

Capability of the Free-Ion Eigenstates for Crystal-Field Splitting

Jacek Mulak¹, Maciej Mulak^{2*}

¹Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw, Poland ²Institute of Physics, Wroclaw University of Technology, Wroclaw, Poland E-mail: ^{*}Maciej.Mulak@pwr.wroc.pl Received June 4, 2011; revised July 15, 2011; accepted July 29, 2011

Abstract

Any electronic eigenstate $|\Psi\rangle$ of the paramagnetic ion open-shell is characterized by the three independent multipole asphericities $A_k = \langle \Psi || C^{(k)} || \Psi \rangle$ for k = 2, 4 and 6 related to the second moments of the relevant crystal-field splittings by $\sigma_k^2 = [1/(2J+1)]A_k^2S_k^2$, where $S_k^2 = [1/(2k+1)]\sum_q |B_{kq}|^2$. The A_k as the reduced matrix elements can serve as a reliable measure of the state $|\Psi\rangle$ capability for the splitting produced by the *k*-rank component of the crystal-field Hamiltonian. These multipolar characteristics allow one to verify any fitted crystal-field parameter set by comparing the calculated second moments and the experimental ones of the relevant crystal-field splittings. We present the multipole characteristics A_k for the extensive set of eigenstates from the lower parts of energy spectra of the tripositive $4 f^N$ ions applying in the calculations the improved eigenfunctions of the free lanthanide ions obtained based on the M. Reid *f*-shell programs. Such amended asphericities are compared with those achieved for the simplified Russell-Saunders states. Next, they are classified with respect to the absolute or relative weight of A_k in the multipole structure of the considered states. For the majority of the analyzed states (about 80%) the A_k variation is of order of only a few percent. Some essential changes are found primarily for several states of Tm³⁺, Er³⁺, Nd³⁺, and Pr³⁺ ions. The detailed mechanisms of such A_k changes are unveiled. Particularly, certain noteworthy cancelations as well as enhancements of their magnitudes are explained.

Keywords: Crystal-Field Theory, Crystal-Field Splitting, Rare-Earth Free-Ion Eigenstates, Rare-Earth Ions

1. Introduction

The spherical tensor operators $C_q^{(k)}$ in the one-electron crystal-field (CF) Hamiltonian written as

$$\boldsymbol{H}_{CF} = \sum_{i} \sum_{k,q} \boldsymbol{B}_{kq} \boldsymbol{C}_{q}^{(k)} \left(\boldsymbol{\mathcal{G}}_{i}, \boldsymbol{\varphi}_{i}\right)$$

[1], or shortly as $H_{CF} = \sum_{k,q} B_{kq} C_q^{(k)}$, act on the angle coordinates \mathcal{G}_i , φ_i of individual unpaired electrons (*i*) of the central ion in its initial eigenstates $|\Psi\rangle$ that are superpositions of the Russell-Saunders (RS) states $|l^N SLJM_J\rangle$. The B_{kq} stand for the crystal-field parameters (CFP) for the above specified operators. For

complex many-electron states the one-electron character of the $C_q^{(k)}$ operators manifests itself by the 6-*j* symbols in their developed matrix elements [1-5] and the doubly reduced matrix elements of the unit tensor operator $U^{(k)}$ [1-5] (Section 2, Equation (2)). They both reveal a decomposition of the coupled many-electron state into its one-electron spinorbitals. Thus, any matrix element $\langle \Psi | C_q^{(k)} | \Psi \rangle$ is concerned exclusively with the intrinsic properties of the central ion electronic eigenstate $| \Psi \rangle$. The reduced (double bar) matrix elements is defined by [1-5]

$$\left\langle l^{N}SLJ \left\| C^{(k)} \right\| l^{N}SL'J' \right\rangle = \left(-1\right)^{J-M_{J}} \begin{pmatrix} J & k & J' \\ -M_{J} & q & M_{J'} \end{pmatrix}^{-1} \left\langle l^{N}SLJM_{J} \left| C_{q}^{(k)} \right| l^{N}SL'J'M_{J'} \right\rangle,$$
(1)

Copyright © 2011 SciRes.

