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ABSTRACT

We analytically model a relativistic problem consisting of a point-particle with mass m in close orbit around a stationary
Schwarzschild black hole with mass M = 1 using the null-cone formalism when / = 2. We use the J-function to model
the matter density of the particle. To model the whole problem, we apply the second order differential equation obtained
elsewhere for a dynamic thin matter shell around a Schwarzschild black hole. The only thing that changes on the equa-
tion is the quasi-normal mode parameter which now represent the orbital frequency of the particle. We compare our
results with that of the standard 5.5 PN formalism and found that there is a direct proportionality factor that relates the
two results, i.e. the two formalisms.
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1. Introduction

To date, numerically speaking black hole systems have
been studied only theoretically and this means that all
areas of mathematics (both pure and applied) and the
computational sciences are heavily utilized in this field.
As a result at the moment the research into the formation
and the evolution of compact binaries i.e. white dwarf-
white dwarf, neutron star-neutron star, black hole-black
hole and colliding black holes is progressing very rapidly
and important results are being published [1]. The re-
search into a black hole-neutron star binary system in
quasi-equilibrium or in full dynamic motion in either
Newtonian (see [2-6] for quasi-equilibrium and [7-13]
for dynamic motion) or relativistic theory (see [14-19]
for quasi-equilibrium and [20-25] for dynamic motion) is
as challenging as that of a black hole-black hole binary
system or two colliding black holes. Relativistically
speaking, neutron stars binaries and black hole binaries
are thought to be the primary sources of the gravitational
radiation to be hopefully detected by the ground-based
LIGO [26] and for white dwarf binaries by the space-
based LISA [27]. In this paper we analytically study in
the Bondi-frame, a binary system consisting of a point-
particle in quasi-orbit around a stationary Schwarzschild
black hole. Our main aim shall be to determine the emit-
ted gravitational radiation by the system at Z*. The
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null-cone formalism have also been used numerically to
study quite extensively other systems consisting of black
hole binaries [28]. The PN formalism has should to be
accurate for modeling gravitating systems at the Newto-
nian regime. So, by comparing the results from these two
formalisms for the same physical problem is vitally im-
portant in validating our final results. This paper is struc-
tured as follows: Section 2 gives the background material.
Section 3 define the physical problem to be studied. Sec-
tion 4 calculates the emitted gravitational radiation at Z™.

2. Background Material
2.1. The Null-Cone Formalism

The Bondi-Sachs formalism uses coordinates

x = (u,r, xA) based upon a family of outgoing null hy-
persurfaces. We label these hypersurfaces by u = const.,
null rays by x” (A =23,x"=6,x = ¢) , and the surface
area coordinate by 7. In this coordinates system the
Bondi-Sachs metric [29,30] takes the form

ds* =—| e*’ (1+Kj—r2hABUAUB du® —2e*’ dudr

r (M
=2r%h U dudx” +r’h ydx"dx”,

where  h*’hy. =6, and det(h,,)=det(q,,) , with

q,; being a unit sphere metric, U is the spin-weighted
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field given by U =U"q,. For a Schwarzschild space-
time, W =-2M . We define the complex quantity J by

J=q"q"h,)2. ()

For the Schwarzschild space-time, we have J and U
being zero and thus they can be regarded as a measure of
the deviation from spherical symmetry, and in addition,
they contain all the dynamic content of the gravitational
field in the linearized regime [31]. Usually we can de-
scribe this space-time by f=0 and W =-2M, or by
B =pB.(constant) and W = (ezﬂ” —l)r—2M .

For spherical harmonics we use ,Z, rather than
Y, as basis functions as follows [32]

1

Z, ZELY]’" +(-1)" ¥ m} form>0

s

i

Ty = () =Ty Jform>0 )
Zyo = Yyos

s

The s=0 will be omitted in the case s=0, ie
Z,, =¢Z, - The _Z,  are orthonormal and real. We

Im Im * Im

assume the following ansatz
J =Re(J,(r)e'")0°Z,,,

U= Re( o (r)e )82

Im>

B= Re(ﬂo(’") Km) Im>

®= Re(a)o (r)e )Z,m,
where 7, is the position of the matter shell, and o the
complex frequency mode which is physical damped and
which further means that Im(c)>0. In the Bondi
frame, the field equations splits into;

e the hypersurface equations and the evolution equa-
tions given by

R,:3p, =sa, )
r

qAR, > (45/3 2rop, +r5.] +rU +4r2U) ©)

