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ABSTRACT 

This paper deals with an extension of a previous work [Gravitation & Cosmology, Vol. 4, 1998, pp. 107-113] to exact 
spherical symmetric solutions to the spinor field equations with nonlinear terms which are arbitrary functions of 
S 

197c 

, taking into account their own gravitational field. Equations with power and polynomial nonlinearities are 

studied in detail. It is shown that the initial set of the Einstein and spinor field equations with a power nonlinearity has 
regular solutions with spinor field localized energy and charge densities. The total energy and charge are finite. Besides, 
exact solutions, including soliton-like solutions, to the spinor field equations are also obtained in flat space-time. 
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1. Introduction 

The unification of quantum mechanics and general rela-
tivity into a theory of quantum gravity remains a hard (as 
yet) unsolved problem and physical phenomena requiring 
both general relativity and quantum theory for their de-
scription cannot be possibly completely understood. Such 
a challenge stimulates intense research activities in vari-
ous field-theoretical models with full non-perturbative 
account of gravity. Among all these activities, the inves-
tigations of solitons in these theories, with a special em-
phasis on flat space theories, attracted a particular im-
portance due to their properties. Indeed, the soliton sector 
in the flat space gauge theories is quite well understood, 
the most notable example being the t’Hooft-Polyakov 
magnetic monopole. For a review on some recent pro-
gress in the investigation of solitons and black holes in 
non-Abelian gauge theories coupled to gravity, see [1] 
and references therein. However, as is well known, the 
marriage of gravity and relativity leads to a curved space- 
time whose geometry is dynamical and is governed by 
the energy-matter distribution within it, a framework with- 
in which the gravitational interaction is the physical 
manifestation of any curvature in space and in space-time. 
The most fascinating offsprings of this union are un-
doubtedly, on the one hand, the cosmological theory of 
the history of our universe from its birth to its ultimate 
demise if ever, and on the other hand, the prediction for 

regions of space-time to be so much curled up by their 
energy-matter content that even light can no longer es-
cape from such black holes. 

On the other hand, the marriage of relativity and quan-
tum theory leads naturally to the quantum field theory 
description of the elementary particles and their interac-
tions, at the most intimate presently accessible scales of 
space and energy, a fact made manifest by the value of 
the product  Mev.fm. In fact, one offspring of 
this second union is the unification of matter and radia-
tion, namely of particles with their corpuscular propa-
gating properties and fields with their wavelike propa-
gating properties. Particles, characterized through their 
energy, momentum and spin values in correspondence 
with the Poincaré symmetries of Minkowski space-time 
in the absence of gravity, are nothing but the relativistic 
energy-momentum quanta of a field, thereby implying a 
tremendous economy in the description of the physical 
universe, accounting for instance at once in terms of a 
single field filling all of space-time for the indistin-
guishability of identical particles and their statistics. Fur- 
thermore, quantum relativistic interactions are then un-
derstood simply as couplings between the various quan-
tum fields locally in space-time, which translate in terms 
of particles as diverse exchanges of the associated quanta. 
Such a picture lends itself most ideally to a perturbative 
understanding of the fundamental interactions, which has 
proved to be so powerful beginning with quantum elec-
trodynamics, up to the modern Standard Model of the *Corresponding author. 
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strong and electroweak interactions. For more explana-
tion on these profound concepts, quantum theory and 
relativity, which have culminated into relativistic space- 
time geometry and quantum gauge theory as the princi-
ples for gravity and the three other known fundamental 
interactions, see notes [2] on The quantum geometer’s 
universe: Particles, interactions and topology delivered 
in 2001 by Govaerts at the Second International Work-
shop on Contemporary Problems in Mathematical Phys-
ics. 

