresponds to the Euclidean space.
However, the mass found by K. Schwarzschild is given by Equation (49) and
corresponds to the Riemannian space. Thus, the radius r; cannot be called the
Schwarzschild radius.

Now return to Equation (44) which specifies the Schwarzschild solution for
the external space. Taking I — o, and performing asymptotic analysis, we can
prove that the metric coefficients in Equation (44) reduce to Equations (13) if we

take o = ry- Then Equation (44) becomes

3 33 40
[P 0O () 0 wsint o)
1—rg(r + [ ) (50)

- [1— r,(r*+p° )_1/3}’2dt2

In contrast to the traditional Equation (31), this equation contains one more

ds? =

integration constant— £ . This result looks natural because K. Schwarzschild did
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not use Equations (30) and, hence, did not reduce the order of Equation (4).
Considering the space with a point mass, we took £ =0 because of the beha-
vior of the first coefficient in Equation (50) at r =0 and reduced Equation (44)
to Equation (45). But now we study the external space of a fluid sphere for which
r>a. So, we can try to use this constant to obtain the continuous solution in
Equations (48) and (50) at the sphere surface. However, matching equations (48)
and (50), we can conclude that the second terms can be continuous only if
f =0. Thus, the final form of Equation (50) for the external space of a fluid
sphere
ds? = dr?
1-r,/r

I
+r2(d¢92+sin26d¢2)—(1—79]c2dt2 (51)

coincides with the traditional Equation (31). The first and the third coefficients
of Equations (48) and (51) are continuous at r=a if r,=A4%a’ which coin-
cides with Equation (33). Thus, Equation (36) applied by K. Schwarzschild is not
the proper coordinate condition and actually gives the same results that the con-
ditions in Equations (30). The original Schwarzschild solution, as well as it
modern interpretation, does not provide the solution which satisfies GRT equa-

tions and all asymptotic and boundary conditions for a fluid sphere.

4. New Model of Space and Spherically Symmetric Problem

Traditionally GRT is associated with Riemannian geometry which describes the
so-called curved space. A three-dimensional curved space can be hardly im-
agined. This space can be formally embedded into traditional Euclidean space.
However such space has six dimensions which do not provide better under-
standing of the problem. The proposed interpretation of the Riemannian space
is based on the following assumptions. First, we assume that the space is not an
object of geometry, but is a material substance (ether, physical vacuum or what-
ever else). Second, we think that the curved space does not exist in reality and
the Riemannian geometry is only a mathematical model of a special Euclidean
space. This space is not homogeneous and is characterized with so-called space
density that is a function of the coordinates to which the space is referred. The
space density d =dv,/dv; is the ratio of the three-dimensional volume ele-
ments corresponding to the Riemannian and to the Euclidean geometries in the
same coordinate frame [16] [17]. For spherical coordinates and the metric form
in Equation (1), we have dv, =gp’sin@drddde and dv, =r’sinddrddde,
so that d =g(p/ r)2 . Using Equations (14) and (19), we get for the external and

internal spaces

r 2 2 ;) 2
d _Pele _ PePe d _bi g; _ PiPi (52)

B e N ]

The space densities in Equations (52) are characterized with some specific

properties. Consider the total density of the external and internal spaces for the

fluid sphere with radius a
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© © r 2
D, = 4x[d,r?dr = 4x [ F (p,, p)dr, F(p,.pl)= 2L (53)
a a

Vl_ rg //Oe
,Oi,pi2

Vi- 2pf

Consider the variational equations providing the minimum values of the

D, = 4x[d,r’dr = 4x[F (p,, p)dr, F(p,.p{)= (54)
0 0

functional in Equations (53) and (54), ‘e,

T % oo (55)

As can be readily proved, Equation (55) is satisfied identically for both func-
tions F in Equations (53) and (54). Thus, the space densities in Equations (52)
provide the minimum total density of the space. However, the space density is
caused by gravitation and is minimum in the absence of gravitation, ie, if the
space geometry is Euclidean or if d =1 which means that the space tends to
become homogeneous with respect to the space density d. The condition d =1
looks slightly similar to Equation (36) applied by K. Schwarzschild. It has a sim-
ple physical and geometrical meaning—gravitation, changing the space geome-
try, does not affect the space volume.

Taking d, =1 and d; =1 in Equations (52), we arrive at two differential

equations for functions p,(r) and p;(r), e,

Consider the second equation. Since d, = g,p] / r’ =1, the sphere mass be-

comes

a a
4
m= 4n,uoj g, p7dr = 47t,u0_[ r’dr = En,uoa3
0 0

and coincides with the Euclidean mass in Equation (34) which means that the
condition in Equation (33) is valid and A% = o / a® . Then, the second equation

in Equations (56) reduces to

,Di’,oi2 = rlel_ rgpi2 /a3 (57)

The solution of Equation (57) which satisfies the boundary condition
P (r=0)=0 is[12]

i_sin’l(ﬁi\/ﬁ)—ﬁi 1-T. 57 =§FQF3 (58)

7
where
T=r/a, p=p/a (59)
Recall that at the sphere surface p,(r=a)=p,. Taking T =1 and p, =p,
in Equation (58), we get

%Sinl(ﬁa\/ﬁ )= BT, 7% =

The general solution of the first equation in Equations (56) is [12]

wI|N

T (60)
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1 5__ 5_
(3;% e} Ty P +8 jpe( Pe ) —r '“(\/E+\/r)=—r +C, (61)

The integration constant can be found from the boundary condition on the so

here surface according to which p, (F =1) = p, . Then,
1, 5 5 — — -\ 5_ — — 1
C5=(§p,§ o [ Y j,/pa(pa—rg)+§rgaln(\/p>a+ /pa—rg)—g (62)

Thus, the functions p;(r) and p,(r) are specified by Equations (58) and
(61). The first boundary condition in Equations (28) according to which
p(a)=p,(a)=p, is satisfied which follows from Equations (60) and (62).
The second boundary condition in Equations (28) according to which
0;(a)=9.(a) is satisfied because the obtained solution is based on the condi-
tion g,p° =g,p. from which it follows that if the function p(r) is conti-
nuous at I =a, the function g(r) is also continuous. For low levels of gravi-
tation, Ze. for T, <1, Equations (58) and (61) yield p,=p, =T.

Consider Equations (60) and (62) which allow us to satisfy the boundary con-
ditions, ie., to solve the problem that turned out to be critical for the solutions
discussed above. As follows from Equation (62), the solution exists if p, >T;.
Otherwise, the solution becomes imaginary. The minimum possible value of p,
is T, . Assume that this minimum value corresponds to the sphere radius a, .
Then, substituting p, = p, /8, =1, /8, in Equation (60), we get

(63)

The solution of Equation (63) is a, =1.115r, . Thus, the critical radius is
larger than the gravitational radius. For a=a,, the solution is not singular and
gives finite values for the metric coefficients. Particularly, for p=p, we get
0. =0;=1.243 and p, = p, =0.8968a. For a<a,, the solution becomes im-
aginary which means that GRT is not valid for such high level of gravitation. For
the sphere with radius a,, the escape velocity is equal to the velocity of light
and such sphere is invisible [18]. More results concerning the discussed solution

can be found elsewhere [12].

5. Conclusion

As follows from the foregoing analysis, the Schwarzschild solution after some
minor correction and reconstruction coincides with the traditional [3] interpre-
tation of this solution. Both solutions do not satisfy the boundary condition on
the fluid sphere surface for the radial space metric coefficient. A proposed model
of the Riemannian space as the Euclidean space of variable density allows us to
obtain the solution which satisfies equations GRT and all boundary conditions
for the spherically symmetric problem for a fluid sphere. In future, the authors
plan to generalize the approach discussed in Section 4 to the axially symmetric
problem of GRT.
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1. Introduction

Many physicists have emphasized the unreasonable effectiveness of mathematics
in describing the physical world; among them the most authoritative one is
Wigner [1]. An anecdote clarifies Wigner’s perplexity. Two students were dis-
cussing the ability of describing the statistical distribution of hungers in the
world through the Gauss function, which involves the number 7. Strictly
speaking, it is hard to realize what has to do the geometrical ratio between cir-
cumference and radius of a circle with the distribution of hungers; even in lack
of a rational explanation, though, nobody could doubt about the ability of scien-
tists to contribute to the advancement of science introducing 7 in the frame of
sophisticated mathematical algorithms.

Even Bertrand Russel was concerned about the link between mathematics and
physics [2]. In his book “Study of Mathematics” he says: “Mathematics, rightly
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viewed, possesses not only truth, but supreme beauty, a beauty cold and austere
like that of sculpture, without appeal to any part of our weaker nature, without
the gorgeous trappings of painting or music, yet sublimely pure, and capable of a
stern perfection such as only the greatest art can show. The true spirit of delight,
the exaltation, the sense of being more than Man, which is the touchstone of the
highest excellence, is to be found in mathematics as surely as in poetry.”

Nevertheless, the outcomes of the natural sciences are subjected to experi-
mental tests: what is false or true is definable regardless of hungers and geome-
trical distresses. On the one hand, abstract numbers express reliable physical
laws describing properties and predicting behavior of Nature. On the other hand,
however, this epistemological shortcut in fact leaves unexplained the link be-
tween science and reality, calculation and experiment, mental ideas and actual
story of the Universe. Quoting Einstein “the most incomprehensible thing of the
Universe is that it is comprehensible”.

Paradoxically, it is easy to understand the correlation between mathematical
algorithm and natural event assuming first deterministic evolution of systems
according to the old classical physics: once having selected properly the initial
conditions, the successive evolution is in principle uniquely determinable. In
practice any deterministic model requires a suitable number of descriptive pa-
rameters exactly known of a whole system, whose time evolution is codified and
described via appropriate functions of these parameters; the mathematical defi-
nitions valid at a given time t=t;, remain also valid, if correctly chosen, at
t, + ot . Extrapolating this reasoning, the outcomes of such a model hold at any
times t, +not even for n—oo: everything exactly known at t=t; remains
exactly knowable forever. This should be true in principle also for a classical
Universe, regarded as a whole physical system.

Actually however the problem is much more complicated.

The task of guessing the evolution of a physical system from a given initial
condition must settle up with the probabilistic frame of the quantum theory:
uncertainty relationships imply the impossibility of knowing simultaneously
couples of conjugate dynamical variables. This constrain at the time t, pre-
vents the possibility of their exact knowledge at any later time as well. Worse still,
an initial energy uncertainty &g, compels a subsequent range J¢ of possible
values that depends itself upon the choice of Ot . As a matter of fact, however,
the fundamental laws of quantum physics are successful in conceiving correctly
and designing operatively transistors and lasers.

The predictive ability of science becomes further at stake considering also the
relativistic theory, according which St and Jd¢ have meaning only relatively
to the particular reference system where they are initially defined: e.g. the twin
paradox exemplifies that the time is not an absolute parameter, as the reciprocal
motion of their reference systems Rand R’ implies anyway admitting different
time lapses St and ot' for a given event to occur and even for their aging.
The necessity of specifying both reference systems to describe physical events

explains why the physical laws must be formulated in a covariant way.
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Moreover the link between quantum and relativistic theory is still a hard chal-
lenge even today.

To approach gradually the epistemological problem raised by these short con-
siderations, suppose preliminarily that a given event K is allowed to occur in a
given R at the arbitrary time t,, waiving for the moment whether or not actual-
ly this time is exactly determinable; in this R are also defined the initial time t,
and the pertinent boundary conditions. Let K be for example the motion of a
classical system of N particles, described by a total number / of descriptive pa-
rameters f;: e.g. position coordinates X, ; =X ; (L_), momentum components

Pri = Pri (tl), energies & =¢ (tl) and so on of each ith particle with
r=123. Of course f ; can include also mutual interactions, presence of ex-
ternal fields and anything else. Shortly, f, ; symbolize in general the j-th dy-
namical variables significant to define the state of each particle at the time t,,in
principle all measurable. Moreover let be known also the experimental value of

the observable V, =V (ti) of a given property V characterizing the event K at

J
the time t, and reproduce this value as a linear combination V, = > A/ f,_; of

j=1

Y]

its descriptive parameters via appropriate coefficients A;. A simple example
clarifies this point. Consider a one dimensional system of two interacting par-
ticles having initial coordinates X, and X, at the time t ; concerning first

the initial boundary condition, write
Vo = Aixo,l + A2X0,2 + Aago,l + Adgo,z + A, + Aty

being all dynamical variables known by definition, regard the coefficients A,
as parameters that fit the initial value V, of total energy of the system; also, are
experimentally measured the space and time coordinates and the energies &
and ¢&,,, upon which depends the interaction energy &, assumed known as
well. Repeat this reasoning, but considering now the total energy V, of the sys-
tem at the arbitrary time t; it is in principle possible that the same equation
links V, to the new space and time coordinates x,, and x,, energies &,
and ¢ ,, and interaction energy &, . Assuming experimentally known all these
quantities, the new linear combination involving the same dynamical variables

reasonably determining V, experimentally known as well reads
Vi = Axy + AX, + Ay + Agyp + A + Al

In principle it is possible that the coefficients A, with 1> j>6 in this exam-
ple, fit not only the initial boundary condition but also this further equation. In
practice, however, neither the former equation nor the latter are calculable be-
cause two equations do not define uniquely the six unknowns A, ; the system of
equations is actually undetermined. But it is possible to measure all dynamical

variables also at the subsequent arbitrary times t, or t; and so on, which yields
Vi = Ay + Ao+ Aty + Aty + As + Aty

It is clear that further sets of six experimental data obtained measuring the
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same quantities at five additional times with respect to the initial condition, yield
a system of six equations with six unknowns. Now the system admits a unique
solution for all A; fulfilling by definition also the boundary condition. In prin-
ciple this empirical procedure is possible no matter how complex is the system
and how many its freedom degrees might be; a suitable number / of experimen-
tal measurements allow to obtain coefficients A, that fit by definition all values
of the observable V, of interest at any time between t, and t;. The various
ftkvj

riable that concur with all &, and &, to the resulting value of the observable

are therefore not only the respective X, but also any other dynamical va-

V, ; it is clear why one of the dynamical variables must be just the pertinent time
t, . Note that, owing to the empirical character of the linear combination, even
the higher powers of some descriptive parameters, e.g. pf’i are in principle
admissible with their own A; among the terms contributing to V, .

Anyway take for granted that, by definition, all coefficients A; fit correctly

the known values of the experimental parameters f, . of all particles concur-

b J
ring to the required value V, . k
On the one hand, is comprehensible the interest to describe the system at
subsequent times after that of the initial condition for completeness of informa-
tion. On the other hand, however, since in general the descriptive parameters are
functions of time, e.g. the dynamical variables of the various particles, the evolu-
tion of the system during a given time range becomes in fact essential require-
ment for the mathematical approach: repeating the same numerical procedure at
J -1 subsequent times t, after the initial t , one can define a set of / equa-
tions and thus a square matrix of coefficients A; whose lines fit exactly by de-
finition the experimental values V, of the observable 1'in the given time range.
Write therefore
vkzzlej f o 1<k<d, V=V, (x.t) (1.1)
[
the system of equations removes the indeterminacy inherent a unique observa-
tion time and contextually describes how a given observable of the system
changes at various times t <t, <t;, although without rational or heuristic va-
lence. Nonetheless the following evolution matrix represents the minimal condi-
tion able to characterize mathematically one property V of one event KX of the

system, although waiving any chance of physical explanation:

ftu 1 fto 2 fto J Al VIO
KA=V|, K=|f, fo, = foo| A=|A | V=V | (12
ftJ 1 f[J 2 ftJ 3 AJ VtJ

Every column of the matrix K represents the values of each descriptive pa-
rameter governing V at various times, every line concerns the values of all possi-

ble descriptive parameters contributing to the value V, at the particular time
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t, regardless of explaining how it was at the past t,, or will be at the future
t,.,. The matrix elements defined by a set of successive measurements fit there-
fore “a posteriori” the evolution of the observable V; ie. simply reproducing
mathematically what is experimentally known in the considered time range. This
empirical procedure, in principle non-predictive, is to be repeated at all times
and extended to each observable of any event K of interest to characterize the
whole system.

Moreover K implies neither past nor future: exchanging two lines, the
change of sign of K is canceled by that of A concurrently necessary, ie. V
remains unchanged.

On the one hand this procedure, seemingly sterile, deserves attention as it
shows that the link between numerical representation of the reality and physical
events is in fact plausible: mathematics has its own rules to elaborate numbers; if
these rules are implemented to reproduce the results of measurements, then the
efforts of scientists are addressed to convert this empirical analysis of data, cor-
rect by definition, into rational information to be understood. So Wigner’s
doubts are bypassed regarding in fact the empiricism as an intermediate step
between mere observation and profound knowledge of the reality, which how-
ever remains implicitly hidden in the raw data.

On the other hand all previous considerations evidence three key require-
ments necessary for any theoretical attempt to bridge abstract numbers and in-
formative interpretation of results: 1) it must be holistic, 2) it must have space
time structure, 3) it must inherently have evolutionary character. These three
points prospect the non-trivial heuristic worth of K : despite its pragmatic cha-
racter, the coefficients of each line of the matrix and thus the matrix itself fulfill
by definition these requirements and have thus physical valence. Also, K de-
monstrates the inherent rationality of Nature, without which no best fit tech-
nique could provide sensible outcomes. By consequence, no conceptual doubt
exists about the effectiveness of a rational approach in describing mathematically
the reality.

In principle is difficult to discern, on the basis of a linear combination of pa-
rameters only, whether for example two arbitrary time ranges St and Ot’
differ because they refer to different reference systems in reciprocal motion or
because of the presence of a gravity field or even because the quantum uncer-
tainty implies corresponding energy ranges J¢ and J¢’. Is evident thud the
necessity of overcoming the mere empiricism hitherto preliminarily proposed,
while acknowledging that the predictive ability of any theory is nothing else but
its ability to reproduce the values of the aforesaid coefficients via rational path as
general as possible, Ze. starting from first principles. In particular, it appears also
necessary to identify rationally one by one the parameters f; in fact concur-
ring to describe exhaustively any physical event K.

The idea is at this point to bypass the best fit approach, valid by definition, by

introducing a general function
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4 =l//(xr,j' pr,j"("j"“’q)fvj’t)’ Prj = Prj (Xr’j't),
£ =8-(Xr,j,t>, D, :‘Dr,j(xr,i't)

] ]

(1.3)

the index rstands for the set of three space coordinates and related vector com-
ponents of all dynamical variables characterizing the system, e.g. possible inter-
nal and external vector fields @, ; suitable to affect the evolution of all its con-
stituting particles, the dots indicate any further jth descriptive parameter addi-
tionalto p,; and g; possibly necessary. The last three positions allow writing
implicitly and simply y =y (Xr, ik ) via the various x, ; ofall /-th descriptive
parameters contributing to the A-th line of K at the time t, . For example
gj<xr’j,t) is itself a shortcut of ¢; =¢; (d)r,j,xr_j,tk); indeed x; at various
t, are somehow determined themselves by the strengths of the fields possibly
acting on the system. So the Equation (1.3) can be shortened without loss of ge-

nerality writing y as
l//=l//(Xr,j,tk), X, =X.Y.2;, (1.4)

having nested into X all possible descriptive parameters implicitly governing the
physical state of the system.

It is clear that the strategy of implementing the form (1.4) as a starting point,
requires to extract successively from X ; information about the possible ex-
ternal fields concurring to the internal interactions in defining @, ; previously
quoted. But how could the primordial function ' summarize the variety of
phenomena symbolized by every possible observable V, for all possible physi-
cal events K?

Try to simplify the problem: although in principle the following considera-
tions hold even for r >3, as postulated in some physical theories [3], assume
for simplicity and without conceptual limitation a two dimensional space time,
with the time coordinate and one space coordinate only. In this assumed one
dimensional space r=1 can be omitted, whereas the space coordinates and re-
spective vector components are represented by the unique index j that now re-
fers to the various particles of the system. Accordingly, it is eventually possible
to write more shortly y = l//(xj ,tk) intending now j extended to the freedom
degrees of all particles of a given physical system at the time t, . So any physical
effect determining the behavior of the system is described via one dimensional
approach with two space time coordinates only for each freedom degree; this
bypasses the difficulty of guessing one by one the descriptive parameters that ef-
fectively govern case by case the event K. Compare now the early empirical ex-
pression (1.1) with the series expansion of ¥ around arbitrary initial coordi-
nates X, and t,, which reads

11 0 0 i
Vk :VO +§§F((XJ _Xoj)a_)(j+(tk —to)aj 174 4 :l//(Xj,t) (15)
xj:xoj,tk:to

the summation over 7 accounts for the arbitrary number 7 of terms of the series,

that on jreproduces the same number of terms of the linear combination (1.1),
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the index K still represents the time at which the descriptive parameters j are
expressed when defining the time change of an appropriate function i of all
the necessary parameters. The notation indicates that the derivatives of y are
calculated at arbitrary x; =x; and t=t; defining V, in a given R, e.g. the

laboratory. So each term jof (1.1) takes the form

J | 1 1 | "
Af  =AT +Z;Z;H.Z;)[i)(xj xOJ) (t—t,)" onw,
j=li=1 l-j'=
al' ai—i' (1'6)
Ve = o g Y

Xj=Xoj b =to

the additive term is assumed known, being the initial boundary condition of the
problem. Each j-th term is still related to the respective parameter f, of the
best fit procedure at the time f{,, although with a small difference. Previously
f,.; were selected quantities implied by the physical event K (all measurable
dynamical variables, among which x; and t,) tentatively introduced one by
one; the best fit procedure aimed to calculate the respective coefficients A; re-
producing the known values of V, (the specific physical property of interest) at
the time t, . Here instead the series expansion yields numerical coefficients
A =0

once for all at prefixed space and time coordinates initially set. The descriptive

gjl/lo given by derivatives of a unique unknown function y calculated
parameters are (i,i’) foi :(‘)‘Xij'é‘tlifi', Le. combinatorial factors times various

products of space time ranges &x; =x; —X,; and ot =t —t,: the dynamical
variables previously tentatively introduced via the respective descriptive para-
meters ftk’ j correspond now to the space coordinates of all particles that still
represent space and time experimental inputs. If these latter are known, then
(1.6) and (1.1) are equivalent as concerns the best fit approach, defined again by
a linear system of equations with best fit unknowns &)y, . Yet, as by definition
the coordinates depend upon all fields possibly acting on the system, summa-
rized by ®,; atgiven t and nested like in (1.4) and (1.3), further calcula-
tions are necessary to go back from these coordinates experimentally measured
to the strength of the fields hidden in . Nonetheless there is more information
in (1.6) than in (1.1): the correlation of the actual experimental data to the initial
conditions is not simply reasonable, it is required by the concept of space time
ranges themselves.

The next step to overcome the legitimate Wigner doubts is just the time cor-
relation (1.5), which does exist indeed and involves space time ranges as they
appear in (1.6), not the local Xt and Xoj 1 Lo -

The worth of this information appears just from these equations comparing
the particular cases where i=1 and i=2 in (1.6). Since in the former case
i"=0,1, the summation on i’ yields for each jterm 0,0X; +0,6t, , where 0,
and 0, are mere numerical coefficients corresponding to the respective 8'0;. W, -
Whatever the numerical values of these coefficients might be, the space and time

ranges appear separately: all 5x; on the one side and 6t, on the other side
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can be put independently equal to zero to describe local or simultaneous events.
The case i=2 is conceptually different and more interesting, as the j-th term
of (1.6) reads 0,5X? +0;5t; +20,0,6%;0t, , being &), and 0 new numerical
coefficients; the space and time ranges appear together in the mixed term
&x;6t, with mixed coefficient 0,0; . In general all higher order terms of the
sum over i>1 imply mixed space time ranges.

Hence the first order and second order terms of the series do not imply mere-
ly two different degrees of numerical approximations in calculating V, of the
Equation (1.5). It is clear that i=1 is the classical case: a glance to this equa-
tion indicates that space and time terms are in fact separate dynamical variables
like in (1.1). In the linear combination (1.1) the time is an independent input
parameter, arbitrarily set, as a function of which the x-coordinate is next calcul-
able consistently with any event occurring in the system, e.g. the interaction be-
tween particles. But in general the mixed terms modify strongly this point of
view; for example it is no longer possible to put 6t, =0 independently of §x;:
simultaneity and locality are in general conflicting concepts.

Moreover the Equation (1.6) introduces contextually the concept of evolution
regarding in the same way also the initial configuration of the system through
products of ranges &x,5t,. So (1.6) shows that the local space and time coor-
dinates separately measured and purposely introduced to carry out best fit cal-
culations are actually mere mathematical parameters useful for empirical calcu-
lations only; the space time ranges of coordinates are instead physical parame-
ters collecting together sets of local space coordinates x; included within §x;
that define the evolution of allowed states of physical systems during a finite
time lapse Jt, . Without this correlation, the system would be that of the matrix
(1.2), ie. describable as if it would consist of a list of mathematical terms unre-
lated and disconnected each other at various times.

This is the first hint to reproduce the coefficients A; of (1.1) from first prin-
ciples, thus overcoming both empiricism and Wigner’s doubts.

In effect it will be found in the following that &x;dt, , not the local x;t,, is a
sensible definition of space time compatible with quantum requirements. This
shows that (1.6) lays prospectively the basis of both relativity and quantum
physics: the necessity of a space time frame defined via sets of local coordinates
&x;6t, is in principle also consistent with the quantum lack of determinism
based on local coordinates both exactly knowable.

Anyway, apart from mathematical details, the known value of any V, in (1.2)
is still reproducible in principle solving once more a set of linear equations of the
unknown agjy/o. The expected rationality inherent the best fit calculation ap-
pears now through the mathematical properties of y . With a correct choice of
this function, the coefficients 8;—1//0 <> A, describe conceptually and not only
mathematically the evolution of physical systems; in practice this function still
maps the systems like the mere empirical approach (1.2) and makes plausible the
numerical representation of the reality. The key point is the underlying link with

the concept of time evolution of physical systems with respect to their initial
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conditions.

Thus the basic idea is that a general function, ¥, must exist able to describe
specific events of interest implementing the holistic concept of system evolution:
if it is true that the Nature is a complex system under continuous modification,
then the physical laws should also conform themselves to this principle. Accor-
dingly, space and time should appear as inseparable properties in this evolutio-
nary scenario that also implies the holistic view previously outlined as actual
mathematical requirement.

On the one hand if the function ¥ would be known, then there would be no
necessity of determining in advance via best fit approach the power series (1.6)
of the dynamical variables, which in fact would be calculable themselves through
v and its derivatives; this chance exemplifies in principle the starting question
of this section, Ze. to show why the rational knowledge of phenomena allows
mapping the reality into numbers regardless of speculations about the geome-
trical origin of 7. On the other hand this conclusion introduces the aim of the
present paper, Ze. to understand how an appropriate function representing the
physical phenomena through the concept of holistic evolution in fact prospects a
conceptual path alternative to empirical best fit calculations; in this way  also
removes the necessity of knowing in advance case by case the specific event to be
described. Therefore the previous question about the mathematical structure of
the reality overlaps to the following ones: “how all information codified in phys-
ical formulas is in fact deducible from w ?” and also “are the current results of
such theoretical basis susceptible of predictive outcomes prospecting the possible
future Universe”?

Clearly the second question concerns the development of science and has
heuristic valence in describing anything effectively allowed to happen in a
changing Universe.

The purpose of the present paper is to highlight some straightforward hints
towards this aim, Ze. how in principle could a single function y describe all
variety of phenomena occurring in the Universe.

For simplicity and brevity of exposition the model is deliberately one dimen-
sional: this choice does not represent a conceptual limit, it merely aims to simpl-
ify the theoretical approach with mathematical formalism as simple as possible.
Also, the model purposely considers scalar quantities: for example vis the com-
ponent of the velocity vector V ; analogous consideration holds for the compo-
nent p of the momentum pP. These positions allow writing only :W(X,t)
without subscripts. The time evolution of this function in a given R is therefore
givenby Sy =y (X+06X,t+6t)-p(xt).

To add a further step forwards, consider more closely the particular space

time interval introduced by (1.6)

50, :(xj—xoj)(tk—to):ﬁxjdtk (1.7)

as Ol consists of two ranges, the first problem is how to define position and

size of both §x; and ot, in an appropriate reference system R. For example
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the coordinates x,; and t, can be defined in order to fix the distances of one
boundary of §x; and ot, on the respective axes, e.g. x, and t,, from their
common origin O of R, imagined as a two dimensional space time plane with the
time on the vertical axis and the length on the horizontal axis; so x i and t,
fix the sizes of the ranges. However a better chance exists in this respect: it is
possible to introduce the following average values calculated via the boundary

coordinates themselves of the ranges only

PR TR TR )
X; = b=

> (1.8)

To describe self-consistently size and position of §x; and ot, in the space

time plane, these mean values are defined on the respective axes of R as follows
vt = 0%, Vot =x; (1.9)

the first definition relates &x; to the average time t_k needed for a hypotheti-
cal particle to travel through the whole range size, whatever it might be, the
second definition relates ot, to the displacement rate of its average coordinate
X_j related to the position of both range boundaries only. Clearly these defini-
tions need introducing two velocities v, and Vv, compliant with the strategy
of having defined mean values characteristic of both ranges only; if indeed just
these definitions characterize size and position of both ranges in a self-consistent
way, then any reference to O, and thus to R, is lost. In other words, replacing

(1.9) into (1.7) neither x, nor t

o , appear anymore explicitly in
80y = (v V)t x; : these mean values of coordinates are in effect identically
compatible with different x; and t;, ie with any other O’. Multiplying now
side by side (1.9), one finds VC'VC"('[k2 —t? ) =X x5 ie

SO =V —XF =2 = x5, Vi =V (1.10)

The actual value of v, does not require in principle any specific hypothesis;
is however interesting its particular value, necessarily constant without contra-
dicting (1.10), consistent with o (tkz) and o0 (XJZ) regardless of the reference
system R where are defined &x; and ot ; the expression at the right hand side,
formally identical to that at the left hand side, can be referred indeed to another
reference system R, . It is significant that a unique constant V> fits different
time and space coordinates and that this equation implies different time and
space ranges in different inertial reference systems Rand R, even in reciprocal
motion.