=8nq'T

]’lABRAB (4 266)ﬁ+ (6 J 0% )
@)
+217(V455+ ,,45U)J ~20, =8x(h""T,, =r'T)

q7'q"R :—252ﬂ+(r25U) -2(r-M)J,
®)
r

(1 —Z—Mj g, +2r(1)) = 8nq'q"T,,,

o and the constraint equations for off the matter shell in
the case of vacuum given by

Copyright © 2012 SciRes.

v ( r—2M)),, +090+2(r—2M )o0p
(U u)-r

—(2r@,, +4055- (r255+r25U) ):0, (10)

uu

)
(8U+8U) +2rw, =0,

1
q'R,, :?(2&5% ~20w+2r° (r-2M)(4U, +rU,,)

+4r°U 47 (00U —0°U )+ 2070, - 2r*U,, —4r26p{”)
= 0’

(1mn
Ref. [32] got the following second order differential

equation when solving the above systems of ordinary
differential equations for the Schwarzschild background;

x3(1—2xM)dJ d/ (2x +iox— 7x3M)
dx? dx

(12)
=2(x(P +1-2)/2+8M +ic)J, =0

where J,(x)=d’J,,/dx* and x=1/r, x is the com-
pactification factor in this language. Bishop et al. [33]
solved Equation (12) numerically and obtained interest-
ing quasi-normal modes results of a Schwarzschild white
hole. However in this paper, we are going to solved it for
a different problem since we can apply the same physical
settings in the Bondi-frame to model our problem with
o having a different physical meaning as we shall see
later.

2.2. An Analytic Algorithm for Calculating the
Gravitational News

We shall use the following algorithm to calculate the

gravitational radiation from the system.

o First we use Equation (12) and the constraints Equa-
tions (9)-(11) to get the junction conditions for the
Bondi-Sachs matric variables U, o and J at the
boundary i.e. shell,

e Second we testif J, J,,U, U,,and @ are smooth
across the boundary and if this is true, we then

e Calculate the News function at 7.

3. The Physical Problem

We consider a system consisting of a point-particle with
mass m in quasi-orbit around a stationary Schwarzschild
black hole at 7, with mass M for ¢ is 2. We simplify
the coordinate dynamics of the center of mass of the sys-
tem by doing a mathematical trick. That is, we place a
second point-particle directly opposite the first point-
particle at 7, . That means the center of mass will remain
at the origin i.e. at the black hole during the duration of
the orbit. The total distance between the point-particles is
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2r, . This trick has the consequence that the emitted gra-
vitational radiation will be amplified by a factor of two
which in the final analysis we divide the final result by
two. This is as a result of the introduced point-particle.
This procedure is physical correct as long as the point-
particles are equal and in equidistance in a quasi-circular
orbit. We take the initial position of the first particle to
be at w/2 and vu for the @ and ¢ respectively.
We also take the initial position of the second particle to
be at n/2 and vu+n for @ and ¢ respectively.
We define v as the orbital frequency and u as the or-
bital period of the particles.

The dynamics of this problem is governed by Equation
(12) and for our numerical calculation purposes we shall
use its Ricatti form [33]

dv 2v

a—l+m((x—v)(2+%j—x(7x+8v)) (13)

where v is the orbital period of the system.

4. The Emitted Gravitational Radiation
4.1. The Linear Expansion of the Light Rays

We start by applying Equation (5) with 7, given by

p(l—%j , (14)
r

where the matter density o in the background space-
time is given by

p=ﬂza(r—ro)[e—gj[a(¢—vu)+5(¢—vu—n)].

)
15)
Inside the orbital radius r <7, we set
£=0, (16)
and outside the orbital radius r >r, we set
B=2 BuZ: (17)
Now integrating with respect to » we get
-1
[B,dr= J.anp(l—%] dr, (18)
r
Le.
z ﬂlmZIm
2nm 2M T
I-——| 0|0—=||o(d—vu)+o(¢—vu—m
(12U o 02 () o]
(19)

By multiplying Equation (19) with Z,, , we get
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2 2M
.
0
I: I'm' ¢ Vu +Zl'm'é‘(¢_vu_n):|
(20)

and integrating over the sphere it simplifies to

2mm 2M
Igl'm’ = (1 - )

7

o 1)

| Zy E,vu +Zy E,vu+n .
2 2

From Equation (21), for m'#0 we the gravitational
radiation otherwise we don’t, and that g, are gener-
ally non-zero for even [ and m'. We now consider the
case /'=2 and we note that

B, =0, (22)
B =0, (23)

and that
Br 2 0. (24)