All these activities, diverse and complementary, made 
in this field [1-14], are also mainly motivated by the wide 
roles of Einstein and Dirac equations in modern physics, 
for example, for investigating the spin particle and for 
the necessity of analysis of synchrotronic radiation [11]. 
To this purpose, many systems have been subjects of 
considerable interest and studies. The pioneering inves-
tigation could be the work by Drill and Wheeler in 1957 
[3], who considered the Dirac equation in a central 
gravitational field associated with a diagonal metric. Us-
ing a normal diagonal tetrad, these authors constructed 
the generalized angular momentum operator separating 
the variables in the Dirac equation. Later, in a remarkable 
paper, appeared in 1987 [12], entitled “Criteria of sepa-
rability of variables in the Dirac equation in gravita-
tional fields”, Shishkin and Andrushkevich provided the 
necessary and sufficient conditions, based on rigorous 
theorems, for separability of the variables for a diagonal 
tetrad gauge, and deduced the operators that determine 
the dependence of the wave function on the separated 
variables. In the same year, Barut and Duru [10] gave 
exact solutions of the Dirac equation in spatially flat 
Robertson-Walker space-times for models of expanding 
universes and discussed the current decomposition. Hence- 
forth the investigations go into diverse directions, con-
sidering various classes of models including different 
metrics, the general class of which is investigated by 
Hounkonnou and Mendy in 1999 [13]. Thus, for example, 
the usual Friedman-Lemaître-Roberston-Walker homoge- 
neous and isotropic metric of standard cosmology be-
longs to this general class of metrics (whether in Carte-
sian or spherical coordinates), which also includes gen-
eral classes of Kantowski-Sachs metrics for anisotropic 
cosmologies as well as some examples of metrics used in 
models for stellar gravitational collapse [14]. It may be 
worth pointing out that a priori, this class of metrics 
solves Einstein’s equations for specific distributions of 
energy-momentum of matter in space-time, in the pres-
ence of which the study of the quantized Dirac field may 
be of interest. Such an avenue could be pursued. For de-
tails, see [13] and references therein. 

Moreover, it is also worthy of attention a previous 
study, which will be referred to Part I of the present 
work, where Adomou and Shikin [8] have obtained exact 

plane-symmetric solutions to the spinor field equations 
with nonlinear terms which are arbitrary functions of 
S  , taking into account their own gravitational field. 
They have studied in detail equations with power and 
polynomial nonlinearities. They have shown that the ini-
tial set of the Einstein and spinor field equations with a 
power-law nonlinearity has regular solutions with a lo-
calized energy density of the spinor field only in the case 
of zero mass parameter in the spinor field, with a nega-
tive energy for the soliton-like configuration. They have 
also proved that the spinor field equation with a polyno-
mial nonlinearity has a regular solution with positive 
energy. Their study has come out onto the non existence 
of soliton-like solutions in the flat space-time. 

The present work, considered as Part II of all these 
investigated initiated in [8], aims at extending the results 
to exact spherical symmetric solutions. Here also equa-
tions with power and polynomial nonlinearities are thor-
oughly scrutinized. 

The paper is organized as follows. Section 2 addresses 
the model with fundamental equations. We consider a self- 
consistent system to obtain spherical-symmetric solutions, 
taking into account the own gravitational field of parti-
cles. Section 3 deals with main results and their discus-
sion; the solutions of the Einstein and nonlinear spinor 
field equations are derived. Besides, the regularity prop-
erties of the obtained solutions as well as the asymptotic 
behavior of the energy and charge densities are studied. 
Concluding remarks are outlined in Section 4. 

2. Model and Fundamental Equations 

We consider the Lagrangian of the self-consistent system 
of spinor and gravitational fields in the form [8]: 

2 sp

R
L L


                 (2.1) 

 
2sp N

i
L m L 

         


 NL F S

  (2.2) 

where R is the scalar curvature;  is Einstein’s gravita-
tional constant and  is an arbitrary function 
depending on S . 

Instead of the static plane-symmetric metric chosen in 
[8], in the present analysis we opt for the static spherical 
symmetric metric in the form: 

 2 2 2 2 2 2 2 2 2sin ,ds e dt e d e d d        

, ,

 (2.3) 

    being some functions depending only on 
1

r
 ,  

where r stands for the radial component of the spherical 
symmetric metric, and satisfying the coordinate condition  

2 .                  (2.4)  

From the Lagrangian (2.1), through the variational 
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principle and usual algebraic manipulations, one can 
readily deduce the Einstein equations for the metric (2.3) 
under the condition (2.4), the spinor field equations for 
the functions  ,  , and the components of the metric 
spinor field energy-momentum tensor, respectively, in the 
form [3]: 

0 2 2
0 2 2G e  2 o

oe T        

2 1
1e T

         (2.5) 

