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ABSTRACT 

 JBased on the divergence theorem, we reveal that the Fickian first law relevant to the diffusion flux , , ,t x y z  in the 

time and space is incomplete without an integral constant  J t0  for the integral of Fickian second law. The new dif-

fusion flux (NDF) taking it into account shows that we can systematically understand the problems of one-way diffu-
sion, impurity diffusion and self-diffusion as a special case of the interdiffusion. Applying the NDF to the interdiffusion 

problem between metal plates, it is clarified that the Kirkenkall effect is caused by  J t0  and also that the interdiffu-

sion coefficients in alloy can be easily obtained. The interdiffusion problems are reasonably solved regardless of the 
intrinsic diffusion conception. Thus the NDF to replace the Fickian first law is an essential equation in physics. 
 
Keywords: Diffusion Equation; Fickian First Law; Kirkendall Effect 

1. Introduction 

The diffusion problems are fundamental and important in 
physics and/or material science, for instance some of 
which are the problems of Brownian motion and/or 
technological application to materials in metallurgy and 
in semiconductor science. In the present study, the fun-
damental problems of diffusion phenomena are discussed 
by investigating the interdiffusion problems between 
metal plates as an application example of the present 
diffusion theory, because they have been widely investi-
gated in metallurgy and a lot of dominant data have been 
accumulated. However, the fundamental theory discussed 
here is generally valid in physics. 

In 1855, the well-known Fickian first and second laws 
(FFL and FSL) analogous to the Fourier heat conduction 
equation were published [1,2]. Since then, they have 
been accepted as one of the most fundamental equations 
in physics and have been applied to diffusion problems. 
In the age of Fick, the existence of atoms and/or mole-
cules was not generally accepted. Although the molecule 
theory of Boltzmann was published in 1872, the exis-
tence of molecules was not self-evident truth [3]. In 1905, 
Einstein theoretically revealed that the well-known 
Brownian motion depends on the existence of molecules, 
and it was clarified that the parabolic law is valid be-
tween the molecular displacement and diffusion time [4, 
5]. Then, Einstein theory was experimentally confirmed  

by Perrin [6]. In other words, the Brownian motion re-
veals that the diffusion phenomena occur even in the 
thermal equilibrium state of material. As far as the diffu-
sion occurs, therefore, the diffusion flux must exist in 
such a state. However, the diffusion flux FFL, which is 
directly proportional to a concentration gradient, be-
comes zero in that case. It is thus inconsistent with the 
physical phenomena. In this stage, it was thus indicated 
that the FFL should be reasonably modified.  

In 1894, Boltzmann transformed the FSL of time and 
space  ,t x  into an ordinary differential equation (B- 
equation) of  0.5xt 1  in accordance with the para-
bolic law [7]. In 1933, Matano obtained the diffusivity 
profile of interdiffusion between metal plates by empiri-
cally applying the B-equation to the experimental con-
centration profile [8]. The concentration dependence of 
diffusivity was then clarified. The B-equation has been 
thus widely used for the analysis of interdiffusion prob-
lems in metallurgy. After that, it was found that the FFL 
is inconsistent with the well-known Kirkendall effect 
(K-effect) which occurs in the interdiffusion phenomena 
between metal plates [9]. This fact also suggested that 
the FFL should be reasonably modified. Nevertheless, it 
has been still accepted in physics as it is. On the contrary, 
the intrinsic diffusion, which is inconsistent with the FSL, 
was devised in order to understand the K-effect [10]. In 
1948, Darken thus proposed a relation between the in-
trinsic diffusivity and interdiffusion coefficient via the 
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concentration. Since then, the relation has been widely 
used for analyzing the interdiffusion problems. However, 
it is considerably difficult to experimentally determine 
intrinsic diffusivity values, since it is necessary to inves-
tigate the K-effect by using multiple markers [11].  

Recently, in the defined parabolic space 1 2 3 , ,    
for 0.5

2 yt 0.5zt 

 ,t x
 ,t x

0x 


 and 3 , the general solutions of 
linear and/or nonlinear diffusion problems were obtained 
as the elegant analytical expressions [12,13]. In order to 
actually apply them to interdiffusion problems, we must 
determine initial and/or boundary diffusivity values in 
alloy. It was, however, difficult to experimentally deter-
mine them.  

