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ABSTRACT 

In the context of a type I seesaw scenario which leads to get light left-handed and heavy right-handed Majorana neutri-
nos, we obtain expressions for the transition probability densities between two flavor neutrinos in the cases of left- 
handed and right-handed neutrinos. We obtain these expressions in the context of an approach developed in the canoni-
cal formalism of Quantum Field Theory for neutrinos which are considered as superpositions of mass-eigenstate plane 
waves with specific momenta. The expressions obtained for the left-handed neutrino case after the ultra-relativistic limit 
is taking lead to the standard probability densities which describe light neutrino oscillations. For the right-handed neu-
trino case, the expressions describing heavy neutrino oscillations in the non-relativistic limit are different respect to the 
ones of the standard neutrino oscillations. However, the right-handed neutrino oscillations are phenomenologically re-
stricted as is shown when the propagation of heavy neutrinos is considered as superpositions of mass-eigenstate wave 
packets. 
 
Keywords: Majorana Fermions; Majorana Neutrino Oscillations; Transition Probability; Non-Relativistic and 

Ultra-Relativistic Approximations 

1. Introduction 

Neutrino physics is a very active area of research which 
involves some of the most intriguing problems in particle 
physics. The nature of neutrinos and the origin of the 
small mass of neutrinos are two examples of these kinds 
of problems. Since neutrinos are electrically neutral, the 
nature of these elementary particles can be Majorana or 
Dirac fermions. The first possibility, i.e. neutrinos being 
Majorana fermions was introduced by Etore Majorana [1] 
when he suggested that massive neutral fermions with 
specific momenta have associated only two helicity states 
implying that neutrinos and anti-neutrinos are the same 
particles. The second possibility implies that Dirac neu-
trinos are described by four-component spinorial fields 
which are different from spinorial fields describing anti- 
neutrinos. In this work, we will consider neutrinos as 
Majorana fermions which is favored by simplicity be-
cause they have only two degrees of freedom [2,3]. 

Direct and indirect experimental evidences show that 
neutrinos are massive fermions with masses smaller than 
1 eV [4]. The most accepted way to generate neutrino 
masses is by mean of the seesaw mechanism [5]. Mass 
for neutrinos is a necessary ingredient to understand the 
oscillations between neutrino flavor states which have 
been observed experimentally [4]. Neutrino oscillations 
are originated by the interference between mass states 
whose mixing generates flavor states. This phenomenon 

means that a neutrino created in a weak interaction proc-
ess with a specific flavor can be detected with a different 
flavor. Neutrino oscillations were first described by Pon-
tecorvo [6] as an extension for the leptonic sector of the 
strange oscillations observed in the neutral Kaon system. 
Neutrino oscillations can be described in context of 
Quantum Mechanics [7-11] as an application of the two 
level system [12]. 

Description of neutrino oscillations in the context of 
Quantum Field Theory (QFT) is a very well studied topic 
[13-20]. In the literature it is possible to find two kinds of 
QFT models describing neutrino oscillations: intermedi-
ate models and external models [17]. In the framework of 
intermediate models Sassaroli developed a model based 
in an interacting Lagrangian density which includes the 
coupling between two flavor fields [21-23]. This model 
was framed by Beuthe as a hybrid model owing to it goes 
half-a-way to QFT [17]. Sassaroli model was first de-
veloped for a coupled system of two Dirac equations [21, 
22] and then it was extended for a coupled system of two 
Majorana ones [23]. The probability amplitude of transi-
tion between two neutrino flavor states for these two 
systems [21-23] was obtained starting from flavor states 
which are used on the standard treatment of neutrino os-
cillations. 

The standard definition of flavor states can originate 
some possible limitations in the description of neutrino 
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oscillations as was observed by Giunti et al. [24]. Spe-
cifically, in reference [24] it was shown that flavor states 
can define an approximate Fock space of weak states in 
the following two cases: 1) In the extremely relativistic 
limit, i.e. if neutrino momentum is much larger than the 
maximum mass eigenvalue of a neutrino mass state; 2) 
for almost degenerated neutrino mass eigenvalues, i.e. if 
the differences between neutrino mass eigenvalues are 
much smaller than the neutrino momentum. The first 
case leads to the standard definition of flavor states. The 
second case has associated a real mixing matrix which is 
restricted to a specific interaction process. Additionally 
these authors have proposed that oscillations can be de-
scribed appropriately for ultra-relativistic and non-rela-
tivistic neutrinos by defining appropriate flavor states 
which are superpositions of mass states weighted by their 
transitions amplitudes in the process under consideration 
[24]. 

By considering the limitations mentioned in the last 
paragraph it was set down by Beuthe in [17] that Sas-
saroli hybrid model can only be applied consistently if 
lepton flavor wave functions are considered as observ-
able and the ultra-relativistic limit is taken into account. 
On the other hand, the Sassaroli model describing Majo-
rana neutrino oscillations [21,22] was developed without 
considering the four-momentum conservation for neutri-
nos which implies the existence of a specific momentum 
for every neutrino mass state. 