 1 2 2
1 2G e        

 2
2 2T

          (2.6) 

2 2 2 2G e          

3 2G G

2 3
2 3T T

0Ni m L
      

     

3 2

     (2.7) 

                 (2.8) 

                 (2.9) 

         (2.10) 

0NL  i m
           (2.11) 

 i
T        4

spg L

            


 (2.12) 

where   is the covariant spinor derivative [3]:  

 
 


 Γ


   ;   are the spinor affine con- 

nection matrices. To define the matrices    , let us 
use the equalities  

              ;ab 
a b a

ag e e e          


  (2.13) 

where ; diag 1, 1, 1, 1ab     a  are the Dirac’s 
matrices in flat space-time;  ae    are tetradic 4- 
vectors. Then we get:  

3
0 0 2 2 3; .

sin

e
e


1 1; ;e e       




      (2.14) 

The matrices     are then determined as follows:  

 1 b

   ;
4 bg e e   

                       (2.15) 

0 1 2 2 1
0 1 2

1 1
; 0 ;

2 2
e e                  (2.16) 

 
2

e  3 1 3 2
3

1
sin cos .                    (2.17) 

The matrices a  are chosen as in [3]. Using the 
spinor field equations, we can rewrite  in the form spL

1
,

2
N N

sp N N N

L L
L L SL L 

 
            

 4 .V

T : 

 (2.18) 

with the spinor  

1 2 3V V V   

Taking into account (2.18), let us write explicitly the 

nonzero components of the tensor 

0 2 3
0 2 3 sp N NT T T L SL L             (2.19) 

setting the condition 1 4 2 3 3 2 4 1VV V V V V V V   , 

 1 1 1
1 1 12 N N

i
T SL L        

 

    (2.20) 

Using the obtained expressions for   in (2.15)- 
(2.17), we can expand (2.10) as 

1 21
cot 0

2 2 N

i
ie e m L 

                 
  

(2.21) 

yielding the following set of equations:  

 4 4 4 1

1
cot 0

2 2 N

i
V V e V ie L m V            (2.22) 

 3 3 3 2

1
cot 0

2 2 N

i
V V e V ie L m V            (2.23) 

 2 2 2 3

1
cot 0

2 2 N

i
V V e V ie L m V            (2.24) 

 1 1 1 4

1
cot 0

2 2 N

i
V V e V ie L m V      .      (2.25) 

3. Results and Discussion 

From the set of Equations (2.22)-(2.25), we infer that the 
invariant function  

* * * *
1 1 2 2 3 3 4 4S V V V V V V V V      

satisfies a first order differential equation:  

d
0

d

S
S


                (3.1)  

  ,S Ce

giving the evident solution  

 

1
1 .

               (3.2) 

C being a constant. Combining the spinor field Equation 
(2.21) with its conjugate expression results the following 
expression for (2.20):  

NT mS L 

0 2

0 2

   
  

   

2 2e

              (3.3) 

The difference    of the Einstein equations 

with (2.19) leads to  
     

 

             (3.4) 

which can be transformed into a Liouville equation (see 
[7], page 30) to produce the solutions:  

   2
1

2 2
1 ln 1

4 ,

A A

G GGT h
  

 
            

(3.5) 
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   2
14 ,

A

GT h
ln

A  ties. 

 
         (3.6)  VWe can get a concrete form of the functions   

by solving Equations (2.22)-(2.25) in a more compact 
where the quantity A is expressed in terms of the New-
ton’s gravitational constant G as:   

.
1

G
A

G



 

 

 

 

1

1

, 0

0

, 0,

h h

h

h h

 

1 1

1
sinh

, ,

1
sin

h
T h

h

   

 

    






  

    

     (3.7) 

h being an integration constant and 1  another non zero 
integration constant. Taking into account (3.5) and (3.6), 
we get from (2.4) the following relations:  

   2
1,

A

T h

3 2
ln

2 2

A

G G
 

 
   
 

      (3.8) 

and  

       ; .
4 3

G

G G

2

4 3

G    
   

 

1

1

 
 
 

   (3.9) 

Substituting (3.8) into (2.6), we obtain the Einstein 

equation  in the form  

    .NmS L
 

 
 