However, the fact that space time terms & Xijb‘tf(' more complex than that of
(1.7) also appear in (1.6), suggests that a more complex space time metric is to
be expected too. Since now all of these hints seem a reasonable step towards the
special and general relativity. This also suggests that a model prospectively
aimed to account someway for these suggestions should consider since the be-
ginning not only St and X but also, at least, 5(St)=5t=5t—6t' and
5(6x)=05%x=5x-05X". Thus the problem is how to handle methodically both

changes Sy and 5%y , rather than v itself, to describe systematically the
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physical properties of any system concerned by . Despite y is not known,
are essential and enough to this purpose the general definitions

Sy =y (x+x,t+ot)-w(xt), w=w(xt) (L.11)
and, increasing again X+06X by JX and t+6t by ot,
5(8y)=0%w =y (x+25X,t+26t) -2y (x+Ox,t+6t)+y (xt) (1.12)

the former defines Sy /S5¢ , the latter 5y / 5/ . Note that being by definition

y/(e)=y/(eo)+%—"€’5£+---, St=1—1,,

where ¢ is any descriptive parameter of a physical system in the sense pre-
viously introduced, it is possible to put at the first order of approximation

v(O)-w(t) _sv _ov,
(=1, 50 o

neglecting the higher order terms.

Here and in the following x and &X symbolize the r-th space coordinate of
each j-th particle of the system and its change as a function of 6t upon which
depend possible changes of all dynamical variables and their x-components, e.g.
d¢; and 5p;; the same holds for 5(5 pj) and 5(5$J- ) , and so on. Although
is considered for brevity and simplicity of notation one dimensional space coor-
dinate only, from a conceptual point of view the number of actual coordinates is
not necessarily limited to the usual three currently accepted.

The remainder of the paper concerns these points through an “ab initio”
theoretical model whose exposition aims to be as self-contained as possible. Such
model aims to deduce both well known results, as a validation, and new
achievements, as innovative implications: in both cases, however, the assessment
benchmark is its conceptual root in the Equations (1.11) and (1.12) only.

Despite for sake of brevity and clarity of exposition physical properties like
energy and momentum have been taken for granted and explicitly mentioned as
well acknowledged concepts in this introductory section, actually all of them will
be inferred self-consistently themselves uniquely through (1.11) and (1.12); this
holds also for quantities like charge and mass that apparently have nothing to do
with the concept of evolution defined by these equations. Although seemingly
trivial and innocuous, these two equations are unique source of information and
unique input enough to infer all considerations exposed below in a consequen-
tial way, while overcoming Wigner’s doubts and renouncing to any hints from
physics theories currently existing. For completeness, when necessary, are also
shortly sketched some results previously published to emphasize their connec-

tion with the present conceptual frame.

2. The Model

To infer information of physical interest from the initial positions (1.11) and

(1.12), the simplest idea is to relate appropriately 6X and OJt, and possibly
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even 6°x and 8%, to Sy and 6°w in an arbitrary R In principle this

correlation can be expressed implementing JSy to obtain two identities

Sy =(8y/6X)6x = (5w /St)St that merge into
ox _ oy /ot
St Sy /ox

(2.1)

The ratio at the left hand side introduces a new concept implied by Sy , the
velocity v this dynamical variable, not evident nor necessary in (1.11) and (1.12),
is defined by the identity

5_1/’:15_1/’, V:Q. (2.2)
oX Vv ot ot

The significance of this result, which follows the Equation (1.11) only, appears
rewriting both sides according to the Equation (1.12) i.e. implementing likewise
the identity 6’y = &%y . Dividing both sides by &x® still via SX =VSt just
introduced, an analogous reasoning yields the further identity

Sy 1 Sy
X Vot

(2.3)

The explicit physical meaning of these identities appears when ¢ — 0, ie
when the range sizes described by & tend to zero. On the one hand this is
possible because no restrictive hypothesis has been introduced about the ranges,
on the other hand X —0 and St —0 do not necessarily imply equal limits
Oy /ox and Oy /ot of the Equations (1.11). As written, the left hand side of
(2.3) reads [!// (x + 25X,t) - 21//(X + 5X,t) +y (X,t)}/&xz , whereas the right
hand side reads v [l// (X,t + 25t) -2y (X,t + 5’[) + l//(X,t)]/&z . The limits of
these expressions for J — 0 are indeed 621/// ox* and V’zﬁzy// ot? ;5 as such,
they are defined in general by the local analytical dependence of ¥ upon either
dynamical variable.

All this makes sense, as in fact the symbols ¢ indicate arbitrary changes not
only of ¥ but also of x and £ just for this reason, therefore, nothing can be “a
priori” inferred from the ratios between Jow and JX or Ot since both these
latter are arbitrary, unknown, unrelated and thus implementable separately and
independently each other. Instead, despite (2.3) is trivial identity,

2 2

ZT?:V%ZT‘?, 0=0(xt) (2.4)
has physical meaning while the aforesaid limits imply contextually y — € ; the
notation remarks that @ yields in particular the local analytical form of
resulting from the specific correlations of oy with X and St (2.2) and
(2.3). So the local behavior in the infinitesimal space range 0X and time range
dt fulfills at any Xt just the Equation (2.4). All quantities concerned by &
are arbitrary and finite by definition; thus they have been handled, and will be
again handled also in the following, according to standard algebraic rules like-
wise any finite dynamical variable. Instead the limits 6 — 0 imposed to them

define a further local condition/constrain that in fact eliminates their total arbi-
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trariness and thus implies the mutual interdependence of both sides of (2.3)
around a common limit: the initial analytic form of y, whatever it might be,
turns locally into that, @, fulfilling both local limits. In this specific case one has
found the D’Alembert equation describing the dynamics of a homogeneous elas-
tic string vibrating with fixed extremities and with constant propagation rate v of
the perturbation around the equilibrium position of the string. Obviously the
local dependence of & upon x and ¢is found by solving the resulting differen-
tial equation.

This first example has emphasized how to infer information about one specif-
ic physical system through the local extrapolation € of y as a function of
both 6t -0 and 6x— 0. Although the Equations (2.3) and (2.4) have iden-
tical analytical form, they remark the transition from non-local to local descrip-
tion of the concerned physical system: the former is in fact non-calculable, being
mere identity, the latter takes physical meaning because is calculable and com-
parable with the experience. Otherwise stated, it is reductive to regard (2.3) as
intermediate algebraic step towards (2.4); it actually describes a non-real and
non-local world that does not have identifiable physical properties of the real
and local world accessible to the experiment. Non-locality and non-reality are
concurrent features of a further world, the quantum world, that can be not only
guessed but also implemented to understand the microscopic properties of mat-
ter.

It is easy to generalize this result to the case where the string is
non-homogeneous simply considering another possible chance of defining the
link between Oy and both X and Ot via the trial positions x/k, and
St/k, , ie. introducing two different proportionality factors k, and k, con-
cerning separately the previous 0X and ot. In this case Sy is defined via
these generalized increments, both still unknown and arbitrary of course, where
however the functions k; and k, prospect a new result even more general
than (2.3). Now let us repeat the previous steps. To modify the correlation of
oy upon OX and Ot via the respective factors k, and k,, multiply first
both sides of (2.2) by Kk, still keeping the definition 0X =Vdt although with a
different expectation value of the resulting local v. So the identity

oy k, Sy
k, —/—=2"2 k =k (xt 2.5
Yosx vttt (%) @3)

yields the further identity according to (1.12)

5(k1 5—"[/) = 5(ﬁ5_‘/’j (2.6)
oX v ot

and thus, dividing both sides by oX,

i(kli/’J:i k oy . Sx=vét (2.7)
oX oX vot\ v ot

formally the Equation (2.7) results from two steps, taking first the changes (2.6)
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of the quantities at both sides of (2.5), which are subsequently related to JX
and Ot to obtain (2.7). Of course the limit 6 — 0 is not implemented at this
intermediate step, as this would mean differentiating the quantities at both sides
before having introduced the second function kK, ; instead it is convenient to
keep still finite changes of dX and ot , which again can be further worked out
regarding them like any finite physical variable, to introduce k, too. Write
thus without loss of generality

i[klfs_‘/’):iﬁ[kzg_'/’j, LN Y
OX\ " OX) Vvt ot VARRTA

being V, a constant velocity by definition; therefore
i(klﬂJ:izi(kz 5—"’) v’ :vov:vgﬁ. (2.9)
ox\ T ox ) vt ° ot k,

Now it is possible to infer from the Equation (2.9) the pertinent differential
equation once more via the position & — 0 that implies thus a new local func-
tion w > 9, ie

%(klg—fj = V%%(kz %), g=9(xt), v =Vv(xt). (2.10)

The particular result with k, =const , which thus can be included in k; (X,t)
at left hand side, yields the well known equation of the wave propagating
through a non-homogeneous string with one fixed extremity. Obviously the
functions € and 9 fulfilling the respective local limits implied by (2.4) and
(2.10) are different; is indeed different the local behavior of either function cor-
respondingly to the respective differential equations. The notation emphasizes
that 6 # 3: these functions describe different physical systems because of the
different correlation of o with X and ot.

The outcomes (2.4) and (2.10) highlight the strategy of the present paper: the
arbitrary function y initially introduced according to (1.4) to describe in prin-
ciple the physical properties of any system is implementable in various ways,
depending on how is expressed the possible correlation between its change Sy
with respect to that of its dynamical variables X and Ot . In other words the
crucial point is not the analytical form of ¥ , but how it changes as a function of
oX and Ot: whatever ¥ might be, in fact this procedure identifies itself the
possible kind of problem and outlines its mathematical solution as well via the
resulting differential equation.

These results are not accidental outcomes inherent the explanatory examples
just carried out; in effect no “ad hoc” hypotheses have been made on the con-
cerned systems, e.g. homogeneous or non-homogeneous string, having simply
introduced two different ways of describing the local change, ie. the evolution,
of v.

Let us exemplify further possible ways to handle oy and 5%y to confirm
further the general worth of this strategy. To this purpose multiply both sides of
(2.9) by Vv'* so that
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v o (ldw ) _ S (kov ) (2.11)
OX\ OX ot\ ot
which suggests the following definitions according to (2.8)
o(pv
VOV@=M:§, p:kl5_l//, g:kzé‘_l//_ (212)
OX ot ot OX ot

As the unique Equation (2.9) cannot specify both k; and Kk, , which are still
undefined, nothing excludes in principle the chances k, #k; or k, =k, . Yet,
even so, it appears that the positions (2.12) are not merely formal. To under-
stand the physical meaning of the “new” quantities p and ¢, note that the first
equation implies

5(pvy)=0e, ie pv,=e+const, k =Kk, (2.13)

By definition Je=g,-& and S(pYy)=p,vy—Pyv=0 , whereas
& <e<sg and pVv, < pv, < p,Vy; of course all quantities labeled “1” and “2”
are arbitrary. As it possible to multiply side by side these equations, write
VoS ( PV, ) = £de +constSe . Intuitively &8¢ should read & (82 ) / 2 with nota-
tion that avoids confusion between Jg° = (&,-& )2 and & (52) =g - in
effect if & is specifically regarded as mean value within its own allowed range
S of variability, ie. &=(¢,+¢,) / 2, one finds
ese=(g,+8)(&,-4)/2= 5(82 )/2 whatever &, and & might be. The
same reasoning for pv,0 ( pVO) yields &5(pv, )2 / 2. The idea of local variables
¢ and py, allows an interesting implication noting that in general
8¢ = (& const) ; so merging (2.13) one finds
gé(pvo)2 :%5(5)2 +(conste) (2.14)

ie. (pv,)’ =&®+2consts . Also, since &+ 2conste = (& +const)’ —const?,
then

&% =( pvo)2 +const?, &' =&+ const. (2.15)

To examine either chance, calculate with the help of (2.12), (2.2) and (2.9)

crpu=k, ¥y kl‘g—"’ﬁ=(kl+k2)5—‘/’=[1+ﬁjg =[1+l]g. (2.16)
ot ox ot ot K, Vv,

Regarding separately the addends at the initial and final left and right hand

sides, this chain of equations is consistent: & and pv at the left hand side cor-

respond respectively to & and (V/ V, )S ;in effect p=¢/V, is nothing else but

(2.13) with const =0. This justifies regarding p and & of (2.16) as momen-

tum and energy in agreement with (2.23). Yet another chance also consistent
with k =k, is

k, =—k,, (2.17)

ie. e+ pv=0 so that v=-v,: in effect vis actually velocity component de-

fined by 0X during the time range ot .

The well known Equation (2.15) will be inferred again later; these short notes
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aim to justify preliminarily the positions (2.12) according which, regarding from
now on V, =C with usual notation, pand & are nothing else but momentum
and energy of a relativistic free particle. Simply regarding p and & as local
random values in their allowed ranges op and J¢, ie anticipating here the
concept of quantum uncertainty, it also appears in (2.14) why v, must be upper
bound: if not, then p necessarily finite in its finite range op could be consistent
with an infinite energy &' allowed by diverging d¢ once multiplied by a val-
ueof VvV, > 0.

So the finite value of cfollows as a corollary.

Also, it is not surprising that the energy is defined an arbitrary constant apart;
it will be shown shortly, however, that the constant has in this context a peculiar
physical meaning. If k =Kk,, then v=v, and thus ¢+ pv=2¢ ie &=pC.

The implications of this chance will be examined in the following.

2.1. Diffusion Equations

With v =V, =c, according to (2.8), the Equation (2.11) reads

2 ’
E(M}:% l/,'ZKZﬂ, K (xt) =k, (x.1); (2.18)

ox| ox st St

since it is certainly possible to introduce an arbitrary function g such that

goy =0y’ ,being 7 atime dimensional constant, this equation reads

S (. oy oy 2 K 9
ZID= =22, D=V2, Sy'=268y, g=g(xt). (2.19
5X( §Xj St (L v'==dy, g g(xt). (2.19)

Whatever the function k,/g might be, D has physical dimensions of diffu-
sion coefficient; in effect with the position 0 — 0, which implies the local be-

havior of ' described by w'— S, the last equation reads

o( 98 B )
&(D&j_&, D=D(xt), f=B(xt). (2.20)

This is just the general form of diffusion equation in a homogeneous and iso-
tropic medium in the absence of internal sources or sinks. But diffusion of what?
Although f is by definition dimensionless function, two relevant examples are
reported below. To this purpose are anticipated here for clarity the concepts of
mass and energy 47; both concepts will be inferred later self consistently in the
frame of the present theoretical model.

It is possible to multiply S at both sides by a constant mass per unit volume
m, /V, 5 so the equation

ﬁ(oﬁ}ﬁ, c=c(xt)=2M, (221)
ox\  Ox ot V,

where Cis an appropriate function describing the local value of mass density,
concerns the matter transport function under non-equilibrium concentration
gradient. It is known that other important phenomena fulfill (2.20); in fact the

extension to these cases, e.g. the Fourier heat diffusion, is also possible in an
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analogous way. Implementing a different dimensional factor to the local func-
tion [, ie multiplying both sides by an appropriate constant energy ¢,, one
finds the famous equation

0 Oc) Oe

—|K—|=—, e(x,t)=p¢ =pKT,, K=K(xt), T= =T(xt) (2.22
2(KE)-Z x=pe-s (1), T=4T,=T(x) @22
where now with usual notation K replaces D to express the heat diffusion coeffi-
cient simply identifying e(X, t) =kT.

Note that the present strategy to infer information about physical systems re-

veals unexpected links between seemingly different laws: it is significant the fact
that elementary manipulations of the equation of vibrating string lead to the

diffusion equations.
2.2. Energy and Momentum

The Equation (2.8) reads according to (2.9)

op 1 o¢ oy oy
- =k —=, =k, —~—, k =k, v=c 2.23
SX 2 ot tex | ST s T (223)

because of course the positions (2.12) still hold also in this particular case. This

equation can be implemented in two ways.

The first way is
spst_spl_1 (.20
SXx e dev
and thus the second equality yields
5p =6 (2.25)

Here v still appears because the ratio §x/St is explicitly present in (2.24).
The ranges explicitly written as dp=p,—p, and de=¢,—g by definition,
where of course the quantities labeled with subscripts 1 and 2 are arbitrary, yield

p v p Y e
——& =P &
2 2 1 1
c? c?

this result reads therefore

p=—¢& PSp<p, §eles, (2.26)

where pand ¢ are random values by definition included within the respective
ranges.

The second way is highlighted rewriting (2.25) as
5(pc) &(¢/c)

oX ot

which yields

op,0X =g, 06t =const=nk, p, = £ &, = PC; (2.27)
c

the constant N7, required to fulfill products of different variables, will be justi-
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fied soon below; the notation emphasizes that p, and &, are not constants.

Thus, in agreement with (2.2), one also finds

_OX

e =vop,, v=2% (2.28)
%o =VOP, St

A few remarks help to simplify the notations in the following:

— the subscripts of op, and g, will be omitted as both ranges are arbitrary,
so they actually symbolize any sizes of the respective dp and J¢;

— the velocities vand care profoundly different, as the former is defined as ra-
tio of two range sizes whereas the latter is a universal constant of the Nature;

— the definitions of two “new” quantities, momentum p and energy &, have
been guessed in (2.23) by dimensional reasons according to the constant 7,
once having defined dimensionless the coefficients k;, and Kk, .

The lack of specific assumptions on p and &, e.g. about the sizes of their al-
lowed ranges, implies their physical definition on mere dimensional basis. At the
moment 71 has been formally introduced in (2.27) as mere proportionality factor
of a constant, 7 ; dimensional reasons are enough to justify this position. In the
following, see next Equations (3.1) and (3.2), it will be shown that »n is actually
an arbitrary integer, whereas the pertinent reasoning will also explain why the
physical laws need quantization. The Equation (2.27) is particularly interesting
as it correlates the products 6xop and Jedt of four ranges of different dy-
namical variables, regardless of the necessity of the position d — 0 and re-
gardless of the range sizes; despite all changes of dynamical variables are arbi-
trary, the fact of having introduced a relationship between X and St im-
plies the general and non-local character of this connection.

Consider now the Equations (2.28) and (2.26): the former concerns ranges,
the latter local values. Let us show that relevant physical information is obtaina-
ble merging these equations. Multiplying side by side

2

Je =Vop, E:C—p (2.29)
Vv
one finds
&0 =C2pop; (2.30)
thus (2.30) is compatible with
&% +const’ = ¢? ( p? +const”). (2.31)

So follow three relevant equations

v
p=e—, & =( p(:)2 +const?, const® = const"v —const’ (2.32)

c
Introduce now the boundary condition p=0 to which corresponds
&=¢g, #0, because in general the third equation is different from zero; strictly
speaking, in effect, there is no reason to expect that &, is necessarily null too.
So this boundary condition yields &, =+const ; moreover it implies defining a

“new” quantity m not yet explicitly mentioned hitherto although implicitly
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inherent the physical dimensions of pand ¢, ie

lim2 =0 _m (2.33)
v—0 v Cc

so m is the rest mass. Calling cthe constant velocity V,, with usual notation, the
last result reads thus
v 2
p=e—, & =(pc)’ +(me?) . (2.34)
c
Clearly the particular case &= pC corresponds to V=C, which however re-
quires M=0 in the second (2.34). It is immediate to verify that the two Equa-
tions (2.34) are consistent for m#0, as they imply the Lorentz factor
N / ¢’ , whereas it also follows

2)2 2
L .

1—(v/c)2 ' 1—(v/c)2 '

The second equation is compatible with £p; this is not surprising because

actually the component of p along an arbitrary direction can have both signs.
Much more interesting is the analogous conclusion for *¢&, which implies states
of negative and positive energy separated by a gap 2¢.

Note that in addition to the concepts of mass, momentum and energy, follow
from (1.11) and (1.12) the constancy of light speed and Lorentz transformations
of energy and momentum.

A problem however arises now about why the first (2.34) is consistent with

pc=¢ for v=cC whereas both (2.35) and the second (2.34) itself do not. A ra-

tional answer to this question will be given in the next Section 4.3. Note at the
moment that the factor ¢2/V of (2.34) yields ¢?/vv =length, being v an ar-
bitrary reciprocal time; so, calling “wavelength” the new length A defined in
this way and multiplying both sides of the first (2.34) by v, one finds
g/v =const = pA. Thus

const c
Z_ const, p= , A=—, (2.36)
v A A%

where obviously const=h;so v=c/4 is defined even for Vv=c. These posi-
tions, here reasonably guessed, are easily verified starting again from (2.34) re-
written as p=€5X/ ¢’st. With the help of (2.27), trivial manipulation turn

equivalently this result into both forms

(pc)o(pe) n o (g/c)d(e/c)

=energy =—, -—————==momentum = i

ot p oX
In both cases, dimensional considerations confirm the validity of the three
positions (2.36), regarding in particular X <> A: ie. the range size X cor-
responds to one or more momentum wavelengths, the range size Ot corres-
ponds to one or more frequency quanta. This suggests that actually A=n4,,
with n=integer, which formally is compatible with the constant appearing in
(2.36) as CONSt =n# as in effect it has been guessed in (2.27). Therefore it is
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possible to write, in agreement with (2.2),

no1 h 1 2n
E,=—, —=2mv, P,=— =—

' , , —= (2.37)
ot ot oXx ox A

It is interesting the fact that the Equations (2.36), pillars of quantum mechan-
ics, are obtained contextually to the relativistic expressions of momentum, ener-

gy and rest mass.

2.3. Lagrange and Hamilton Equations

Write (2.28) as

s5p_o.
st &x’

rewriting left hand side via (2.27) with n=1 for simplicity, this equation reads

then according to (2.23)
EAIE N
St\ox) ot\sx/st) oOx

5(5&‘) o¢ . OX
Ofoe)_08 530X
ot\ ox OX ot

and thus

Also now the general concept of energy takes physical meaning via the limit
0 — 0, which implies € > ¢ as well; hence the result is

o(op)_op .
a(&j_ax, $=¢(x,%). (2.38)

So ¢ is the particular local energy resulting from & whose local behavior is
described just by this equation. It is easy to realize that the resulting ¢ turns
out to be Lagrangian energy. The most intuitive interpretation of ¢ compatible
with both sides of (2.38) is indeed

9 _ =k, p=2, (2.39)

OX P OX ot

as all of this is coherent with ¢ equal to energy, these equations define ¢
reasonably consistent with the Lagrangian ¢=T—-U of a physical system. In

effect defining

ouU
S=|gdt, F=——,
j¢ OX
one finds
0S 0S o¢ op
—=p, —=|-Tdt=|—"—dt= 2.40
ot ¢ OX J‘6x -[at P ( )

in agreement with the well known definition of action S. Moreover, the second
(2.39) yields
_op__u _o(T-V) o

- == T T =5p=2T 2.41
P OX OX OX OoX P ( )
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owing to Euler’s theorem of homogeneous functions. Hence
X%—¢:H:T+U. (2.42)
OX

It is immediate to conclude that (2.42) yields the Hamilton function.

As the Equations (2.3) and (2.9) have sensible implications, (2.4) and (2.10),
whereas (2.39) and (2.42) allow describing correctly the dynamics of any particle,
the present approach appears significant: a relationship between space and time
ranges OX and Ot has been established even without knowing anything
about the initial y, simply admitting possible relationships between arbitrary
) (§X) and 0 (5t). Once more, however, it is worth emphasizing that every-
thing follows via (2.27) from (1.11) and (1.12) only.

Instead of attempting to explain some particular physical event on the basis of
the intuition about its presumed theoretical foundation, we started from arbi-
trary changes of an introductory function, v, which is not “a priori” specified
but rather is “a posteriori” identified case by case depending on its possible local

change described by the analytical form of the pertinent differential equation.

2.4. The Group Velocity

In (2.2) vis defined by the time range Ot necessary for a particle to travel
ideally the range size OX.Note now that (2.1) reads formally
ﬁ:@, 50):5_‘//, 5k:5_'//'
st ok ot X
where @ and k are two “new” quantities called frequency and wave vector re-
spectively; in this case the concept of velocity at the left hand side is different
from that of (2.2). These definitions introduce a further concept of velocity, be-
cause at the local limit 6 — 0 one finds
X _0o (2.43)
ot ok
It is immediate to show that also the positions (2.36), in particular the third
one, allow calculating consistently the group velocity of a matter wave packet
through the following simple chain of equations. Implementing ¢ and Jp
with the help of (2.28) one finds

V:éz §‘i1 = 527“; 2@, K=27’Eﬂ_l, Q=2nv (244)
op o o2nl oK

whatever const might be. This suggest a possible quantum definition of veloc-
ity additional to the direct ratio between space range O0X and time range Ot.
Once more the position J — 0 implies the local definitions Q — @ and
K — K, whereas vturns to the first equality into local group velocity v, Le.

_Ow

=22 2.45
= o (2.45)

Eventually, note that the third Equation (2.36) alone is enough itself to con-
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firm this result. Write

;L:E, nc:ﬂvzﬁ, n:E; (2.46)
1% k v

as Con = AV + VoA, trivial manipulations yield

ciﬂzﬂzﬂ+nc:nc—5—:,
oA oL oA
whence
2
5‘; —:nc—cﬂﬁ—:c(n—i@j.
oA oA oA
Therefore
yo_
n—ﬁ@
oA

yields for 6 — 0 the local dispersion equation

V =— — (2.47)

Le. the well known group velocity of a matter packet wave.

In summary, relevant equations of physics are simply inferred and described
through various chances of changing an arbitrary function ¥ of time and space,
regardless of its early specific physical meaning and without need of introducing
initial hypotheses. This concerns crucially the functions k, and k, introduced
in general in (2.8) and (2.9), whose specific analytical form determines the cor-
relation of oy with 6X and Ot: as it has been just highlighted, if k =Kk,
in (2.9) then one obtains the diffusion Equation (2.10), if instead Kk, #k, then
one obtains further results concerned later thanks to the additional freedom de-

gree allowed to K, .

2.5. The Relativistic Velocity

The starting point is the first Equation (2.34), which must be rearranged in order
to find a sum rule between two arbitrary velocities v, +v, and their corres-
ponding Vv, and Vvj, e.g. in two different inertial reference systems Rand R’.
As V= 8/ pc’, calculate first

& & 1 1 _ 1 BRAZ
>+ sE—t—=—, Vy=———]
p,c p,C v, Vv, V Vv, +V,

o]

in this way one has introduced v, +v, through the invariant momentum. It is
necessary now to define in general v, in a form suitable to relate v, +v, and
V, +V,, e.g. in another reference system. A reasonable position is the following
linear combination that does not involve neither v,v, nor v)\v,, ie.

c? c?

Vv,

o T s ’ !
Vi+V, Vi+V,

so that the sought result is
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v, +V,

ViV =2
1 2 2
vV, /c? +1

(2.48)

Accordingly any vsummed to or subtracted from cstill yields c.

3. Preliminary Implications of the Model

The results so far obtained are enough to get four relevant consequences, ex-

posed below.

3.1. Statistical Formulation of Quantum Uncertainty

Write (2.27) as
OX0 p =nxconst = dedt (3.1)

being n an arbitrary integer. The reason of this definition is to make (2.27) in-
dependent of a specific reference system. Suppose that (3.1) holds for ranges de-
fined in R whereas &x'6p’=n’xconst holds for that defined in any R’, with
N' arbitrary integer as well; the prime symbols account for the respective Lo-
rentz transformations of range sizes. Actually the reference systems are indis-
tinguishable because neither n nor N’ are specific numbers, they instead sym-
bolize by definition whole sets of allowed integer numbers: so any specific n of
the first set that turns into a new specific N of the primed set does not imply in
fact distinguishable sets of the respective reference systems. This point is better
understood introducing appropriate measure units X, Pp,&p,tp tO express
the respective range sizes; for example it is possible to express the size of X as
N XXo ; Le. N is a dimensionless length expressing the actual range size in
Xp, units.

Is evident the hint to the well known Planck units, whose choice implies
Xp Ppy =1 = €ptp by definition. Without having introduced the gravity con-
stant yet, this explicit reference appears here premature; it is enough to emphas-
ize that the Planck units fulfill this equation by definition. The crucial fact is that

*

n ,n.,n , the couples Xy, pp and

introducing the dimensionless lengths n,,n;,n_,n

&pp,tp fulfill the condition X, pp =é&pty . In this way, dividing side by side
with the Equations (3.1), one finds

oXop =N= ﬁﬂ, const =71 = Xp; Ppy = Eptp-

Xp1 Pri &p Loy
It implies that with this choice of measure units, the statistical formulation of

quantum uncertainty reads simply
nn, =n=n.n (3.2)

the stars indicate arbitrary real numbers, n is instead an arbitrary real integer
number. This reasoning shows that in fact the Equations (2.27) hold regardless
of any reference system; otherwise stated, the problem of specifying the refer-
ence system where are defined the four uncertainty ranges is physically mea-

ningless, provided that the local dynamical variables are systematically replaced
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by respective uncertainty range totally unknown in any physical problem. This
holds also for the derivatives, which are defined in the present model as mere ra-
tios of uncertainty ranges arbitrary, unknown and conceptually unknowable: for
example is meaningless to inquire whether JX refers to Cartesian or curvili-
near or cylindrical reference frame. What is crucial in this reasoning is that the
four starred numbers be not specifiable and unspecified in any physical problem
formulated via the Equations (2.10); in short, the quantization of n is necessary
to make (3.1) independent of any specific R. For clarity and self-contained expo-
sition, this is shortly sketched in the next subsection. The results quoted here for

completeness are reported more in detail elsewhere [4] [5].

3.2. The Old Quantum Mechanics

It is usually assumed that the quantum problems are tackled via the operator
formalism of wave mechanics, introducing operators and wave equations. For
comparison purposes, this section sketches very shortly results concerning one
case where the wave equation can be exactly solved: the non relativistic hydro-
genlike atom. The aim is to show that identical information is obtainable via a a
“corpuscular approach”, which does not require solving any wave equation; it is
enough to replace X — X and p— &p, instead of —#i0¥/0x, and proceed
via elementary algebraic manipulations. These results help understanding how
the relativity fits the conceptual frame so far outlined.

The starting point is the classical component of M =rx p along an arbitrary

direction defined by the unit vector W is M, =rx p-w . Consider thus

M, =(ArxAp)-w=(wxAr)-Ap=AW -Ap, AW =wxAr,

which introduces a range of possible values for M, includedin AM.If Ap
and AW are orthogonal, then M, =0 ; else, rewriting AW -Ap as
(Ap-AW/AW)AW  with AW =|AW|, the component *Ap, =Ap-AW /AW
of Ap along AW yields M, =+AWAp,, . Thus, according to Equations (3.1),
M,, = =£l%, being / the usual notation for the integer quantum number of angu-

w

lar momentum. So M, is effectively a multi-valued quantized function because
of the uncertainties initially postulated for I and p. One component of M
only is actually knowable; the same considerations for the y and x components
would trivially mean changing w.