The main goal of this work is to study neutrino oscilla-
tions in vacuum between two flavor states considering 
neutrinos as Majorana fermions and to obtain the prob-
ability densities of transition for left-handed neutrinos 
(ultra-relativistic limit) and for right-handed neutrinos 
(non-relativistic limit). This work is developed in the 
context of a type I seesaw scenario which leads to get 
light left-handed and heavy right-handed Majorana neu-
trinos. In this context, we perform an extension of the 
model developed by Sassaroli in which the Majorana 
neutrino oscillations are obtained for the case of flavor 
states constructed as superpositions of mass states [21, 
22]. Our extension consists in considering neutrino mass 
states as plane waves with specific momenta. The model 
that we consider in this work, which is developed in the 
canonical formalism of Quantum Field Theory, has the 
advantage that in the same theoretical treatment it is pos-
sible to study neutrino oscillations for light neutrinos and 
for heavy neutrinos. To do this, we first perform the ca-
nonical quantization procedure for Majorana neutrino 
fields of definite masses and then we write the neutrino 
flavor states as superpositions of mass states using quan-
tum field operators. Next we calculate the probability 
amplitude of transition between two different neutrino 
flavor states for the light and heavy neutrino cases and 
we establish normalization and boundary conditions for 

the probability density. These probability densities for 
the left-handed neutrino case after the ultra-relativistic 
limit is taking lead to the standard probability densities 
which describe light neutrino oscillations. For the right- 
handed neutrino case, the expressions describing heavy 
neutrino oscillations in the non-relativistic limit are dif-
ferent respect to the ones of the standard neutrino oscilla-
tions. However, the right-handed neutrino oscillations are 
phenomenologically restricted as is shown when the 
propagation of heavy neutrinos is considered as superpo-
sitions of mass-eigenstate wave packets [25]. The oscil-
lations do not take place in this case because the coher-
ence is not preserved: in other words, the oscillation 
length is comparable or larger than the coherence length 
of the neutrino system [25]. 

The content of this work has been organized as follows: 
In Section 2, after establishing the Majorana condition, 
we obtain and solve the two-component Majorana equa-
tion for a free fermion; in Section 3, we consider a type I 
seesaw scenario which leads to get light left-handed neu-
trinos and heavy right-handed neutrinos; in Section 4, we 
obtain the Majorana neutrino fields with definite masses, 
then we carry out the canonical quantization procedure of 
these Majorana neutrino fields and we obtain relation 
between neutrino flavor states and neutrino mass states 
using operator fields; in Section 5, we determine the 
probability density of transition between two left-handed 
neutrino flavor states, additionally we establish normali-
zation and boundary conditions and then we obtain 
left-handed neutrino oscillations for ultra-relativistic light 
neutrinos; in Section 6, we study the right-handed neu-
trino oscillations for non-relativistic heavy neutrinos; 
finally, in Section 7 we present some conclusions. 

2. Two-Component Majorana Equation 

In 1937 Ettore Majorana proposed a symmetric theory 
for electron and positron through a generalization of a 
variational principle for fields which obey Fermi-Dirac 
statistics [1]. When this theory is applied to a neutral 
fermion which has a specific momentum then there exist 
only two helicity states. The Majorana theory implies 
that it does not exist antiparticles associated to these fer-
mions, i.e. Majorana fermions are their own antiparticles. 
For convenience we study the equation of motion for 
neutral fermions but using the two-component theory 
developed by Case in [26]. 

In contrast with a Dirac fermion, a Majorana fermion 
can only be described by a two-component spinor. To 
show it we consider a free relativistic fermionic field   
of mass m described by the Dirac equation 

  = 0i m
   , where Dirac matrixes   obey the 

anticonmutation relations  , = 2 g  
 = = diag 1, 1, 1, 1g g 

   
 and metric 

tensor satisfies . Using  
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the chirality matrix given by 5 0 1 2 3i     , the left- 
and right-handed chiral projections of the fermion field ψ 

are  51
= 1,R L 2

   , respectively. If we write the 

Dirac matrixes projected on the chiral subspace as 

 51
= 1

2
     , we obtain that the coupled equations 

for the chiral components of the fermionic field   are 
given by 

= ,L Ri m
   

=

             (1) 

.R Li m
   

c

             (2) 

We introduce the charge conjugation operation that will 
allow us to describe Majorana fermions. The charged 
conjugated field (or conjugated field)   is defined as 

ˆc = ,T 


  1ˆ ˆ =

T

                 (3) 

where the charge conjugation operator  satisfies the 
properties      1ˆ ˆ= † ˆ ˆ=T, ,    [3]. 
Using these properties we find that the conjugated field 

c  obeys the Dirac equation  . As    = 0ci m  
  describes a fermion with a specific charge, its conju-
gated field c  represents a fermion with an opposite 
charge and with the same mass, i.e. c  describes the 
antifermion of  . The Dirac equation for c  should 
be projected on the chiral subspace and for this reason it 
is necessary to remember that  5ˆ T 5 ˆ=    [3]. So the 
coupled equations for the chiral components of the con-
jugated field c  are 

  c = ,
c

R Lm 

 =
c c

L Rm 

i   
            (4) 

 i 
   .            (5) 

We observe that the chiral components of the fermionic 

field   under charge conjugation  c

L
  c, 

R


c

R
 c

 and 

the chiral components of the conjugated field  , 

 are related by  L L  = cc

R
  ,    =

c c
R L

 

,c

, 
showing how the charge-conjugation operation changes 
the chirality of fields. 