2 2 4
2 2 4 3

2

4 3

3 8 4

G

G
G

e e
G G

 
 



  

 
 (3.10) 

Since 
1 d

d

S

S



   S Ce with the invariant  , from 

(3.10), we get: 

   
4 2

4 3

2

4 3d

d 3 8 4

G

GG SS C

S CG G


         

    
.N

S
mS L    

(3.11) 

With the knowledge of   ,     and   

S

 from 
the relations (3.5), (3.6) and (3.8), respectively, the in-
variant   as well as the solutions of the Einstein 
equations can be completely determined. Furthermore, 
considering the concrete expression of the invariant 
 S  , namely  S C  e     , we can establish the 

regularity properties of the obtained solutions. Studying 
the distribution of the energy per unit invariant volume 

0 3T g
0 , we can also deduce their localization proper-  

form if we pass to the functions 
   

1

2W e V
 

   , ρ = 

1, 2, 3, 4: 

 4 4 1cot 0
2 N

i
W e W ie m L W           (3.12) 

 3 3 2cot 0
2 N

i
W e W ie m L W           (3.13) 

 2 2 3cot 0
2 N

i
W e W ie m L W           (3.14) 

 1 1 4cot 0
2 N

i
W e W ie m L W           (3.15) 

where  
1

21
.

2
W V V e



       
 

         (3.16) 

Re-express Equations (3.12)-(3.15) under forms de-
pending on functions of the argument   , i.e.  S

   U S W      .S Ce,     Then we get for the 
functions  U S  the following set of equations: 

   4
4 1

d
0

d

U
iB S U iQ S U

S
          (3.17) 

   3
3 2

d
0

d

U
iB S U iQ S U

S
          (3.18) 

   2
2 3

d
0

d

U
iB S U iQ S U

S
          (3.19) 

   1
1 4

d
0

d

U
iB S U iQ S U

S
  

 

       (3.20) 

where  

 
 

2 2

4 3
cot

1
;

d d2
d d

G

G

N

C C
m L

S S
B S Q S

S S



 


        

      (3.21) 

with 
d

d

S
 determined by (3.11). 


Differentiating now Equations (3.17)-(3.20) and sub-

stituting Equations (3.20) and (3.17) into the result, we 
obtain second-order differential equations obeyed by the 
functions  4U S  and 1 S

 

U : 
 

       
     

2 2
4 0

Q S B S Q S Q S B S
B S Q S i U

Q S Q S

    
    

 
4 4U U                 (3.22) 

 
 

       
    2 2

1 0
Q S B S B S Q S

B S Q S i U
Q S

    
     

 
1 1

Q S
U U

Q S
                (3.23) 
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Summing (3.22) and (3.23) and setting U U1 4U   

afford the differential equation:  

 
   Q S

U U B S
Q S


     2 2 0,Q S U 

 

    (3.24) 

which, under the condition    2 21 ,Q S 
0 1

B S  with 
 

0, ,const 

, yields the solution  

 1 4 0 1coshU U N S       (3.25) 

where    1 1 1 . Substract-
ing Equations (3.17) and (3.20) and taking into account 
(3.25), we obtain  

d ;N S Q S S R R const  

 1sinh .N S1 4 0

1 1
U U i




 
       (3.26) 

It then follows, from the Equations (3.25) and (3.26), 
that  

     1sinh N S



 
1 1 1

1 1
coshU S N S i




  
  (3.27) 

and  

     1sinh N S
 
 
 

4 1 1

1 1
coshU S N S i




 
  (3.28) 

with 0
1 2

  . 

Analogously operating on Equations (3.18) and (3.19), 
we arrive at  

     2cosh N S
 
 
 

2 2 2

1 1
sinhU S N S i




  
     

(3.29) 
and  

     2osh ,N S



 

2 const

3 2 2

1 1
sinh cU S N S i




   
     

(3.30) 

with   ,  

   2N S Q S S   2 2d , .R R const

0NL 

   (3.31) 

As mentioned in [8], it is worth considering a self- 
consistent solution to the linear spinor field equation 
(Dirac’s equation), in view of its comparison with solu-
tions to nonlinear spinor equations and of a better insight 
of the role of nonlinear terms in the nonlinear field equa-
tions in the formation of regular localized soliton-like 
solutions. For this purpose,  and we have from 

(2.21):  

1 1
cot

2 2

i
ie e

         
2 0.m     

 S

 (3.32) 

In this case, the relation (3.32) giving   becomes:  

   2
1

3 2
exp ln .