In the present study, we revise the FFL in accordance 
with the divergence theorem, because the FFL is incom-
plete without an integral constant for the integral of FSL. 
The new diffusion flux (NDF) to replace the FFL is sys-
tematically applicable to the diffusion problems of one- 
way diffusion, impurity diffusion and self-diffusion as a 
special case of the interdiffusion. The NDF reveals that 
the K-effect is caused by a material source on the diffu-
sion boundary interface and also that the interdiffusion 
coefficients can be easily obtained. Using their interdif-
fusion coefficients for the initial and/or boundary values 
of the general solutions mentioned above, the interdiffu-
sion problems are reasonably solved regardless of the 
intrinsic diffusion conception. 

The NDF is not only essential for physics but also ex-
tremely useful for material science. Applying it to the 
interdiffusion problems between metal plates as an ex-
ample of the diffusion problems, its validity was con-
firmed in the present study. The new findings obtained 
here may make a fundamental change to the existing dif-
fusion theory. 

2. Summary of Interdiffusion Problems 

Since the physical essence is kept even if we investigate 
the diffusion problems of time and space , the FSL 
of  is investigated in this section. It will be clari-
fied later that we can systematically understand the one- 
way diffusion, the impurity diffusion and the self-diffu- 
sion as a special case of the interdiffusion. Therefore, we 
briefly summarize the interdiffusion problems for a dif-
fusion couple between metal plates A and B, where the 
plate A is the alloy composed of I atom and II atom and 
the plate B is the pure metal of II atom. The coordinate is 
then defined as  at the interface between the plate 
A  and the plate B  0x   0

A B

x 
t

. Further, the inter-
diffusion region at a time  is defined as x x x 

0

n

 
and  at . x  0t 

In the interdiffusion problems between metal plates, it 
is generally accepted that the deformation of specimen 
between diffusion before-and-after is almost negligible. 

In other words, the number of total atoms  on an arbi-
trary crystal cross section perpendicular to x  axis is 
considered as a constant value during the diffusion proc-
ess. The relation I IIn n n  n
n

IC
IIC

I II 1C C

 is thus valid, where I  or 

II  is the number of I atoms or II atoms on the same 
cross section. Using the normalized concentration  
for I atom and  for II atom, the relation of  

                 (1)  

is thus widely accepted in this field. 
In the following, the abbreviated notations of 

2
2

2
, 





   


, , andt x y z for 




IC IIC

. 

are used. The FSL for  or  is 

 I I I
t x xC D C     I I II I I

t x xC D C   

D D

, ,    (2) 

where I  and II  are diffusivities of I atom and II 
atom. Equations (1) and (2) yield 

  I II II 0x xD D C   

I IID D D

.           (3) 

Equation (3) shows 

 

D
I

,                (4) 

where  is the so-called interdiffusion coefficient. In 
this case, the diffusion flux FFL of J  for I atom or 

IIJ  for II atom is  
I I I I

II II II II

,

.

x x

x x

J D C D C

J D C D C

     

     





 I II I II 0xJ J D C C

          (5) 

Equations (1) and (5) yield 

     

I II 0J J 

II I I II II Ifor 1D C D C D C C

.        (6) 

Here, (6) shows that the number of I atoms which dif-
fuse from the plate A into the plate B is equal to that of II 
atoms which diffuse from the plate B into the plate A. 

The K-effect shows that  must be valid in 
the interdiffusion problems [9]. It is obvious that (6) is 
inconsistent with the K-effect. In order to solve the in-
consistency, Darken proposed the interdiffusion coeffi-
cient of 

   
I IID D

andD D

I II 0J J

       (7) 

instead of (4), assuming  inconsistent with (4) 
so that (6) is not valid [10]. Here, I II  were then 
designated as “intrinsic diffusion coefficient.” Equation 
(7) has been widely used for the analysis of interdiffusion 
problems. However, the author thinks that the FFL 
should be revised so R R   is valid for the new 
diffusion flux RJ  under the condition of (4). In other 
words, we can understand the K-effect without the in-
trinsic diffusion conception. In the next section, the NDF 
to replace the FFL will be defined, and also it will be 
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 clarified that the NDF is mathematically and physically 
reasonable. 