Just this conclusion on the physical uniqueness of M, suggests that the av-
erage values <M x2>, <M§> and <M ZZ> should be equal; so the quantity of
physical interest to describe the properties of quantum angular momentum is /
as a function of which A is now inferred as well. The components averaged
over the possible states summing (lh)2 from —L to +Z, where L is an arbitrary
maximum value of / yield <|V|i2> = ::iL(hl)z /(2L+1) Le.

M? :i(W): L(L+1)%, M

=ln. (3.3)

w

Consider the quantum system formed by a particle in a central force field, e.g.
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an electron around a nuclear charge; the concept of force will be justified in the
conceptual frame of (1.12) and (1.11). Assuming the origin O of R on the nuc-
leus, let &= p / 2m—Ze2/ I be the classical electron energy, where m is the
electron mass. As p° = p} +M 2/r2 , putting again p, > Ap, and I —>Ar,
one finds

s m o ze

+ -=. 3.4
2m  2mAr?  Ar (3.4)

&

Two numbers of states, 7.e. two quantum numbers, are expected because of the
radial and angular uncertainties. In effect the Equations (2.1) and the quantum
Myield &=n’n*/2mAr® +1(1+1)n* /2mAr® — Ze? /Ar , which reads

2
[(1+1)7 £ b Z2%*m (nh/Ar—Zezm/nh)

] 0 _—! go = . 3.5
2mAr? ° 2n%i? 2m (3:5)

0o

Minimize & putting &, =0, which yields
n’n® (az\' h e?
Ar = = —| nA., =, a=— 3.6
Ze’m ( n ] for e mc hc (3.6)
and thus &, :[I(I +1)/n? —l:| E,/n?;s0 1<n-1 in order to get £<0, ie.

a bound state. The reason of both ways to express Ar will be explained in the

section 6. Here are of interest the electron energy levels and rotational energy of

the atom as a whole around O

2 2 72 (1 +1 s
g =L g -2, :EgEo—em

TN A Y Cont (3.7)

Emin = o T Erot»
The physical meaning of Ar is related to the early Bohr radius, ie. &, is
due to charges of opposite sign delocalized within a diametric distance 2Ar
apart. So n and / are properties of the phase space, ie. numbers of allowed
quantum states.
Consider now the identity Ar/n# = wAr/nhw. So it is consequently true that
2nAr v 1

=—, V=wAr, e€=nho,
nh e p

where the last equation of the chain introduces the momentum p by dimensional

reasons and reads

2nAr=nil, p= % (3.8)

It shows the link between De Broglie momentum, Planck energy and condi-
tion NA=2mAr, according which an integer number of steady electron wave-
lengths A is defined along a circumference of radius Ar along which the
electron wave propagates at rate v. For such electron waves one finds

2 2
Eq :—QEE:—(EJ me. (3.9)
n 2 n 2

The first chain of equalities will be explained in the next section 6, in particu-
lar as concerns the evident link of pc and mc® with E,. Note here that intro-

ducing « to express the quantum energy levels implies defining the De Broglie
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momentum as a corollary, in agreement with (2.36) and (2.37): appears inter-
esting that the energy levels &, of the system are linked to the kinetic energy
pc of the electron moving along the circumference of radius Ar via the coeffi-
cient @Z/2n. On the one hand, this result emphasizes the electromagnetic cha-
racter of the interaction between electron and nucleus; comprehensibly Ar is
proportional to « ', as the coupling constant determines the force exerted in
an interaction, Ze. the greater o the smaller Ar. On the other hand, it also
appears that the key role of the quantum uncertainty in determining the allowed
energy levels (3.7) also evidences the kind of interaction itself.

These results confirm that the operator formalism and the uncertainty equa-
tions are equivalent in describing the quantum systems. As concerns the spin,
the paper [6] [7] has shown that it can be inferred without additional hypotheses
from the quantization itself. Simply rewriting identically
M2 =(l -1-21/2)2 ? —(h/Z)Z , one finds

M2 +(h/2)2 +(I +%)h2 =M? :(I +%)KI +%)+1}h2 (3.10)

after having added (1+1/2)#® at both sides. Trivial manipulations of the initial
M exposed in the quoted paper show that

M =3(3+0)R%, I =1, +],, |=% (3.11)

S

and that in general these consideration introduce the spin component |'/2%;
being of course |" an arbitrary integer, the quantum uncertainty implies itself
the existence of bosons and fermions. No information is necessary about Ar
and Ap,, which in effect are unknown and unknowable because of the quantum
uncertainty.

Besides its inherent worth, the hydrogenlike model has been explicitly quoted
here because it also provides useful information about the characteristic lengths
in the atom, the first of which is of course the Bohr radius inferred in (3.7). The
first powers of « scale further significant lengths starting from this radius,
whose essential form reads Iy =7’ / e’m as a function of the fundamental con-
stants. One infers the following lengths

2 h ) eZ s e8
rh=—, nhLha=A.=—, hLha =f=——, hLa =r, = (3.12)
B e?m’ B & mc’ ° * me?’ B N Rme®

whose values are

r; ~5.3x10° cm, 4. ~3.6x107" cm,
r,~28x10" cm, 1, ~2.4x107" cm.

the Bohr radius scales r; down to A, electron Compton length, and then to
I, , classical electron radius. Further lengths, shorter and shorter, will be intro-
duced later to extend these definitions and sketch short range nuclear forces.
Indeed the fact of having found these well known specific lengths suggests that
even the fourth position should reasonably have its own physical meaning at the
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smaller o scale too; if so, I, can be related to nothing else but the scale of
lengths within the atomic nuclei, whose sizes in effect are known to fall between
< 10 cm (proton of hydrogen) to ~ 102 cm (heavier nuclei).

3.3. Velocity Dependence of Mass

Owing to (2.28), ¢, —¢ =Vp, —Vvp, reads &, —vp, =const=g —vp,; so (2.35)
yields

mc? — mv?
& —Vp = ————— = const.

J1-v2/c?
This result is more expressively rewritten in the form mc*y1-v? / ¢’ = const
fulfilled by

m,c® =const, m, =myl-v?/c®, m=m(v). (3.13)

The physical meaning of this result, the dependence of m on vvia the constant
m, , will be clarified soon below. In the following are introduced three interest-
ing ways to implement further the Equations (2.25) and (2.34), to show in par-
ticular how results of special relativity are obtainable regarding the local dynam-
ical variables & and pasrandom and unknown values defined in the respective

quantum uncertainty ranges o¢ and Jp.

3.4. Quantum Correction to Special Relativity

The strategy is still that followed to find (2.15) and to infer (2.31) and (2.32)
from (2.29). Consider the Equation (2.25) and (2.26) rewritten in the particular

case V=C as
d& =cop, £ =pc, & <& <&, P<P<P,; (3.14)

the former equation defines the maximum energy range J¢” allowed to the lo-
cal & consistently with the given momentum range &p allowed to any local
p. Here energy and momentum ranges are linked each other, whereas in fact
they were independent in the Equation (2.28) owing to the arbitrariness of v; so,
the upper limit allowed for v implies an upper limit to the size of d¢  com-
pliant with any possible op. Anyway this latter is arbitrary; thus both energy
and momentum ranges are in fact arbitrary as well, but now correlated. The
second position emphasizes the local dynamical variables & and p allowed in
the respective ranges. The fact that (3.14) is not mere formal way of rewriting
(2.25) but contains additional physical information, is easily proven: multiplying
side by side both (3.14) one finds 6(5* )2 =c?5( p)2 ie, as in (2.14),
& +const’ =( pc)2 +const”. So the second (2.34) is instantly inferred via the
correlation between §p and J¢  through c

However just the fact that the (3.14) appears suitable to be directly linked to
(2.34) rises a quantum problem. Replace (2.36) in the Equation (2.34) via the po-
sitions & =hv" and thus p=h/A", being A" =c¢/v" in fact implied itself by
the third (2.36) for v=c too. Then (hv* )2 = (hc/ﬂ* )2 +(mC2 )2 requires
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M =0. On the one hand nothing hinders in principle to express (2.34) via the
corresponding quantum energy and momentum, in agreement with the dual
wave/corpuscle character of matter. On the other hand (2.34), as written, seems
inadequate to allow both m=0 and (2.36). It is reasonable to expect that fur-
ther terms to be included in (2.34) could overcome this difficulty: the attempt to
generalize the standard result of the early special relativity is not only legitimate
but also necessary.

The subsection 3.2 has been explicitly enclosed in the present exposition to
emphasize that the quantum eigenvalues leave out any information about the
range sizes; the Equations (3.3) to (3.12) elucidate this assertion. In other words
the previous results obtained implementing op = p,—p, could have been
identically obtained considering any other &p’= p, — p,, as the range boundary
coordinates are inessential as concerns the quantized eigenvalues of angular
momentum and energy. The same holds of course even implementing a linear
combination of momentum ranges, e.g. op"=p,—p/ =acp+hbdp’ via the
constant arbitrary coefficients a2 and b. This means that the local value p defined
by p<p<p, could be identically replaced by any p’ defined by

p, £ p' < p;; the same holds of course for any p” defined by

ap, +bp; < p”" <ap, +bp, : the only essential requirement is that any range sizes
oX and oJp fulfill (3.1), whatever the boundary values might be. Now let us
introduce in the relativistic domain this peculiarity of the quantum world. This
means that the local values of pc and & defined the respective ranges (3.14)
can be replaced by linear combinations of momentum and energy.

The chance of demonstrating the actual effectiveness of this reasoning has
heuristic worth in demonstrating the close connection between quantum and
relativistic theories.

In practice, to generalize the standard relativistic result (2.34), implement
again the first (3.14) with the same steps from (2.29) to (2.31) and then to (2.32),
but rewriting the third and fourth positions as

* * %2 * 2
& <¢gto,e +o,6°2¢&, p < Po+o,Pp+o,,P <p,

o, and o, are dimensionless arbitrary constants, a and b are arbitrary con-
stants having physical dimensions mass™ and expressing conveniently the o,

coefficients. The equations to be implemented are thus
Se* =cop, o-gg*—C%g*z =0, pc—ap’ +e,, (3.15)

where in fact a#b#0 extend the previous procedure simply introducing ad-
ditional & and p* terms with respect to (3.14) while however keeping a
physical meaning still compliant with that of ranges J¢~ and &P, as it appears
via dimensional considerations. In other words, the second (3.15) still has the
usual form € =&(Pc)+const. Repeat therefore exactly the same procedure
just outlined to merge (3.14), i.e. multiply side by side the second and first (3.15)
with the a and b terms exchanged of place; omitting for simplicity of notation

the asterisk, one finds
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o,£06 +ap’de =bpesp+o,pc’Sp+35(e,pc), (3.16)
which yields
l5(0- &) =15(0' (pc)z)—ap25g+bpgﬁp+5(e pc)
2 ¢ 2 P é
and then
%5(0852 )= %5(0,, ( pC)Z)—5(ap28)+5(ea pc), b=-2a. 3.17)

Hence, reasoning as before, this result implies:
o,e? +const’ =, (pc)’ +const” — 2apZe +const, +¢, pc+const,.  (3.18)

As hold for (3.18) the same considerations carried out for (2.34), because also

the new terms ap’s and ¢, pc vanish for p — 0. Merging the constants, one
finds

2
o,6* =0, (pc) —2ap’s+¢,pe +(mc2) +e
5 (3.19)
const” —const’ =(mc?)",  const, +const; = ¢;.

The notation (mC2 )2 has been kept resulting from the primed constants like
in (2.32), in order that this equation reduces to (2.34) in the particular case
a=0 and ¢, =0. Of course the constants o, and o, can be included in
the respective energies; i.e. with the positions

p'=\Jo,p &=o.z a’=0p3;£,

2
g =——, mc’=,(mc*) +¢

(3,19) reads

e? =(p'c)? +(m'c2 )2 —2ap”e +elple. (3.20)

As expected, thanks to the higher order terms &% and p2 in (3.16) one
finds again an equation like the second (2.34) plus two additional terms
-2a'p”®e’ and €. p'c not present in the standard special relativity. The quan-

tum correction terms are negligible in (3.20) if —2a'p’’c’+e.p'c < &, ie. if
glig a

12 1At
m c 1
—2p—/,a+% <1 m ==, (3.21)
& g a

then ¢, and m, fix the scale where the quantum correction plays a significant
role. Moreover, if in particular €, < 2a'p’¢’/c, then is effective only the term
—2a’p'®s’ in (3.20). These points deserve attention.

First of all, replace &'=hv' and p'=h/1’; being again (hv')2 = (hc/i’)z,
(3.20) reads

2 2 2
(m'c2 )2 = 2a’%hv’—e;% = hv’[Za’%—e;J = hv'(Zmac2 jf‘z —e;]
h €
l,=—1\ m>2
“ mec 2
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hence (3.20) is compatible with the quantum condition (2.36) even for m'#0,
whereas M'=0 is also possible if in particular vanishes the quantity in paren-
thesis. The last inequality holds for A'=4,, because in general A'>4,, what-
ever A' might be.

Moreover rewrite the second (3.15) with the help of (2.36) as

2 2 h?
— (hv) =o,hv—

a a

+e€, V ZE. (3.22)

o.hv+ >+ €
A A

To recognize the physical meaning of this equation under the condition that
m, is the constant mass defined by the Equation (3.21), useful positions are:
h2 2 ﬂ’: 2 ’
——=mc"—, hv=rmc*, A=n4, r=no,. (3.23)
m,A A
The first one is an identity, whose left hand side is simply rewritten introduc-

ing the Compton length A4, of m,. The second one is a formal way to link hv
and maC2 via the parameter rto be defined. The third one regards 4 of (3.22)
as an integer multiple of A, ; in fact the conceptual difference between p defined
by (2.23) and p=h/A isthat X isa mere space range that can take in prin-
ciple any value, the wavelength A requires introducing quantized lengths nA,
which explains why anyway the quantization must be introduced via A in
na/ox of (3.1). Although this idea is introduced here as a reasonable input, a
previous paper [6] has shown that in effect a huge amount of interesting results
is accordingly obtainable. The fourth one will be explained after having replaced
the first three (3.23) into (3.22), which reads

C2
rhv+a£h—V= My (rap —izj+€—a. (3.24)
2 2 n 2

For sake of generality the notation emphasizes that N' defining r is not nec-
essarily coincident with 7 defining the ratio A/, . Is attracting the fourth posi-
tion (3.23) with N’ arbitrary integer that expresses the left hand side as o,

times the harmonic oscillator energy; indeed (3.24) becomes

W hvo omc*( 1 €
nhy +—= nNe,—— |+
2 2 o,.n 20,

Now it is necessary to express the fact that m, is a constant, which in fact

means regarding the quantum numbers n and N’ as proportionality factors
linking m,c*> and hv. The limit n'—o yields n'hv =(n'dp /2)macz and
thus, by comparison with the second and fourth positions (3.23), o, /2=0,;s0

the last equation reads

2
n'hv+h—V=£ 2n'c, —
2 2

¢ o.n?

&

€
+—2, o, ,=20.. (3.25)
] 20, P ‘

It appears that if m, =0, then ¢,/20, is the energy of harmonic oscillator
of frequency v . Analogous conclusion holds if &> =1/ 2(n’n)2, in which case
6 /2=n"v, +hy /2 with v, = v/N2n'n; as both nand n' are arbitrary integ-
ers, N'N must be regarded as a new arbitrary integer itself and thus anyone
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among the numbers already implied by n* and n'?. So v is an arbitrary
multiple of the fundamental frequency v, . The fourth position also allows ex-

pressing (3.24) as a function of quantum numbers only

n“c +n0‘9 =1 2n%c, — 1 +i G
2 2

‘ on’) o, mc*’
which yields
1 1
i 3 :—(nlo'gz +—2j (3.26)
m,c® 2 n

Next, inserting the positions (3.23) in (3.24) trivial manipulations yield

mY (2 (3 1,
— | =n'c,| 5-—"5|=n'o,| —5—=no,
m, n® myc 2n° 2

Clearly v appearing in (3.24) implied by @'#0 and ¢, #0 is different
from v previously found consistent with m=0 only; (3.20) skips this re-
striction.

It is known that (3.20) is a valuable equation of quantum gravity able to solve
three cosmological paradoxes [8]. It is hard to guess what has to do the cosmol-
ogy in this conceptual frame; but in fact this is not the correct way to regard this
equation. Rather it is correct to say that the additional terms due to a#0 and
b#0 add a quantum correction to the standard relativistic formula, actually
having quantum character itself being inferred from (2.30) and (2.31); then, once
having acknowledged this result, further studies also acknowledge that this cor-

rection has valuable cosmological implications as well.

3.5. Operator Formalism

The subsection 3.2 has shown that the corpuscular approach to quantum me-
chanics provides sensible results in agreement with the wave formalism. This
subsection shows that also the wave formalism enters in the conceptual frame
hitherto exposed. Implement the quantum relativistic Equation (3.20), noting
that

&" = (mc2 )2 +(pc)’ =(me+ip)(mc—ip)c?, &" =&’ +2ap’s—s,pc. (3.27)

Admitting that even the single factors at the right hand side have physical
meaning, it is possible to introduce imaginary momentum 7 and energy &
in agreement with the early positions (2.9) and (2.12); the momentum and

energy equations take indeed the forms
P=zin®’, e-sin, g - (3.28)
oX
being simply required
k, =Fik,, k,=xik,, k, =7

The correct correspondence of signs in (3.28) is indeed such that k; +k, =0
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and thus Pv+E& =0, in agreement with (2.17). Whatever the specific form of
v might be, replacing pand &” of (3.27) with the new definitions (3.28) one

finds
2
[mc+h6—y]}(mc—h5—v/j:—[ﬁé—wj ; (3.29)
OX OX c ot
in this way the Equation (3.27) turns again into a real form. Introduce now the
positions
2 2 2 2
d Z’ =i[5_l//j ' 4 '/; =i(5_l//J , (3.30)
ot ot ox' ox'
being
ox' =cot, (3.31)

which are justified soon below. In principle the positions (3.30) are compatible
each other because St and X' are arbitrary finite ranges that can be deter-
mined in order to fulfill both equations. Note that the more general positions
5%y [st? = q(51///§t)2 and &%y /6x% = q(é'!///é'x)2 , with ¢ arbitrary factor,
would have been in principle reasonable and possible; however g could be in-
cluded in m of (3.29), so its specific value is inessential; more important are in-
stead the signs of g, as it will appear shortly. Taking the upper signs (3.30), (3.29)

reads as follows

[ET Sy 1%y 18y 15%
SX* ¢ St VP Sstt VSt

The addend 52(/// v’St® has been summed and subtracted at the right hand

side in order to split this equation as follows

2
52"; —izéz"z’ —0, (Ej S 52"2’ . 52"2’ L SX2 =St (3.32)
ox® v° ot n c” ot ox

the first equation is still the precursor (2.3) of the D’ Alembert Equation (2.4) and
is clearly an identity 0=0 owing to X =Vot; the second equation only in-
volves explicitly m through its reciprocal Compton length. To show why, and
how to implement further these equations, note that the first couple of Equa-

tions (3.32) merged together yields

2 2 2 mCVZ
hz(gtlé/:hzvzé“//’ h25W:( )

X st 1-(v/c)?’

so that one finds

2
e ov (M) sty (o

2= 7 7 = 7 (3.33)
5(x/c)” 1-(v/c) o(ct)”  1-(v/c)
then the position
st =2% (3.34)
c
yields by consequence
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2)? ) 2
20V _ (me”) e Oy (M) (3.35)
5tl2 1—(V/C)2 ! 5X!2 1—(V/C)2

Reasonably therefore the positions (3.30) imply (3.32), which yield (3.35) in

agreement with (2.35). Hence

2 2)? 2 2
ihZ(‘s_'/’] =(L)2, ihZ(‘S_“’j _(m) (3.36)

st 1-(v/c) ox') 1-(vje)

It is useful to introduce now the local limit 6 — 0 of the Equations (3.30);
once more, the resulting equations take then physical meaning via this limit
condition, which introduces an appropriate function y = )((X,t) defined by
the local properties of ¥ ; also now indeed the consequent position ¥ — y
turns the Equations (3.30) into the respective differential equations that

represent the actual behavior of the particle. So

o’y ﬁzjz oy [6;()2
X _[x) —+ X = (X)), 3.37
o (8’[ P vl R A ALY) (3.37)
obtained equating the left hand sides of (3.35) and (3.36), are both fulfilled by
1
=Tlo t—t ) (X' =X )+n)+<, &= , 3.38
2 =7Flog(&(t=t,)(xX' =%, )+n)+¢, & oo (3.38)

being &, { and 7 three arbitrary constants. The second equation remarks
through the constants X, and t; that the physical dimensions of & are
(spacextime)’l . This equation, which emphasizes the space time range
(t—to)(x'— XO) already found in (1.7), will be also implemented in the short-

ened form
2 =Flog(étx'+n)+¢. (3.39)

An interesting corollary of (3.38) follows from
x =< F(log(8t/8t,)+log(5x%/5%,)) valid for 7=0. As
OX/8%, =mEx/mdx, =C,/C, strictly speaking C =m/Sx and
C, =m/Sx, =const are linear mass densities in the present one dimensional
model; of course in a realistic four dimensional space time Cand C, must be
intended as usual mass densities, as emphasized in (2.21) and in the next (4.13).
Consider y during a fixed time range, so that &t/5t, is regarded as a time

constant; then

x =constxlog(C/C,), const=¢ Flog(st/st, ). (3.40)

Although y is dimensionless, appropriate units clarify its physical meaning:
multiplying for example both sides by the energy &7 already introduced preli-
minarily in (2.22) but to be defined shortly later, one finds

2KT =F(u+p,), pu=KTlog(C/Cy), s, =cONSKT. (3.41)

Hence y is proportional to the chemical potential 4 an arbitrary space

time constant 44, apart.
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Eventually note that SX' and Ot' defined in (3.31) and (3.34) fulfill
Ox/S6t'=6X'/5t 5 this equation is also fulfilled putting &X' =6%/y and
ot' =yot with y arbitrary factor, in which case it reduces to identity. In partic-

ular ¥ could be the Lorentz factor, in fact introduced in (2.34); so one infers that
OXot =ox'ot'. (3.42)

is a relativistic invariant in different inertial reference systems. Moreover, divid-

ing both sides by v, write the identity

ok v 1y

= = v=—"o. 3.43
ST (3.43)

B i ’

W y st

With 7 equal in particular to the Lorentz factor /1-V? / ¢’ as suggested by
St and Ot', it is possible to regard the frequency V' as that related to v in
different inertial reference systems R’ and R Moreover it is also possible to
regard v as the frequency recorded by an observer moving in R at rate v with
respect to the frequency v, emitted by the source. Noting that v,c>wv.V, let
v be such that v,c=vv+vC so that v=v, (1—V/C). Thus replacing in the
second (3.43) one finds

V,:Vol—v/c-
v

This equation is nothing else but the Doppler shift of frequencies reciprocally
moving at rate valong their sight line.

As (3.39) shows that both signs of (3.30) are admissible, consider now sepa-
rately either sign of the Equations (3.36).

1) The negative sign yields

O 0 mc? mv
+in =g, zinl=p, &= =, p= =, (3.44)
ot X 1-(v/c) 1-(v/c)
which of course confirm (3.28); so, for d > 0 and thus ¥ — @, the local lim-
its read
0
iihaﬁ%:g, $ih£: p, @, :¢£(X’,t), ®y :(/)p(x',t). (3.45)

In these equations the physical meaning of £p is immediately evident: p is
actually a component of the vector p along the x axis on which is defined JX.
Instead t¢& is more interesting, as it indicates the existence of states of negative
energy.

Note that holds for (3.44) and (3.45) the same remark carried out for (2.3) and
(2.4): also now the left hand side of (3.44) are in fact not calculable explicitly be-
cause are indeterminate not only Sy but also 6X and Ot. However are in
principle calculable their limits for d — 0. Now also the relativistic quantities
(3.45) come from and are compliant with the non-real and non-local (3.44). In
effect even the Equations (3.45) bring back to the early postulates of the old
quantum mechanics, despite obtained from the relativistic (3.27): this is imme-

diately evident via the following positions:
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2 _ihow in ow
—log(¥), FinlogMor _, LMoY _
p=log(¥), F ¥ ot

PR g, W= (Xt/xt,). (3.46)

In this case ¥ has the same analytical form of y . This point deserves fur-
ther attention.

The relativistic equations (3.44) are implied by the invariant xt of (3.39), as
shown in (3.42); obviously, replacing xt with another function y, # y, the
Equation (3.37) would not hold. By consequence, in this case pand & in (3.44)
would be reasonably replaced by non relativistic quantities p,, and &, nu-
merically different but having however an analogous physical meaning by di-
mensional reasons: the notation emphasizes the non-relativistic character of
their classical approximation. Replace thus Xt of y in Equation (3.39) with
any function y, =y, (X,t) , putting for example v, =y, (X)l//t (t): with this
Newtonian position where time and space are independent entities defining dis-
tinct dynamical variables of classical mechanics, the Equations (3.39) turn re-
spectively into

T =E109(Sy +1)+ L0 v =W s
for simplicity of notation, the symbols of the constants have been kept un-
changed. Hence the first two Equations (3.44) turn into
in %zigm, in %=+pn,;
Sy, +n Ot

Put eventually 7 =0, for example assuming 77 proportional to C; as cis
infinite in classical physics, these equations take the well known form
.. Oy, )
tih—C =gl w,, FIh—C=p W, P =EPurs Eme =EEn
6t nrl//nr + 5X pnr l//nr p 5 p §

Clearly these expressions, suggested by the outcomes (2.23), agree with (3.28)
and specify via the limit & — 0 which function is actually involved by the
change symbol & . Hence

— al//ef ’ ’ ' .
=& Wy, +|h7: pl//ef’ p :gp, & :5{,‘, (3.47)

these results are the well known equations of the old quantum theory; the sub-
script “ef” stands for “eigenfunction”. The modern quantum physics was born
postulating these crucial equations, whence the importance of having found
them as corollaries: the present theoretical approach brings back just to early
formulation of quantum mechanics and its basic assumptions.
2) Consider now also the plus sign of (3.36), which yields
W _y Mmoo mv (3.48)

The Equations (3.64) correspond to the Equations (3.28), whereas the Equa-
tions (3.48) read h/(ieé't) = h/(i PSX), ie +edt=1pSx; this expression is a
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particular case of the Equations (3.1) regarding dp=+p—-0 and de=1e-0,
where the reference boundaries of these ranges coincide with zero momentum
and zero energy. Considering indeed the particular case +&,0t =+pox, and sub-
tracting side by side one finds again the expected more general result
t(e—&)0t=+(p-p,)dX in agreement with (3.1) as Jde=e-g, and
Op=pP—P,- So (3.48) link the operator formalism (3.28) and (3.67) to the un-
certainty equations (3.1) and their relativistic implications (3.44).

Note eventually that the Equations (3.37) are well known in the operator for-
malism P =—i70/0x , where in effect it is taken for granted that

p? = —h282/8X2 ; indeed (3.37) express nothing else but
p? = (—ih&/@x)2 = —1%0*/ox* previously inferred from (3.30).

In conclusion this simple approach has found the operator formalism and
contextually the uncertainty equation, both compatible with relativistic concepts.
These outcomes have several further corollaries, the most relevant of which are
shortly summarized in the following. Final remark to close this section. The
range products OXop and 0ot characterize the quantum uncertainty (3.1),
whereas the product OXot characterizes the invariant space time (3.38): the
connection between quantum physics and relativistic physics is comprehensible
corollary if space and time are mixed in either way. In this respect, what about
the other mixed term Jeop also possible in alternative to oXdp of (3.1)?
According to (3.1) it yields
23

Seop=nh
=P oX

=nF (3.49)

the “new” quantity F so far not explicitly concerned but only anticipated in Sec-
tion 3.2 for exposition purpose only, takes in this way justification and physical
meaning, it is usually known as force. The concept of pressure and energy den-
sity also follow from this result dividing both sides by the arbitrary surface Ax?
o€ 5 F

=h—. (3.50)
SXAX? NG

4. Some Classical Corollaries

Are concerned in this section several interesting outcomes still hidden in the
approach hitherto outlined.

4.1. The Fermat and Maupertuis Principles

The key equations are (3.1) and (2.25). Consider an arbitrary time range At
during which one particle moves between two coordinates X, and X, defining
the total path AX. It is possible to write

At=t,-t, OAt=0;

the second position expresses that the time interval is arbitrary but fixed by defi-
nite time boundaries within which hold the following considerations. Since AX
traveled by the particle can be imagined as the sum of elementary ranges X

corresponding to elementary time steps Ot , write At= Z5tk . Being both time
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and space steps arbitrary, it is possible to replace the sum with an integral and

write the following chain of equations with the help of (2.25)

At:‘f&_‘z nh I5p5x_ 5%

oc

Hence, integrating along an element dX of trajectory for § -0,

t
OAt=0=9¢ fd_x
4
so the Fermat principle, also expressible identically as o I ndx=0 with n=c/v,
is actually a straightforward corollary of the uncertainty equation.

In an analogous way one finds the Maupertuis principle. Calculate dpox for
OX—>0dx and &St for St —>dt; in this way, even considering vanishingly
small range sizes still holds the concept of local velocity v, ie.
5x/St — dx/dt =v, . Considering the coordinates X =X(t) and X, =X(t,)
and integrating both sides, one finds according to (3.1)

Xo ty
[ pdx = [Sedt.
X 7]
The right hand sides involves & =J¢(t,) and e, =¢(t,). Suppose now
that d¢ =0 because & is constant itself; then, being §p=p,—p, by defini-
tion, one finds

Xfé pdx = Xfpldx - ng p,dx =0,

X X X

X2 X2 X2
[pdx=[p,dx and thus [pdx=const for any p,<p<p,. Hence,

X X X

along an element 0X of trajectory,

X2
S[pdx=0, &=const.