We define the Majorana condition by taking the fer-
mionic field as proportional to the conjugated field 

 

ie

                (6) 

where the proportional constant is a complex phase fac-
tor of the form    which plays an important role on 
applications of Majorana theory. The Equality (6) im-
plies that Majorana fermions are their own antiparticles. 
Now the chiral components of the Majorana field satisfy 

ˆ ˆ= .T T= ,L R R L                (7) 

So we can write Equations (1) and (2) in the form 

ˆ= ,T
L Lmi 

                  (8) 

*ˆ =T .L Li m
                  (9) 

If we apply the Majorana condition (7) into the Equa-
tions (4) and (5), we obtain Equations (8) and (9). Addi-
tionally we can observe that Equations (8) and (9) are 
related to themselves by means of a complex conjugation. 
In this way, we have gone from four coupled equations 
describing a fermion and its antifermion to two decoup-
led equations describing a left-handed chiral field L  
and a right-handed chiral field R . Due to the fact that 
the right-handed chiral field can be constructed from the 
left-handed chiral field [26], as it is shown in (7), now we 
have only an independent field given by L . For the last 
fact, we will be able to describe Majorana fermion by 
means of field L  which now has two components. To 
verify this sentence we rewrite Equation (8) as 

0 *ˆ = .L Li m
          (10)     

0ˆ ,

If we define 
               (11)     

and if we take L  , then Equation (10) can be written 
as 

*= ,i m
               (12) 

which is known as the Majorana equation. This equation 
in which a particle is indistinguishable from its antiparticle 
has two components because the matrixes    are pro-
jected on the chiral subspaces of two components. The 
matrixes   are called Majorana matrixes and these 
should not be confused with the Dirac matrixes written in 
Majorana representation. 

Now we are interested in knowing the kind of relations 
that Majorana matrixes   obey. So we first apply 
definition (11) into Equation (9) and we obtain  

* * *=i m
     * 0 ˆ= , with    

*i 
. Then we apply 


* 2 = 0m 

       into (12) and we have   

or its equivalent  * * 21
= 0

2
m   

          ,  

where we have used 
2

= 1
* * = 2

. Accordingly, Majorana 
matrixes should satisfy relations  g         
and then the field   is satisfying the Klein-Gordon 
equation given by  2 = 0m   

In this work we have taken a particular representation 
of matrixes 

. 

  which has permitted us to write the two- 
component Majorana equation in the form given by (12). 
Now we can consider a matrix  which satisfies the 
following relations [26] 

A

* 1 1= , = = = ,i i TA A A A A A   †

i

   (13) 

where   represents Pauli matrixes in a given repre-
sentation. We take 2= i    , where ,   σ

 2 2  = , ,
 

being  the unit matrix  and 1 2 3  σ

2

 
Pauli matrixes. Since   satisfies properties (13), we 
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2.have taken A

Copyright © 2012 SciRes.    

  So the Equation (12) can be written as Equation (14) can be obtained from the Lagrangian den- 
sity (20) using the Euler-Lagrange equation. Additionally, 
we can obtain the following energy-momentum tensor 
from (20), 

*
2 = 0.m i i

             (14) 

This equation is the well known two-component Ma-
jorana equation [27,28], which will be solved in next 
subsection. 

Canonical Quantization for Majorana Field 

With the purpose of studying the canonical quantization 
for the Majorana field we will obtain the free-particle 
solution of Equation (14). On the outset, we consider bi- 
spinors   which obey the following relations 

   = ,h hh p p

 = ,h hhp p

σ p

p
          (15) 

  *2i          (16) 

where these bi-spinors correspond to helicity eigenstates. 
If we take the momentum in spherical coordinates 

= sin cos ,si n sin ,cos  p p   , then the helicity 
operator has the form 

cos

sin ie 

sin
= .

cos

ie  
 

 
 

 

σ p

p
       (17) 

We choose the following representation for these bi- 
spinors 

   
cos

= ,
sin

2 2=

sin cos
2 2

i

i

e

e





 

 
 



 

      
   
      
   

p p .   (18) 

We can prove that the following solution satisfies the 
two-component Majorana Equation (14) 

      ,h ipx=
2 2

h h ipxE h E h
x e h

E E
  

p

p
p e p

p

= Et  p x

 

(19) 

with . We observe that Majorana 
field can be written as superposition of positive and 
negative energy states. 

px p x

The Lagrangian density which describes a free two- 
component Majorana field is given by 

 *
2 2i i=

2
T

M

m
i 


     †      †    (20) 

where the two-component Majorana field   and its 
conjugated field †  behave as Grassmann variables. It 
is very easy to prove that the two-component Majorana 

 † † † *
2 2=

2
Tm

T i g i i i
                     .   

Following the standard canonical quantization proce-
dure, we now consider the Majorana field   and its 
conjugated field †

   

 as operators which satisfy the usual 
canonical anticonmutation relations given by 

      † †ˆ ˆ ˆ ˆ, , , = , , , = 0t ' t t ' t      r r r r

   

, 

   † 3ˆ ˆ, , , =t ' t '      r r r r

, = 1,2

, 



   ˆ ˆ ˆ, = , , ,ti t ' t H     r r

. Using the Heisenberg equation for the where 
Majorana field  we can obtain 

its corresponding Majorana Equation (14). By means of 
the energy-momentum tensor it is possible to prove that 
the Hamiltonian operator can be written as 

 3 † † *
2 2

ˆ ˆ ˆ ˆ ˆ ˆˆ =
2

Tm
H x i i i

           
  σ . 

The expansion in a Fourier series for the Majorana 
field operator is [24-26] (see Equation (21)). 
where we have used the free-particle solution (19) and 
operators  ˆ ,a hp , †ˆ ,a hp  which satisfy the anti-
conmutation relations 

         † †ˆ ˆ ˆ ˆ, , , = , , , = 0a h a ' h a h a ' h p p p p , 

      † 3
,ˆ ˆ, , , = h ha h a ' h '  p p p p . 