3. Divergence Theory and New  
Diffusion Flux 

For an arbitrary differentiable vector  , , ,J t x y z
V

 in a 
space  closed in a surface , the divergence theo-
rem between the volume integral and surface integral is 
defined as  

S

d d
SV

J V J S   ,           (8) 

where Dirac’s vector representation is used and   a 
normal unit vector perpendicular to a surface element 

 and dS  , ,x y z    . Here, applying the relation 
defined as 

     R , , , , , 0,J t x y z J t x y z J t      (9) 

to (8), the relation of 

R d d
V S 0 d

S
J V J   S J S 

 

    (10) 

is valid, where 0J t S is defined as a vector on . In 
the present physical system, the first term of the right- 
hand side of (10) means a physical quantity Q which 
outflows through S per unit time. On the other hand, the 
second term is relevant to an inflow rate of Q caused by a 
material source on S. The decrease rate of Q is thus ex-
pressed as 

0 d tS S
dJ S J   S Q  .       (11) 

Substituting (11) into the right-hand side of (10), the 
relation of 

R d tV
J V Q               (12) 

is generally valid. 
In the conventional diffusion problems, the flux J  

correlates with the FFL of 

 , , ,J D C t x y z

D
, ,C t x

  ,          (13) 

using the diffusivity  and the concentration  
 of the material quantity Q. Equation (13) 

has been used only for the diffusion problems where the 
concentration gradient is not zero in the initial state under 
the condition of no material sink or source. The substitu-
tion of (13) into (9) yields the NDF of 

 ,y z

     R , , , , , 0,J t x y z D C t x y   z J t

 , , , dt x y z V

,  (14) 

taking the source effect into account. Further, substitut-
ing (14) and the relation of 

t tV
Q C    

into (12), the FSL is thus obtained as 

 R , , , , , ,tJ D C t x y z C t x y z       ,  (15) 

 where 0 0J t .  
 J tIn mathematics, 0  is relevant to the integral 

constant of 

d
V

J V  

 because of 0 0J t 
S

. In physics, it is relevant to the 
material inflow caused by a material source on . The 
present theory reveals that the FSL is applicable to the 
diffusion problems as it is, even if a material source in-
dependent of  , ,x y z  is contained in the diffusion sys-
tem.  

4. Application of NDF to Interdiffusion 
Problems 

The so-called Kirkendall interface is defined at Kx x  
where the number of I atoms which diffuse from the 
plate A into the plate B is equal to that of II atoms which 
diffuse from the plate B into the plate A. On the other 
hand, the original interface between the plate A  0x   
and the plate B  0x  0x x  at M  is the so-called 
Matano interface. The K-effect means  

eff K M 0x x x    . In the following, we define the 
NDF under the condition of (4) and (6) and investigate 
the diffusion problems in accordance with the NDF. 

As is well known, the diffusion junction depth junx  
at a diffusion time  for a material of diffusivity D is 
expressed as 

t

xjun Dt  .                (16) 

xWe use notations of jun D t
    and  

 AB A BC C C      AC C I
AD D  Ax x for ,  at    

and BC C ,  at II
BD D  Bx x  with the superscript/ 

subscript    of   I A  or  . For the concen-
tration gradient of 

II B

AB junC x   , the diffusion flux 
 0 t

 

 is defined as J

 AB
0 eq A B eq

jun

A Bfor ,

C
t D J D C C t J

x

x x x


   

 


     


 

 J
(17) 

 0J 
eqwhere   is a constant value relevant to the 

Brownian motion in the thermal equilibrium state, and 
I II
eq 0J Jeq  must be then physically valid.    
Under the condition of (1), (4), (6) and (17), (9) or (14) 

yields 

       

  

I II I II
R R 0 0

I I
A B A B

, ,

,

J t x J t x J t J t

D D C C t

  

     (18) 

 I I II II
A B A BC C C C     and  where 
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 J t x  I II, , 0J t x 

t

 because of (1) and (6). In consid-
eration of the atomic migration caused by the interdiffu-
sion, the integral calculation of (18) with respect to  
correlates with the K-effect as follows: 

 

   

  

I II
eff 0 00

I I
A B A

1
d

2

.

t
x J t J t

D D C t

  

  


 

B

t

C
      (19) 