2 2 ,

A A
S C

G GT h


 
           

 

 (3.33) 

From (3.5), (3.6) and (3.8), we get:  

 
2

2
1

exp ln
2 ,

A A
e

GT h
   

 
    

 

           (3.34) 

 
2

2
1

2
exp 1 ln

2 ,

A A
e

G GT h
 

 
          

 

    (3.35) 

 
2

2
1

3 2
exp ln

2 ,

A
e A

G GT h
   

 
        

2

    (3.36) 

showing that the invariant S and the functions 00g e
2

, 

11g e  2, 22
 g e 2 2sing e , 33  

 0
0 0T  

 are regular. In 
the case under consideration we have , i.e. the 
energy density is localized. 

Using (3.11), (3.21) and (3.31), we get:  

 

 
 

1,2

23 8 4
d ,

4 3

a

N

a a
N

N S

C G G m L
S

G S S C mS L





   


  


   

(3.37) 

with 
4 2

1
4 3

G
a

G


 


  , 1,2,3,4V   

. 

Let us find the explicit form of  . 
To this end, we retrieve the expressions of  N S1  and 

 N S 0L 
1a

2  from (3.37), knowing that N . Without loss 
of generality, let us set  . Then,  

 
 

   

2

1,2 1,2

2 3 8 4
.

4 3 1

m C G G
N S R

G C m S





 
 

 
    (3.38) 

 SSubstituting   from (3.33) into (3.38), we get  

 
 

 

 

2

1,2

1,22
1

2 3 8 4

4 3 1

3 2
exp ln ,

4 2 ,

m G G
N

G C m

A A
R

G GT h






 

 


 

           
R const

 (3.39) 

with 1,2 . 
We then replace the expressions of 1 N  2N  and   

from (3.39) into (3.27)-(3.30) and get an explicit form of 
  , 1, 2,3,4U   

   

, and subsequently the expressions of  
 1

2V U e
 

  




 

:  

 

   

1 1 2
1

1 1

3 2
exp ln

4 2 ,

1 1
cosh sinh

A A
V

G GT h

N i N

 
 



           
  (3.40) 


 



 
  
 
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   

   

2
1

2 2

,

cosh

A A

h

N

 2 2

3 2
exp ln

4 2

1 1
sinh

V
G GT

N i

 

 


     
 

  
 



  


 



  (3.41) 

   

   

1

2 2

,

osh ;

A A

h

N

 

 

  
 

  
 
 
 

3 2 2

3 2
exp ln

4 2

1 1
sinh c

V
G GT

N i

 




    
 

 
 

 (3.42) 

 

which represent nothing but the regular localized soliton- 
like solutions. 

 

   

2
1

1

,

sinh .

A A

h

N

 4 1

1

3 2
exp ln

4 2

1 1
cosh

V
G GT

N i

 

 

  
   





nL S



    
 

  
 


  (3.43) 

In the sequel, we deal with a concrete type of nonlin-
ear spinor field equations which have the virtue that 

N  , where   is a nonlinearity parameter, . 
It is convenient to separately analyze the two cases 

2n 

2n   and n : 2
 2n  : 2

NL S  and we have the nonlinear spinor 
field equation  

 

1 21
cot

2 2

2 0.

i
ie e

m

 
     

   

     
 

  
    (3.44) 

The equalities (3.33)-(3.36) remain valid. Let us find 
an explicit form of   , 1, 2,3,4  

 1N S
V . For that, we 

deduce from (3.37) the function  and  2N S

 
 

: 
 

 
 

2

1,2

2
1,22

3 8 4

4 3

2 2 2
2 ln 1 1

1 11

C G G
N S

G

m C C
S C S C m S R

C C m C mC C S m S



    
   

 



                 C

(3.45) 

 

that we substitute into (3.27)-(3.30) to get an explicit 
expression of 

      
 U    and subsequently the initial func- 

tions      
2V U e
1 

  


 , 1, 2,3, 4 

   

. 