 Then we can identify ˆ ,a hp  as the annihilation op-
erator and  †ˆ ,a hp

p
 as the creation operator of a Majo-

rana fermion with momentum  and helicity h. 

3. Masses for Majorana Neutrino Fields 

The most accepted way to generate neutrino masses is 
through the seesaw mechanism. In this section we con-
sider a type I seesaw scenario which leads to get light 
left-handed neutrinos and heavy right-handed neutrinos. 
For the case of two neutrino generations, a Dirac-Majo- 
rana mass term is given by [29] 

1 ˆ= . .,
2

M D M D
Y L LN M N H c

   

. .

       (22) 

H c  represents the hermitic conjugate term, where 

LN

 
 

 is the vector of flavor neutrino fields written as 
 

   
 

   
3

†
3 2 1 2

= 1

dˆ ˆ ˆ= , , ,
2π 2

h ip x h ip x

h

p
x E h a h e h E h a h e

E
     



      p p p p p p      (21) 



Y. F. PÉREZ, C. J. QUIMBAY 807

 

= = ,
L L

cT
RR

ˆLN
 



   
       

           (23) 

where L  represents a doublet of left-handed neutrino 
fields active under the weak interaction and c

R  repre-
sents a doublet of right-handed Majorana neutrino fields 
non active (sterile) under the weak interaction. These 
doublets are given by 

= ;L

L

e

L





 
  
 

= .R

R

c
ec

R c



 



 
 
 
 

           (24) 

In the Dirac-Majorana term (22), M D 4 4M
  is a   

non-diagonal matrix of the form 

 = ,
T'

L D
'

D R

M M

M M

 
  
 

M DM
           (25) 

where LM , RM  and DM  are  matrixes. The 
vector of neutrino fields with definite masses 

2 2
Ln  can be 

written by mean of a unitary matrix LU  as follows 

= ,L L LN U n                  (26) 

where Ln

1

1 2

32

4

= =
n

n

 has the form 

.Ln






 
          
 

              (27) 

The unitary matrix LU  is chosen in such a way that 
the non-diagonal matrix M DM 

= ,M D
LU M

  can be diagonalized 
through the similarity transformation 

  1

LU M
 


          (28) 

where M  is a diagonal matrix which is defined by 

a abab  =M m  , where . The masses of 
the neutrino fields of definite masses 

, = 1,2,3,4a b

a  are , with 
. 

am
= 1, 2,3,

   '
Rkj kj

M M

4a
The seesaw scenario is established imposing the fol-

lowing conditions into the matrix (25): 

= 0'
LM , , thus the matrix D

M DM
  is 

diagonalized as 

  1 M D
L LU M U 



  0
= ,

0
l

h

M

M

 
 
 

      (29) 

where lM  is the light neutrino mass matrix and hM  is 
the heavy neutrino mass matrix. If the unitary matrix 

LU  is expanding considering terms until of the order 

  1'
R DM



3

2 4

0 0
=

0 0h

m m

m m

 
 
 

a

M , the light and heavy neutrino mass matrixes 

can be written as 

1= ;lM M
 
 
 

.     (30) 

The Dirac-Majorana mass term (22) can be written in 
terms of the neutrino fields of definite masses   as 

1 1 2 2

1 1ˆ ˆ= . .,
2 2

M D
Y l hn M n n M n H c       (31) 

where the matrixes lM  and hM  are given by (30) and 
the doublets 1L

n 2 and 
L

n

1 3
1 2

2 4

= ; = .n n

 are written as 

 
 
   
   
   

1

           (32) 

The neutrino fields of definite masses   and 2  
have associate respectively the light masses 

 2
1 11e Rm m f v  2

2 22 and Rm m f v

3

 

and the neutrino fields of definite masses   and 4  
have associate respectively the heavy masses 3 33= Rm f  
and 4 44

v
= Rm f , where R , ab  are Yukawa cou-

plings,  is the electron mass and 
v v  f

em m  is the muon 
mass. 

As it will be shown in the next section, starting from 
the Dirac-Majorana mass term 

1 1ˆ ˆ= . .,
2 2

M D c c
Y L L L R R RM M H c          (33) 

c
Rwhere L  and   are the flavor doublets of non-defi- 

nite masses given by (24), while LM  and RM  are 2 2  
non-diagonal matrixes, it will be possible to obtain the 
Dirac-Majorana mass term (31) after the diagonalization 
of the matrixes LM  and RM . 

4. Mass and Flavor Neutrino States 

In the next we suppose that the Majorana fields eL
  and 

L
  describe the active light left-handed neutrinos that 
are produced and detected in the laboratory, while the 
Majorana fields e

c

R

c

R
  and   describe the sterile 

heavy right-handed neutrinos which there exist in a type I 
seesaw scenario. 