X

4.2. Further Considerations on the Group Velocity

The reasoning already carried out for a beam of particles, see (2.46), is extended
here considering a light beam propagating in a dispersive medium at rate v <cC.
The Equations (2.37) and (2.36) yield

58 5!/: ov __ ¢ ’ n:E, jjl:K; (4.1)
“op oAt s(nv/c) &(nv) v v
ov
of course V, of alight wave packet is found through the local limit 6 — 0, ie.
C
Yo =3 (42)
ov

It is instructive to examine closer the Equation (4.2) in order to evidence that

a further aspect of the motion of a corpuscle of mass m is describable by a wave
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packet moving as a whole with at rate V,; the reasoning involves explicitly its
energy & to describe the propagation of the overall shape of the wave packet

amplitude through the space. Differentiating the Equation (2.34)
op
s(e/c?)=—Lsv+ 2P,
(/ ) V2 v
and replacing p=h/4 in this equation, trivial calculations yield
h oV
Sle/c?)=———| A—+1|.
(1) =5 5+ )
Require now purposely 0s =0, ie the wave transports a fixed amount of
energy; for example & =const could be just that of one free particle. So
ov v,

N Vn_ 43
i A m (43)

being v, the particular value of v fulfilling the given condition; the frequency

V,, isthen formally implied by dimensional reasons too. Hence
—0V,, =V, 017",
so that
V_5vm_ ov, ¢ —
"ot S(ve/Ve) S(npve) T v,
ov,

then, for 6 — 0 once more, V,, =V, .
The key step of the reasoning is the well defined amount energy & trans-
ported at the rate V,, by consequence of which results defined the frequency

v,, corresponding to the unique Vv, . The different definitions of A4 in (2.36)

m

and in (4.3) are significant; their comparison yields

Vi

A

CZ

<1.

Think now one Planck frequency (2.37) as that included in a packet of waves
of different wavelengths propagating in a dispersive medium with different
A-dependent velocities: in effect, the Equations (3.1) regard hv and h/4 as
random values within energy and momentum ranges that in turn define various
frequencies and momenta corresponding to 64 and Jv . Both statements
agree with the fact that the propagation of the particle or its related wave cor-
respond to V, and not to the single phase velocities Av. Just for this reason
from (3.1) can be inferred the corpuscular and wave aspects of quantum physics.

The equations now obtained directly from the Equation (2.34) emphasize a
new implication: neither &, nor p, show explicit reference to the mass,
which now becomes mere dimensional parameter inherent the definition of 7.
Appears thus the necessity of explaining how and why the mass is apparently
waived from the quantum Equation (2.37) of momentum and energy. In other
words, a valid reason is required to replace m with M—m', being M’ a new

mass even compliant with M—m’'=0 as a limit case. Tentatively this implies
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defining m as a velocity dependent variable, as in effect it has been already found
in the Equation (2.33) and more specifically in (3.13). On the one hand this
strategy seems at least in principle adequate to highlight why a moving mass m
could turn into an immaterial wave. On the other hand further confirms should

be provided next to validate the following way of describing this subtle point.

4.3. The Refractive Index

According to (3.64) and (2.35), if m#0, then p and & are calculable for
v<c only; however even vV—c is admissible if contextually m — 0. Imple-
menting concurrently both limits, pand & tend to the indeterminate forms 0/0,
which admit in principle finite values. Let p’ and &' be these limit values,
assumed existing by definition: the reverse question rises now, 7e whether or
not v<c requires M#0. The answer is negative: as the speed of photons in
dispersive materials is lower than that in the vacuum, it is possible in principle
that photons travel in a dispersive medium at the same v allowed to a beam of
massive particles. The fact that v<cC is compatible with both m=0 and
m = 0, suggests that the kinetic mass m should actually be function of vitself: if
s0, then the separate correspondences m#0—V<C and
V<C>(m=0,m= 0) merge into the unique correspondence
m#0cv<c<>m=0 provided that an appropriate function of m= m(v)
does exist. In other words it should be true that both m#0 and m=0 are
compatible with a unique V<C via m= m(n) . In fact this conclusion has been
already inferred in (2.33), where the concept of mass was introduced in the
present model as rest mass. The following reasoning represents the extension of
this concept to the kinetic mass.

Regard m of (2.33) as a particular case of a general dynamical variable related
to p through v and examine how the new concept of mass could tend to zero

correspondingly to V — C; is interesting in this respect the position

m=m'y1-v?/c?, m'>m, (4.4)

which regards m as a constant mass while introducing a new mass m’'= m’(v).
The Equation (2.33) has anticipated this conclusion in the particular case where
m=m" for v— 0, whereas a further hint to the concept of rest mass has been
provided by (3.13). Replacing formally m of (4.4) in both (3.64) one obtains
p'=m'v while contextually & =m'c’; then, eliminating M’ from these re-
sults, one still finds p’ =8'V/ ¢’ in agreement with (2.34). So m’ fulfills the
same relativistic formula of p with initial mass m, despite now the limit for
V—cC corresponds to the finite value p’=¢’/c implemented in (3.14) and
(3.15); this relationship between energy and momentum is expected in general
for a wave, see Equation (2.24). Hold for m’ all steps from (3.14) to (3.20). The
wavelike implication of (4.4) is further acknowledged considering d¢'=cSp’
of (2.14).

In conclusion, according to the quantum uncertainty the behavior of a cor-

puscle of mass m should inherently have a wave-like propagation too, whereas
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the fact that m=m' for v=0 shows that m and M’ are rest and kinetic
masses. So the Equation (4.4) in fact generalizes the concepts of m and Vv in-
troduced in (2.33): M’ is the particular value pertinent to m at the specific

speed v. As a consequence note that p/e = V/C2 =p'/¢' define a pure number

& g
——=n

e n=" (4.5)

v

that introduces the refractive index of the medium where propagates an elec-
tromagnetic wave at velocity V <C; owing to the Equation (6.2) in fact n>1,
as it has been already introduced in (2.46) and (4.1). Moreover the position (4.4)
also agrees with (2.45); indeed

, &v hvv h c
p :—2 = 3 =—, ﬂ
c c A v v

I
>
=
I
e
I
|

takes into account that 4 =nA" depends on the refractive index of the medium
through which propagates the electromagnetic wave or the De Broglie pilot wave.
The position (4.4) introduces thus the first step to explain how and why the
concept of mass does not explicitly appear in (2.45): once having introduced the
refraction index, vis in fact eliminated from the equations being replaced by n.
Formally this means expressing the displacement rate vof the particle in ¢ units;
yet v appears subsequently also as the rate Av at which a single wave phase
propagates. This fact encourages thinking that somehow it should be possible to
infer a formula that specifically emphasizes what the Equations (3.64) and (2.45)
already show themselves, i.e. the way mand A replace each other in defining p

and ¢ . The mathematical approach to this task proceeds noting that
Sm=m'-m= (1—\/1—v2/c2 )m’ ie. c?om~ %m'v2 oo, (4.6)

so that the right hand side represents kinetic energy. On the one hand m’ cor-
responds to the classical mass defining the kinetic energy, although for v<c
the deviation of M’ from m is irrelevant for practical purposes. On the other

hand it is possible to write

' 2y )
mem, bty (ﬂj +(—‘-‘] 1. (4.7)
m n m C

The second equation is direct consequence of the first one; it emphasizes that

the concerned velocity vis actually V; of (2.45), because in general this latter
and not v of (2.3) is related to and describable by n. This confirms that m’ is
the effective value of m when the particle velocity takes up just the specific value
V, pertinent to the group velocity at which propagates the wave packet. As ex-
pected M=m' for v=0, whereas m=0 for n=1; in effect according to
(3.13) m/m’ is definable even for v—cC, so (2.33) and (4.4) are compliant
with these limits. Regard thus the addends of (4.7) as probabilities, whose sum
represents the certainty of concerning the existing particle through its mass dis-
placement velocity or wave propagation rate. The first addend describes the

probability for the particle to loose its classical kinetic mass, till to become an
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immaterial propagation wave; the second addend, previously introduced to ex-
press the actual velocity V, of the particle, takes the meaning of reciprocal re-
fraction index n of the resulting wave, being it in effect still related to the propa-
gation rate of the wave/particle. The addends account therefore for the dual be-
havior of matter in a probabilistic way correspondingly to the probability of
energy fluctuation, thanks to which the particle effectively displaces with velocity
dependent mass or with frequency dependent propagation rate of a wave packet:
indeed, one must also expect an appropriate energy fluctuation to balance the
chances of mass energy loss. Obviously to this mass change correspond different
pand ¢ and thus different A, whence the necessity of linking m with a group
of waves that spread with collective V; given by (2.45). So the worth of (4.7) is
that of having emphasized the quantum probabilistic meaning of the relativistic
position (4.6).

These considerations rise however three questions.

The first one can be formulated as follows: as (4.7) is made by mass and mass-
less terms, what determines either property of matter? Obviously the immediate
answer points to the kind of experiment made on the particles constituting the
body of matter. Also this is the non-real essence of quantum mechanics, which
actually regards the matter neither as a packet of waves nor as a cluster of cor-
puscles, but as an undefined state of probabilistic mixing of both states until
some experiment “creates” either state. The electron diffraction in the two slit
experiment and the Thomson experiment inspired by the Millikan result eluci-
date the physical meaning of the addends of (4.7). To this equation is also related
the physical meaning of the EPR thought paradox, showing that the quantum
properties are not pre-definable outcomes according to some principles of clas-
sical mechanics, rather they are created by the experiment itself. In effect (3.1)
exclude not only the concept of trajectory, but also that of distance and velocity;
as shown in 3.2 the local space time coordinates must be replaced by the respec-
tive ranges, so concepts like “superluminal” distance are actually unphysical. In
this sense the EPR paradox shouldn’t even be formulated: replacing systemati-
cally X —> 06X and t— 0t are missing the concepts themselves of point to
point space distance and time to time lapse needed to define any “superluminal”
effect; remember that in effect according to (2.8) and (2.9) v, =c is introduced
“as such”, Le. as a fundamental constant of Nature regardless the ratio dX over
ot.

The second one concerns the addition of velocities. Consider an electromag-
netic wave that appears in the point where m=0. An example is the annihila-
tion of m by collision with its antiparticle purposely assumed in the vacuum: one
would naively expect that the new born electromagnetic wave should propagate
at rate classically resulting from its own velocity ¢ summed up to that v initially
characterizing the moving center of mass of the annihilating particles. Yet (2.48)
has already negatively answered this question.

The third question concerns the energy fluctuation necessary to account for the

mass change when M — 0. This point is concerned in the next two subsections.
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4.4. Energy Fluctuation

The corpuscle/wave dualism has been accepted as compelling experimental evi-
dence since the early experiments of electron diffraction, simply acknowledging
that either behavior depends on the kind of experiment. Yet this shortcut leaves
in fact unexplained why mass appears explicitly in (3.64) whereas it is hidden in
the proportionality constants (2.36), despite both concern momentum and
energy of a free particle. The fact that both equations have been inferred in the
frame of a unique model based on the definitions (1.11) and (1.12) stimulates
one to think that even this duality could find rational explanation, ie. explaina-
ble by a logical physical reasoning in the conceptual frame of the present model,
without need of supplementary “ad hoc” hypotheses. This hope is supported by
the probabilistic character of (4.7), direct consequence of the concept of velocity
dependent mass elucidated in the form (4.4): in effect the chances m=0 and
Av=cC or respectively m=m' and V, =0 appear in principle reciprocally
consistent and compliant with the unity, Ze. the certainty that anyway something
travels through the space time as amount of mass or wave: in the former case it
is appropriate to think about corpuscle displacement velocity, in the latter about
wave propagation rate. The validity of this idea is proposed in this subsection
not only by evidencing its self-consistency, but also quoting as a verification
further well known results contextually obtainable.

The results of the point 4.3 have been obtained considering initially a particle
of mass m that displaces at rate 1; next has been considered also its probability of
mass, Le. energy, fluctuation, which eventually turns it into massless electro-
magnetic wave or matter wave traveling at rates N~ or V, respectively. On
the one hand, besides the formal similarity with the propagation of either kind of
wave, the Equations (4.5) and (4.4) show that this virtual process scales both p
and £ to p’ and & byacommon factor related to the refractive index. On
the other hand, this also implies an energy change that occurs in a time range
At =t—ty, being t; the arbitrary time at which the mass m starts modifying its
value.

Owing to (2.34), consider thus the energy change As =s'—& = p'c? V' pc? /v
since when the particle starts loosing its initial mass m to when eventually
m — 0 according to (4.7). The fluctuation driven energy change is summarized

by the following equations

2

c
Ag = "2
\"

c
de=n%8, V" =VV, Se=pv-vp, n=—. (4.8)
v

The energy range Ag must not be confused with og of (3.1): d¢ con-
cerns the quantum uncertainty unavoidably constraining the arbitrary variability
range allowed to the conjugate dynamical variables of any system, Ag is in-
stead the specific energy fluctuation allowed in particular to the particle during
the mass loss virtual process that “converts” it into a wave. The time length re-
lated to A& is thus
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At=—=—— ie. n’At=6t. (4.9)
As n°o¢
The Equation (4.9) yields
2
v.oay o, 1o, -t (4.10)
¢t St ot At

these positions are easily understood; the respective energies proportional to v?
and c® are also proportional to the frequencies v, and v, . Of course the
only way to regard this result in the wave formalism of quantum mechanics is
the link between frequencies and energies, which in fact is just the Planck posi-
tion: precisely in this sense the probabilistic Equation (4.7) introduces the ratio
(m/ m')2 , mass addend, and the corresponding ratio v; /v, , wave addend. This
confirms that the corpuscle/wave behavior has probabilistic origin and follows
an energy fluctuation of quantum matter.

Are the Equation (4.8) along with its premises and implications true indeed?
To support the validity of (4.7) and thus (4.8) itself, is now tested their direct
consequence, the Equation (4.9), in three particular cases of major physical in-
terest. Write first with the help of (3.1) and (2.25)

At:zizvé—zxzi—xz, (4.11)

n“oe ¢ coot
noting that c’At has physical dimensions of diffusion coefficient D introduced
in (2.19); this suggests that VX =o0D, being o an appropriate proportionali-

ty coefficient to be determined. So
oD :v§x:§—x2 (4.12)
ot

The coefficient o is crucial to specify the kind of problem precisely con-
cerned.

1) Putting first o =1 means describing one particle that displaces with dif-
fusion coefficient D through JX at average velocity v Strictly speaking, as pre-
viously remarked about the Equation (3.60), in the present one space dimen-
sional model (3.39) defines C as linear density mass/length instead of the ac-
tual mass/length’ ; yet C regarded in the usual 3-dimensional space allows to
define the actual physical dimensions of flux J of matter, 7e. mass/length’time.
Multiplying both sides of the first equality VoX=D by JC, being Cmass per
unit volume, yields vSC = DSC/Sx. This result is more appropriately rewritten
as |V| 6C =+ DJSC/5x ;5 the double sign accounts for the fact that vis actually a
velocity component on the x-axis along which is defined X, correspondingly
to the definition V:z of the Equation (2.19). Simple dimensional considera-
tions allow defining the equation

oC

3=+D2=, Jg=pc, c=2
OX

\Y

(4.13)

that introduces with the minus sign the concept of mass flux /, e mass trans-

ferred per unit surface and time through the volume V; so JC is due to the
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diffusion driven matter transfer between the surfaces X apart of an ideal cube
of matter of volume V. The Equation (4.13) completes the Equations (2.19), as it
is well known. Anyway, merging both expressions (4.13) of J one finds
vC =-DJ&C/5x; then, recalling (3.60) and (3.61) as already done in (2.22), the
limit § >0 vyields

ologC D ou

C
_ DK =KTlog| = |, 414
x ko g(co) 19

v=xD

The double sign of vis obvious, being it a velocity component. For simplicity
and brevity v and D have been regarded not dependent on x, to make quickly
recognizable the link of these results with well known concepts of elementary
diffusion theory; also, the diffusion process has been assumed at the constant
temperature 7. With the minus sign in (4.13), positive D, one acknowledges
once more the definition of chemical potential x in agreement with (3.61).
Moreover, as the —du/0x is equivalent to a force F , this yields also the
famous Einstein-Smoluchowski relationship between mobility M and diffu-

sion coefficient D, i.e.

D= MkT, M=—. (4.15)
f

Eventually the plus sign in (4.13), which instead corresponds to negative D,
describes phenomena like the spinodal decomposition of alloys of appropriate
composition [9].

2) Putting next ¢ =2 and writing thus (4.12) as VoX=2D means describ-
ing one particle that travels with diffusion coefficient D the distance 5x/2 at
average velocity *V. The factor 1/2 specifies therefore that the particle displaces
around the mean coordinate X towards both sides of §X, in which case &’
at the right hand side of (4.11) reads OX° — (X—Y)2 and takes thus the statis-

tical meaning of average square displacement OX° of the particle traveling

through the whole range around X . So the second equality (4.12) yields
5% = 2D, (4.16)

i.e. the famous Einstein equation of one dimensional Brownian motion.

3) The validity of the Equation (4.8) is further checked implementing the
property n>1.Consider now a system of particles, the /-th of which has energy
&,. The fact that Ag isin general n® times greater than e =&—g, suggests
the possible chance of regarding the former as Ae =E—E; and the latter as the
sum of an appropriate number N of terms Jg =¢ —¢&; such that
Ae=n’Se =) (& —&); clearly N depends of the value of Nn® and size of all
ranges & — &y . Anyway the initial Equation (4.8) is compatible with the position

E-Ey,=n’c—ng =) (& —&) (4.17)

simply requiring
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E=n’=>¢, E,=n’g =)

as in principle n can take any value from 1 to oo, the number of terms of the sum
is arbitrary. The Equation (4.17) is well known and reported in all standard

textbooks concerning the fluctuations of thermodynamic systems: it yields

(E—EO)2 :ZZ(é‘i —SOi)(SJ- —6‘0j) and thus (5—5_)2 :Z(gi —g_i)z regard-

ing appropriately E;, and &, as average quantities. So with E, —& and
&y —> € , follows then immediately

(6-&) =N(e-2). (4.18)

4.5. Liouville Theorem

An interesting question concerning (3.1) is the following: is d¢ =¢—¢g, simply
an energy range or is it even compatible with the physical meaning of difference
between two diverse forms & and &, of energy? This question, which ac-
cording to (2.25) involves dp=p—p, too, is answered rewriting identically
(3.1) as

oX op

Se="25p=5Xx—. 4.19
T P T (419
The first equality reads
o€ oX
—=6p, Sx=—, 4.20
SX P ot (420
the second equality reads
oe . . op
26 _sp, sp=2F. 4.21
oX P P ot (421

Now fulfill the idea that Jg defines the difference of two distinct energies,
specifically T and U introduced in section 2.3, which implies the chance of writ-
ing in general &=T=xU. To highlight this point, concerning in particular the
energies already introduced in (2.41) and (2.42), introduce the following posi-

tions

Se=06T+6U, T=T(xx), U=U(x) (4.22)

in this way the sign of Sp in (4.20) is uniquely defined since T only depends
on X, whereas is expected the double sign in (4.21) because both energies T and
U depend on x. As in effect op is the component of 6p along the x-axis, so

that it can actually take in principle both signs, rewrite explicitly (4.21) as

¢ R PRI bl U SSUR N o

= —45p=8p'-5p., op' = °. op =0 4.23

Sx p=op —op, p St Po St (4.23)
the double sign on the one hand emphasizes that both p and p, are actually
components of the vectors p and p, along the x-axis. The last two equations
also agree with the fact that in principle

Sp'26P,
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in lack of any information about the ranges, both inequalities are actually possi-

ble. Regarded in this way, ie. implementing range boundaries arbitrary and in-

dependent each other, the notation (4.23) effectively defines J¢ as difference

of two energies reasonably dissimilar according to (4.22). Taking the ratios side

by side of the first Eqs (4.20) and (4.21) one finds

L (4.24)

oX op

It is immediate to link (4.24) and (4.22), noting that the former defines at both

sides ratios with physical dimensions of reciprocal time range. Multiplying both
sides by 7, the equations

nSXn 9P o 59X 5P g (4.25)

ox op ox op
define energies that, in agreement with (2.42) and (2.38), correspond respective-
ly to
O0H=06T+6U=0, dp=0T-6U=0.

Hence simple considerations on the range boundaries imply the concepts of
Hamiltonian and Lagrangian according to the previous Equations (2.38) and
(2.42): ¢ has been identified with the Lagrangian of a particle, H with the Ha-
miltonian of the system. In particular, is of interest here

H=T+U =const, ﬁ:—ﬂ
oX op

for the following reason. According to the quantum uncertainty, the left hand
side of (3.1) reads OX-Jp = n#, where the number of scalars, so far intuitively
associated to the three usual space dimensions only, is actually arbitrary, ie. ex-
tensible to any number ; of extra-dimensions required by some theories or, al-
ternatively, to the number of freedom degrees allowed to the system of particles:
in fact any freedom degree has its pertinent X and ¢ p. Thus it is sensible to
introduce the dimensionless quantity (§X5 p/h)j where fall all points in the
multidimensional phase space defined by the sizes of all dX and Sp of the

corresponding particles with respect to 7 . Accordingly
& =(5psx/n)’
yields
5(6Q) (5psx/n)

=] OX+
ot OX

(oxsp/h) . (s .. sQ .
J( 5p/)5p=1( X J

the range JQ includes all points of coordinates x and p falling within
(6x5p/h)’ elementary cells of j-dimensional volume (5x5p)’ in the phase

space. So
15(69Q) _s0Q 5Q

- =—O0X+—35p
] ot oX op

yields then
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o(oQ X )
19(59) _ ;o[8%,80)_,
j ot OX Op

according to the first (4.25) 5(59)/5‘[ =0, ie the volume 5Q=const along
phase space trajectories where H =const.
5. Some Thermodynamic Corollaries

The last results have somehow linked the relativistic Equation (2.25) to impor-
tant results of classical statistical thermodynamics. The importance of this topic

is shortly highlighted in the following three subsections.

5.1. Statistical Sets of Particles

Let us implement once more the Equation (2.26), and calculate the change of

v/c = pc/e according to the following chain of equations

(22 )

Since by definition
5Iog(pcj Iog( j Iog[ PoC ]
& 0

being p, and &, arbitrary constants, it is possible to write

Consider now preliminarily the case of an ideal gas of non-interacting free
particles/atoms/ions/molecules and let p;, and & the momenta and energies
of each particle. Then, owing to the last equality, it is possible to write for each

I-th particle
\Y} i
o, =11, logIT, —IT; logI1,, II,=-—%, II,=—<1
c

moreover it is also possible to sum terms like this of each particle over all par-

ticles of the system, so that it is possible to write

DA =Y 11, log IT; —log IT, D IT,
whence
NI =311, log IT, - NTT log I, ﬁ:%z(mi, ﬁ:%ZHi, (5.1)

being N the number of particles of the system. Note that this result is actually
more general than prospected here. Suppose first two interacting particles only;
in this case we expect p; and & for the first particle and p, and &, for
the second one because of their interaction: despite the first (2.34) holds for a
free particle, it is reasonable to think that changing appropriately p, — p; and

& — & one can describe at least approximately even an interacting particle.
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For example it is possible to replace p;/& with p{/& =0;(p,/¢), being o,
an appropriate correction factor. Anyway, p//¢ and p,/e, are in principle
calculable; summing these terms, the left hand side of (5.1) involves Vv;//c+v,/c.
In the case of three particles mutually interacting one would obtain

p//el+ P, /e + P; /e, defining v//c+v;/c+v;/c, and so on for any number
of particles all mutually interacting. On the one hand this means that now the
previous II; isreplaced by II =o,v,C, whereas the summation is possibly ex-
tended to a different number of terms. On the other hand this reasoning holds
also for IT=o;v/c and also for multiple primed probabilities. In fact, summing
all v,/c orall v//c does not change the conceptual statistical meaning of the
sum; in other words, whatever v/ might be, one could include appropriate
correction factors to the various Vv, of the allowed states; normalizing the sums,
one still obtains an equation like (5.1). To calculate how each Vv, turns into V;
and next into V' because of these interactions, is in general difficult and must
be examined case by case; yet, if we content ourselves to describe the evolution
of the system as a whole from the non-interacting to the interacting state, the
form of the final equation is still similar to the previous (5.1) obtained for free
particles. Omitting for simplicity the primed or multiple primed notations for

I1, and v, in the following, introduce the positions

S=NoS,~NJII, S, =-I1, logIT,, S=-YITlogll;, M=oll,, (52)

where o is now a proportionality constant. The factor Nin (5.2) simply shows
that S'is an extensive property. Introduce the condition expressed by the equiva-

lent positions
v=TI=const, 6v=dl, (5.3)

where const can be 0 or more in general #0 in this one dimensional model
where V is actually a component of v that can take both signs. The first con-
dition regards a completely disordered system of particles regarded as a whole at
the equilibrium, whose velocities are randomly distributed both by modulus and
direction with equal probability. The second condition assumes a macroscopic
system in an unstable situation out of equilibrium, e.g. gas with an internal
pressure gradient due to a non uniform distribution of velocities; this can hap-
pen for example for a system of charged particles in an inhomogeneous external
field. Whatever its particle velocity distribution might be, both chances are as-
sumed compatible with the third position (5.2).

Actually nothing compels these positions, which in effect are purposely in-
troduced to plug the present considerations into the realm of statistical mechan-
ics. In practice &(velocity distribution) =0 shows that the equilibrium corres-
ponds to the maximum possible disorder of the system as concerns the velocity
distribution of its constituting particles. This statement, assumed valid in general
and not in the present one dimensional case only, can be regarded as boundary
condition of (5.2) as it implies IT=const, in this particular case S =const.
According to (5.2) this constant can be nothing else but the right hand side, e
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Sg =—oc'logIl,, o'=0ll, (5.4)

This is nothing else but the Boltzmann definition of dimensionless entropy:
note that II, constant indeed does not mean that it has one fixed value only,
but that it does not depend on the index of summation states Z whereas it de-
pends of course on 7.

This simple procedure has introduced the function $ as sum of consistent
functions —IT; logIT; of all particles of the system; the summation over 7 has
been extended to the velocities v, of all particles of the system. This summation
is surely positive and finite because all v, <cC.

It is possible to ask at this point whether this kind of equation is uniquely re-
ferable to the property » I, =const, or it has a more general worth, e.g. in the
case of probability distribution function of states such that D IT; =1. This ex-
pectation is sensible, being a particular case of the second (5.3)E The next subsec-

tion concerns just this point.

5.2. The Entropy

The starting point is now (3.38) with the minus sign. The way to implement this
equation is similar to that just described for the Equation (5.1): any space time
factor OXOt is regarded as OX;0t, , with notation that goes back to the section
1 in order to specify an arbitrary j-th state of a system of particles at the time t, .
The system defined in this way is a statistical set in the sense previously hig-
hlighted for each v/c —V, /¢, in agreement with the definition of V; = JX; /Jt, :
in other words, the variation of configuration of the system implies reasonably
the change of local space coordinates of a cluster of j-th particles enclosed in
0X; during the time range ot : both ranges define a possible state in the phase
space as described in the subsection 4.5. Actually both 6X and St were in-
herent the definition of V; in subsection 5.1; similarly W must be be introduced
here in order to describe the non-instantaneous evolution of a local small vo-
lume of the system during space time ranges that represent its configuration
change rate. The Equations (3.60) and (3.61) show that this way of thinking al-
lowed to infer the chemical potential x hidden in y; let us examine here the
possibility of extracting further thermodynamic information from this function.

The algebraic steps are listed one by one after rewriting (3.38) as

. =C—logW, W =E5XSt+7. (5.5)

1) On the basis of the section 5.1, define
u=aWy =E+asS, E={aW, S=-WlogW, a, =a(t)>0, (5.6)

being a, positive factor dependent on the time t, only;

2) regard OXOt — 5X;0t, , ie. any local space time coordinate xt is defined as
one that characterizes the j-th state of each particle in the space range OX;
during the time range ot , which implies W —>W, while u—>u; and
S —> Sy aswell
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Wy, =W, (8x;8t, ), S =S, (5%t ), uy =uy (5%;8t) (5.7)

3) sum over all allowed states jaccessible during an assigned ot, by all par-

ticles in the phase space

U, =¢a0,+38S,, U, :zujk’ 0, :ijk’ Sy :_ijk logW;,, (5.8)
i i i

whereas the factor a, is defined by

U,=U,+3aS, U,=0a0,; (5.9
4) the last Equation (5.9) defines a “new” quantity 7 called temperature
u,=U, -TS,, ak:&;k =T, T=T(t) (5.10)
k

uniquely defined for a body of matter at the thermal equilibrium. Note that the
first equation has been written introducing at the left hand side the summation

over W only. Also note that

oS,
ﬁz_]kz_k)gwjk_l
oW W,
Le.
5S,
—logW — 2k 1 (5.11)

i
the j-th addend contributing to S, is to be considered to calculate the right
hand side. Multiplying both sides by W, one finds
oS
ij 5\N_l:k = —ij IOngk —ij

and then, summing over j, owing to (5.8) one finds

5S
O, =SP+S,, SP=-2 W, —*|. (5.12)
k k k k j[ jké\/vij

Normalizing via ©,, this result reads
Sk N Sy

1=k 4k
O, 6

(5.13)

If S¢ >0 this equation emphasizes the certainty resulting from the sum of
two positive terms, which therefore can be regarded as probabilities. If S,
measures the disorder of the system, then reasonably S, measures the order:
the sum of these probabilities yields the certainty that both order and disorder
concur to define the state of any system. In other words, any system can be par-
tially ordered and partially disordered; e.g. some parts of a crystal lattice can
contain in general local point and/or line pile up defects inside a surrounding
defect free volume.