The problem with f,, is that it does not vary in time
so this mode does not contain the gravitational radiation.
So we are more interested in f,, and S, , modes.
Using the following normalized spherical harmonics

1 /15 :
Yy = —|—sin?0e>, 25
2= 45 sin (25)
1 /15 .
Y, ,=— /— in’fe 7, 26
2,-2 4 anI ( )

and the fact that

1
Zy :ﬁ(yzz +Y2,—2)> (27)
i
Zz,-z = ﬁ(YZ,—Q - Yzz )» (28)
we get
" % %sjnzﬁ cos2¢ 29)
and
2.2 % 2—511'120 sin 2¢ (30)
Thus from Equation (21)
B, = 27:m {1— r ) % p cos(2vu)2,
0 0 31
1—% V15w cos(2vu),
ro o
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and similarly

i =ﬁ[1—2—Mj V15 sin (2vu) (32)

o o

and then finally we write

p=""Ji5n (1—%]

0 0

(33)
(Refe™} 2, +Re{-ie™"} 7, ,

Now taking M =1, Equation (35) then becomes

-1
5="I5n (1 —Ej
n ro (34)
: (Re {ezm‘ } Z,, +Re {—iezm‘ } Z, )

Finally, we divide Equation (34) by a factor of 2 to
appropriate it for a single point-particle in orbit around a
Schwarzschild black hole. We are able to do this because
for @=n/2=0 we have Z,, =0. Therefore from here
onwards, the calculations will be that of a single point-
particle. Equation (34) now becomes

ﬁ=lﬂ«/ﬁ(1—£J
2 7

) 0

(35)
(Refe™} 2, +Re{-ie""} 7, , )

4.2. The Gravitational Radiation

We assume that the orbit is at the innermost stable circu-
lar orbit (ISCO), so that »=7,=6. We then found the
change in the Schwarzschild coordinate time 7 for one
complete revolution of 92.3436 from which we found the
orbital frequency v of 0.0680.

To now find the numerical solutions to continue Equa-
tion (13) we make the spatial coordinate transformation
of x=1/r which then imply that the ISCO is now at
x,, =1/6 . The numerical computations are done in the
domains

D, ={0<x<x,,}and D_={x,, <x<0.5}, (36)
with numerical solutions v, (x) and v_(x) respec-
tively. We start the calculation with the transformed Eq-
uation (12) given by

1 d’
U(x)= 2ﬂ0x—5x4 (1—2xM)§J(x)
d2
—x3(x—2x2M+iv)@J(x) (37)
+x(2x+2x2M +iv)%J(x)—ivJ(x)

where U, (x), U_(x) are the Bondi metric functions,
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and S, , f,  are the values of the expansion of the
light rays £ given by Equation (35) in the exterior and
interior domains respectively. N.B the derivatives of J
should not be worked out numerically, but should be
worked out analytically in terms of J,, J, and v
from Equation (13) to be found with v =0.0680.

We define the general solutions for J,(x) at x,,
outside and inside the orbital radius respectively as

J, (x)=ch+clx+c2Jy, (x), (3%)
J_(x):c9+c6x+c7J0_ (x), (39)

where ¢4, cl, ¢2, ¢9, ¢c6 and c7 are constants to
be determined numerically. The functions J,, (x) and
Jo_(x) are analytic near x,, and therefore can be
Taylor expand as

d
J+ (x) = J0+ (xmn ) + (‘x_xmn )a‘]0+ (X)
L) & el
2 dx 6 dx
(40)

(41)
which then results in Equations (38) and (41) being ana-
lytic near x,, . We used Matlab ode45 solver to find
numerical solutions of the above derivatives in Equations
(40) and (41). We used stringent numerical conditions to
get the results to about seven significant figures with
RelTol of 1072, AbsTol of 107'*, and the MaxStep of
2x10™° and the results we found to be

%Jm(x): 29144 -2.280672x10%, (42)

2
&, (x) =2.865551x10°~1.52335130x107i,  (43)
dx

d3

EJ0+(x)=4.8870><107 ~1.8591431x10%, (44)
and

%JO_ (x)=13.04337-1.31529i, (45)

d2

aJof (x)=1.54689x10% —3.19980x10'i, (46)

d3

aLI(F()C):—1.12428><103 -1.25311x10%. (47)