where the factor preceding the matrix element is the reciprocal of the 3-*j* symbol [1-5]. The reduced matrix element is independent of the reference frame orientation and hence also of M_{I} . The diagonal reduced elements $\langle \Psi || C^{(k)} || \Psi \rangle$ represent the 2^k-pole asphericities A_k (for k = 2, 4 and 6) of the considered electronic state $|\Psi \rangle$ [6] and these dimensionless values can serve as a reliable measure of the state capability for CF splitting by the k-rank CF Hamiltonian (Section 3). The electron density distribution of the f-electron states is fully described by the first three multipoles with even k = 2, 4 and 6. The asphericities A_k for 105 lower lying electron eigenstates of all the trivalent lanthanide ions are compiled in **Table 1** (Section 2). They have been calculated for the corrected eigenstates including J-mixing effect [7] and the outstanding set of the free-ion data [8] and subsequently compared with those corresponding to the one-component RS states [6]. The A_{i} magnitudes and their possible variations due to the J-mixing of the RS states are thoroughly discussed. An inseparable entanglement of the asphericities A_k and the k-components of the CF strength S_k [9-12] seen in the expression for the second moment of the splitting σ_k [10,13,14] (Section 3) justifies the A_k as a reliable capability of the relevant state for the 2^k -pole partial CF splitting. By the fundamental law of additivity $\sigma^2 = \sum_k \sigma_k^2$ [10,13, 14], resulting from the orthogonality of the 3-*j* symbols [3,4] (Equation (1)), the global σ^2 can be expressed by means of the A_k and S_k components. Tables 2-6 show the classification of the examined eigenstates with respect to their multipole structure (Section 4). The states distinguished by the strongest and the weakest A = $(A_2^2 + A_4^2 + A_6^2)^{1/2}$, by the strongest and the weakest $|A_k|$, and finally those with the largest and the smallest $|A_k|/A$ for k = 2,4 and 6 have been selected respectively. The relation between the defined capability of electronic state for CF splitting and correct parametrization of the involved CF Hamiltonian is explained by way of example for Tm³⁺:Y₂O₃ in Section 5. In turn, Section 6 gives a few instructive examples unveiling the mechanisms of the A_k changes induced by the *J*-mixing of the RS states. A special attention has been paid to the strong enhancements and cancelations among the asphericities A_k .

2. Multipole Characteristics of the 4 f^N Tripositive Free-Ion Eigenstates including J-Mixing Effects

The k-rank multipole moment of an electronic eigenstate $|\Psi\rangle$ which is a superposition of the RS states with various L and S but the same J can be evaluated based on the reduced matrix element $\langle \Psi | | C^{(k)} | | \Psi \rangle$ of the respective k-rank spherical tensor operator. According to the Wigner-Eckart theorem [5,15] such quantity is independent of the reference frame orientation and adequately expresses the 2^k -pole type asphericity of the given eigenstate $|\Psi\rangle$. For the spherical electronic density distribution the matrix element identically vanishes for k = 2, 4 and 6. It plays also a crucial role as a scaling factor in the CF Hamiltonian interaction matrices and hence participates in both the calculational and fitting CFP procedures. In the case of *J*-mixing approach, *i.e.* for fixed J, the reduced matrix element can be expressed by the sum of all diagonal and off-diagonal matrix elements occurring in the $\langle \Psi | | C^{(k)} | | \Psi \rangle$ expansion [1,5,16]

$$\left\langle l^{N}SLJ \left\| C^{(k)} \right\| l^{N}SL'J \right\rangle = (-1)^{S+L'+J+k} (2J+1) \left\{ \begin{matrix} J & J & k \\ L' & L & S \end{matrix} \right\} \left\langle l^{N}SL \left\| U^{(k)} \right\| l^{N}SL' \right\rangle \left\langle l \right\| C^{(k)} \left\| l \right\rangle, \tag{2}$$

where the first factor on the right side, defining the sign of the reduced element, depends on the parity of the sum of four numbers, which are in principle autonomous, what leads to the sign randomness. The second factor stands for the degeneracy of the state, the third one is the 6-*j* symbol revealing what part of the final $|SLJ\rangle$ function belongs to the orbital part $|SL'\rangle$ [17]. Finally, the double-bar matrix element of the unit tensor operator $U^{(k)}$ depends on coupling of the *N* one-electron angular momenta 1 of the l^N configuration into the resultant *L* [18]. The one-electron reduced matrix element $\langle l || C^{(k)} || l \rangle$ for l = 3 is equal to -1.3663, 1.1282, and -1.2774 for k = 2, 4 and 6, respectively.

The M_j quantum numbers and the q index do not appear in Equation (2) (compare with Equation (1)). It clearly shows that the reduced matrix elements and in

consequence the A_k are independent of the reference frame choice. Any element of the $\langle \Psi || C^{(k)} || \Psi \rangle$ expansion includes additionally the product of amplitudes of the two involved components in the $|\Psi \rangle$ superposition together with their signs. The reduced matrix element (Equation (2)) differs from zero only for the same *S* quantum number (in the bra and ket) since $C^{(k)}$ act exclusively on the configurational coordinates of the electrons, and for the states of the same parity *L* and *L'*. These requirements reduce the number of the non-zero off-diagonal matrix elements between various components of the *J*-mixed eigenfunctions.