This probabilistic interpretation is possible if S >0: in other words, the

probability of modifying the local order/disorder of the system requires accord-
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ing to (5.12) 5Sjk/c5ij <0 inside any OX; at different St, at which is cal-
culated 6S; . Let be therefore 5S; =S, ,-S; and oW, =W, ,-W, the
changes allowed to occur within any space range oX;, at any time within Jt,
and rewrite W of (5.5) according to the positions (5.7) via (3.1) and (2.28); once
more the space ranges, and not the local space time coordinates they represent,
are physically appropriate to describe the changes in the system. Replacing
St=n/Se and S&x=h/Sp=Vh/Se one finds

n® OXj
s

Wy =¢ +n

having expressed V=X, / ot, according to the current notation; clearly
Ot is the pertinent energy change corresponding to the configuration change
in progress within X, . Hence, keeping de; and JX; constants, write

2 1 1
oW, = —;h—zcsxjk[ -
e, St o,

and thus

-1
Sy c n? 5Xjk] S(étkﬂ)—S(&tk)'
W,

565, Sty — Ot

In this way S, and S; describe the changes occurring in 6&t,,, with re-
spectto ot, in the given region &X;, of the system. Certainly the local S is
due to the corresponding local changes of X, and ¢, ; however it is in prin-
ciple possible that even at ot,,, both these latter remain still included in the
same range size OX; where they were at ot, ; this simply means that S is
small enough to imply correspondingly small changes of X; and & that
therefore still remain included within the same 6X;, . While acknowledging that
this is in principle admissible because all range sizes are in principle arbitrary, it
is interesting to compare what happens at ot,, and Jt . If for example
ot > ot by definition, ie. the former is greater than the latter because it must
include increasing values of local time coordinates t,, then oW, <0 implies
W, <W, ;. The negative sign of oW, means that on the one hand S >0
fulfils via S;, /OW <0 the probabilistic meaning of (5.13) and that on the
other hand it also implies all 6S; >0. Thus summing over jall terms 55, at
all ot one infers

58, =268, 20. (5.14)
j

Clearly this is just the second law of thermodynamics because, as written, it
concerns an isolated system; the conclusion is in effect true if no external action
perturbs the system. If not so, then any action altering substantially the configu-
ration of the system modifies by consequence the j-th range size too; in general
different 6X; and OJ¢; are reasonablyimplied before and after the external
action. Thus, in particular, it can result that 6X;,,; <X, while however (5.13)
can be again fulfilled: &S /oW, <0 still holds even with oW, >0 but
0S, <0. Clearly in the system no longer isolate the external action has modified

the spontaneous tendency towards increasing entropy.
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It is worth remarking once more that the evolution of the physical system has
implemented two subsequent time lapses ot, and ot,;, not two deterministic
time coordinates t, and t,, : these latter and the respective deterministic
gy and &

. representing the external action would be incompatible with the

Heisenberg principle.

5.3. The Statistical Distributions

Let the change oW of Wbe 6W =W £w, being wan arbitrary amount added
or subtracted to the initial value of W. On the one hand W can increase or de-
crease by any physical reason with respect to its initial value; the double sign in-
dicates that no reason is guessable to expect that the change consists of either
increase only or decrease only of the initial value . On the other hand it is also
reasonable to expect that oW = qW,, being g an arbitrary proportionality factor
and W, an arbitrary value allowed to W consistent with (5.5); this position
means that anyway the change OW implies a new quantity still related to the
meaning of thermodynamic probability W, coherent with . In other words,
W, is such that W' =W +gW, and W"=W —qW, are respectively compati-
ble and physically consistent with W £w. The fact that both W' and W"
must fulfill (5.8) likewise the initial W, allows expecting the consistency of the
following considerations with the equations up to (5.10) as well. If so, then

oW =W=+xw, =q,W,, g,>0 (5.15)
yields
i_ WO/Wi . (5 16)
q. W/w, +1’ '

put in this form, once more the space time Equation (5.5) of W'is implemented
via W/w and related W,/w, similarly to the position (5.8) leading to the re-
sults (5.10). The Equation (5.15) has been written in order to emphasize how w
is to be regarded in agreement with either sign, ie. W+w, =qW, and

W —w_ =qg_W,. In conclusion, recalling the Equation (5.5),
W, W,
% _ 0 , Wi:exp(é’o);
Q. exp(;gi—g“—g’o)irl

also here appears the space time function y_ . Hence, according to the reason-

ing to infer the Equation (4.14) via (3.60) and (3.61), at any given time

x —¢ =log(C/C,)+const and thus /KT — 1, /KT . In conclusion
W, W,

q exp((u— ) /KT )1

This equation follows from the arbitrariness of g, consistent with that of

(5.17)

¢, ; the multiplicative factor W™ has simply included ¢, in the constant ad-
dend of chemical potential u together with ¢ . Implement now either

W=qW,-w,, W=qW,+w_

of (5.15): being W >0 by definition, there is no constrain to the number w_
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related to the negative sign in the Equation (5.17), whereas the positive sign of
this equation requires w, <q W, Ze. w,/q W, <1. This constrain suggests the
possible physical meaning of w,/q, in (5.17). Let W, be the numbers of
states with a given energy u, ie. the degeneracy of the state, and W, /q, =N u
the number of particles in the given state; if so, then it is easy to realize that in
the latter case N, can take only the values 0 and 1 whatever x might be [10].
All details published elsewhere are omitted here for sake of brevity. Thus (5.17)
is the well known formula of statistical distribution of fermions and bosons with

degeneracy W, .

5.4. The Phase Space

Entropy and Liouville theorem, both previously inferred, are the key concepts to
introduce the phase space. As this topic is well known, are reported here just a
few remarks aimed only to emphasize the link between space time and phase
space; Le. the concept of space time is actually the third essential ingredient to
introduce “ab initio” the statistical mechanics. To this purpose consider in par-
ticular the Equations (3.39) and (3.1).

Being x and tarbitrary and independent variables, which represent for exam-
ple the space coordinate of a given particle at various times in the space time,
any value of x¢ can be obtained keeping constant either factor and allowing ap-
propriate values of the other one; both ways of defining an arbitrary space time
coordinate Xt are numerically and conceptually equivalent to describe each
one among N particles of the system at given time t, in the range of space
coordinates Xj; <X; <X;y or at X; during the time range t, <t <t,. Ac-
cording to (3.1), indeed, the space time coordinate of each particle is defined
within allowed variability ranges 6X; =X;y —=X;; and ot =t,, —t,;. So is phys-
ically significant the amount 6X;0t, = " /5 p;0e, , whatever these range sizes
might be. To highlight this point consider the following equations obtained im-
plementing (3.1) and (2.28)

n "
ox;0t, = = ,
5pide. (0e;/v;)(vdpy)
whence
OX; #?
—V, Ot =———=051,0%,
v 0g;0 Py

and thus, comparing the initial and final ranges of coordinates,
OX;0t, = OXt; (5.18)

the initial equation regards the j-th space coordinate X; at the time t,, the
former defined within the interval JX; the latter in the time range ot ; the fi-
nal equation rewrites the first one with exchanged indexes jand 4 As in effect
the first two equations are summarized in the third one, it means that the con-
cerned particle is described at different times t; and t, by different space

ranges OX; and JX,, to which correspond the respective momenta 6p; and
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O py s moreover it also follows &Pp;0g, = P,O¢;, as it must be because anyway
the Equation (3.1) must be fulfilled no matter how any particle moves in the
space time. In other words, as jand k are not specified or specifiable, the particle
moves actually through any random space and time ranges in the phase space
according to its position and momentum of the space time. This can be better
evidenced and generalized rewriting with trivial manipulations the last equation

OPO%, OX,0
5X;0t, =5xji=5xj Pa%%y _ O%a0 Py
08, 08, Fy

0g, op
=< Ot =/
OX; Fy

=5xq5t

K
(5.19)

Le. one particle initially at any random X; within JX; at the random time t,
included in 6t is actually found within another 6%, at the subsequent time
tkiq kiq -
starting again from the last term X, Jt,, , which in effect has the same form of

within time range Ot . Obviously this chain could be further extended
the first one but is simply rewritten with different subscripts; the first and last
terms of this chain represent different space time coordinates and thus its ability
of the particle to fill various coordinate and momentum ranges defining the
whole phase space. All accessible local coordinates of space time correspond to

the respective local coordinates of space phase, with equal probability.

5.5. Further Comments about the Diffusion Coefficient

The diffusion coefficient D introduced in (2.19) is usually concerned in prob-
lems of matter displacement under non-equilibrium conditions, essentially due
to concentration gradients; the same holds for the heat diffusion coefficient (2.22)
in non-thermal equilibrium problems, typically in the presence of temperature
gradients. However, the four equations from (4.13) to (4.16), as well as the next
(5.20) and (5.21), suggest a more profound physical meaning of D. In this re-
spect deserve attention the following three remarks.

1) The dimensional definition of Dis 7/m; this yields 6§D/D =-5m/m, ie.
5log(D/D,)=-5log(m/m,) , being of course D, and m, arbitrary con-
stants. Then, reasoning likewise in (4.14), the right hand side yields
dlog ((m/V )/(moN)) =65log(C/C,), being C the amount of mass in a given
volume V. Hence, being log (C/Co)z /KT , as found in (3.60) and (3.61), one
finds &log(D/D,)=~6(u/kT) and therefore

Dgzexp(—y/kT) (5.20)

o]

this is the usual form to express the dependence of diffusion coefficient on tem-
perature via the activation energy u and the reference constant D, .

2) Assume now a body of matter of mass m in equilibrium at temperature 7°
and implement the reasonable idea that both D and M take finite ranges of
allowed values. Let D, and M, be the respective limit values of interest

here; is then significant the particular case where the Equation (4.15) concerns
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the minimum temperature T, defined as follows

_ min_ _
Toin TV (5.21)
Dimensional considerations are useful to guess an order of magnitude esti-
mate of T, . The reciprocal mobility M™ has physical dimensions
mass/time, whereas D is h/mass; so their product represents the minimum
energy €, . The notation emphasizes that the energy of interest to calculate
Tuin excludes the contribution of thermal vibrations, being instead due to the
mere confinement of a particle or a body of matter within a finite delocalization
range OX;accordingly, it is sensible to define T, as &, / k. In fact the Equa-
tions (3.1) justify the existence of this form of energy and related force.
Consider indeed one particle of mass m ideally delocalized between two infi-

nite potential walls OX apart; in a one dimensional model it is possible to write

_5p2_hw )

(5.22)

&y = 0=—-s=—00H,
? 2m 2 méx®  5x°

having expressed D =o//m via an appropriate proportionality constant o .
This result is understandable thinking an oscillating particle confined in X, so
that m bounces back and forth between the potential walls with frequency
w=1/5t. In fact Ot is the time lapse to complete one oscillation cycle;
0P =P —0 is the range defined by the maximum delocalization momentum
P = P, related to the range size and p =0 when the particle inverts its mo-
tion on both potential walls. This picture agrees with op =0, ie with the
physical impossibility of conceiving a localized particle at rest and thus with
p=0 in fixed point exactly defined. The circular frequency here introduced is
justifiable from a more realistic three dimensional point of view, where the back
and forth one dimensional motion of m reads actually 7 =msx* and thus
€p = m(a)éx)2 / 2; ie. m describes a closed circular path at tangential velocity

V,

e = @OX inside its confinement delocalization volume V; so far not yet in-

troduced explicitly. In effect it is also possible to evidence the confinement vo-
lume writing
o, " n?

~ V=63

= = . F, LV, =6, 5.23
Too2am o 2mext 2mvET o 2mv, T 529

€

Anyway it is sensible that T

min » Deing presumably a fixed value, cannot de-
pend on the arbitrary m and specific V,,; rather T ; 1is to be regarded as a
universal property of matter uniquely defined. Both requirements suggest res-
tarting from the relativistic energy equation &= pc? /V of one free particle of
arbitrary mass m, which however must no longer appear explicitly. Implement-
ing thus the wave expression of momentum p =h/A, which in fact allows in-
troducing the expected oscillation behavior as that related to the concept of wa-
velength A, one finds

pc’  hc?

E=—

=—, 5.24
v AV ( )
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which thus also defines

ezrgi" =—h02 .
(Azpv)max

The 3D generalization of this result is obtained imagining an arbitrary amount
of mass delocalized in an appropriate range 2Ar , regarded as the diametric size
of a hypersphere of radius Ar to which is related the maximum value of 4,,:
the idea is to implement steady matter waves of wavelengths 4, propagating
through the hypersphere at rate v, . Regard thus an arbitrary mass of an iso-
late free corpuscle ideally bouncing within one diametric distance, whose extent
corresponds to one half wavelength; the largest zero point wavelength is that
with steady nodes on the opposite boundaries of the hypersphere diameter and
is thus A, = 4Ar. This implies that eZTji” defined by the zero point momentum
wavelength 4, corresponds to back and forth delocalization through twice the
diametric size 4Ar of the hypersphere: this is the physical meaning of (5.22)
where v,, =V/2(2Ar) whence hv, =ho, .
V—C tosimulate v, and recalling (5.22), it is possible to conclude

Also, imagining asymptotically

- he e he 2" nc
L A (5.25)
4Ar k 4k Ar h Ar

These results will be calculated later; regardless of the numerical values, how-
ever, it is possible to remark since now some interesting implications:
— The Nernst theorem is automatically fulfilled, Ze. the absolute zero actually
does not exist being clearly impossible to remove the zero point energy,
which is an intrinsic feature itself of any amount of confined matter.

min

— As expected, the related zero point temperature ¢,

/ k does not depend on
the specific amount and physical nature of m.

— Is in principle possible the quantization of temperature, which accordingly
should start from T_;, and change by discrete steps of the order of T, it-
self.

3) The reasoning to infer (5.21) and (5.25) introduces D,;,, whose physical
meaning is relevant: it implies that T, is somehow linked to the possible gra-
nular structure of the space time.

To show this last point, calculate the change & (X jtk> of the space time coor-
dinates around any local coordinate X; and t, . The result is elucidated by the

following chains of equations implementing once more the Equations (3.1):

OX;
S(Xjt, ) =t 0%, + X0t =(tv, +x, )8, v, =50
«
since the expression at right hand side reads
2
tv, ) —x Sp. s(0°
(kjk) J5tl<: p1k5(£2): ( )' 5pjk:
LV =X 2 Vik OXj
2
6(62):(tkvjk) =X, X =tV =X,
with notation of (6.4), then
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5(0%) is(r)Y D2
5(xt.) = S)ZVVA:V_ Dy =V,5 (1),
J ] J

It is possible to identify here a minimum value of & (thk) defined by
Dy = Dy and Vv — C, at least asymptotically. Anyway one finds

5(xt,) :gﬁ,éufzagﬁ

min cd

() =(te) =X, v =c (526)
Whatever the specific value of D,,;, might be, is interesting the conceptual
idea of “granular” space time determined by a minimum linear size of cells, in
the present one-dimensional model &(lengthxtime), that define any macros-
copic values of xt within these cell; the third (5.26) corresponds to the definition
of invariant interval, which is known to be the basis of the special relativity [11].
Accordingly, the Lorentz transformations, in particular, should actually be
nothing else but the straightforward consequence of the granular nature of space

time.

5.6. Further Comments about the Zero Point Energy

This section generalizes the idea of regarding the zero point energy and volume
(5.23) as intrinsic properties of matter, rather than as operative thermodynamic
parameters related to specific experimental conditions. According to (5.23),
think the zero point volume V,, considering for example an atom surrounded

by neighbor lattice atoms; V,, corresponds to its free lattice volume, whatever

p

it might be depending on temperature and mobility. The fact that ¢,, is de-

2
fined by the confinement lattice volume around a given atom/ion, implies the
limit €, — 0 simply because for an isolated free particle V,, — 0. Nonethe-

less €,, depends itself on 7, both because of the thermal dilation of matter that

2
modifies the size of lattice spacing and because the 7"dependent mobility allows
one lattice atom to spread well beyond its volume at T, via the so called
“self-diffusion” [12]. Moreover V,; also depends on the presence of lattice de-
fects, which affect the free space available for its delocalization. In particular, one
expects that the lattice atom is quenched in one lattice site at T =T,_;, only; in
other words the volume V'is a thermodynamic parameter experimentally set,
whereas V,, is determined by the physics of matter. In the absence of external

fieldsat T =T

min » therefore, KT, is the minimum non-thermal energy of the
lattice atom/ion, as it results from all possible interactions with lattice neighbors

that determine the available free confinement volume; at T >T the thermal

energy k7 represents actually the additional contribution to the non-thermal
zero point energy €,, =€, (T) , so that it seems reasonable to think that in gen-
eral the simple A7 should be implemented as KT +¢,,. This holds in particular
for the FD and BE statistical distributions. In the case of a single free particle this
does not hold, as its delocalization volume is infinity by definition: but in general,

when considering the thermodynamic properties of a body of matter, €, can-

P
not be longer omitted at least in principle.
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To justify the legitimacy of this conclusion, consider first an ideal gas inside
which energy exchanges occur via direct collisions between its molecules only.
Without hypothesizing specific interactions between molecules, e.g. long range
Coulomb or dipole interactions between electron shells, holds between pand €
of each molecule the general equation

_pc®  hcr
v asx

(5.27)

the second equality introduces the time lapse 7 between any successive shocks,
during which the molecule travels freely the distance Vz =JX. During each =
therefore € remains constant, since inside the gas the energy changes are sup-
posedly due to direct collisions only. In particular, as concerns the zero point

energy,

32,

2
&, =0Ty (asx)”

» = NZER
the notation is justified by the free volume )V dependence analogous to that of
the Equation (P77). The fact that V involves OX is not surprising; ox*t
comes from € in (5.27) and agrees with Sp/h, being Op the total range of
momentum change P —(— p) after one shock between molecules.

Let ¢ be the distance between one molecule just after its last shock and the
wall of the recipient containing the gas; in general (# J0X. Moreover, as
—0¢ | 04 = force, (5.27) yields
hc’z

FoC_ . V=A%x, (5.28)
AV

where F is the impact force of the concerned molecule against the wall. If A is

the surface of the wall, then the pressure due to the shock of one molecule is

szzhczr_
A AV

(5.29)

If ¢ issuchthat /A=), then the former equation becomes P = hczrf/ VYV
so, since the numerator has physical dimensions energyxvolume, the result

reads

A
14

, W, =hc’ze. (5.30)

<

Note that in general neither 7 nor ¢ are necessarily constants independent
of time; so the pressure P inferred in (5.30) could be variable during subse-
quent time lapses 7 . Also note that to infer this result in the present one di-
mensional model it is enough to think the plane A orthogonal to the space coor-
dinate OX. In a general three dimensional approach one should integrate over
all possible incidence angles of the molecule against the wall to obtain the pres-
sure, as it is well known. This would entail a numerical factor, which however
can be included in €)] and thus is irrelevant for the present purposes. Moreo-

ver, it is still possible to define a statistical value of P averaging the shocks
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over several time lapses during a time range At > 7. So is defined the quantum

pressure

<

°V =YY, Y, =), (T).

2
zp

%

P:

zp

This result has been obtained considering the delocalization volume of one
molecule; it holds in general for any number N of molecules regarding 1, no
longer as volume of a single molecule but as total experimental volume V,,, of
ideal gas simply with the position 1, =V, / N . The right hand side is the av-
erage confinement size of the molecule. It is significant to conclude that the
pressure of the gas must be expressed not only taking into account the variable
dynamical parameter P, experimentally determined but adding to this latter
the contribution 7, having merely quantum nature; in effect the present rea-
soning waives considerations about any state equation of ideal or real gases. Also,
regarding the macroscopic volume V,,, as a further dynamical parameter expe-
rimentally set, it contains the quantum contribution NV, . So, extending the

reasoning carried out for one gas molecule to the case of N molecules, one finds

2
Peff :Pexp+flz’ Veff =V, — NV
(i

f=¢). (5.31)

The volume 1), is easily understandable, being intuitively evident that the
molecules have finite size contributing to the total volume V,,, experimentally
measurable. Even P,
oscillator characterized by a non-thermal vibrational frequency that determines

is guessable: if the zero point energy is simulated by an

the zero point energy, see the next Equation (5.22), then the energy of any oscil-
lator in the gas volume defines a confinement non-thermal energy density
equivalent to pressure, see next Equations (8.34). Indeed (5.31) shows that even
at PeXp

plied pressure, there is a residual internal pressure, non-eliminable, e.g. it could

=0, e.g. the core of a free body of matter in the vacuum with zero ap-

act substantially similarly to the repulsion between electron shells of molecules;
moreover the latter equation shows even a non-reducible residual volume
V =N} . The relationship between energy, pressure and volume follows directly
from (5.29) as PV = hczz'/ A=const at fixed temperature: indeed at the right
hand side of the first equality appear fixed quantities, of course at given ¢ and

7z and thus constant 7. So

N2
A =[Bp+7j(V—Nvm)-

This equation reminds closely the characteristic terms of the Van der Waals
equation, where fand 1), are approximately regarded as gas constants; this
holds also here, even though the pressure and volume terms (5.31) have been
inferred considering initially an ideal gas via quantum considerations about its
constituting molecules. The interactions between these molecules, even not hy-

pothesized and purposely introduced “a priori”, appear as quantum effects re-
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gardless of specific considerations about their actual nature, which is in effect
“hidden” in parameters like 7 or ¢ or fdescriptive of the properties of the
gas; hence is not surprising that the coefficients €)} and 1) contribute to
that characterizing the famous Van der Waals equation. The conceptual reasons
underlying this equation are well known; is interesting however that the form of
the resulting equation based on the present approach is analogous to that just
found.

These considerations are now extended to the concept of temperature once

having introduced the quantum meaning of T, related to ¢,, to show that

2
the zero point energy, typical quantum effect, affects the macroscpopic properties
of gases: ideal gas is the one where these quantum effects are approximately neg-
lected along with the long range mutual interactions as well.

If effectively exists a minimum temperature # 0, then it must be defined by
KT, = €, - However, the right hand side is in general function of 7 itself; in-
deed it has been shown that ¢, oV, %*, being V, the lattice volume available
around a given lattice site. So the thermal dilation modifies ¢&,, , whose
non-thermal physical meaning however still holds identically. Moreover the lo-
cal mobility is itself 7"dependent, as it is intuitive to think; in effect it is known
that by self diffusion, atoms in a given lattice point can exchange of place with
lattice neighbors, so that the actual volume allowed to a given atom is increased
by the number of neighbor elementary cells accessible.

These considerations should be also extended in particular to the statistical
distributions of bosons and fermions, usually written as a function of 47 only:
taking into account the considerations elucidated in the case of the Van der
Waals equation, one should conclude that strictly speaking in the case of a solid
body the simple term &7 should be replaced by k(T +Tq>, where KT, ac-
counts for the quantum contribution related to the 7-dependent zero point
energy with T, =T, (T).

W W,
_= y T = nTmin +€Z k
o exp((u—pp)/KT )+l o/ (5.32)

€p =€, (T), n=integer >1.

Even though the value of T, is presumably much lower than the ordinary
temperatures today attainable and experimentally measurable, the Equation

(5.25) suggests the chance of being tested in a situation where ¢,, is relevant,

zp
Le. in the case of theoretical models of solid state physics. In effect the paper [13]
implements the ideas of quantized temperature and statistical distributions
(5.32), both introduced as hypotheses; the specific heat calculated agrees very
well with the experimental data from very low 7'up to the melting point for sev-

eral metals with different crystal structures.

6. Some Relativistic Corollaries

In this section are examined some relevant relativistic corollaries of the previous
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results. The importance of the following considerations is shown by the chance
of obtaining contextually relativistic results in the same conceptual frame of the
quantum results previously obtained. The next two subsections emphasize the
importance of the previous equations (3.15) and (4.9), now again under test after
their previous validations, see respectively Equations (3.20) and (4.6), (4.7), (4.13)
to (4.18).

6.1. The Invariant Interval

Implement the Equation (3.15), once more under test after the result (3.20), re-
written as follows
be?
Ae=cA(pr), Ae=os-——¢,, F=0,-ap/c (6.1)
C
depending on whether r <1 one has Ae 2 CAp . Hence, squaring both sides,
(Ae)z z (CAp)2 reads

(cAp)’ —(Ae)* =K, K =0, (6.2)

where anyway K is the resulting value from the left hand side of the Equation
(6.2).
Consider first K >0.

Implementing (3.1), one finds
n2c? (Ax)” —n? (At)? =K,

whence
hZ

—(AtAx)z (czAt2 —AX? ) =K: (6.3)

this equation reads identically

2

A(sz):h_}é(AXAt)z=(0At)2(1—z_2j’ A(s?) =57 —s" =C’A’ —AX*,  (64)

having implemented once more V= Ax/At, whereas

A =@( _ﬁj

K c?

reads by dimensional reasons, whatever the value of K'might be,

AX'? :A—):Z, AX'? :@. (6.5)
1-v?/c? K
It is easy to recognize the Lorentz transformation of the intervals AX' and
AX in two different inertial reference systems R and R’, hence in (6.4) both
A(Sz) and AXAt must be invariants, as found in particular in (3.62); indeed K
is invariant itself if r of (6.1) is calculated via invariant forms of & and p, see
Equations (3.64).
Consider now K <0.
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The interval defined in (6.3) reads Ax?—c?At? >0; moreover (6.2) reads
Aé® = (CAp)2 — K, whence (3.20) with an appropriate value of K. Also this result
holds regardless of the local limit condition A — 0; so this is not a local prop-
erty, but a feature of the whole space time. It is significant the fact that these re-
sults have been obtained with the help of the quantum uncertainty relationships
(3.1).

6.2. The Gravity Force

Consider again the Equation (4.9), now once more under test after its early vali-
dation via the Equations (4.6), (4.7) and (4.13) to (4.18). Implementing the Equ-
ations (3.1) and the initial definition (2.2) of vone finds

_ V2 xSp _ 8x* Sp

At = —
c? ¢ c2st? Se

that yields, after multiplying and dividing the right hand side by an arbitrary

mass m,

1
me2 =g -
)

sp/at _ F o
s ¢ mot?’

(6.6)

by dimensional reasons ¢ is an arbitrary length. The function G consists in
general of a constant term G plus a correction term R ; indeed G can be ex-
panded in series around arbitrary reference ranges Jx%,, ot, and m, defining
G, ie.

oxe
myt;

sxt oxd

G=G+R, G= o
mot®  myot

R=Yau', u= (6.7)
=1

being @; appropriate coefficients of the power series expansion and R the

sum of the higher order terms of the series. This means calculating G around

an arbitrary value G; =G . So (6.6) reads
¢? =(G+R)%, (6.8)

It is evident that the general relativity appears in this result: the Newtonian
potential Gm// recognizable in this equation is the approximate particular case
of a more general equation involving R too. It is known for example that the
simple addition of a further term to the Newtonian potential is enough to calcu-
late correctly the perihelion precession even without implementing the basic as-
sumptions and tensor calculus of general relativity [14]. Unfortunately the
Newton physics does not justify itself this additional term. Nonetheless the mere
series expansion of the last (6.6) around an arbitrary space time constant term G
legitimates the chance of generalization without introducing “ad hoc” hypothes-
es. In this respect some further considerations exposed below regard in particu-
lar the additional non-Newtonian terms due to the series (6.7), still in the con-
ceptual frame introduced by (1.11) and (1.12) as done throughout this paper. In

effect, some papers among which [15] show that the quantum uncertainty allows
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to infer the most relevant results of general relativity in a unique frame that in-
cludes of course the quantum physics. The presence of ¢* at the left hand side
of (6.8) suggests the chance of multiplying both sides by a further arbitrary mass
+m’ ; one finds then

’

RO e? = ey =46 LT (6.9)
1 1
which defines two important quantities
€ mG Oeg m'm
=—=+t—— F, =-—"7"22G——, R<<xG. (6.10)
o= = MY &

At the left hand side of (6.9) appears the rest energy +m'c> of m’ plus a
correction term resulting from the series expansion of G, at the right hand side
the related potential energy e; to which correspond the pproximate gravita-
tional potential ¢, and force F; of (6.10) via the constant zero order term
G only. Note that the Equations (2.35) and (3.64) have introduced the concept
of states of negative energy; hence the left hand sides of (6.9) and (6.10) have
physical meaning even regarding £M’ as unique mass m, with positive and
negative energy states +m'c? = miC2 . So the Equations (4.9) and (3.1) prospect a
possible chance for positive sign of M', ie. a repulsive gravity force as already
found in [16] [17] [18], whereas (6.9) yields

. mG . Oe m'm
=—, F = _—C ~ G . 6' 1 1
e ‘ Y 02 (6.11)
Consider here the negative value —M’ and suppose R < G; (6.9) and (6.10)
yield
mG m'm
¢G — _ n , FG ~ -G 62 (612)

The Equations (6.12) and (6.11) will be further explained just below, see the
next Equation (8.6), after having first validated the results achieved in this sub-
section.

1) The Equation (6.8) reads also
_G+R mG

L ,
G ¢

which in the particular case R =G implies a specific value of ¢ given by
2mG

c?

(6.13)

Ly =

To understand the physical meaning of this result, rewrite identically (6.8)

multiplying both sides by an arbitrary factor o <1; then
vi=R,Gm/l, R,=(1+R/G)o, V.=oC>

e

For R, =2, in particular, one recognizes the well known escape velocity v,
of an arbitrary mass M’ at a distance ¢ from the gravitational center of mass
of m, also inferable via (6.12) under the condition of null total energy (potential

plus kinetic) of M’ at infinity. As R, =2 is compatible with o =1 simply
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putting R =G in (6.8), this limit condition for the chance of m’ at distance
¢ of escaping from the gravity field of m holds also for ¢. This velocity can be
nothing else but that of a photon, so (6.13) shows that at any ¢'</,, even light
cannot escape from the gravity field of m. Trivial manipulations of the early Eq-
uations (4.8) and (4.9) yield therefore the black hole limit condition between
mass m and distance ¢.

2) The present way to introduce the gravity force explains why any test mass
M’ behaves in the same way in the field of a source mass m: the masses m of
(6.6) and m' of (6.9) have been introduced subsequently and independently
each other. Note the conceptual difference between the present reasoning and
that of the Newtonian approach: Newton has contextually introduced two
masses to define their mutual interaction law, here the masses have been conse-
quentially introduced starting from (6.6) because C’ requires the concept of
mass to introduce that of gravitational energy. It is not surprising that once
having decided either mass as a field source, the behavior of the other is uniquely
fixed: as both masses are independent and arbitrary, once having fixed m the
behavior of M’ is uniquely determined. In other words there is no reason to
expect that any other mass M" behaves in a different way from M’ in the gra-
vitational field of m because the law governing its dynamics has already been
independently fixed.

3) Here mand M’ are regarded in fact as gravitational and inertial masses;
the first one defines the gravitational potential ¢ , the second one defines their
mutual interaction force F;. As they are interchangeable, their gravitational
and inertial role is physically equivalent and indistinguishable. Thus gravitation-
al and inertial masses must be equal.

4) Consider that (6.9) and (6.12) yield

Con 48 Con Con Ot

Lo = 9% 5[ Zon |2 _Lfon 5 9% (6.14)
‘ c’ ‘ 7? c?

Identify now the distance ¢ with one wavelength of a light beam propagat-

ing in the vacuum; thus

2
1=C s1=-Lay, OL_ CVV _ 0V
v v 1 ve e c
Hence, given a light wave propagating at distance ¢ > ¢, , one finds
1 of v
—%éj = _ZC_ZG = _gbh T,
then
S 3
%zi, Vrzﬁzc—, 5V:V—Vr’ (615)
c v, Ly, mG

being v, a reference frequency of the wave. The first equation defines the
famous red shift (V—Vr )/ v, of a light wave due to the gravitational potential
field change ¢ .