In the Section (2) we have presented a lagrangian den-
sity (20) which describes a free Majorana fermion. This 
lagrangian density can be extended to describe a system 
of two flavor left-handed neutrinos and two flavor right- 
handed neutrinos with non-definite masses. Using the 
Dirac-Majorana mass term given by (33), the lagrangian 
density describing this system is given by 

2

2

1
=

2
1

      . .
2

c c
L R R L L L

c c
R R R

i i M i

M i H c

 
 L        

  

   

 


 (34) 

where the non-diagonal mass matrixes LM  and RM  
are written as 

 

 

1 21

1 2 2

= ,L L L

LL L

ii

e e

L i i

e

m e m e
M

m e m e


 
  

  
  





 
 
  
 

    (35) 
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 3 4

4

= ,
R

R R

i

i

e

m e



 

 





 
 
  
 

We observe that the form of atrixes 

2
2 2= 4 ,

e eL LL L
LR m m m

   
       (43) 

and thus the neutrino fields with definite masses 1

 

3

3 4

R R

R

i

e e

R i

e

m e m
M

m e


 

 
 


    (36) 

 and 
 the m LM  and 

RM  is the same. In the next, we restrict t
handed Majorana neutrinos, but ults are 
ext . F
th

will 
 the res

o the left- 
directly 

ended to the right-handed Majorana neutrinos rom 
e Euler-Lagrange equations we obtain that the coupled 

equation of motion for the flavor left-handed neutrino 
fields 

Le  and 
L

  are 

 1 21 * *
2 2= ,

L L LL L L

ii
e ee e

i im e im e  
    

         (37) 

 * *2
2= 1 2

2 ,
L L LL L

ee
im e     

i ii im e          (38) 

respectively. We observe that flavor neutrino fiel
coupled by means of the eter 

  

ds are 
param

L Le
m 

. With the 
purpose of decoupling t ions of motion he equat for the 
flavor left-handed neutrino fields, now we consider the 
most general unitary matrix LU  given by 

 

 

1
1

2
2

2 2

2
2 2

1
= ,

1

L

L

i
i

L
L i

i
L

L

e e
U

e e


 


 

  

  

 
 
 

    

     (39) 



wher phas 1ie the es e   and 2ie   appear as a conse-
que he M  condition (7). The de
neutr eld d 1n  given by (32) is related to the 

let 

nce of t
ino fi

ajorana
oublet 

eu

finite-mass 

flavor left-handed n no doubtri L  given by (24) by
mean of 

1= .L LU n

 

              (40) 

Without a lost of generality, we ca change the phases 
of the fl

n 
avor left-handed neutrino fields by means of 

1exp
2L Le e

i
      and 

 
2xpe

2L L

i
 


    . Thus 

 

there is just a phase exp Li

2

    that can not be elimi- 


U  can


 be rewritten as nated. So the matrix 

21
Li

e


 


2
21

1
L

L i

L
Le


    

= .LU



 


        (41) 

Now the diagonalization of the mass matrix (35) given 
by 

 1 2diag , ,m m        (42) †= =
LD L L LM U M U

is valid for 

 
2

L= ,eL

e LL

L

L


m m R

m



 

 
 

with 

2  have respectively the following masses 

 1

1
= ,

2 L L
Le

m m m R 
           (44) 

 2

1
= .

2
L

L L

i
Le

m m m R e 
 

      45)  (

We observe that in the expression for 
factor 

2m  appears the 
 exp i L  which suggest that this mass could be  

complex. However the diagonalization given 
not completely right because 

by (42) is 
M L  is a symme

So e o
tric matrix. 

 from (42) the diagonalization should b f the form 
2 = ,

LD L L L LM U M M U† †           (46) 

where we have considered tha is matrix is hermitic, i.e. 
2

t th

L L LM M M † . So the values 1m  and 2m  are the quad-
ratic roots of the eigenvalues of 2

LM . This last result 
implies that these eigenvalues can be multiplied by a 
complex phase. 

The expression (40) gives the mixing of the flavor 
neutrino fields in terms of the neutrino fields with defi-
nite masses. The neutrino fields with definite masses 1  
and 2  obey Majorana field equations of the form 

*
1 1 2 1= ,i im

                (47) 

*
2 2 2 2= .ii im e 

             (4 ) 

with the purpose of eliminating the phase 

8

L  from the 
last equation of motion, we can ma

phase transformation 

ke the following 

2 2exp
2

Li
 . Now the  

   
 



unitary matrix can be written as 

2 1 L

L
i

LL
e  

 

 exp

1 Lie  
= .

1
LU

  
     (49) 

iWe observe that the phase L  was elimi-
nated from the last equation of motion but not from the 
unitarian matrix lU . So it proves that thi
physical and should be involved in some processes. This 
ph e in the ca

s phase is 

ase could play an important rol se of doublet 
beta decay process. 

Following a similar procedure for the right-handed 
Majorana neutrinos, we find that the definite-mass neu-
trino field doublet 2n  given by (32) is related to the 
flavor right-handed neutrino doublet c

R  given by (24) 
by mean of 

2= ,c
R RU n                 (50) 

where the unitary ma ix tr RU  is given by 
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2

1 i
R e  

= .
11

R

RR i

R

U
e  

   
       (51) 

handed neutrino oscillations in vacuum from a cinemati-
cal point of view. For this reason we will not consider in 
detail the weak interaction processes involved in the 
creation and detection of left-handed neutrinos. However, 
these processes are manifested when boundary condi-
tions are imposed in the probability amplitude of transi-
tion between two neutrino flavor states. We suppose that 
a neutrino with a specific flavor is created in a point of 
space-time 

R

where R  is given by 

2
2

                  = ,
2

     4 .

eR R

c c
eR R

c c c
e e

c c

2with   = c
R R R R

R m

m m





 

 

  






 

Next we consider the canonical quantization of the 
neutrino fields with definite mass by st
conmutation relations given by 

 † 3= 'ab  r r , 

Rm m R
 

 

       (52) 