Here, note that (19) is consistent with the parabolic 
law. On the other hand, the experimental analysis of in-
terdiffusion problems also shows the parabolic law 
yielding 

effx m t 

m
I

,               (20) 

where the slope  is experimentally determined [9].  
In the present diffusion system, C  is defined as 

 at B
I
B 0C  x x

D
. In the interdiffusion problems be-

tween metal plates, it is widely accepted that B  in the 
present diffusion system can be approximately replaced 
by the impurity diffusivity  near B

I
impD x x

AD
 because 

of (4). Therefore, the interdiffusion coefficient  at 

Ax x  is obtained as 

I I
A imp AD D m C 

10 Zn 0.3C 


,           (21) 

by using (19) and (20). For example, substituting 
 and A  in Ref. [9] and 

imp  near 

8 0.5m s 
14 2 110 m s 

4.9m  
Zn 1.D 26  Bx x

14 210 m s
 in Cu plate into 

(21), the interdiffusion coefficient 1
A 7.6D    

1058
D

D

 I II, , 1C t x 



D

D

 
is obtained at the absolute temperature T  be-
cause of  in the present case. Therefore, var-
ious A  values are obtained through the interdiffusion 
experimentation by using diffusion couples between the 
plate A (various composition rates of I and II atoms) and 
the plate B (the pure metal of II atom) for various com-
binations of I and II atoms. After a large number of A  
data were thus accumulated, using those A  data at the 
same  for the initial and/or boundary values of the 
general solutions of Refs. [12,13], the solutions of inter-
diffusion problems between alloy plates are possible. On 
the contrary, using those A  data for (19), we can also 
predict the behavior of K-effect. As can be seen from the 
above discussion, the intrinsic diffusion conception in-
consistent with the FSL is not unnecessary for under-
standing the interdiffusion problems.  

Zn
A impD

D

T

I ID D

In the present diffusion system, using the NDF of (14) 
as an additional condition equation for the FSL, the 
problems of interdiffusion, one-way diffusion, impurity 
diffusion and self-diffusion are systematically understood 
as follows:  

1) Interdiffusion: For  and  
, 

 C t x
I

     I I I
R A, ,x

I I I
A B eq ,D C t x D C C t J       

   II II II II II II
R B A B eq, ,xJ t x D C t x D C C t J     

2) One-way diffusion:  

J t x

. 

    
 

I I I
A A B eq

II II
R eq

,

, .

I I I
R , ,xJ t x D C t x   D C C t J

J t x J

  

 


 

The one-way diffusion corresponds to II ID D  a
D D   in the above 1). In this case, the plate B is 

3) Impu

nd 

B A

considered as a solvent material. 
rity diffusion: 

   I I I I,  II II
eq R eq, ,R , xJ t x D C t x J J t x J      . 

The impurity diffusion also corresponds to II ID D  
and D D   in the above 1), and I 1C   and B 0C


I

B A A   
ered as a

nt materi
in (17). In this case, the plate B is also consid  
solve al. 

4) Self-diffusion: For,    I II, , 1C t x C t x   and 
I IID D  I I I I I I

AC C B A BC C  , 

 I , , 
   

I I I
R eq

II II II II
R eq

,

, , .

x

x

J t x D C t x J

J t x D C t x J

 

   
 

The self-diffusion is considered as a special interdiffu-
sion where the concentration gradient is zero in the initial 

 

state. 
In consideration of the NDF in time and space  ,t x , 

(15) becomes 

   , , dR tJ t x C t x x   .          )  (22

Further, the self-diffusion behavio
follows. For convenience, a pure material is divi
tw

r is understood as 
ded into 

o regions 0 and 0x x   at 0t   in the present 
diffusion system. The diffusion region is between 

A Bx x x   a he bo ry condition of t a time t . T unda
   I II

0, ,C t x C t x C   is then used for Ax x  or 
x Bx  in the present diffusion system, where 0 0.5C   
is valid because of    I II, , 1t x C t x  . F ure 

al between A B

C or a p
materi x x x  , (22) yields  

  I I II, o ,x xD C t x D C t x JI II II
eq eqrJ        (23) 

 , 0tC t xbecause of   . In this case, even if  
I II
R R 0J J   is valid, the random movement of a

le occurs an 3) in the 
present diff

n atom 
or a molecu d it is governed by (2

usion system. Equation (23) thus shows the 
correlation between D and eqJ , where D is relevant to a 
jump frequency of an atom or a molecule and eqJ  is 
relevant to its thermal motio  

The integral calculation of (23) gives 
n. 