5) It is instructive to consider now two photons freely moving in the vacuum
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on the diametric plane of two concentric hyperspheres: the inner photon just at
radial distance ¢, from the gravity center of m, given by (6.13), the outer
photon at any radial distance ¢>{,, from m. The previous result shows that
the inner photon cannot escape from the gravity field of m, so it can move on
the surface of the inner hypersphere only, whereas any photon moving at very
large distance ¢ > /¢,, from m is free to travel unperturbed as a limit case from
minus infinity to infinity or vice-versa. Is reasonable the idea that the outer
photon moving at the closest approach distance /> ¢, should follow an in-
termediate behavior, Ze. a curved space time path bent by m. This preliminary
consideration justifies why the problem of light beam bending is tackled here
with reference to the previous Equation (6.13). The standard way to approach
the problem considers the curved trajectory traveled by the photon that follows
the space time curvature along an arc JS around m at distance ¢ ; the position
of the photon before and after its closest approach to m defines the characteristic
deflection angle ¢ = go(ﬁ , m) equal to that formed by the tangents to the oscu-
lating circumference at boundaries of JS. From a quantum point of view,
however, the concepts of position and trajectory are missing, rather the ap-
proach must be similar to that followed to infer (4.16). Just for this reason the
present reasoning is instructive to highlight how the quantum requirements are
plugged into and provide information on this typical relativistic context.

Regard the arc OS of osculating circumference of radius ¢ defined by
0s=/{¢ conceptually according to of (3.1), Ze. as an uncertainty range where
the photon is delocalized. Accordingly &S is actually given by two half angles
OSey =Lp/2 and Ss,, =—{¢p/2 traveled by the photon along clockwise and
counterclockwise paths around the middle point 65/2; indeed the photon dis-
placements implied by Js,, and Js,, are physically indistinguishable, be-
cause nothing is known about the motion features of any particle within an un-
certainty range. This point of view skips the idea of a photon entering in 05
through one boundary and exiting from the other boundary, which in fact would
define &S asan element of trajectory. So &S = 8S,, —(—0S,, ) =@ waives the
whole ¢, which would imply discriminating the events where the photon tra-
vels through S coming from —o0 towards © or from o towards —o0;
actually these events are indistinguishable likewise the boundaries of Js
themselves. So, with respect to gravity center of m, the angle of physical interest
is @/2 and not ¢ to account for the sought total 5S. In other words the
Equations (3.1) compel merging two half-paths into a unique travel path without
discriminating either of them.

Consider then an angle ¢/2 on a circumference of radius ¢ and its related
length (55/2) / £ to describe the uncertainty range 0S where is delocalized the
photon. Rewrite the second (6.14) as follows

zﬂ_eﬂ__ﬁz_z(me/cz _ mG/c?

J, —Eﬂ&f =6s;
V4

o0, ‘ ‘,

0

here the uncertainty ranges &(/,,/() and & (¢G /Cz) have been simply re-
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written with the usual notation of any 6y =y-Y, by definition, whatever the
concerned ymight actually be. In this specific case ¢ and ¢, are two different
distances of the photon from the gravity center of m. It is clear that it is conve-
nient to put here ¢, — oo because, as previously stated, we are interested to
describe the situations where one photon initially unperturbed passes at a finite

distance ¢ from m. Hence the last equation reads

Zﬂ__ﬁ__sz/cz
Y ¢ v

If, for the aforesaid quantum reasons J8s//=¢/2 on the osculating circle,
one finds immediately

= =2—.
z 4

¢ _lyn _,mG
2

These simple considerations emphasize the actual quantum character of one
of the most representative relativistic predictions, the gravitational lensing; the
famous factor 4 defining ¢ at the right hand side appears to be actually the
fingerprint of the quantum uncertainty.

6) Consider the physical dimensions of the gravity constant inferred from
(6.6): according to (6.7), space and time range sizes dX, and Jt, concur to its
macroscopic value together with the arbitrary mass m;. From a quantum point
of view, (6.7) does not exclude the chance of mass fluctuation, Ze. according to

(4.6)

3 3
5G =% 5m0+i5[5—xo}

mg ot m,

VZ
omy=myg—mg=mg|1—,/1-—|.
c

Even considering preliminarily the fluctuation of m, only, and thus energy

(6.16)

fluctuation Je =c’Sm, only, the constancy of Gis expressible as

3 3
56=0, 2% sm, =mes| 2%
m,ot? otg

ie. S¢ implies the change of 5X / ot as well. Note that §x, and ot
are not usual dynamical variables characterizing physical laws, rather they define
the structure of Gitself. In effect, this quantum standpoint implies that transient
fluctuations of values of G are in principle possible, being compatible with cor-
responding space time energy quantum fluctuations J¢ . Making explicit the

right hand side of this last equation, trivial algebraic steps yield

2 3 3
X X X

0G =30X, 02 26t 03 —-om, 202

m,t

Myty oo

_X 5x x oty X om 0
t X%, m 5x
so that G =constl simply if
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X 0%, m om m, om 1
L=g 2, L=0,—2%, 2=—2, 20,+—=3;
t, ot, X X, t, ot o,

otherwise, e.g. a different correspondence between o, and o, whatever their
values might be, the quantum definition of Gadmits 0G # 0. All this has clear-
ly to do with the existence of inflationary era of the early Universe: an appropri-
ate fluctuation dG #0 of G can contribute in principle to the sudden increase
of expansion rate of the early Universe. Among the implications of these asser-
tions, one deserves particular attention: the possible fluctuations of G affect the
black hole length /¢, of (6.13) of a given m. Unfortunately further discussion
on this crucial point is outside the aims of the present paper.

7) Returning now to the Equations (5.25), the maximum value of momentum
wavelength 4,, has been related to a suitable space range Ar defined as the
radius of a hypersphere within which is delocalized an arbitrary amount of mass.
Zrgin
defining T, corresponds to the maximum delocalization extent physically

As the steady wavelength appropriate to calculate the zero point energy e

conceivable in our Universe, is reasonable to relate 4,, to the diametric size
2Ar, of the Universe, regarded here as a hypersphere with diameter 2Ar,. So
think the mass ideally bouncing within one diametric distance, whose maximum
space extent corresponds to one half wavelength; this wave has thus steady nodes
at the diametric boundaries of the Universe, regarded in effect as a hypersphere.
Replacing Ar of the Equation (5.25) with Ar, and putting v —C asymptot-
ically, one finds
mn _ NC e he 2" mc

PULILL I S B . @, = =, 6.17
®ooaar, ™ ko 4KAr, hooAr (6.17)

u

The current estimate Ar, = 4.35x10% cm [19] yields the numerical values

M =12x107 erg, T, =83x10° K, o, =2.2x10"s?  (6.18)

mi

In addition to the preliminary remarks about the Equation (5.25) previously
emphasized, these numerical results suggest further implications:
— Finite Universe means identically ep" #0.
— Thelimit T, =0 would hold in an infinite universe only.
— To guess the physical meaning of the small value of ¢, , note that
Yw=4.6x10"s fits surprisingly well the estimated age of the universe
4.35x10" s reported in [19].

— The fact that the energy corresponding to A,, agrees reasonably with the

2
with which has been calculated T, could be a possible vacuum energy

P
estimated order of magnitude of the age of the universe, suggests that ¢

fluctuation, still in progress, of the whole Universe.
— It is interesting that ), that determines T, agrees surprisingly well with
the Hubble constant.
8) It is possible to implement these results to calculate another important
property of the Universe, ie. the vacuum energy density 77,. In general, the

energy density corresponds from the dimensional point of view to
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mass x frequency’ / length . Consider now that according to (6.13) nothing, even
the light, can escape from a range size /,, enclosing the mass m; hence, the
Equation (6.13) represents a significant opportunity to describe how to trap in-
side a volume of space time energy that cannot be irradiated nor lost outside it.
After having inferred that an energy %, pervades all Universe, whose zero
point value %@, /2 determines the zero point energy defining T, is attract-
ing the idea that 77, can be calculated just with the value of @, controlling
Toin - This idea links the vacuum energy density to the zero point energy (5.22)
related to KT . If so, then calculating m//=¢?/2G according to (6.13) and
implementing @, just calculated,

2

7, = ;'—ij =3.3x10° erg/cm® =3.3x10 J/m°. (6.19)

The sensible value of vacuum energy density further supports the way to cal-
culate the values (6.18). This means that the concept of vacuum does not imply
that of “nothing”: rather the vacuum must consist of virtual particles whose
energy, Le. mass, governs the residual vacuum energy density in agreement with
the third law of thermodynamics.

9) But there is more. Implement the mass M, of the part of visible Universe

[16] estimated counting the stars only to calculate
2M,G

M, =3x10® g, . 4.5x10% cm. (6.20)

On the one hand one expects that M, is estimated by defect, without taking
into account that other forms of energy distributed in the Universe could in
principle increase this value; whatever this additional energy ¢ might be, it
concurs with M, by 6*/ ¢’ to the total mass of the Universe. On the other
hand are visible only the stars whose distance does not overcome the observation
limit posed by the light speed; assuming that the distribution of galaxies and
thus stars is uniform in the Universe, the actual mass due the total number of
stars should be

3
M ~3x10%| 2 | 2115107 g
cAt

u

This value still estimates the total visible matter of the Universe as if the light
speed would be infinite; as such, however, it does not tell anything about other
possible contributions inherently “dark”, 7.e. non-luminous, for example the va-
cuum energy/c or the zero point energy/c®. Compare thus just this value M~
with the total mass related to the whole vacuum energy density 7, calculated
above. It is

4 Ul

§7tAl’u3 C—; =1.3x10% g

The total vacuum energy of the Universe is still about 12 times higher than
that of all visible objects. Make at this point a hypothesis:

The energy density of vacuum and that of matter are equal, Ze. regard matter
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and vacuum as two different thermodynamic systems at global equilibrium.
So M” must be incremented just by this factor to make equal the respective

densities. Write thus the total mass balance as a function of the true visible mass as

2M +M +M, =M, =12M" (6.21)

the factor 2 accounts for the antimatter, wherever it might be in the Universe,
whereas M, and M, are the missing masses also concurring to the factor 12
assumed true. The notations account for the fact that the concept of mass can be
defined in general via p/v and g/ v? . Rewrite now these positions with the
help of (2.36)

(6.22)

p £ 2

M:L, M =—=£ v =
ﬂpv

where A, and v, are the pertinent momentum wavelength and energy fre-

quency. Thus

Vv, h A * hv
MP_VAV' M, = v T (6.23)
p €0

0

being v, arbitrary velocity. Moreover rewrite identically (6.21) as

2M"+q,M"+q,M" =12M", M =q,M",
. 6.24
M. —qM, M= h _ hv2 (6.24)
ANV, AV

pYo €

where , and g, are appropriate coefficients able to express numerically
M, and M, via M ", Actually the physical meaning of these positions is to
establish a relationship between visible mass and the other contributions to
M

trary. One equation to determine these coefficients is obviously

wt - The last position, in particular, is possible because A, and A, are arbi-

g, +9, =10, q,=q,(xt), g, =0,(xt). (6.25)
Moreover, as (6.23) reads
2
Vo Vo 2 \ Vo
2=q, |-2|=0=0, —=-%, 6.26
v ap [vj 0, =4, PR (6.26)
(6.24) yields
qu*+q€M*=(qp+q$)M*, q, +q; =10, (6.27)

and thus @, =2.7 and (, =7.3. Being the third position (6.26) certainly ful-
filled via the arbitrary v,, which however does not appear in (6.27), (6.24) and
(6.21) become

2M”+27M7+7.3M" =12M", M, =27M", M, =7.3M",

which are expressed more significantly in relative %:

(8.3+8.3)%M", 225%M, 60.8%M,. (6.28)

The papers [10] propose a possible explanation, here omitted for brevity,
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about why matter and antimatter are separated. It is more important to note that
there is no “ad hoc” hypothesis in this reasoning, rather a further implication of
the fundamental concept of uncertainty repeatedly invoked throughout all this
paper and again exploited here through the assumption of vacuum/matter equi-
librium. In effect the mass densities calculable via the terms M, and M, ad-
ditional to M in (6.21) correspond to the respective energy densities and thus
to pressure terms inside the Universe. The next Equations (8.28) to (8.34) eluci-
date this point.

10) Multiply (6.6) by the mass m, introduced in (3.20) and (3.21); recalling
the second (3.26) it is possible to write

2¢ mm
2 a a
m,c” = =G , (6.29)
2 n'c?+n? 0

which links via ¢ the Newtonian gravity and quantum energy at the left hand
side. Whatever o, might be, the arbitrary distance ¢ is repalced by arbitrary
quantum numbers 7 and N'. In this sense (3.20) is reasonably defined in [6] as
equation of quantum gravity.

It is true that actually G should be replaced by G to plug all considerations
carried out in the subsection 6.2 into the relativistic realm via (6.7); but it is also
true that actually m, has been defined in order to make o, and o, of Equ-
ation (3.15) consistent with the harmonic oscillator form (3.25) consequent
(3.24). Modifying the definitions (3.23) in order to define non-harmonic oscilla-
tions would mean adding additional correction terms corresponding to the
higher order terms of the series (6.7). It is possible to say shortly that the Newton
gravitational energy corresponds to quantum harmonic oscillators at the left
hand side of (3.25), the relativistic gravity is described by non-harmonic oscilla-

tor terms replacing the mere N'hv of (3.25).

7. Klein Gordon, Proca and Maxwell Equations

Implement now the Equations (3.30) introducing a function of w' defined as

follows
v =Qexp(ay), v =y (x1), (7.1)

where o and Qare arbitrary constants. So the first Equation (3.30) yields

2. (0) 2 2 2
Loé l//z =0 o 1/2/+O_[5_l//j =0'(1ic7)5 (‘;/; (7.2)
y® ot St ot ot

proceeding in analogous way with the help of (3.31), the second Equation (3.30)
yields

1 EZV/(O)

l//(O) 5X72

52
:O'(li 0') 5):{;. (7.3)

Hence, replacing (7.3) and (7.2) in the right hand side of (3.32), the result is
an equation expressed as a function of the functional l//(o) of v

DOI: 10.4236/jmp.2018.914161

2564 Journal of Modern Physics


https://doi.org/10.4236/jmp.2018.914161

S. Tosto

1A\2 2. (0) 2. (0)
m'c 0 V% % , )
(—h j l//( ) =— 5t2 +W, m =m,¢0'(1i0'), (74)

as m appears at the left hand side only of (3.32), it has been included in M’ to-
gether with the factor O'(li O') without loss of generality. Taking the limit
5 — @, which by consequence implies y'® — . as well, this one dimen-
sional result is actually the well known Klein Gordon equation

Y 2 Y
(%j KG :_6(;/:;@ 56V/,|§G - Uyye +(%j Vke =0,

ot o

On the one hand it confirms the validity of the positions (3.30) and thus of
(3.39) too; on the other hand this result shows that the Klein Gordon equation is
inferred from the local functional (7.1) of the space time function (3.39). The
latter equation simply rewrites the former according to the usual 4D d’Alabertian.

This result can be further generalized taking advantage that the last equation
is actually expressed as a function of M’ and not of the initial m. The fact that
M’ can take two values depending on either sign in (7.3) suggests that in fact
two equations are tacitly implied by the unique Equation (7.1); for example one
scalar equation and one vector equation should be compatible with (7.3). This is
very easily proven showing that the scalar and vector fields of the Proca equa-
tions can be combined into one resulting Klein Gordon-like equation. The most

straightforward way to demonstrate this assertion starts just from the Proca eq-

1 04 me \’
S =2 voA = — | 4,
walea {3
2
DA+V£ Y.y Aj (mcj A,
¢’ ot h
which actually, owing to the definition of the operator [J, read respectively

2 2
V2¢+M:(Ej b, 1 o 'ZA ];M:_(mj A; (7.5)
ot h c? ot c ot h

uations

thus ¢ and A are the sought scalar and vector fields linking the two equa-
tions. Multiply the former equation by an arbitrary function f = f(X, y,z,t)
and the latter by an arbitrary velocity vector Vv, =V, (X,Y,z1), ie

tvegs £ 2V A) (V A) [mcj t4,

1 0°A 15V¢
o T

Subtracting side by side these equations,
(V A) (mc]2 1 *A 10(Ve) (mcj2
V? — =V, - + +— 1| A|, (7.6
[ o+ n ¢ lctat® ¢t et h 7.6)
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trivial algebraic steps yield the following scalar equation

AR, PR 300 (el
Vorg oz Ve @ - (fg+v,-A). (7.7)

fV2h+ f
¢ h

As fis an arbitrary function, it can be defined in order that

VA Y 2 2
| )_Vo,ia( ¢)_V0.16A:_fiﬁ; (7.8)
ot ¢ ot c? ot? ¢’ ot

hence
1% (mc)
fv2¢—fc—2¥:(7j (f¢+VOA) (79)
Eventually it is possible to infer from this equation
1% (mcY >
fVig—f——=|—| (1+q)fg, v,-A=qafs, q=0; 7.10

both fand V, are arbitrary, thus the last position just introduced is in fact
possible. Actually the first (7.10) does not depend on fand has still the form of a
Klein Gordon-like equation for the previous scalar function ¢, where appears
however the factor 1+ at the right hand side corresponding to the previous
6(1ir 0') of (7.3). Just this factor is the key to split this double valued equation:
indeed =0 is one scalar equation, whereas the additional chance q=0 al-
lows inferring the couple of Proca equations via the position V,-A=(f¢ that
introduces the vector field A. It is enough to revert the steps from (7.10) to (7.5)
still via the key position (7.8). The profound physical meaning of this position,
here purposely introduced to obtain (7.9), is shortly outlined below, to show that
it is not merely a useful algebraic step.

The Equation (7.8) reads

f[a(V~A)+izi;¢]:v_;(6(V¢)+6z_ij (7.11)
ot c° ot c ot ot
Le.
fﬁ[v.m%%j:"—gﬁ[wﬂ%} (7.12)
ot ¢ ot c- ot ot

In this equation it is possible to put formally

1 04 oA

V-A+——=0, Vg+ vo OE _
c” ot ot

=-E, = —=0 7.13
¢ ot (7.13)
the first position is the Lorentz condition, the second equation is the definition
of the new quantity E , the third equation is obtained replacing E at the right
hand side of (7.11) and simply means that V, is orthogonal to 0E/dt to get
0=0 at both sides. Now give A physical meaning introducing the following

positions

H=VxA V.H=0, VxE:—l% (7.14)
C
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the first position is simply the definition of a new quantity H , whence follows

the second equation by consequence; the third equation is obtained taking V x

of both sides of the second (7.13). Note now that the first and second (7.13) yield

oA ,, OV-A) 10% _,

VI Ve+ T = Vi D == 2 V2=V E= 7.15

(Vo B )= vior RS2 vy E=p (a9

Eventually it is possible to infer a fourth equation considering the continuity

condition 69g=0 of an arbitrary function ¢g=g¢ (X,t) , which reads

59 =(0g/ct)St+(0g/ox)6x=0 ; thus the one dimensional expression

dg/0t+(0g/ox)v =0, where vmust be intended of course as V, = 5X/t , reads
in general V-Vg=-0g/dt.Hence V-Vg=V-(gv)-gV-v yields

0
gv-v =O=—g+V-(gv).
ot
Since ghas not yet been defined, it is possible to rewrite this equation imple-
menting the scalars already inferred, to obtain a self-contained set of equations.
Put

g=£V-E=p, gv=pv=J,
c

which yields therefore

It is convenient to utilize the vector property V-VX()zO in agreement
with V-v=0 of solenoidal flux of p to simplify this last equation whatever
the arbitrary field X might be. Thus one obtains

VxX:la—E+J, J = pv. (7.16)
c ot

Despite the lack of specific information to identify the actual nature of X, it
is reasonable to put X oc H with H magnetic field to be introduced just in
the next section: this position is in fact possible without introducing a new field,
hardly justifiable in the present context. Hence the position (7.8) is valuable as it
implies four relevant equations, whose importance appears by answering ques-
tions like: flux of what? what kind of fields are E and H ? The next section
clarifies these points that clearly allow to obtain the Maxwell equations (7.14),
(7.15) and (7.16).

These fields allow modifying appropriately the functional (7.1), in order to
describe one particle even via a possible interaction potential; of course such a
calculation is omitted here for brevity, being clearly beyond the purposes of the

present paper.

8. The Fundamental Interactions of Nature: Force Laws

Some considerations about the gravity force in the subsection 6.2 were inferred

starting from the Equation (4.9). Now the concept of force is reexamined start-
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ing from the more general Equations (3.1) and (3.69). This section consists of

three subsections.

8.1. Preliminary Considerations

The Equations (3.1) provide several chances of defining the general concept of
force, directly related to (3.69) and (3.70)

op_0¢ ¢ (8.1)
ot oOx
whence, implementing once more &P = 7/5X , one infers in general
. hoo. . OX . op
Op=——=0X, Sx=—, Sp=——. 8.2
P50 st P st (82

To understand intuitively the correlation between Fand JX, think that the
effect of any force is to modify the state of motion of matter on which it acts.
Consider a body of mass m under the action of a force F. If m is actually a sys-
tem of particles, then F perturbs the dynamics of all particles of m: for example
they move faster. According to (3.1), modifying the kinetic energy of a system of
particles implies changing in principle their delocalization extent and thus the
range size OX able to include each one of them. The greater the force altering
the status of a system, the greater must be the size change rate X to account
for the altered delocalization extent of matter in X . This is the intuitive way to
justify in general the quantum link between Fand the related SX . More specif-
ically (8.1) also imply

V= OXd% , OXoe <IC; (8.3)

the inequality is direct consequence of the first equation with St replaced by
S¢/h . Again, the position & — 0 yields the usual definition of generalized local
force F = p. These equations are directly referable to long range interactions,
because OX is defined even at infinity in lack of specific constrains; being di-
rectly inferred from the general Equations (3.1), F is expected to hold for
charged and neutral particles. In effect the Newton and Coulomb forces
represent an important class of forces that vanish at infinity as X, justifiable
simply assuming OX = Const ; is evident the analogy of (8.2) with F; of (6.10).
Beside (8.2), particularly interesting are further dimensional considerations
about characteristic space and time ranges related some specific forces. Write for

example
w2 (hc)’  nox e__h

F —

W) _hox e R 8.4
mV mcV V St SXSt (8.4)

the first definition follows from & p / mox = h’ / mox® . The Equations (8.4) and
(8.3) prospect the chance of introducing the concept of short range force as that
related to characteristic lengths, times and possibly volume consistently with the
Equations (3.1). An example in this respect is the zero point energy resulting

from the confinement of matter in a finite volume of space time, already intro-
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duced in (5.23); another example is the Casimir force, shortly sketched below.

The ranges 0 and JX of (8.4) help to fix the energy scale or the distance
scale characteristic of specific interactions. Are useful in this respect the values
(3.12) of length ranges; the Equations (8.4) are implementable with these scale
lengths of prospective interest to estimate the strength of short range forces.

The few remarks exposed here highlight how to proceed in various cases. First
of all, it is necessary to examine how long range and short range forces are in-
cluded in the general definition (8.1) of F the key point is the deformation rate
OX of the space time range OX.

Let two interacting partners be OX apart and expand in series
oX=0 )'((5 x’l) : this position ensures that Fvanishes at X — oo . Write thus in
general

Ac, Be

OX=0X, +—+ 8.5
05X X ®5)

where A and B are the constant coefficients of the series expansions. So (8.2)

splits into the sum of various terms

:+h|5>'<0| h(ly+14,)c
T o ox°

Lo+l =A (€z+€3)2:8’

ne(t, +1,)°

Fo Sx°

Fl:i y Fzzi

Here 0%, =const by definition, with signs of F, dependent on whether JX

swells or shrinks during Ot . The Equation (8.5) is more general than (6.7): the
latter concerns specifically G and thus the gravity, i.e. F, correspondsto Fg,
whereas (8.5) instead concerns more in general X ; the higher order terms ex-
pressing OX include R of (6.7). Just to show this point the coefficients A
and B have been split introducing constants lengths {; that characterize vari-
ous kinds of forces in fact included in (8.2) and made explicit by the respective
terms of the series expansion of F. Examine thus one by one the forces resulting
from the first three terms of (8.5) to show that in effect this approach is inter-
pretable in a sensible way. The first force identifiable is
L 8% Bt hel;

| =—_— ., 8.6
Ne ox2 5 oxt (8.6)

where the subscript NC stands for Newton Coulomb. The second and third

forces easily identifiable are

htc n? h
= = i = —-——

Posx Tamv, 0 2me

having inferred ¢, by comparison with (5.23), and

L S S WP}
00, ox /,

One finds again the zero point force controlled by the Compton length ¢, of
the mass m. Moreover one recognizes the Casimir force per unit surface /,(,

given by /C times the pertinent numerical factor ¢ whose value is controlled
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by /¢, whatever the value of /, contributing to F; might be. In this way
neither ¢, nor (; and /¢, result fixed; so the second and third terms of (8.6)
are the higher order terms of the zero order approximation F, in principle de-
finable by these lengths independently of the coefficients characterizing F,,
and force per unit surface P.,. The zero point energy has been already con-
cerned; a detailed discussion of the Casimir term is clearly outside the purposes
of the present paper. It is really crucial the fact that various kinds of forces are
nested in the general uncertainty Equation (8.2), in turn direct consequence of
(2.10). Owing to the importance of (8.6), the following consideration will be fo-
cused on this equation for sake of brevity only; this allows to complete the in-

formation in Section 6.2.

8.2. Long Range Gravity Force

To verify how (8.6) implies more specifically the space time curvature, examine

both sides of the general Equation (8.2). The Equations (3.1) imply the following

chain of equations implementing the left hand side of (8.2)
Sp_hl _n 6x _h 5x’(1 1j5p’

== =— —+— |=—r.5X (8.7)
St Stox StOXox OStox+ox'\ox oX

ot
, h 1 1
p:—’ C=_+_’
OX+oX' ox ox

being I, the Laplace average curvature radius of an ideal surface such that
F—>0 for 6X—>o© and X > .

Note that I, is formally similar to K, =1/r, +1/r,, where the addends are
defined on two orthogonal planes called curvature sections; it refers to flat space
time. According to its classical derivation, the local value of K| is calculable as
bothradii I, and I, areassumed in principle exactly knowable. Here, instead,
the quantum derivation of F, does not allow any information about size and
even mutual orientation of X and X', the only indication available being
that it is conceptually defined by two curvature sections in a 4D space time; so
I, is not calculable in practice, it is compatible with all combination of values
included within 6X and OX'. The relativistic curvature K. is instead
self-defined in a Gauss curvilinear coordinates in a covariant way regardless of
the reference system. According to (3.2), however, even I, defined by two un-
certainty ranges actually waives the link to a specific reference system; hence the
impossibility of calculating uniquely I, prevents comparing it to K¢, whose
local value is instead in principle calculable. Hence is meaningless to enquiry
whether or not the Equation (8.7) fits the standard definition of general relativity
or not. In other words K must be necessarily covariant to have physical
meaning, because effectively it can be calculable locally; I, instead fulfills the
quantum concept of covariance required by (3.2) and cannot take any determi-
nistic value. Hence, in lack of numerical assessment, the quantum reasoning im-
plied by (8.7) allows conceptual comparison only: the quantum definition of
space time curvature, although symbolic, is still related to its relationship with £
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ie. F#0 for §Xx and 6X' both finite. The non trivial implication of this
reasoning is that in this way the relativity becomes a corollary of (3.1) and (8.2)
via the series expansion (8.5) that generalizes the mere Newtonian term. This is
not surprising because the Section 1 has evidenced the 4D holistic character of
the present model; the purpose of the next considerations is to clarify further
this idea.

Recalling (2.36) p= h//l , the right hand side of (8.2) yields, owing to (4.24)
and (2.36),

—— Lt - h— ==L 8.8
SXox o2 ot (8.8)

so, merging (8.7) and (8.8), one finds
_hoi __sp’ , OX

=F—Tr.0X' =Fr.8¢s', S&'=V'Sp', vV =—.
Sa2 T op 07 THRos o8 P ot

(8.9)

No apparent reference to the mass is explicitly evident in this formula: the
force r.0¢' and its approximation F, are due to the mere deformation rate of
the range OX, .

On the one hand (8.2) results consistent with this equation that links force
Sp andenergy O¢' viathe curvature radius I, of space time: as expected the
momentum, and thus its time change as well, can be expressed via corpuscle
formalism, see e.g. (3.64), and via wave formalism inferred in (2.36). According-
ly F =p waives the concept of mass if just (2.36) is implemented to calculate
p= —h&/d/lz . The analogy with (8.6) and (8.5) appears because also now it is

possible to write

SA =260 + Y k647 (8.10)
j

this is the meaning of the Equations (8.7) to (8.9), where the mass is mere di-
mensional property of A.

On the other hand, the connection of (8.6) with (6.12) implied by (6.7) re-
quires writing

mlm2
X2

F, =G Oy = m1m2% (8.11)
the curvature I, islinked to one mass, that defining ¢’ and Sp of (8.9), the
zero order deformation rate §X, of JX is given by the constant G/h times
the product mm,, ie. JX, is proportional to MM, that in turn is directly
proportional to the force. The Equations (8.6) and (8.11) are the space
time/matter formulations of the gravity force analogous to the wave/corpuscle
formulations of the energy and momentum in quantum mechanics; in effect
(3.70) has shown that in general the force is proportional to oo p .

It turns out therefore from the previous considerations with the help of (2.36)

hsi _ mm
‘@ =|F|:‘@ oo =% _g MMy (8.12)
ot |gin Ot | New oA OX
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whence the correlations

force field — deformation rate of space time ranges —» acceleration ~ (8.13)

Comparing the left and right hand sides of both (8.12), is evident why Einstein
has successfully replaced the concept of force with that of space time curvature,
while skipping the more intuitive Newtonian correspondence between mass and
force: thus, in His intuition, the mass appears directly related to the space time
curvature. So the first correlation (8.13) is understandable. The second correla-
tion deserves attention, as the concept of acceleration has been not yet intro-
duced; it will be concerned in the next subsection in particular to explain what
have to do % or A with the acceleration implied by F. It will be shown that
just the ranges, which link the concept of force to the quantum uncertainty,
also plug the Newton and Coulomb forces into the realm of quantum mechan-

ics.