 = ,x t r

 = ,

0 0 0  as a result of a certain weak 
interaction process. We will determine the probability 
amplitude to find out the neutrino with another flavor in 
a different point of space-time 

RR m


 


x t r

t

. We assume 
that neutrinos are created under the same production 
process with different values of energy and momentum. 
These dynamical quantities are related among themselves 
under the specific production process. 

ating the anti-

    ˆ ˆ, , ',a bh h  r r

    ˆ ˆ, , ', = 0a bh h  r r  and     † †ˆ ˆ, , ', = 0a bh h  r r , 

where , = 1, 2,3,4a b  represent neutrino mass states. 
Each one of the definite-mass 

The initial left-handed neutrino flavor state in the pro-
duction time ( 0 ) corresponds to the following superpo-
sition of neutrino mass states neutrino field operators 

  ˆa x  o
pand

0 1 2=L t A B .          (56) beys a Majorana equation. It is pos e to ex-
 each one of these field operators on a plane-wave 

basis set as was shown in ee Equation (53)). 

sibl

 (21) (s
where 

22 2=a aE mp  is the energy of the neutrino field 
with definite mass which is tagged by = 1, 2,3,4a . 

T  flavor neutrino field operators tagged by ˆhe   are 
defined as superposition of the definite-mass neutrino 
field operators ˆa  given by (53) through the expression 

 ˆ  ˆ= ,a a
a

x U x               (54) 

where U is the unitarian matrix defined by (49) for 
left-handed neutrinos and by (51) for right-handed neu-
trinos, meanwhile neutrino flavor states   are de-
fined in terms of the neutrin stao mass tes a  as 

*= .a a
a

 U               (55) 

tor f
 co e de-

tected in interaction processes, flavo
tionary. So their temporal evolution gives the probability 
of

Thus we have found a relation between neutrino flavor 
states and neutrino mass states using opera ields. As 
flavor states are physical states since they uld b

r states are non-sta- 

 transition between them. Therefore, this probability 
describes Majorana neutrino oscillations studied as fol-
lows. 

5. Left-Handed Neutrino Oscillations 

Now we will focuss our interest in the description of left-  

where 
2 2

= 1A B

 = ,p E p = 1,2.a

. Each of these neutrino mass states 
has associated a specific four-momentum. We assume 
that in the production point it was created a left-handed 
electronic neutrino with each massive field having a 
four-momentum given by a a a , with  
The initial left-handed electronic neutrino state satisfying 
the condition 

2 2
= 1A B

 

 is written as 

0 1 22 2
= 1

= ,
1 1

Li
L

L
h

L L

e
t



 







   
   (57) 

where the sum over helicities is taken over the neutrino 
mass states. This sum over helicities must be considered 
to describe appropriately the initial left-handed neutrino 
flavor state because the helicity is a property which is not 
directly measured in the experiments. The manner as the 
electronic left-handed neutrino state has been built in the 
production point is in agreement with the experimental 
fact that left-handed neutrinos are ultra-relativistic. 

The neutrino mass states involve in the superposition 
given by (57) are obtained from the vacuum state as 

 0 †ˆ= , 0aip x
a a ae a h p , 

 0aip xexp . where we have included thephase factor 
This phase factor gives us information about the fourspace 
time where the left-handed neutrino was created. The 
probability amplitudes for transitions to electronic and 
muonic left-handed neutrinos are respectively given by 

 

 
   

       †, , ,h ip x h ip x
a a ah e h E h a h e       p p p p p         (53) 

3

1 23 2

d
ˆ ˆ ˆ=

2π 2
a a

p
x E h a

E
   p

= 1ha 
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     
 

   1 2
2 ,p Xh he 

  
 
  

p p   (58) 
2

1 21 2
0 13 2 2 2

1 2

1 1
ˆ0 =

2 21 12πL L

ip X iL
e e L

h L L

E h E h
X x t e

E E
     

 
   

p p

     
 

   2  (59) 1 21 21 2
0 13 2 2 2

1 2

1
ˆ0 =

2 21 12πL L

ip X ip Xh hL L
L

h L L

E h E h
X x t e e

E E     
       

     


p p
p p

 
where we have used some expansions over the Majorana 
fields a n 0

 

 

nd we have take X x x   which corresponds 
to a four-vect  the distance and time of 
neutrino propagation. The probability densities 

 

or associated to

 
 

2
=

LL X X    


respectively are 

 

   

 
  

 
 

  

3 22

   

1 1
=

2π 1

eL
X

 

2

1 21 2 1 2
1 2

2

1 21 2 1 2
1 2

1 22

2
         

2

         ,sin
2

L

L

h

L

h

E h E h
E E

E h E h
E E

p p
X

 
 




  

    
 





p p

p p

(60) 4   1 L

   

 

   

 
  

 
 

  

3 22

2
2

1 2

1 2

2

1 2

1 2

1 22

    

1 1
=

2π 1

   2

2
        

2

    ,sin
2

L

L

L
L

h

L

h

X

E h
E E

E h
E E

p p
X




 

    



 

    
 





where we have taken into ac

1 21 2

1 21 2

E h

E h





p p

p p

  (61) 

count that spinors  1
h p  

and  2
h p  are the same beca 1p  and 2p  

are co-linear. The probability hat 
we have found present a ser . If we fix 

= 0X  into (60) and (61) we

use vectors 
densities (60) and (61) t

s problem
 that 

iou
 find

 

  

 
   

3

2 2

   = 0X


  

2
22

2
4

11 2 1
1 2

1 1
=

2π 1

1 ,

eL

L

L
L

h

E h E h
E E

 

         p p

 (6 ) 

 
  

3 22

2
2

1 21 2 1 2
1 2

    = 0

1 1
=

2π 1

2 ,

L

L

L
L

h

X

E h E h
E E




 

       
  

 p p

 (63) 

and we observe that the probability density (63) c
different from zero, i.e. it can exist a muonic neutri
the production point which disagrees with the initial con-
ditions. The origin of this problem is related to the weak 
state definition (55) that we have used before. As it was 
previously mentioned into the introduction, the flavor 
definition (55) is not complectly consistent and it is nec-
essary to define appropriate flavor states [24]. 