 I andC x x C C  0

for ,

x

x x x

II
0

A B

x C   

 


    (24) 

where I I II I I
eq eqJ D J D     for I IID D  and I

eqJ   
. Equation (24) shows that  IC x  and  IIC x  II

eq 0J 
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depend on x  and that   x C is valid
 A B 0x x x x   . If we pay attention to only 

one side of IC  or IIC , th tion occurs via 
the ran  the other hand, if we pay at-
tention to bo IC  and IIC ,  

   I II
0, ,C t x C t x C   is actually valid, because we 

cannot know in a pure m rial wh her a

A B

I II x   be-

 atomic migra

et n atom between 

C

e
movement. On
th sides of 

ate

tween 

dom 

x x x 

concentratio

 in th
e

 is one of 

se

e early stage, we

IC  or IIC  in the initial state. 
That (24) is independent of t  means the time-averaged 

n profile cau d by e Brownian motion. 
Therefore, the diffusion occu s as a result of the random 
movement even in a pure material. Equation (24) thus 
gives the evidence of the Brownian motion in a pure ma-
terial. 

From the historical point of view, if the FFL had been 
revised

 th
r

 might have understood the 
b havior of Brownian motion before the Einstein theory. 
As can be seen from the above 1) - 4), the diffusivity 
depends on the concentration when  0J t  depends on 
t . The concentration dependence of diffusivity is thus 
caused by the material source on the d ion boundary 

terface at A

iffus
in x x  or Bx x . In consideration of the 
above 1) - 4), the FFL is obviously incomplete without 

 0J t  for FS versal.  
Hereinbefore, it was clarified that we can revise the 

o it is applicable to various diffu

L and it is not u

sions 

 with the 
 conserva

ni

F
w

FL s

lu

sion problem

divergence theorem sh
tion law. On the other 

s. It 
as also shown that the NDF plays an extremely impor-

tant role to understand diffusion problems. Hereafter, the 
diffusion problems should be analyzed by using the NDF 
for a diffusion system as an additional condition equation 
of (15). 

5. Conc

The FSL consistent
be exactly valid as a

ould 
hand, 

the FFL should be replaced by the NDF which is not only 
exactly valid in mathematics but also extremely useful 
for physics. The obtained novel results in the present 
study are as follows: 

1) Even if a material source independent of the space 
 , ,x y z  is contained in the diffusion system, the FSL is 
applicable to analyzing the diffusion problems as it is. 

terial source  0The ma J t  plays an extremely impor-
tant role in the diffusion problems. 

2) A law must be universal. The NDF is systematically 
applicable to the problems of interdiffusion, one-way

n coefficients can be 
ob

ion study. Equation (21) is dominant in the techno-
lo

[1] J. B. J. Fourier  la Chaleur,” Chez 
Firmin Didot, 

, 1855, pp. 31-39. 

hte, Vol. 66, 

rte Bewegung von in Ruhenden Flus- 

 
diffusion, impurity diffusion and self-diffusion. Further, 
the NDF of (14) or (22) is applicable to analyzing diffu-
sion problems, for instance as seen from the derivations 
of (21) and (24). However, the FFL has not ever been 
used for analyzing the diffusion problems because of its 
incompleteness. The NDF is thus universal to the diffu-
sion problems, but the FFL is not. 

3) The NDF reveals that the K-effect is reasonably 
obtained as (19). The interdiffusio

tained by applying (21) to the experimental results. On 
the contrary, (19) can predict the behavior of K-effect 
using various combinations of the obtained diffusivities. 
As a result, the intrinsic diffusion conception inconsistent 
with the FSL is thus not only unnecessary but also un-
real. 

The NDF derived here is a fundamental equation in the 
diffus

gical material science, since the atomic diffusivity val-
ues in alloy are obtained by using it for the interdiffusion 
experimentation. Although the present study was dis-
cussed in relation to diffusion problems between metal 
plates, the results obtained here are also applicable to 
various material problems described by the FSL. Hereaf-
ter, the new findings obtained here may make a funda-
mental change to the existing diffusion theory. 
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