Let us compute the distribution of the spinor field en-
ergy density per unit invariant volume  

0 3
0f T g  

 
. From (2.19) and (3.33) we have the 

following expression for 0
0T  :  

   

 

0 2T S  0

2
2

1

3 2
exp ln ,

2 ,

A
C A

G GT h


 
           

    

(3.46) 

permiting to write  

 

20
0

2
2

1

sin

sin exp ln ,
4 ,

f T e

A A
C

GT h

     

 
 


     (3.47)      

inferring that the quantities 00g , 11g , 22g  and V  are 
regular and, from (3.47), the total energy  

 0 3
00

dcE T g


    is finite. Therefore, the equation  

(3.44) possesses a soliton-like solution.  
 2n  : n

NL S  and the energy density is  

 0
0 1 .nT n S 

   

            (3.48) 

From (3.33), the distribution of the spinor field energy 
density per unit invariant volume takes the form  

0 3
0f T g  

   

 

i.e.  
 

    2
1

1 sin exp 4 3 5 8 ln
4 ,

n A A
f n C n G G

G GT h
  

 
                    (3.49)    

 
 

0 3
00

dcE T g


showing that the spinor field energy density per unit in-
variant volume f is localized and the total energy 

   V is finite. To compute  ,  
   1N S  and 1, 2,3, 4  , we need the functions 2 S

 
 

N :  
 

   
 

   
   

2
2 1

2

1

2 1 2 1

1,21 1

3 8 4 2 1 1 1
1

4 3 2 1 2

1 1 1
;1 2 1 ,

2 1 2 1 1

n

n
n

n

n n

S n n

C G G n C n
N S C S C m m m

G C n S C m n CC

n C m C m
B R

n n C S C m C S

  
  

 
  




 

 

                         
                              

(3.50) 

1,2
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where  

   
     

1
2 1

0

1
;1 1

2 1 2 1

n
S n

s

n
B y

n n


 

     


1

2 1 dny y

   

(3.51) 
and    

1
,

1

C m

C m





 

           (3.52) 

that we substitute into (3.27)-(3.30) to get an explicit 
expression for 

1
n

y
C t



 U   , and then we readily compute the 
initial functions  

     1

2V U e
 

  


           (3.53) 

for 1, 2,3, 4 . Using the solutions (3.27)-(3.30), we  
deduce the components of the spinor current vector 
j    as follows: 

 

       

       
2

2 2 2
2

1 1
coshS N S





   
 


2 2

2 2 2 2
1 1 2 2

2

2
1 1 2 2

1 1 1 1
cosh sin sinh cosh

1
sinh

N S N S

N S N

    
 


 

 
                                 

           

2
1h N S 2

2N S



1 2 22 coshj e 
 

2
1

1
sinh N S

  

2oj e

       2 2 2
1 1 1 2 2 2

3

1 1 1 1
4 cosh sinh sinh coshj e N S N S N S N S    

 
 

0.j

  
  

     
    

 


 (3.54) 

 
Since the configuration is static, only the component 

0j  is nonzero. The constants in the solution of the spi-
nor field equation are obtained from the equations 

1 0j   and 2 0j  , thus giving 1 2  ,  
   2 1N S N S   and 1  . The component 0j  de-

fines the charge density of the spinor field whose the 
hronometric invariant form is characterized by:  c

   
1 2 24 cosh 2o

oq j j a e N S        (3.55) 

where      1 1 2, , 1a N S N S N S        . The 
e of th  spinor field is: 

2

total charg e

3 d ,c

o
Q q g


              (3.56) 

c  bei
Th

ng the cent field configuratio
e re  (3 .39), (3 , (3.5

of th nor field is 
finite quantity, 

er of the 
.33), (3

density 

n. 
5) and (3.56) lations

at the charge 
.45)
e spiinfer th local-

ized, and the total charge is a when 
0 , or 2SNL  , or , 2nS n  . 

4. Concluding Remarks  

In this paper, we have obtained exact spherical symmet-
ric solutions to the spinor and gravitational field equa-
tions and studied their regularity properties as well as the 
localization properties of both the energy and charge 

es in rent densiti diffe configurations, when 0NL  , 2S  
nand S . 

In all these cases, the solutions are regular; the energy 

criterion of their classification could deserve som
est. Such investigation will be in the core of the forth-
coming paper. 