8.3. The Equivalence Principle

Implement the Equations (8.11) and (8.8) to understand why the mass appears
in the former and not in the latter. Also this topic, shortly sketched here for
completeness, has been concerned in [10].

Position and size of any X =X—X, in an arbitrary R are respectively defina-
ble considering the distance of either range boundary, say X, , from the origin O
and the distance of x from X, ; of course the opposite choice would be identi-
cally admissible. Being both boundaries arbitrary, in general it is possible to re-
gard X= X(t) and X, =X, (t) A force Farises inside X because in general
X # X, , i.e. when the range size of 0X shrinks or stretches as a function of time
during Ot =t—t, with respect to its initial size at the time t;. To simplify the
reasoning it is enough to examine the cases where: 1) X, =const and x=X(t)
only or 2) x=const and X, =X, (t) only; as anyway the size of X changes,
for example because of energy fluctuation of a particle inside X, both cases
imply in general F #0 and the following considerations about inertial and
accelerated reference systems.

Imagine an observer sitting on X, and assume for simplicity that one par-
ticle only is delocalized in O ; the rising of any Fis detected observing the dy-
namical behavior of this test particle.

In the case (1) the observer is by definition at rest in R with respect to O; yet
he acknowledges a force F = —(h/ 5X2)5X acting on the particle, actually due
to X=#0. To justify in principle why the motion of the particle is perturbed, the
observer reasonably thinks to the presence of an external force, e.g. a gravita-
tional mass outside OX.

In the case (2) the observer no longer at rest in R necessarily accelerates with
respect to O, whereas the force F, = (h/ X’ )5 X, again appears in OX ac-
cordingto X, #0;now F, governs the dynamics of the particle delocalized in

OX . The observer concludes that its own acceleration is due to F, .
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Of course the analytical forms of Fand F, are in principle analogous, al-
though their strengths are in general different if X # X, ; indeed the forces only
differ by the time dependence of either boundary coordinate of oX with which
is calculated the overall oX. However, despite the boundaries of OX are in
general arbitrary and independent each other, nothing hinders to assume in par-
ticular X, / X =— X/ x°: e stretching of X occurs via forwards displacement
of x only or backwards displacement of X, only with respect to O. So locally
F =—F,. The acceleration experienced by the observer and the presumed force
Farising outside 6X perturb in the same way the test mass because they have
actually a unique background, the deformation rate (8.5) of the space time range
OX itself that in effect implies (8.6): in (2) this deformation rate is perceptible
by the observer as force F, whereas in (1) it does not, although in both cases
the observer can anyway record the same change of local dynamics of the par-
ticle inside OX. Clearly the observer reference system R, with origin on X,
is at rest or inertial in (1) but non-inertial in (2) with respect to R, in agreement
with the aforesaid correlation.

One key point of the reasoning is that these conclusions hold exchanging the
role of x and X, because both range boundaries are arbitrary and physically
equivalent; no physical property characterizes specifically either space time
boundary displacement. As (1) and (2) are physically indistinguishable, the
unique information available is the overall deformation rate X and its related
F this means that the concept of acceleration implied by F, holds identically
for F as well. Another key point is that the acceleration does not necessarily
imply the concept of mass, but that of force in turn due to inertial and
non-inertial reference systems.

One could also say that the concept of force is redundant, what in fact exists is
the stretching/shrinking rate of X which in turn implies space time curvature
according to (8.7). But now this statement has quantum foundation only.

Anyway the dualism wave/corpuscle of quantum mechanics has relativistic
analogy in the “corpuscular” Equation (6.9) and “wave” Equation (8.9) proper-
ties of matter; the latter originates from the space time curvature, the former
from the necessity of defining the change of delocalization extent of massless or
massive particles both contextually implied by the probabilistic Equation (4.7).
In this sense quantum and relativistic physics are perfectly symmetrical, which is
not surprising because both are rooted on the quantum uncertainty. From this
analogy follow the correspondences (8.12) along with the Equations (6.28) and
the various forces implied by (8.5).

Is evident the analogy of JX with the elevator of Einstein’s thought experi-
ment: the cases of inertial and non-inertial reference systems merge here into the
unknown and unknowable behavior of the boundaries of a unique space time
uncertainty range 6X only. Implementing space time ranges rather than local
space time coordinates plugs a typical relativistic reasoning about inertial and

non-inertial reference systems into the quantum uncertainty (3.1). In this sense
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the relativity is conceptually compatible with quantum requirements; any rea-
soning via local coordinates, e.g. the tensor calculus, wouldn’t. The present ap-
proach shows what the mere wave formalism to quantum mechanics cannot
emphasize itself: quantum and relativistic theories are conceptually rooted in the
unique concept of uncertainty, the operator formalism exposed in the subsection
3.5 is instead less general being actually itself a corollary of the quantum uncer-

tainty.

8.4. Long Range Electromagnetic Interactions

Start from the Equation (4.8) Ae =n%Se and the position (4.9) Ae=h/At,
which now are once more under test besides to the results (4.13), (4.14), (4.16)
and (4.17) already obtained; the Equation (4.9) was also the starting point of the
section 6.2. Recalling the definition (4.5) of refractive index n, elementary ma-
nipulations yield

v h
oe=——=¢,—¢g, [=CAt, (8.14)

c /!
being of course ¢ an arbitrary length. The second equality is the mere defini-
tion of energy range O¢ with arbitrary boundary values &, and ¢;. A possi-
ble way to split accordingly vzh/éc too, is to rewrite (8.14) defining & and
&, as follows

2 2
PO U I L (8.15)

g he' Tt ‘
to obtain next (8.14) rewritten as

Vi q° —hv
—_——=g,—& = 8.16
cer =71 ¢ (8.16)

the positions (8.15) convert thus the unique term at the left hand side of (8.14)
into the difference of energies Q° / ¢ and hv/! defining J¢ . In general
g= q(v). Let ¢ measure the distance between two interacting partners. The
fact that ¢ 1is defined by c means that the carriers of the force are massless par-
ticles, photons. Also, v that defines the energy range (8.14) characterizing this
kind of interaction must be consistently identified by V=cC;asany v<cC could
not be enough to travel through ¢, a coherent way to characterize the peculiar
value of g consistent with ¢ requires the boundary condition n=1 in (8.16).
Put thus the resulting value of g, now uniquely defined, proportional to a “new”
quantity called e So, calling 2¢, the dimensionless proportionality constant
linking q2 and €°, (8.16) yields

he 24’ —he

; ; , 0% =2a,6%, v=c (8.17)
Multiplying both sides by //AC one finds
1 e
Oy=—, o0=—
a hc
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as a result we have obtained the definition of fine structure constant ¢ via
three universal constants of the nature, whereas ¢, is to be regarded as a pure
number corresponding to the numerical value of 1/« .

Note in this respect that the electric charge e, so far not yet explicitly intro-
duced, appears in the model via « . This introductory reasoning outlines the
next task to be concerned just now: to show how the Equation (4.9) implies the
electromagnetic interaction too. This subsection links therefore the following
considerations to the Section 7. Usually e is introduced by postulating the Cou-
lomb force; here instead e and thus the electromagnetic forces are introduced
starting from ¢« . By analogy with (8.6), the Equation (8.2) is rewritten as fol-

lows

2
PLLI R

5)(2 C W’ 5)(0 = C, (818)

Le. the physical meaning of « introduces itself also the long range Coulomb
force component F .

Is evident the formal analogy between F; of (8.11), concerning the mass li-
near density M/6X, and F. of (8.18), introducing the charge linear density
e/SX: both regard in particular |§ )'(0|>< h as constant characterizing the lowest
order term (8.6) of the series expansion (6.7). This suggests that the first order
approximations of Newton and Coulomb laws should be both deducible from
|5)'(0|><h through a dimensional constant. In effect the connection between G

and evia a dimensional proportionality constant is easily proven; indeed
|e| =(4:c2)G
yields numerically
e=4.80x10"" ues, aG =4.88x10""cm*/s?.g,
£ ~1.01uesxt?g/cm? =(g/cm)"* s.

Of course the signs of the component F. correspond to equal or opposite
charges defining o . Implement first (8.18) for both charges at rest in &; so

eZ

=——,  v=0, (8.19)
¢ sx
where the subscript stands for “rest”; in this equation there is no explicit refer-
ence to v which from now on denotes the relative motion of the charges. As
OX is arbitrary, a has been included in it, to simplify notations like
65X =asx.

The second way to implement (8.18) assumes constant the rate v with which
moves either charge with respect to the other at rest in R; as according to (2.34)
Sp=h/Sx=(ve+edv)/c*, (8.18) yields

T

=——== 8.20
oX  OX ( )

52 o ox ¢

Thus
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2
e V 0¢
m_—__—_, v=const, (8.21)

52 ¢ ox

where the subscript stands for “mobile”, whence

2 2 /2
e2 ¢ S 1-Vi/c . (8.22)

sx2 oot cot

The last equality has introduced the time range Ot, defined in a reference
system R’ of the mobile charge moving at rate —v with respect to R; an ob-
server ideally sitting on the moving charge in R’ sees the other charge at rest,
as the backwards motion of R' in R balances exactly the forwards motion of
the charge. So, in practice (8.22) can be regarded likewise (8.19); obviously (8.22)
reduces anyway to (8.19) in particular for v=0. Hence it is possible to write the

second equality as

_ O e’

Fp=—ee— &
Toest sx? 1-v?/c?

the first equation emphasizes the link between ez/ Sx* in R and R’, the

F

Lor

~vHE; (8.23)
Cc

second equation also follows directly from (8.21) according to the following
chain of elementary steps

Ve VeF _Cuy, Fo nF
c c e ¢ OX e

Regarding F =F, one finds a “new” quantity called magnetic field already

em
introduced as a final step (7.16) of the reasoning in the section 7. The one di-

mensional scalar approach followed throughout this paper hides the actual vec-

tor character of v and thus of F,, and F_, . Simple considerations allow

Lor *

however to surrogate this missing information acknowledging that F and

Lor
F,, aretwo different corollaries of a unique information to describe the charge
dynamics: both Equations (8.23) follow from different ways of rewriting the
unique Equation (8.21), as in effect it is physically sensible. So, to avoid that the
energy of a mobile test charge in both fields is counted twice summing separately
F,, and F_,, itis necessary that the former only performs work on the mobile
charge, likewise as in the particular case of charge at rest, whereas the latter
doesn’t; the vector properties of these forces follow from these considerations, 7.e.
H and v mustbesuchthat F  oc Hxv.

The third way to handle a concerns the case where vis not constant; owing
to (8.20), an additional force term F, is expected because of the addend
g6V COX previously omitted in (8.21). This additional term reads

f st eh . 10
COX ot OX OXo€ c ot

where the acceleration a of the charge appears as a reciprocal frequency because
of the factor C™*. It is possible to extract from this chain of equation the fre-
quency o defined by the energy F 0X, ie.

F,0x 0

w=a 8.24
ra— (8.24)
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A fraction Jg/¢ of energy F 5X is thus converted into and appears as
electromagnetic radiation, whose energy 7% increases of course with J¢/¢.
The fact of having found @ for 6vV#0 means that an accelerated charge im-
plies emission of e.m. radiation. Of course F, =0 and thus @=0 for v=0
or v=const, so even this contribution to the right hand side of (8.20) vanishes
for charges at rest. In principle €w prospects the chance of calculating the
power irradiated by an accelerated charge regarding appropriately F, and J¢
of (8.24). This chance has been exemplified in section 7 in a more complete and
rigorous way via the Maxwell equations.

Is still proven useful here the initial idea of implementing uniquely the early
Equations (1.11) and (1.12) without any further physical hint but simply includ-
ing a among the fundamental constants of Nature.

8.5. Quantum Charges

Dividing both sides of the inequality (8.3) by € and next by X too, one
finds
2 42
e
se=2"_, 57<1 (8.25)
a OX

being o an appropriate factor. According to (3.69) and (3.70) this yields also

o 1 ¢e”

=—="—"_ ¢ =g, (8.26)
£ 5Xx  a ox?

Now the question rises: does e’ have mere numerical meaning or it actually
generalize the concept of usual charge e according to e'<e ? To answer this
question consider first some implications of (8.26) based on (3.70). As F, =PA,

€

where A is an arbitrary area and P pressure, one finds the dimensional relation-

ships
F. 1 e?
P=—to="—> (8.27)
A a Adx

the Equations (8.26) imply the rising of a pressure Prelated to the energy density
&/N due to charged particles enclosed in the volume V. Start thus just from the

dimensional identity between pressure and energy density and write

E
P= a’v, V = AXE = ¢'ASX, (8.28)

where o' 1is a proportionality factor necessary to define in general the volume
V as a function of A defining the pressure. Owing to the dimensional character
of this equation, although P and E have been defined specifically by (8.27) and
(8.28), the following reasoning holds in general for any E, ie. also for atoms,

ions, elementary charges and even photons. The second equation yields

oV _ o

. 8.29
V AX ( )

Consider now that if in Vare contained photons or matter, e.g. gas particles, it
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is possible to implement the wave properties of matter and write

3 3
V:(iJ :(EJ, V:VAE:E, ﬂ:l, vzv, (8.30)
v, v 4

the matter particles are assumed moving at average rate v with De Broglie mo-
mentum h/A and thus frequency v,; for calculation purposes, v, has been
rewritten as a function of v as indicated here to include also photons. The

presence of steady waves in Vrequires

N _ g0v_ 59 (8.31)
\Y v E

the first equality is directly deducible from (8.30) that expresses the steadiness
condition, Ze. the change of A requires that of AX as A=nAX with z in-
teger, the second equality expresses the proportionality between v and E. So
the change of Finside V'is related to that of v of the matter/light waves prop-
agating in V. Implement now the idea that (8.29) regards a number of corpuscles
inside V; whose change of energy density is uniquely definable by 6V anyhow
it might be obtained; instead (8.31) regards waves, whose energy changes are
presumably related to how the early V'is modified by a given OV because of
steadiness condition. Reasonably the steady propagation of waves is different
depending on whether one side only or two sides or even three sides of V are
modified. Consider thus the three possible ways to deform the initial V; whose
AV remains however uniquely defined in all cases: V can be equivalently re-
written as  AX?AX or AX,AX* or AX’.Being both AX and the constant AX,
arbitrary, it is certainly possible to define them in order to fit a given value V of

course arbitrary itself. Hence

N nv%, n, =123
\Y AX
To make consistent both ways of defining 6V /V merge this result with (8.31)
to obtain
aw_y0E
"Ax E’
whence

2
1_11' 8.32
3 (8.32)

Assume that the left hand side defines an average force such that
SE = (F)oAX; dividing both sides by the surface Ax* one finds

F
172: P :—%&. (8.33)
At the right hand side appears an energy density pp defined by an amount
of energy OE, arbitrary, in the volume AX’0AX, arbitrary as well, and recall
the initial position (8.28); then, as the dimensions of E/ AX and AX® are force

and surface, one finds eventually
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1 2 E
Plzng’ P2=§pE’ Pasz’ pEZE, (8.34)

The minus sign in (8.33) and (8.34) has been omitted, it simply establishes
whether an internal or external pressure expands or shrinks V. These results,
which hold for photons or gases because no specific hypothesis has been made,
are well known: P, holds for a light beam completely absorbed by the internal
surface of V, whereas P, when waves or corpuscles bounce elastically; P,
yields the well known law P,0V =JE . As P, is due itself to elastic shocks of
corpuscles against the internal walls of V; then E =2E'/3; i.e. Eshould be 2/3 of
another energy E' that yields PV =(3/2)E’; is evident the connection of this
last conclusion with the elementary kinetic theory of gases, where E' is easily
demonstrable to be the average kinetic energy of molecules.

Skipping further considerations on this well known topic, return now to the
Equations (8.25) and (8.26) to specify the result (8.34) in order to explain ¢ in
the equation e'=oe. The comparison of (8.32) and (8.26) suggests the corres-

pondences

E—oe Mx—0ox (F)ox=e, (8.35)

where the third position is the usual definition of force. So, owing to (8.26) and
(8.18),

2 2
SE 0 _le”/ox E_& _1e sz%ax;

AX 6x @ X AX M aox
the third equation makes (8.33) compliant with (8.35). So the Equation (8.32)

reads

e’ n, e
—_— =" (8.36)
AX 36X
whence, recalling the second (8.26), i.e.
’ ! 2 ! 1
e'=1e, e'=x—e, e'=tf—e (8.37)
3 3

The second and third charges are consistent with quark charges, all with both
signs correspondingly to =€, in the nuclear volume V. It is amazing the fact
that even the quark charges appear here as a consequence of the dual
wave/corpuscle behavior of matter and light, whereas their fractional character is
reminiscent of the radiation/matter wave pressure in the volume enclosing them.

As a final remark, note that all charges can take both signs because e can be
found in negative and positive energy states, as previously shown.

Now let us return to (8.24), to exemplify in a simple case how it is in fact cal-
culable.

Let & be the energy of a charged particle; (8.24) provides in principle the
energy radiated per unit time with the help of (2.28)

F
Ew =—"5X0¢ = Fwé =F,v.
h op
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It is easy to find the total power radiated E/St by such an accelerated par-
ticle, knowing that its charge is e and the change rate of its momentum is op.
To solve this problem, however, more information is necessary about the link
between radiation pressure and energy density. Once having found

_2& 2 ¢

BT

being v =1/5t the wave frequency, the non relativistic result as a function of
the acceleration a=dJp/m is obtained after having multiplied both sides by
5%°/6t via the following chain of equations
ox* 2 eviext 2 e vy
St 36t ¢ 3oxt ¢
28526 (sp/m) ge_(@j
3c°

(8.38)

3¢ st2 3¢t ot
8.6. Short Range Nuclear Interactions

The Equations (3.12) and (8.4) suggest specific orders of magnitude significant
to introduce short range forces. Skipping all theoretical details outside the pur-
poses of the present paper, a few short comments are exposed below to highlight
at least the essential features of these forces implementing only results so far ob-
tained. Consider thus the following chances introduced by the general Equation
(8.1)

_dp_,dp_vo(pe)
ot OX C OX

to infer, in agreement with (3.14) and the reasons therein explained,

_otee) ()

= , F, 8.39
¢t COX (8:39)

only in the first case 0X has been replaced by Vdt. The question that rises
now is whether these expressions are mere equivalent ways of rewriting the same
Equation (8.19) or they represent actually different force laws.

Preliminary inspection evidences that in both cases the force is defined via
de/length but in two different ways: F, depends explicitly on v and &X,
whereas F, on 0X,=Cdt only. In the former case the interaction force is in-
versely proportional to X ; in the latter case the interaction energy FJX, in-
creases with the distance JX,, whatever this latter might be. This suggests the
concept of “asymptotic freedom”. Moreover the messenger particles of F,
carrying the interaction through 6X, =Vot should be massive, owing to v; the
messenger particles of F, should be massless, as the force carried through X
involves c only. Consequently, one expects that for assigned Jt the characteris-
tic range measured by OX, is greater than OX,,.

Taking according to (8.4) 8t~ &x/C and 8¢ < hc/SX, order of magnitude

estimates of space ranges and time ranges that characterize F, and F, canbe
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calculated utilizing the values (3.12). Particularly interesting is in this respect the

range
X, =r, -1y =ra’(1-a).
1) Consider first F, assuming preliminarily that the concerned interactions

occur at the nuclear or sub-nuclear scale: ie. reasonably 0X, concerns the in-

teraction between different nucleons and in the nucleons themselves. Accor-

[ 25
Nl =rnRa,

which is clearly an average value within X, and introduce two complementary

dingly define the length

subranges JX, and OX,, ofthewhole JX, as follows
OXyg =\l —Ty =13 (0‘2'5 _as), OXgp =T, =[N, =Tg (0‘2 _0‘2'5)- (8.40)
It yields

rr ~24x10™" cm, A0 =2.1x10" cm;

moreover both subranges expressible through electron and nuclear range sizes
yield
Sxy =Ty (@*° —a®) ~22x107 cm, .
S%, =1y (@® —a*®) ~ 2.6x10™ cm, (840
Is relevant the fact that that O is surprisingly close to the nucleon Compton
lengths A of both proton and neutron, which have in effect a similar order
of magnitude. Also \/H does so, which means that the nucleon mass
represents the boundary value discriminating the interaction lengths X, and
0Xs, inside and outside the respective nucleon; this also explains the order of
magnitude of the nucleon mass, indeed 7C/5X, = 1.6x10* g differs from the
experimental nucleon mass by about 5.5% only. Here we take advantage of the
fact that proton and neutron masses differ by less that 0.14% only. Hence the
forces (8.4) defined by these ranges could concern both nucleons and their mu-
tual interactions at distances consistent with the inequality (8.3); indeed, as ex-
pected, /C/SX, =0e=1.6x10" erg=1GeV is related just to the order of mag-
nitude of the nucleon mass, whereas 7c/dX, = g, =1.2x10™* erg=0.08 GeV is
related to the binding energy between nucleons. In fact F, is attractive, in
agreement with the concept of “asymptotic freedom” already emphasized for
quarks in nucleons less than oJx, apart. The characteristic times are
7, ~7x10®s and 7, ~9x10 s. At this point it is possible a rough estimate
of the stability of the nucleus comparing this energy gy with the Coulomb
repulsion energy calculated via (8.23) approximately as &, ~ e’ / O0X,, between
two protons X, apart; &, = 9x107 erg is negligible with respect to the at-
tractive field in O . The fact that Xy 2 A. suggests that F, should concern
sub-nuclear particles that form protons and neutrons, which therefore are not
elementary particles themselves. Hence the whole charge of proton and the null

charge of the neutron can be due to nothing else but appropriate combinations
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of the e’ fractional charges (8.37).

These considerations, well known and here shortly sketched only, are enough
to conclude that F, concerns the strong force. Further considerations are
clearly outside the scopes of the present paper, merely aimed to show how to
identify the fingerprints of the short range forces (8.39) in the conceptual frame
hitherto outlined. Some more details are reported in [20].

2) Consider now F,, noting that with the help of (2.28) the second Equation

(8.39) reads also

Vo ( pc
F - (pe) o _ n (8.42)
COX OX oOXxot

Being V<C one expects OX, <COt;in other words, once having fixed dt,a
shorter interaction rang X, <0X, is to be expected for JX, of F,. Accord-
ing to (8.4), 0Xds SAC implies information about JX, compatible with Jg,
in this case. To estimate v in the same reference system of (8.23), implement

(8.23) supposing that an appropriate X fulfills the condition
P o &
SXSt sx2\f1-v?/c?

Elementary manipulations show that this position yields #vy1-v?/c? = e?

ie. V/c\1-v?/c® =a, whence the solutions V/C S and V/c <1. Hence,
taking the same value of St of (8.41) by comparison purposes, one finds two

(8.43)

possible corresponding ranges

Ox, S7.7x10™ cm, ox, S1x10™cem, Ot, ~35x10%s.  (8.44)

In effect, extending the Equations (3.12) to the fourth power of « one finds
the further length &x, = r,a* *1.5x10™" cm necessary to include &X, in the
whole range of F,. The first and second results are acceptable, as both yield
space ranges shorter than that of both (8.41); the first value, in particular, yields
according to the fourth (8.4)

o¢, < e ~ 0.4 erg = 255 GeV (8.45)
OX,

The existence of two range sizes (8.44) of X compatible with (8.43) sug-
gests that F,, should imply two different kinds of massive force carriers, rea-
sonably with and without charges; if so, then the charges must have opposite
signs. This kind of interaction needs thus three kinds of carriers. Assuming
charged and neutral carriers of masses M, and M, just a few considerations
are enough to infer significant information on the masses of these messengers.

Implementing this assumption to establish the energy balance governing the
formation of the carriers, the results are in full agreement with the experimental
data.

Is reasonable the idea of regarding the cluster of messengers as a system of
particles interacting themselves in order that the gain of binding energy of the

charges accounts not only for their own masses M, and M_ but also for that
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of my. Is interesting the energy balance of the charged carriers according to the
electromagnetic Equation (8.43). Start with the energy of a Coulomb system with
a nucleus of mass M, formed by either charge, e.g. M, , in the field of which
interacts the other charge, e.g. M_, at average distance I;; the subscript “B”
stands for “bound”, whereas the simplest hypothesis on the masses is m, =m_.
Consider preliminarily that such a system can be described as shown in subsec-
tion 3.2: the reasoning introduced to describe the electron charge around the
nuclear charge holds in principle also for integer spin charged particles. The
early hydrogenlike atom was introduced before the concept of spin, which be-
came essential to account for the electron pile up in many electron atoms [7]
according to the exclusion principle and for the possible presence of an external
field. The success of Bohr’s idea was allowed by the fact that the spin-orbit and
spin-spin interaction between electron and nucleus are both small with respect
to the Coulomb interaction. Consider at this point uniquely (3.1) that has gener-
al validity and skips, as shown in section 3.3, the operator formalism imple-
menting wave functions along with all related implications: e.g. it is known that
a 0 spin particle requires a 4 dimensional scalar wave function, whereas a spin 1
particles requires a three component wave function. On the one hand (3.1) has 4
dimensional character as it merges space and time coordinates through the re-
spective uncertainty ranges, to which are related energy and momentum ranges
too. On the other hand the necessity of describing the particle in any reference
system is in fact ensured by (3.1) according to (3.2). Implement thus the elec-
tromagnetic interaction only to describe via (3.1) even a system of spin 1
charged bosons m, and m_ trusting that the steps from (3.3) to (3.9) still hold
at least approximately also now; the comparison with the experimental data will
be the decisive benchmark to assess the validity of these considerations. So it is
possible to write for the system of boson charges ¢, = e4mr/2n2h2 , see Equa-
tion (3.7) with Z =1, where M, is the reduced mass of the concerned system.
Accordingly (3.9) yields

2 2
:_la_m Cz:_lhca r. = n“hc , mr:mi/z (8.46)

£ , =
S 2, ° amc?

for charges of equal mass. Putting nN=1 and including a into m,, this equa-

tion reads

1 1nac r
gg=——mc’=—=—, m/ =ma’, rg=-"=—13; (8.47)
2 2r, a
with these positions &; depends explicitly on f; and M, only, no longer on
l, and m,.Is of interest now an appropriate I; compliant with ¢&; and such
that
_1lnc  mhc

(mo+2mt)c2 =3 o —m,

2nrg =n'A (8.48)

with n' integer, the second equation is a well known condition of the wave

mechanics already implemented in (3.8) with the same physical meaning. Let the
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shortest wavelength A be the Compton length of either m, , as suggested by
the Equation (3.6) and [7], ie.
h

A= ;
m,c

then, replacing m,c? =c/A into (8.48) one finds

hc
2 '
m,c” =(n—-2n")—-.
0 ( ) n'A

In conclusion, comparing with (8.48) and putting n’=1, it is possible to
write

m,c? -2 m,c’ 1

(m+2m)c? =« ' (my+2m)c® =

These results are verifiable by comparison with the experimental masses m,
and m;:

m, =91.19 GeV, m, =80.39 GeV,
mec® 036 m, ¢’

—_— =0.32,
(m, +2m, )c? (m, +2m, )c?

which in effect compare well with (7—2) / n=0.36 and 1/m=0.32 respectively.
Moreover note that (8.47) regards by definition I as average distance be-
tween M, and M_, whereas OX, of (8.44) is by definition the total range of
F, ; therefore one infers that reasonably Iy = JX, /2. Hence, according to (8.48),
€5 =—hc/X, is the binding energy gain available to create the masses
(my +2m, )c?. In effect one finds that the total energy ¢, relatedto F, is
hc

£, =—&g _5:255 GeV =(my+m, +m_)c?, (8.49)

o

in agreement with (8.45) and with the experimental masses. The Equations (8.47)
and (8.46) differ in fact only formally; once having removed o merely includ-
ing it in the reduced mass of the system as a numerical scale factor, someway
analogous to (3.12), it appears that F, is different from but closely related to
the electromagnetic interaction constant via the linked energy scale factor.

In effect, considering M, and Iy, and not M, and [, one calculates expe-
rimental masses of the force carriers and reasonable estimate of the interaction
range OX, ~7.3x107" cm that agree with the total energy (8.45); these values
support the idea that a hydrogenlike system bound by electromagnetic interac-
tion via photon carriers turns into a short range interaction system via massive
carriers. There appears in this way the link between electromagnetic and weak
interactions.

At this point, something else about 0X, can be still inferred to confirm that

F, corresponds to the weak interaction. Helps in this respect the first (8.4)
FV = h6x?/St that reads

eV =L, g, =
ot oX,
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whence, with the help of the values (8.44),

w

hc -
gV =—-5x2 =2x10" erg-cm?; (8.50)
OX,
this is the Fermi constant characterizing the weak interactions.
This result is more than mere fingerprint of weak interactions; interesting in-
formation can be inferred from it expressing appropriately energy and volume

inherent this result. Write

3 3
2x107% =g, A2 :gF( U J =g [EJ , & =m.c’ (8.51)
meC &

the energy &; that defines the characteristic Fermi constant has been expressed
via Compton length of the characteristic mass M. that in turn defines &¢ too.
Hence
& = ﬁ =0.397 erg = 255 GeV (8.52)
" Voxw0® ' '

It is not surprising that one finds once more the value of total energy of this
kind of interaction. Implement now the idea that actually the energy (8.49) is
degenerate: it consists of M_ moving in the field of M, or, identically, from
M, moving in the field of M_. As both configurations can coexist consistently
with the unique reduced mass M, (8.46) that calculates €5 of (8.47), it is rea-
sonable to regard the value (8.49) as the sum of both allowed chances; this means
that the total energy refers to the total volume calculated via (8.51), so that each

configuration has energy
&y = %gF =0.2erg =127 GeV. (8.53)

Note that this value is also consistent with that inferred through a characteris-
tic range similarly as done in (8.40) and (8.41)
SXy =1y (a3'5 —a4) =1.6x10""° cm,

hc (8.54)
=0.197 erg =123 GeV.