Ultra-Relativistic Limit: Left-Handed Neutrino 
Oscillations 

This problem can be solved by taking an approximation 
in the probability densities (60) and (61) based on the 

an be 
no in 

fact that left-handed neutrinos are ultra-relativistic parti-
cles because their masses are very small. Here we con-
sider energy and momentum different for every mass 
state. In general we can write 

2 2 2 4= ,a aa
E m m  p          (64) 

 2 2 2 4= 1 ,a a aE E m m          (65) 

where the parameters   and   are determined in the 
 

n 
production process and E is the energy for the case in
which neutrinos were massless. For instance, for the pio
decay process we have 

2
π

2
π

= 1 ,
2

mm
E

m
 

  
 

          (66) 

2
1 1

= 1 , = ,
2

m

m
 

 
 


     (67) 

2 2
π π4m


where m  is the muon mass and πm  is
Because for the ultra-relativistic limit am 
approximate the expressions (64) and (65) to 

 the pion mass. 
0 , we can 

2

,
2

a
a

m
E

E
 p            (68) 
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 
2

1 .a
a

m
E E               (69) 

2E

Now it is possible to prove that the ri
relation 

ght side of the 

 
    2

1 2

1 2
= 11 2

1
1 ,

2 h

m m
E h E h

E E 


    p p  

(70) 

app

1 21 2 28E

can be roximated to the unit because  2

12 0m E  , 
where 12 1 2=m m m  . On the other han neutrino 
propagation time T is not measured in neutrino e

d, 
xperi-

,17]. In this kin nts is measured 
ce L between th

tector. By this reason, it can o find a ana-
ion that establ

opag

ments [3,9
the distan

lytical express
and the pr

d of experime
e neutrino s

 be possible t
ishes a re

e 

ource and the de-

lation between T 
ation distanc =L L . In our approach 

using plane waves, for the ultra-relativistic limit we can 
write 

.TL                    (71) 

This relation implies that the propagation distance and
the propagation time for neutrinos are approximately 
equal because in the ultra-relativistic limit a neu

its velocity o

kv  is app

mit he

 

trino 
mass state has a mass too small and f 
propagation roximately equal to speed velocity 

= 1c , i.e. 1kv  . However, a most precise relation be-
tween L and T must be described by an expression that 
should include explicitly the velocities of the two neu-
trino mass states involved in such a way that this expres-
sion for the ultra-relativistic limit should lead to (71). 

So for the ultra-relativistic li t  probability densi-
ties (60) and (61) can be written as 

 
 

2 2

3

21
= 1

1eL

LL L
     

 
122

2
,sin

4

m

E

 
     (72) 

2π L     

 
 

2 2
122

3 2

21
= ,sin

412πL

L

L

m
L L

E


    
   
    

      (73) 

where we ha  used L T  and 2 2 2
12 1 2m m m   . Un-

der this approximation it is clear that these probability 
density does not depend from the production process due 
to that there is no dependence from 

ve

 . Thus these 
probability densities satisfy the boundary conditions that 
we have imposed. 

In the next we will prove that the probability densities 
(72) and (73) have the form of the standard probability 
densities for neutrino oscillations. In the context of the 

eutrin lations (assumistandard formalism of n o oscil ng CP 
conservation), for the two generation case considering 
here, the representation of the unitary matrix LU  that 
appears into the expression (40) is given b  [30] 

cos sin
= L L

LU
  

y

,             (74) 
sin cosL L  

where L  is the mixing angle. If we compare the uni-
tary matrix given by (49) with the one given by (74), we 

 2cos = 1observe that L L L     and then it is very 

easy to obtain that 

2

2
sin 2 = .

1
L

L
L



 

            (75) 

Substituting (75) into (72) and (73), we obtain the ex-
pressions 

 
 

 
2
122 2

3

1
= 1 2 ,sin sin

42πeL L

m
L L

E 
     
   

 (76) 

 
 

 
2
122 2

3

1
= 2 ,sin sin

42πL L

m
L L

E
 

 
 
 

     (77) 

which are the standard probability densities for left- 
handed neutrino oscillations in the two flavor case [30]. 

6. Right-Handed Neutrino Oscillations 

The initial right-handed neutrino flavor state in the pro-
duction time ( 0t ) corresponds to the following superpo-
sition of neutrino mass states 

 0 3 4= .c t C D          (78) 

where 
2 2

= 1C D . Each of these neutrino mass states 
has associated a specific four-momentum. We assume 
that in the production point it was created a right-handed 
electronic neutrino with each massive field having a 
four-momentum given by  = ,a a ap E p , with = 3,4.a  
The initial right-handed electronic neutrino state satisfy-
ing the condition 

2 2
= 1C D  is written as 

 0 3 42 2
= 1

= ,
1 1

Ri
c R
R

h
R R

e
t



 





 

   
  (79) 

where the sum over helicities is taken over the neutrino 
mass states. 