Such multipole characteristics have been evaluated earlier for the pure (one-component) RS open-shell electronic eigenstates [6]. In **Table 1** we compare them with the corrected characteristics for the 4 f^{N} tripositive ion

Table 1. Multipole character of the J-mixed electron eigenstates $|\Psi\rangle$ in RE free ions. The eigenfunctions and eigenvalues are calculated using M. Reid f-shell programs [7] and free-ion data reported by Carnall *et al.* [8]. The electron eigenstate data cover respectively: the upper component (Up.Comp.), its amplitude (Ampl.), consecutive no. in the spectrum [7] (no.), energy $[cm^{-1}]$ (E), number of components of amplitude >0.01 (n). The multipolar asphericities for the upper component of the state are given in the parentheses.

RE	ion		Electron eigenstate data				Multipolar asphericity			
Ion	conf.	Up.Comp.	Ampl.	no.	Е	n	$A_{2}(\Psi)$	$A_{_4}(\Psi)$	$A_{_6}(\Psi)$	
C- ³⁺	C1	$ ^2 \mathbf{E}$	1	1	0	1	-1.1711	0.7560	0	
Ce	J	$ \Gamma_{5/2}\rangle$	1	1	0	I	(-1.1711)	(0.7560)	(0)	
C a ³⁺	C ¹	$ _{2}E$	1	2	2750	1	-1.3801	0.9670	-0.3054	
Ce	J	P _{7/2}	1	2	2750	I	(-1.3801)	(0.9670)	(-0.3054)	
Dr ³⁺	\mathcal{L}^{2}	$ {}^{3}H$	0.0856	1	0	2	-1.2048	-0.7693	0.6555	
FI	J	114/	0.9850	I	0	5	(-1.2367)	(-0.7395)	(0.7706)	
Dr ³⁺	f^2	$ {}^{3}H$	1	2	2086	1	-1.3100	-0.6833	0.4451	
FI	J	115/	1	2	2080	I	(-1.3100)	(-0.6833)	(0.4451)	
Dr ³⁺	f^2	$ {}^{3}H$	0.0085	2	1258	2	-1.5204	-0.9511	1.1338	
FI	J	116/	0.9985	5	4238	2	(-1.5158)	(-0.9583)	(1.1386)	
Dr ³⁺	f^2	$ {}^{3}F$	0.9880	4	4805	3	0.3400	-0.0909	0	
11	J	1 2/	0.9880	4	4895		(0.3187)	(-0.1328)	(0)	
Dr ³⁺	f^2	$ {}^{3}F\rangle$	1	5	6284	1	0.3416	-0.0627	-0.3193	
FI	J	¹ ₃ /	1	5	0284	1	(0.3416)	(-0.0627)	(-0.3193)	
Dr ³⁺	f^2	$ {}^{3}F$	0 9097	6	6719	2	0.2439	-0.5484	-0.2280	
FI	J	1 4 /	0.8087	0	0/18	5	(0.4672)	(-0.2906)	(0.1558)	
Dr ³⁺	f^2	$ {}^{1}G \rangle$	0 8009	7	0732	3	-0.0421	-0.9275	-1.0310	
11	J	$ O_4 $	0.8009	7	9132	5	(-0.3058)	(-1.2150)	(-1.5299)	
Dr ³⁺	f^2	$ \alpha^{\downarrow} \rangle$	0.9430	8	16813	3	0.8354	0.6203	0	
FI	J	$ D_2 $	-0.9450	0	10815	5	(0.8765)	(0.7968)	(0)	
Dr ³⁺	f^2	^{3}P	0.9947	0	20654	2	0	0	0	
FI	J	1 ₀ /	0.9947	9	20034	2	(0)	(0)	(0)	
Dr ³⁺	f^2	$ ^{3}\mathbf{P}\rangle$	1	10	21274	1	-0.5477	0	0	
11	J	1/	1	10	212/4	1	(-0.5477)	(0)	(0)	
Dr ³⁺	f^2	$ _{II}$	0.0085	11	21200	2	-3.0273	1.4303	-0.4506	
11	J	16/	0.9985	11	21299	2	(-3.0318)	(1.4375)	(-0.4554)	
Dr ³⁺	f^2	$^{3}\mathbf{P}$	0.0540	12	22467	2	0.8563	0.1112	0	
11	J	1 2 /	-0.9549	12	22407	5	(0.8366)	(0)	(0)	
Nd ³⁺	f ³	$ ^{4}I$	0.9844	1	0	5	-0.4758	-0.4742	-1.0773	
inu	J	× 9/2 /	0.2044	1	U	5	(-0.4954)	(-0.4904)	(-1.1085)	
Nd ³⁺	£ ³	$ _{4I}$	0.0047	2	1860	Λ	-0.4978	-0.3894	-0.3374	
INU	J	1 _{11/2}	0.994/	2	1002	4	(-0.5045)	(-0.3935)	(-0.3399)	