We have tested for the consistency of the above results
by using other Matlab solvers; ode23 and odel5s (which
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which the expressions of the constants ¢9, c¢7, c5,

and 10, were found.
We now impose the Bondi gauge conditions:

uses the Gears method i.e. backward differentiation for-
mulas) and also observed the accuracy of about 15 sig-
nificant figures. We went further with the test using
ode23t which uses the trapezoidal rule, ode23s which is a B, =0, c4=0 (53)
modified Rosenbrock formula of order 2, and ode23tb 7 ’

which is an implicit Runge Kutta as opposed to ode45
and ode23 and found the consistency of about 8 signifi-
cant figures and as opposed to 15 significant figures
which is also accurate enough. This illustrate how accu-

which means that for large », £, =0 at Z® imply
that the coordinate time is the same as proper time and
that the regularity at Z® require ¢4=0. We also
impose the following junction conditions at 7, :

rate and valid the results are. These results are very cru-

. . . N . = 4
cial in obtaining the emitted gravitational radiation and I (ro) J- (VO)’ (54
hence determining the extent of their consistency is of 2emU, (ro):Uf (}/’0)’ (55)
the most paramount importance to obtaining accurate
final results. 2M -

From the hypersurface equation Equation (7) rewritten By =21 p 1_r_ (56)
0

as

27w, =2(2-L,) fy + L, (L, +2)J —x* (x*L,U) (48) o, (r)=o_(r)=-4nr’p. (57)
we are able to the Bondi metric function @ (r) and From the junction conditions, we were able to find the

. . . exact numerical values of the constants c¢l, ¢2, and

@_(r). But to find the solution the integration should be p 0—6. Th al val ’ ‘i ’
done analytically where possible. We only need a solu- c6 at r0=6. The exact numerical values of the con-
tion which is valid in a neighborhood of x =Xx,. Hence- stgnts. 9, ¢T, ¢5,and cl0 were then founq by sul?-
forth, it is convenient to make the coordinate transforma- stituting the values of cl, ¢2, and c6 back into their
tion x— r=1/x. Equation (48) can further be rewritten expressions. From here we were then able to plot the
as graphs of the Bondi metric functions J_(r0), J,(r0),

. U_(r0), U,(r0), @_(r0), and @, (r0) as observed
2(2-L,) By + L, (L, +2)J +—2(r4L2U) =2w,, (49)  inthe following graphs;
r ” Physically the metric functions J and U have the

smooth asymptotic expansion characteristic through out
the entire computational domain and this property is con-
firmed in Figures 1 and 2. The metric function @ do

where for /=2 we have L, =-6. The constraints
equations Equations (9), (10), and (11) now simplifies to

L (( ~2Mr) 0, ~60-12(r ~201) B, + 120U
0 ; T T I I

Ruu 3
2r 7~ . .
—4r(r=2M)ivg, +12rivU + 2rive) =0, ] }fﬂ/SlorOlZ 14 16 18 20
(50) -200 -

q'R,, :ZLZ(M), —~w+4r°U , +r'U, +2r’'U -2Mr'U,,
P g . . .

—8Mr°U, —r*ivJ —rivU, =27V, ) = 0.
(51
which we then apply in the domains D, and D_.

Since these constraints are not completely analytic, this
means that we should only evaluate them at the ISCO.

-600

$
<
<
<
<
<o
<
-400 ¢
<
<
<
<
<
<
<

-800

We use them among others to eliminate the constants cl , R
c2, c6,and c¢7. We now assume that we end up with 1
the solutions 61,
o, (x)=c5+a, (x), o (x)=cl0+a, (x), 52) 3
with @, () = . (x) =0. > Im(_()(0) —— Re(J_(+)(r0))
° Re(J_(-)r0)) —— Im(J_(+)(r0))

Thus, from the constraints R, (1), R, (%),

A A
R, (1), R, (n), 'Ry (). q'R,, (1), and the oo 1 The graph of Re(J(0)), Im(J_(0)) and Re(J.(+0)).
hypersurface Equation (49), we found the metric vari- Re(J.(r0)) for the Schwarzschild space-time. v = 0.07 and ¢

ables U, (r), U.(), @ (r), and @_(r,). From =2

Copyright © 2012 SciRes. JMP
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500
400
300 o
200 °
1005
ke
0 %%““T“:wnw ; . : T
8§ 10 12 14 16 18 20
r0
o Im(U_(-)(0)) Im(U_(+)(x0))
°  Re(U_(-)(r0)) —— Re(U_(+)(x0))

Figure 2. The graph of Re(U-(r0)), Im(U-(r0)) and Re(U.(r0)),
Im(U.(r0)) for the Schwarzschild space-time. v = 0.07 and
L =2

not have this physical property as can be confirmed in
Figure 3 but this function is crucial in the calculation
procedure of the gravitation radiation in the entire do-
main. Physically the function J in the only one that have
the time derivative and thus carries the gravitational ra-
diation information to calculated at Z* and that all the
other Bondi metric functions are intergrated radially from
I' to Z*. The above results indicate that the junction
conditions at »0=6 where implemented correctly and
that our numerical methods and the analytical algorithms
we implemented to calculating the gravitational radiation
worked properly as intended.