The probability amplitudes for transitions to electronic 
and muonic right-handed neutrinos are respectively given 
by 

 

     

 
 

 3 4

0

2
43 4

3 43 2 2
3 4

ˆ0

1 1
           = ,

1 12π

R

c c c
e e RR

ip X ip Xh h

h R R

X x t

E h
e e

  

  



   
     


p p

p p
   (80) 3

2 2 2
R

E h

E E



Copyright © 2012 SciRes.                                                                                 JMP 



Y. F. PÉREZ, C. J. QUIMBAY 812 

     

 
   3 44 4

3 42
.

1
ip X ip Xh hR

E h
e e  

  
 

p
p p

   (81) 

0

3

3 2 2

ˆ0

1
           =

12π

R

c c c
RR

R

h R R

X x t

E h

   

 
  

 3

3 42 2E E 

p

The probability  densities  
2c

R X X  respectively =
R   are 

 
     

  

 


  

2

3 41 2 3 4
3 4

3 42
3 42 3 4

,sin
2

R

h

h

E h E h
E

p p
E h E h X


 

 

4
3 2

1 1
=  1c

eR
RX




   
21 R  

2

1

4

2π

2
                                                R

E



32 E E

    
 





p p

p p

   (82) 

 
     

  

 
 

  

2

3 41 2 3 42
3 4

2

3 42
1 2

3 4

2π 1

                                            
2

R

R

h
R

E h E h
E E

p p

E E




 

  

 

2
3 2

1 1
= 2c RX




  

3 43 4
,sin

2h

E h X
2 R

E h
    

 

 p p

where we have taken into accoun nor

 p p

    (83) 

t that spi s  3
h p  

p  and and  4
h p  are the same 3

 we have found present a serious problem. If we fix X 
= 0 into (82) and (83) we find that 

 

 because vectors 

4p are co-linear. The probability densities (82) and (83) 

 

that

   
  

2
4

3 43 2 1 2 3 42
3 4

= 0 = 1 ,
2π 1

c
eR

R
R

h
R

X E h E h
E E

1 1
       

    
 p p          (84) 

 
     

  
2

2
3 43 2 1 22

3 4

1 1
= 0 = 2

2π 1
R

R
R

h
R

X E
E E


3 4

,h E h
     

    
p p        

and we 
differe

Oscillations 

Th  by taking an approx
in the probability densities (82) and (83) based on the 
fact that right-handed neutrinos are non-relativistic parti-
cles because their masses are very large. By this reason, 
we take the non-relativistic approximation, i.e. .a am p  
So we have 

    (85) 

observe that the probability density (85) can be 
nt from zero. 

Non-Relativistic Limit: Right-Handed Neutrino 

is problem can be solved imation 

2

.
2

a
a a

a

E m
m

 
p

              (86) 

Therefore, we suppose that heav anded Majo-
rana neutrinos obey simply th ic dispersion 
relatio  the following approximation 

y right-h
e relativist

n. So we obtain

 
  

   

3 41 2 3 4
= 13 4

1
   

2 h

E h E h
E E 

  p p

 

velocity of the neutrino is 

22 23 4
3 4 3 4

1
= 1 ,

2 8

v v
v v v v    

where the non-relativistic 

0i
i

i

v
m

 
p

, meanwhile the phase is approximated to 

   3 4 3 4 34 ,E E T p p L m T          (88) 

34 3 4m m mwith    . So the probability densities of 
transition are given by 

 
 

2

342
3 2

21
= 1 ,sin

212π
c
eR

R

R

m
T T




       


        
(86) 

 
 

2

342
3 2

21
= ,sin

212π
R

c
R R

m
T T




    
       

    (87) 

where R  is given by (52). The last probability densi-
ties satisfy the normalization and boundary conditions. 
Unlikely to the case of left-handed neutrino o
described by (60) and (61), the argument of the periodic 
function for the right-handed neutrino oscillations de-
pends on the linear mass difference m  and the propa-
gat

scillations 

34

ion time T. The description of heavy right-handed 
neutrino oscillations that we present here could be of 
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interest in cosmological problems [31]. As it has been 
proposed in the literature, heavy-heavy neutrino oscilla-
tions could be responsible for the baryon asymmetry of 
the universe through a leptogenesis mechanism [32-34]. 
But it should be noted that if the propagation of heavy 
right-handed neutrinos is considered as superpositions of 
mass-eigenstate wave packets [25], then the oscillations 
do not take place because the coherence is not preserved: 

nsidering 
 states as plane waves with specific mo-

menta. In the context of a type I seesa
leads to get light left-handed an
Majorana neutrinos, the main contribution of this work 
ha

eavy 
right-handed neutrinos (non-relativistic limit). In this 
work we have performed the canonical quantization pro-
cedure for Majorana neutrino fields of definite asses 
and then we have written the neutrino flavor states as 
superpositions of mass states using quantum field opera-

transition bet or 
the light an b-
lished normalization and boundary conditions for the 
probability density. After the ultra-relativistic

in the probabili

oscillations. For the right-handed 
neutrino case, the expressions describing heavy neutrino 
oscillations in the non-relativistic limit were diff
respect to the ones of the standard neutrino oscillations. 
However, the right-handed neutrino oscillations are phe-
nomenologically restricted as is shown when t
gation of heavy neutrinos is considered as superp

gens

neutrino oscillations. 
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