5. Acknowlegements 

This work is partially supported by the Abdus Salam 

tional Workshop on Contemporary Problems 
in Mathematical Physics, Cotonou, 28 October-2 Novem- 

and charge densities are localized. The total energy and 
charge of the spinor field are finite quantities. The study 
of the set of all regular spherical solutions with a possible 

International Centre for Theoretical Physics (ICTP, Tri-
este, Italy) through the OEA-ICMPA-Prj-15. The ICM- 
PA is in partnership with the Daniel Iagolnitzer Founda-
tion (DIF), France. 

e inter-

REFERENCES 

[1] D. V. Galtsov, Institute of Physics Conference Series, No. 
173, 2002, pp. 255-261. 

[2] J. Govaerts, “The Quantum Geometer’s Universe: Parti-
cles, Interactions and Topology,” Proceedings of the Sec-
ond Interna

ber 2001, pp. 79-212. 
doi:10.1142/9789812777560_0002 

[3] D. Brill and J. Wheeler, “Assessment of Everett’s ‘Rela-
tive State’ Formulation of Quantum Theory,” Reviews of 
Modern Physics, Vol. 29, No. 3, 1957, pp. 463-465. 
doi:10.1103/RevModPhys.29.465  

[4] V. A. Zhelnorovich, “Theory of Spinors and Its Applica-
tion to Physics and Mechanics,” Nauka, Moscow, 1982. 

[5] N. N. Bogoliu Introduction to the 
Theory of Qua oscou, 1976. 

Row, Cop., New York, 1961. 

bov and D. V. Shirkov, “
ntized Fields,” Nauka, M

[6] S. Schweber, “Introduction to the Relativistic Quantum 
Field Theory,” Harper & 

[7] A. Adomou, R. Alvarado and G. N. Shikin, Izvestiya Vu- 

Copyright © 2012 SciRes.                                                                                 JMP 



V. ADANHOUNME  ET  AL. 942 

zov, Fizika, Vol. 8, 1995, pp. 63-68. 

[8] A. Adomou and G. N. Shikin, Gravitation & Cosmology, 
Vol. 4, No. 2, 1998, pp. 107-113. 

[9] G. N. Shikin, “Nonlinear Fields in Theory of Gravita-
tion,” Moscow, 1995. 

[10] A. O. Barut and I. H. Duru, “Exact Solutions of the Dirac 
Equation in Spatially Flat Robertson-Walker Space- 
Times,” Physical Review D, Vol. 36, No. 12, 1987, pp. 
3705-3711. doi:10.1103/PhysRevD.36.3705 

[11] G. V. Shishkin and V. M. Villalba, “Dirac Equation in 
External Vector Fields: Separation of Variables,” Journal 
of Mathematical Physics, Vol. 30, No. 9, 1989, pp. 2132- 

2142. doi:10.1063/1.528215 

[12] G. V. Shishkin and I. E. Andrushkevich, “Criteria of Sepa- 
rability of the Variables in the Dirac Equation in Gravita-
tional Fields,” Theoretical and Mathematical Physics, 
Vol. 70, No. 2, 1987, pp. 204-214. 
doi:10.1007/BF01039211  

[13] M. N. Hounkonnou and J. E. B. Mendy, “Exact Solutions 
of the Dirac Equation in a Nonfactorizable
nal of Mathematical Physics, Vol. 40, No. 8, 1999, pp. 
3827-3842. 

 Metric,” Jour- 

doi:10.1063/1.532928 

[14] C. W. Misner, K. S. Thorne and J. A. Wheeler, “Gravita-
tion,” Freedman, San Francisco, 1973. 

 
 

Copyright © 2012 SciRes.                                                                                 JMP 

http://dx.doi.org/10.1103/PhysRevD.36.3705
http://dx.doi.org/10.1103/PhysRevD.36.3705
http://dx.doi.org/10.1103/PhysRevD.36.3705
http://dx.doi.org/10.1103/PhysRevD.36.3705
http://dx.doi.org/10.1063/1.528215
http://dx.doi.org/10.1007/BF01039211
http://dx.doi.org/10.1007/BF01039211
http://dx.doi.org/10.1007/BF01039211