Xy

8.7. The Dirac and Lamb Equations

This section generalizes the results of the Section 3.2 obtained implementing the
non-relativistic equation p”=p?>+M? / 2r* . The following considerations
show how to describe a relativistic hydrogenlike system replacing the classical
position (3.4) with the series expansion

5:605p:00+%+%+%+-~ (8.55)
expressing Oop = Ep(Ar_l) as op= Zizoo]Ar'i similarly as done in the Equ-
ations (8.5) or (8.6). In effect even the term Apf / 2m of (3.4) can be written as
01'/AI‘2 with coefficient o = (nh)2 /2m ; 50 (3.4) is actually a particular case of
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the series (8.55) truncated at the second order. Of course /, is an arbitrary
constant length that introduces the energy corresponding to force op. Al-
though 5P vanishes at the infinity, the arbitrary constant &, =mc? accounts

for the electron rest mass energy. Hence it is possible to write

. o, o, o
Se=g,—g =L, 6p-mc’ =L+ 242
Ar Arc Ar

Ar=r,-n, Ap, =P, — P,

(8.56)

being Ap, the radial momentum range conjugate to Ar. All range boundaries
are of course arbitrary. In this way we deliberately waive introducing explicitly
radial and angular momenta exploited in section 3.2, but implement directly the
fundamental Equation (3.1). Multiply both sides of (8.56) by mc’® so that
(foép‘%j me? - (me?)’ = (2p.c) mo + (Aprc)33m63 ooy

r (nn)"c

(n2)

The series truncated at the third order yields

2 3
5(e?)= ez —er = PO M2 paye  (ARCC) Mo
(nn) (nn)’c

2 1
5(&*)=mc* (o6 p—mc? %.
r

As the coefficient o0, has not yet been defined, it is convenient to turn this

equation into

5(?) = (apycy + (mer )+ LRI Moy (01)

o, =——;

(nn)'c ' m
then, dividing both sides by (mcz )2 , one finds

2 2
i =(AL'2CJ +1+0,
mc

i . i (8.57)
0= & + (Aprc) Moy, __4&a O3

(mc?)" (me?) (nwY'c (me?) me*ar®

Next write

APC _ PC_ PuC

mc2  mc? mc?

(8.58)

so that, subtracting ¢, / mc®  at both sides, one finds

L_2‘€2=b+si (a2—®)—1—a, =P
mc c

(8.59)

and then

(m;z):(bmi (a2—®)—1—a)_2.
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According to the first (8.57) & —(1+ @)(mc2 )2 = (Ap,c)’; thus the last equa-

tion reads
2 A 2 -2
& __ (4p.c) . :(b+si (a2—®)—1—a) . (8.60)
(1+0)(p.C-&,) (1+O)(p L&)
Put now
P C— &, =+Ap.C. (8.61)

This position has two implications: the first replacing it in (8.57)
& —(1+©)(mc? )2 =(puc-5,) (8.62)
and the second replacing in (8.60)
&
2
(1+0)(p,C-&,)

Note that we have introduced four conditions: 2 and b in (8.59) plus (8.62)

:(b+si (a2 —@)—1—a)_2 +$. (8.63)

and (8.63); the unknowns in these equation are P,;, P;,,&,,© . In principle the
system appears solvable.

Taking the reciprocal of both sides one finds

Hd prZC 1 H 2 2 1 b Hi
si 8——1 =\/1+_® (b+5| (a —@)—1—a) +1+® , Si'=+1. (8.64)
2

The notations Si and si’ have been introduced to allow that the upper and

lower signs in (8.58) and (8.56) are independent each other. Then it is possible
that

-2 -y2
P 1 (b+si (a2—®)—1—a) AL R (8.65)
&  1+0© 1+6

or

PoC _ 1 {(b+si (a2—®)—1—a)72+
&, V1+0®

Subtracting (8.65) from (8.66) with the same sign Si , one finds
(prZC/é:2 )+ —(ProC/&,) = 2: this suggests that the left hand side of these equa-

tions must have the form E/ mc’ , so that

E. —E_=2mc?

-12
+1, si'=1  (8.66)
1+0

The minus sign at the left hand side of (8.65) represents binding energy of the
electron to the nucleus in MC” units; the first addend at the right hand side
represents the energy gain with respect to that of the free electron in either
energy state.

The previous algebraic steps aimed just to find an equation introducing the
ratio P,,C/€, . In effect this ratio is significant because, according to (8.61), if

P, —>¢, then Ap, >0 and thus Ar — o whereas P, becomes constant;
this is the limit case of free electron. Indeed Ap, #0 implies binding energy,

since the electron takes random values of radial momentum between p,; and
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P,, depending on its finite random distance from the nucleus.

Examine the result (8.65) putting first ® =0: in fact, according to the second
(8.57), this occurs putting 0, =0 and in (8.55) and & =0, ie considering
the energy &, only instead of the energy range J¢ (Heisenberg compliant

quantum case). Now require that
-1/2

E—:[(b+si\/ﬁ—a)_2 +1} -1 (8.67)

mc?

must be compatible with the non-relativistic quantum Equations (3.5) and (3.9);
in other words, in (8.67) must somehow appear not only «Z but also 7 and
I (l +1) as well. To fulfill this boundary condition as a limit case for small values
of aZ,putin (8.67))

a b

a=—>, b=—=; (8.68)
al al

in effect, replacing and expanding in series around aZ =0, (8.67) becomes

E_| ~ (aZ)2
mc?{,, o 2(b, +sia, —a, )"

Considering in particular Si=1, the boundary condition requires b, =n.
Once having identified h,, regard then a, and a’ in order to be compliant
with /and |(| +1) of Equation (3.5), while also fulfilling (3.9) and (3.10). This
suggests reasonably &, =1+1/2+s, being s the electron spin; in effect, depend-
ing on the sign, @, becomes /or |+1.In conclusion

2 Y2

E _ al 41 -1, j=l£s, ©=0(8.69)

me® s J(j+22) ~(az) (i +12)

This is the Dirac equation, which however becomes in the present approach
particular case of an even more general equation including @ as well. The Eq-
uation (8.65) reads indeed

2 Y2
E 1 aZ 1

2

mc 1+ © n+(i+Y2) -(1+0)(az) —(j+¥2) B

which removes the degeneracy of states with equal 2 and ; of the Dirac equation
and also suggests that a further physical effect related to ® not concerned in
(8.69) is still hidden in this result. In effect the Dirac equation becomes in this
approach the zero order approximation of a more complex energy function
whose series expansion reads

E g LB 6. (8.70)

2 Dir
mc ©=0

It is evident that (8.70) removes the degeneracy of the 2p,, and 2s;, states:
indeed, whatever the actual analytical form of ® might be, calculating the

energy difference of these states one finds
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E

E
mc

mc?

2

{E @] —[E @J 0.
Ol py, (0los

Owing to the physical dimensions energy xlength® of the coefficient o, in

2 Py2 251/2

the second (8.57), it is easy to guess the order of magnitude of the second ad-
dend of ® according to the following reasonable positions
O3 ~ gbohrﬂ“g

3
O3 = Epopr X ;LC’ Ar = rbohr’ 3 3
Ar rbohr

being A, the electron Compton length. So it follows from the second (8.57)
with the help of (3.4) and (3.8)
3 5 2 5
M:_l(ﬂj , @zg_l_l(ﬂj . (8.71)

2,3
MC 20U n

The second addend of © in (8.71) is the signature of the radiative energy
displacement due to the interaction of the electron with the quantum vacuum,
known as electron driven vacuum polarization effect; the analytical form of the
first addend represented by ¢, not yet concerned explicitly, is at present still
under investigation. So, even without detailed calculations in this respect, appear
two relevant facts: 1) the first three terms of (8.55) are enough to infer the Dirac
equation; 2) the cubic term and the implementation of the energy range Jd¢ in-
stead of a unique energy term & are essential to infer contextually the Lamb

energy shift too.

9. Discussion

The present model has concerned several topics of fundamental physics
self-consistently inferred uniquely from the concept of evolution inherent the
definitions (1.11) and (1.12). The concepts of mass, momentum, energy and
electric charge, obviously missing in these equations, have been uniquely and
self-consistently introduced through the fundamental constants of Nature. It
appears also significant the chance of describing the Universe according to laws
inferred from the change of a unique primordial function v , even regardless of
a specific and detailed knowledge about the function that is changing itself: it is
instead crucial how it changes.

The fact of having introduced an initial function and its actual space time
evolution, has been proven enough to infer contextually quantum uncertainty
and relativistic results in a surprisingly straightforward way even regardless of
any deterministic metric and without hypotheses “ad hoc”.

On the one side the necessity of quantized physical laws is implied by the
concept itself of uncertainty, Equations (3.1) and (3.2), on the other side special
and general relativity are implied by the space time frame under the condition of
its holistic evolution. The reverse reasoning is also true: the foundation of quan-
tum and relativistic theories are the fingerprint of an evolving Universe, whose

evolution is governed by a few constants in which are nested the essential dy-
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namical variables of interest for the everyday experimental activity, mass, energy
charges and so on.

The modern physics is essentially wave physics. This is because the Bohr atom
first opened the way to the hydrogenlike atoms and thus to the probabilistic in-
terpretation of the wave functions. Next Schrodinger further enhanced this con-
ceptual path including in the wave function the potential term and thus the elec-
tron correlation in many electron atoms and ions. Eventually a further step
ahead was accomplished by Dirac: with its relativistic hydrogen atom, He has in
fact introduced the quantum field theory. Yet all these physical models imple-
mented wave formalism. The present paper, instead, introduces and contextually
exploits the corpuscle nature of the particles constituting the matter, appro-
priately integrated with their wave nature when necessary. The subsection 3.2
has been reported just to clarify this point. In this way is irrelevant the theoreti-
cal problem raised by many physicists about why ¥'¥, and not W itself, has
physical meaning [21]; moreover the approach to the various equations of
quantum and relativistic physics appears not only simpler but also the equations
themselves are more interconnected. The Heisenberg principle has negative
content; the statistical formulation of the space time uncertainty has instead a
highly positive content as it shares both quantum and relativistic theories. Re-
garding a fundamental statement the uncertainty and following the approach
shortly sketched in Section 3.2 the EPR paradox would be meaningless because
the concept of distance is missing; the uncertainty ranges waive since the begin-
ning conceptually, and not as a sort of approximation useful to simplify calcula-
tions, the concepts of local space time coordinates necessary to define “superlu-
minal” distances.

As concerns the quantum way of describing the reality, these basic concepts

can be summarized as follows

_ho ho
i O i ot
operator operator
0 0
p dynamical variables & (9.1)
0 0
uncenﬂ range uncertainty range
Ap Ag

AX n,¢,G,a At

The upper part deals with differential equations that by definition describe the
local properties of the solution of the pertinent wave equation; the lower part
describes instead the system regardless of its local properties and thus without
need of solving the pertinent differential equations. In principle both approaches
are equivalent, although the operator formalism is a byproduct of the quantum
uncertainty; in practice, however, the problem is to see which approach is more
effective in describing the quantum properties of the Universe regardless of the

local and deterministic tensor formalism. It is worth recalling that all papers
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based only on the Equation (3.1) only, allowed to obtain the most significant re-
sults of both general relativity and quantum physics [20]; in the latter case, in
particular, the usual positions (3.28) introducing the operator formalism of wave
mechanics according to (3.66) and (3.67) are systematically replaced by the un-
certainty positions

X—=>0X, p—>op, t—oot, ¢— o¢, 9.2)

while obtaining results identical to that of the standard wave formalism, as
shortly shown in subsection 3.2.

The classical dynamical variables p and ¢ are to be regarded equivalently as
quantum differential operators or quantum uncertainty ranges: this implies that
actually it is necessary neither to solve the Schrodinger equation of wave me-
chanics nor the tensor calculus of relativity. The form (3.2) expressing the
quantum uncertainty, apparently weird, shows the quantum equivalent of the
relativistic covariance: the Equations (3.1) could seem defined in some particular
reference system, instead (3.2) show that whenever the dynamical variables are
replaced by the respective uncertainty ranges about which nothing is known in
the sense highlighted in the subsection 3.2, the dependence of any formula on a
particular reference system, inertial or not, is lost. So the independence of for-
mulas on any particular R is ensured by (3.1), despite their different forms in R
and R'; however holds the more substantial fact the any formula inferred from
(3.1) has validity in any R’: this is the profound reason why relativistic formu-
las can be inferred from (3.1).

Yet, the rational foundation of everything is just the conceptual impossibility

of knowing everything.

10. Conclusions

As stated in Section 1, part of this paper aimed to find known results as a test of

validity of the present theoretical model. Besides well known results, explicitly

quoted throughout the exposition, the model has also provided original results:

— Evolutionary imprinting and derivation of physical laws.

— Possible granular structure of the space time.

— Possible quantization of the temperature.

— Lnk between entropy, phase space and space time.

— Link between Van der Waals equation and quantum zero point state of mat-
ter.

— Link between relativity and quantum gravity.

— Probabilistic link between corpuscle and wavelike behavior of matter.

— Link between operator and uncertainty driven approach to quantum prob-
lems.

— Generalization of Dirac equation to include the Lamb effect.

Moreover:
— The Equations (4.4) and (3.13) show that even a small mass M, can take

large values of kinetic mass m for v — C; also, (4.6) shows that just m is the
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classical mass.

— The Equation (6.19) has shown the existence of finite vacuum energy density 77,
to which corresponds according to (8.34) a pressure P, =2.2x10" dyn / cm? .

— The Equation (4.7) has shown that the corpuscle/wave behavior of matter has
probabilistic character and that this probability involves the ratios m,/m
and V, / C.

— The velocity dependence of mass shows that m—m, implies v—0,
whatever M, might itself be; contextually, increasing M, to m’ means
decreasing V; from cto a smaller value V'.

— Short notes, although necessarily incomplete, emphasize the essential finger-
prints of the strong and weak interactions, Equations (8.37), and contextually
also the gravity force and Maxwell equations.

— The model explains why un upper limit of velocity, ¢, must necessarily exist.

These short remarks are enough to conclude that the present model fits the
basic concepts of thermodynamics and fundamental forces of nature merging

concept of quantum and relativistic physics.
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Abstract

Resonance energies of the Cl II-[3s’3p’(*Ds;,)]nd and [3s*3p°(°P,,)]nd, Ar
I1-3s*3p*('D,) s, nd and of the Kr 11 [4s’4p*('D,)] s, nd and 4s*4p*(’P,,’P,)] ns,
4s*4p*(°D,)]ns, nd and 4s’4p*(°D,, 'S,)]ns, nd Rydberg series are reported.
Natural widths of the Ar II-[3s*3p*('D,)]ns, nd series are also reported. Cal-
culations are done in the framework of the Modified Atomic Orbital Theory
(MAOT). Excellent agreements are obtained with available theoretical and
experimental data. High lying accurate resonance energies up to n = 40 are
tabulated. The possibility to use the MAOT formalism report rapidly with an
excellent accuracy the position of the excitation resonances as well as their
width within simple analytical formulae is demonstrated.

Keywords

Resonance Energies, Rydberg Series, Natural Widths, Modified Atomic
Orbital Theory (MAOT)

1. Introduction

In many astrophysical systems such as stars and nebulae, the main process go-
verning light-atomic species interaction is Photoionization. Of great important
ions interesting to investigate are Cl II (Cl"), Ar II (Ar") and Kr II (Kr") ions. As
far as Cl II is concerned, its interest is connected with it abundance in photoio-
nized astrophysical objects. In the past, various studies have indicated the great
importance of Cl II ions abundances for understanding extragalactic HII regions
[1]. In addition, emission lines of CI II ions have been observed in the spectra of
the Io torus [2] and in the optical spectra of planetary nebulae NGC 6741 and IC
5117 [3]. In a very recent past, Hernandez et al, [4] measured at the Advanced

Light Source at Lawrence Berkeley National Laboratory absolute photoionization
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cross-sections for the of Cl II ions using the merged beams photon-ion tech-
nique at a photon energy resolution of 15 meV in the energy range 19 - 28 eV.
Using the Dirac-Coulomb R-matrix (DCR) method, McLaughlin, [5] performed
calculations in the same photon energy range that in the ALS experiments [4] to
assign and identify the resonance series in the ALS spectra of the CI II ions. In
these experimental works, the 3s?3p°>nd states have been identified in the CI II
spectra as the prominent Rydberg series belonging to the 3p > nd transitions.
The weaker 3s’3p’ns Rydberg series, identified as 3p > ns transitions and win-
dow resonances 3s3p*(*P) np features, due to 3s > np transitions, have also been
found in the spectra [5]. Besides, one of the important elements to study is Ar-
gon present in several astrophysical systems. An overabundance of the argon
element in the spectra of X-rays of yellow supernovas was revealed by the satel-
lite Chandra [6] dedicated to analyze the stellar object spectra. Furthermore,
spectral rays of the argon element were observed in the optical spectra of plane-
tary stars and nebulae [7] [8]. These few examples show the importance of the
photoionization study of the argon element from the perspective of astrophysics.
In a recent past, Covington et al, [9] performed the first experimental measure-
ments of the photoionization cross-section of the Ar II ion. These authors also
determined the resonance energies and natural widths related to the dominant
Rydberg series 3s°3p*('D,) ns, nd and 3s°3p*('S,) s, nd in the emission spectra of
the Ar II ions. These energies were relatively measured at the metastable state Ar
I (°P°,,,) and at the ground state Ar II (*P°,;,). As far as Krypton is concerned, it
is also an element of major importance for diagnosing stellar plasmas such as
stars and planetary nebulae as well as for diagnosing laboratory plasmas such as
those obtained by inertial fusion. In a recent past, Hinojosa et a/, [10] experi-
mentally studied the photoionization of the Kr II ion at ALS at Berkley in the
photonic energy range of 23 - 39 eV. In the photoionization spectra, these au-
thors observed several Rydberg series, including the Kr II [4s°4p*('D,)] s, nd se-
ries converging toward the excitation threshold Kr II [4s’4p*('D,)]. Very recent-
ly, Sakho, [11] applied the Screening constant by unit nuclear charge (SCUNC)
formalism to report precise data belonging to various Rydberg series of Ar II and
Kr II as observed in the works of Covington et al, [9] for Ar II and of Hinojosa
et al, [10] for Kr II. In the present study, we use the Modified atomic orbital
theory [12] [13] [14] [15] [16] to report accurate high lying resonance energies
of the Cl I-[3s*3p*(°Ds,,)| nd and [3s*3p°(*P,,,)] nd, Ar 11-3s*3p*('D,) ns, nd and of
the Kr II [4s’4p*('D,)]ms, nd and 4s’4p*(’P,,’P))]ns, 4s*4p*(°’D,)]ns, nd and
45*4p*(°D,, 'S,)]ms, nd Rydberg series reported. Natural widths of the Ar
I1-[3s*3p*('D,)] ns, nd series are also reported. In Section 2, a brief description of
the MAOT formalism is given. The results are present in Section 3. Section 4
concludes the study.

2. Theory
2.1. Brief Description of the Modified Atomic Orbital Theory

In the framework of the modified atomic orbital theory (MAOT), the total
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energy of a (v/)-given orbital is expressed in the form in Rydberg units

E(vl)=—w (1)

\%

In Equation (1), ois the screening constant relative to the electron occupying
the (v))-orbital, /denotes the orbital quantum number, v stands for the principal
quantum number and Z represents the atomic number. In general, the doubly
excited states (DES) in two electron systems are labelled as (Nl,nl') BT n
this notation, Nand n denote respectively the principal quantum numbers of the
inner and the outer electron, /and /”are their respective orbital quantum num-
bers, S the total spin, L the total angular momentum and nthe parity of the sys-
tem. For an atomic system of many M electrons, total energy is expressed as fol-

lows

E=—i[z_ai(2:wﬂ @

i=1 Vi

In the photoionisation study, energy resonances E, are generally measured

relatively to the E, converging limit of a given (**!

these states [12] [13] [14]

E, =E, —%{z —0y (7L )0, (L )x%

L)nl-Rydberg series. For

. 2 (3)
a(2p0 1

-0 Py, D, )x(n—m)x(n— —_—

2 ( 3/2 2) ( ) ( q)zk: fk(n,m,q,s)}

In this equation, m and ¢ (m < g) denote the principal quantum numbers of
the (**'L) nl-Rydberg series of the considered atomic system used in the empiri-
cal determination of the o, (ZS”LJ )—screening constants, s represents the spin
of the nl-electron (s = 1/2), E, is the energy value of the series limit generally
determined from NIST atomic database, and Z represents the nuclear charge of

the considered element. The only problem that one may face by using the

MAOT formalism is linked to the determination of the Z—l -term.
« f.(n,m,q,s)

The correct expression of this term is determined iteratively by imposing general

Equation (3) to give accurate data with a constant quantum defect values along

all the considered series. The value of ais fixed to 1 and or 2 during the iteration.

The quantum defect is calculated from the standard formula

RzZ
E = EOO _ core (4)
” (n-5)*
In this equation, R is the Rydberg constant, E, denotes the converging limit,
Z... represents the electric charge of the core ion, and d means the quantum de-
fect. As far as the natural widths are concerned, they are given by (in Rydberg

units)
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Fn =%{Z _O_lf( 2s+1LJ)_O_£(2s+1LJ)X%

2 (5)
fk’(n,m,q,s)}

2.2. Expressions of the Resonance Energies and of the Natural
Widths

a' 1
-0, (2%?2,1D2)x(n—m)x(n—q)zk:—

In the present work, for all the Rydberg series investigated for both Cl II, Ar II
and Kr II, the resonance energies are given by the formula

E =E —ni{z —0y(*1L ) oy (2L )x%

_ 22 28+ —m)\? 1 1 6
7 ( J)X(n m) _(n+5+2)4+(n—25)4] (6)

254 Vy(n—m 2_ L + - |
O'z( LJ)( ) (n+m+3)4 (n+m—S)4]}

For the [3s’3p*('D,)]ns (j = 1/2) series originating from the 3s23p° 2P1°/2 me-
tastable state of Ar II ions, the natural widths are given by (in Rydberg units)

1 + + 1 +
I, =F{Z—01(25 lLJ)_O-Z(ZS lLJ)XHJrUzZ(ZS 1LJ)X(”—m)X(”_q)
1 1 1 1 * O
X Tt Tt i 7
(n+g-m+s+1)° (n+m+s)  (n+qg+s) (n+m-s)

The other expressions for the other series are of type Equation (7).

3. Results and Discussion

The o;-screening constants in Equations (6) and (7) are evaluated empirically
using the data from Covington ef al, [9] Hinojosa et al, [10] and from
Hernéndez et al, [4]. The results obtained as indicated in the caption of the cor-
responding Table. As far as the o,-screening constant is concerned, it is eva-
luated theoretical from the simple equation 0, = Z— Z_ .. The electric charge of
the core ion is deduced directly from the single Photoionization process for a
given XP*-plasma ion

v+ XP XY e =27, =(p+l) (8)

So, for ClII, Ar IT and Kr II, we find respectively.

hv+CI"* > CI* +e7;Z,, =2 = 0, =15.00
hv+Ar — Ar** +e7;Z, . =2= 0, =16.00
hv + Kr* — Kr** +e7;Z,. =2 = 0, =34.00

The resonance energies of the [3523p3 ( 2D;/2) ]nd Rydberg series originating
from the 3s°3p*°P, ground state and from the 3s?3p*°P, 3s?3p*°P,,
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3s23p*’S, and 3s°3p*'D, metastable states of Cl II ions are listed in Tables
1-8. Comparisons of the present MAOT calculations are done with the available
Dirac-Coulomb R-matrix (DCR) calculations [5] and with the ALS experimental
data [4]. For both the DCR [5] and ALS [4] studies, the determination of the re-
sonances energies have been limited to n = 13 (see Table 4). In general due to
interaction configuration and other electron-electron effects, the peaks of the
cross section overlap involving difficulty for the identification of lines in the
atomic spectra with increasing n. But, it can be seen that, the MAOT formulas
are enough stable so that very high lying resonances can be tabulate up to n = 40
with a quantum defect practically constant along all the series investigated. For
many resonances, the uncertain experimental entries in parenthesis are enligh-
tened. In Table 2, the resonance energy of the [3823p3(2D;/2) ]11d level are
equal to 25.493 eV (MAOT), 25.493 eV (DCR) and (25.492 eV) for the ALS un-
certain experimental data. The excellent agreement between theories indicate
that the ALS data can be stated as accurate at 25.492 eV. The same conclusion
can be drawn for the [3823p3(2D;/2) 18d state quoted in Table 3 where the
MAOT prediction at 25.001 eV agree very well with both the DCR value at
24.999 eV [5] and the uncertain ALS measurement [4] equal to (25.000 eV). For
this level the ALS data must be considered as precise at 25.000 eV. Table 4 lists
resonance energies of the [3523p3(2P;/2) ]nd Rydberg series originating from
the 3s°3p*°P, ground state of the Cl* ions. In this table, two uncertain ALS
values are quoted for the [35%3p° ( 2P3°/2) ]6d and [3s?3p® ( ZP;/Z) 112d levels re-
spectively at (25.745 eV) and (27.114 eV) to be compared to the MAOT predic-
tions at 25.749 eV and 27.113 eV and to the DCR data [5] respectively equal to
25.755 eV and 27.115 eV. For the n = 11 and 13, the MAOT calculations respec-
tively at 27.031 eV and 27.176 eV are seen to agree very well with the ALS mea-
surements [4] at 27.031 eV and 27.175 eV. Subsequently the DCR data at 25.755
eV (n=6) and at 27.178 eV (1= 13) are probably greater than the accurate data.
The ALS experimental entries in parenthesis can be considered as certain at
25.745 eV and 27.114 eV. Besides, the MAOT data at 25.659 eV quoted in Table 5
is seen to agree very well with the uncertain ALS measurement [4] at (25.660
eV). A slight discrepancy is observed when comparing with the corresponding
DCR calculation [5] equal to 25.668 eV. Comparison indicates clearly that the
ALS value [4] is correct at 25.660 eV. In Table 6 and Table 7, all the ALS data
[4] are certain. In general, good agreements are obtained between theory and
experiment. In Table 8, the uncertain ALS data [4] at (24.152 eV) for the
[3s?3p° ( 2 D;/z) ]111d level is difficult to enlighten. For this level, the MAOT pre-
diction at 24.146 eV compared fairly well with the DCR calculations [5] equal to
24.138 eV. A new measurement or calculation is needed to clarify this uncertain
ALS value [4]. Overall, for the entire data quoted in Tables 2-8, comparisons in-
dicate that the MAOT formula reproduces with a very good accuracy the ALS
measurements [4] via a simple formalism without using computational codes in

contrast with the DCR formalism [5]. Tables 9-11 list resonance energies of the
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Table 1. Resonance energies of the [3523p3(2D;/2) ]nd Rydberg series originating from

the 3s”3p*°P, ground state of the Cl* ions converging to the 3s°3p° ( : D;/z) threshold

of CI*. The present results from the Modified atomic orbital theory (MAOT) are com-
pared with the Dirac-Coulomb R-matrix (DCR) calculations of McLaughlin [5] and with
the ALS experimental data of Herndndez et al, [4]. The ALS experimental resonance
energies are calibrated to £0.013 eV. The energy limits is taken from the NIST tabulations
of Ralchenko et al, [19]. 6,(*Ds,,) = —0.770 + 0.048; 0,(°D5,,) = 15.00.

MAOT DCR ALS MAOT DCR ALS
“ E E E ) ) )
6 24.348 24.353 24.348 0.362 0.30 0.38
7 24.824 24.846 24.829 0.363 0.35 0.35
8 25.127 25.130 25.128 0.362 0.30 0.36
9 25.331 25.334 25.335 0.361 0.34 0.34
10 25.474 25.476 25.479 0.360 0.35 0.32
11 25.579 25.584 25.583 0.360 0.30 0.32
12 25.658 0.359
13 25.719 0.359
14 25.768 0.358
15 25.806 0.358
16 25.838 0.358
17 25.863 0.358
18 25.885 0.358
19 25.903 0.358
20 25919 0.358
21 25.932 0.359
22 25.944 0.359
23 25.954 0.359
24 25.963 0.359
25 25.970 0.359
26 25.977 0.360
27 25.983 0.360
28 25.989 0.360
29 25.994 0.361
30 25.998 0.361
31 26.002 0.361
32 26.006 0.361
33 26.009 0.362
34 26.012 0.362
35 26.015 0.362
36 26.017 0.363
37 26.019 0.363
38 26.022 0.363
39 26.024 0.363
40 26.025 0.364
9] 26.060 26.060 26.060
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Table 2. Resonance energies (E) and quantum defect (J) of the [3823p3(2D;/2) ]nd Ryd-
berg series originating from the 3s?3p*°P, metastable state of the Cl* ions converging
to the 3Sz3p3(2D;/2) threshold of CI**. The present results from the Modified atomic

orbital theory (MAOT) are compared with the Dirac-Coulomb R-matrix (DCR) calcula-
tions of McLaughlin [5] and with the ALS experimental data of Hernandez et al, [4]. The
ALS experimental resonance energies are calibrated to +0.013 eV. The energy limits is
taken from the NIST tabulations of Ralchenko et al, [19]. 6,(*Ds,,) = —0.781 + 0.048;

0,(°D;,) = 15.00.

MAOT DCR ALS MAOT DCR ALS
“ E E E 5 5 5
6 24.259 24.264 24.259 0.367 0.36 0.37
7 24.737 24.762 24.750 0.368 0.30 0.33
8 25.040 25.039 25.036 0.367 0.37 0.38
9 25.244 25.237 25.238 0.366 0.40 0.40
10 25.388 25.385 25.384 0.365 0.40 0.42
11 25.493 25.493 (25.492) 0.365 0.36 (0.37)
12 25.572 0.364
13 25.633 0.363
14 25.681 0.363
15 25.720 0.363
16 25.751 0.363
17 25.777 0.363
18 25.799 0.363
19 25.817 0.363
20 25.833 0.363
21 25.846 0.363
22 25.858 0.364
23 25.868 0.364
24 25.877 0.364
25 25.884 0.364
26 25.891 0.365
27 25.897 0.365
28 25.903 0.365
29 25.908 0.365
30 25912 0.366
31 25.916 0.366
32 25.920 0.366
33 25.923 0.367
34 25.926 0.367
35 25.929 0.367
36 25.931 0.367
37 25.933 0.368
38 25.936 0.368
39 25.938 0.368
40 25.939 0.369
© 25974 25974 25974
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Table 3. Resonance energies (£) and quantum defect (J) of the [3823p3(2D;/2) ]nd Ryd-

berg series originating from the 3s?3p*°P, metastable state of the CI" ions converging

to the 3523p3(2D°5/2) threshold of CI**. The present results from the Modified atomic

orbital theory (MAOT) are compared with the Dirac-Coulomb R-matrix (DCR) calcula-
tions of McLaughlin [5] and with the ALS experimental data of Herndndez et al, [4]. The
ALS experimental resonance energies are calibr