Then finally, since we are in the Bondi gauge, we
found the gravitational news to be

N, = %Re(clivexp(ivu))( (=1L, (I+ 2))2 Z,,

(58)
which then further simplify to

N, =Re(—0.1889 m—0.2975 im), (59)

with the Bondi mass loss —0.0028 m*. We compare our
results with that of 5.5 PN formalism by Poisson [34] and
Sasaki et al. [35] which they found the gravitational ra-
diation of the same system like ours with the same physi-
cal conditions as in this paper of about —0.001z>. From
the analysis is seems clear to us that some how there is a
factor of about two or three that propositionally relates
the two formalisms in studying the gravitational radiation
in the newtonian regime. This is fact that still need to be
looked at in the near future.
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Figure 3. The graph of Re(w_(r0)), Im(e-(r0)) and Re(w.(r0)),
Im(e.(r0)) for the Schwarzschild space-time. v = 0.07 and
£ =2

5. Conclusion

The work presented here provides us with further future
research opportunities to apply the analytic method pre-
sented here in the Bondi-frame, to real astrophysics
problems involving all sorts of relativistic objects to cal-
culate and analyze the emitted gravitational radiation at
null infinity. The next step will be to apply this method
to a real relativistic astrophysics problem involving a
Kerr background.
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+5.0000000x107i0"In(70)c7 +6.926736238x10%' ¢7r0° —8.000000x 10°1+0’ ¢7
—3.240686912 %10 c7r0° —1.963050508 x10**ic7r0° —2.726124482x10" c7r0’
—2.500000x10°70"In(r0)c7 +1.159077064 x10*ic7r0—1.143558000x 10 ¢7
+2.863090381x10%ir0°c7 +2.075034463 x10"ic7r0° +1.452672443x10" r0° p
+2.000000000x 10°iln (70) c7r0° —6.319234788 x107ic 770’ +1.495398102x10"ir0% p
+6.249786891x10"ic7r0’ +4.350394854 x10*ic7 —5.000000000x 10" In (70) ¢ 770*
+4.321899263x 107 ¢7r0+6.408849014 x10"*ir0° p —9.236000000 x 10" In (0) ¢ 770°
+6.704677816x10*'ic7r0° —4.080000000 x 10'*i0° c6 —1.020000000 x 10"ir0” 6
—4.080000000 %1010’ c6 +6.054991092 x 1010 ¢7 +1.387200000x 10" 0’ c6
+3.468000000x10'° 70" 6 +7.000000000 x 10°iln (#0) ¢7r0° +1.387200000x 10" #0° c6
+2.500000000x10iln (#0)c770* +4.272566010x10"ir0” p

+7.263362215x10°70" p) / ((17ir02 +50070% + 680+ 200070 + 2000 + 68i)r05),

€10 =2.000000000x 10" (~3.509551026x 10”7 ¢ 7r0° +1.202064574x10"* In (0) c 770’

cl

c2

+8.809405089x10" ¢7r0° —1.447972890x10" c7r0—3.817318694x10"* ¢ 7r-0°
+1.455381063x10%¢7r0% —1.220608500x 10" ¢ 70" +1.140199529x10"ic770
—1.172880000x 10 ¢7 +2.040000000x 10°ir0° c6 +6.951239280x10'* ¢ 7r0*
+3.005161436x10"In(r0)c7r0° +4.608185160x10™ic7r0 +4.461943440x10%ic7
+2.154015192x10"iln (70)c7r0° +8.545132018x10°ir0° p

+1.202064574x 10" In(r0)c7r0* +1.001418528 x10*°ir0" ¢7 +16000ic 70"
+5.385037980x10"iln (10) c770° +8.160000000x 10°ir0° c6 + 6.811699261x10*ic 770’
—7.391764651x10*ic7r0’ —2.671516126x10”'ic7r0% +2.154015192x10"iln (70)c7r0"
—1.000000x10°70°c7 +4.272566009 x10°ir0° p — 6.543021412x10"ir0° c7
+8.160000000x10°ir0°c6+300-0” ) /(r04 (4+4r0+r0? ))

(~196.9738585+23.32983310i ) m,
(-1.651630988 —1.544652377i)m,

¢6 = (~197.3622743 — 4.147929487i ) m.
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