Nd ³⁺	f^3	$ ^{4}I_{ma}\rangle$	0 9979	3	3845	3	-0.5615	-0.4700	-0.6186
	5	- 13/2 /	0.5517	5	5015	5	(-0.5569)	(-0.4691)	(-0.6217)
Nd ³⁺	f ³	$ _{4I}$	0 9938	4	5907	2	-0.6587	-0.6886	-1.7765
ING	J	15/2	0.7758	7	5707	2	(-0.6438)	(-0.6850)	(-1.7999)
Nd ³⁺	f ³	$ {}^{4}F\rangle$	0.9698	5	11381	6	0.3561	0	0
ING	J	3/2	0.9098	5	11561	0	(0.3578)	(0)	(0)
Nd ³⁺	f ³	$ {}^{4}E$	0.0870	6	12420	6	0.3277	0.1843	0
IVU	J	1 5/2 /	0.9879	0	12420	0	(0.3220)	(0.1890)	(0)
Nd ³⁺	f ³	$ ^{2}H(2)\rangle$	0 7398	7	12510	7	0.2920	-0.0638	-0.0732
Ind	J	$\prod_{j=1}^{n} (2)_{9/2}$	0.7598	1	12319	/	(-0.0069)	(0.4816)	(0.0057)
Nd ³⁺	£ ³	$ {}^{4}E$	0.0648	o	12202	C	0.4650	0.0533	-0.4233
INU	J	I' _{7/2}	-0.9048	0	15565	0	(0.4601)	(0.0537)	(-0.4552)
3+	c ³	4 c	0.0710	0	12420	E	0.0362	0	0
INd	J	3 _{3/2}	0.9719	9	13429	3	(0)	(0)	(0)
NT 13+	<i>C</i> ³	$ 4E\rangle$	0.0(70	10	14(52	7	0.5748	-0.3050	0.1040
Nd	J^{*}	F _{9/2}	-0.8670	10	14652 7	/	(0.7136)	(-0.4051)	(0.1799)
Nr 13+	C 3	$ ^2 u(2)$	0.0055		15057	-	0.1289	0.0001	-0.2027
Nd	f^{*}	$ H(2)_{11/2}\rangle$	0.8955	11	15857	5	(-0.0076)	(0.5373)	(0.0066)
NT 1 ³⁺	c ³	$ 4_{\mathbf{C}}\rangle$	0.0020	12	17101	E	0.0321	0.4718	0
Nd	f	$ G_{5/2}\rangle$	-0.9929	12	17181	5	(0.0349)	(0.4786)	(0)
NT 43+	c ³	$ ^4C\rangle$	0 (190	12	17224	(0.3684	0.1189	0.1939
INd	J	G _{7/2}	0.0180	15	1/224	0	(0.0342)	(0.1361)	(0.5380)
Nd ³⁺	£ ³	$ ^{2}\mathbf{p}$	0.7205	22	26170	C	0.2818	0	0
INU	J	1 _{3/2}	0.7203	23	20179	0	(0.2981)	(0)	(0)
Dma ³⁺	£ ⁴	51	0.0880	1	0	C	0.4609	0.4132	0.7588
PIII	J	I ₄ /	-0.9880	1	0	0	(0.4540)	(0.4103)	(0.7679)
р. ³⁺	C4	51	0.0022	2	1255	ſ	0.4453	0.2467	-0.2889
PIII	J	15/	-0.9933	2	1255	0	(0.4428)	(0.2437)	(-0.2958)
D ³⁺	C ⁴	51	0.0050	2	2(2)	0	0.4786	0.2622	-0.3007
PIII	J	16/	0.9930	3	2030	8	(0.4796)	(0.2613)	(-0.3072)
Dm ³⁺	.c4	57	0.0021	4	4102	(0.5415	0.3978	0.2378
Pm ⁻	Ţ	$ I_7\rangle$	-0.9921	4	4102	0	(0.5524)	(0.4042)	(0.2398)
n ³⁺	<i>c</i> 4	57	0.0041	-	5/25	~	0.6292	0.6585	1.6571
₽m⁻	Ţ	$ I_8\rangle$	-0.9841	5	5625	5	(0.6562)	(0.6797)	(1.7060)
D ³⁺	<i>c</i> ⁴	5 E	0.0700	7	11701	4	-0.2180	0	0
Pm	Ĵ	$ \mathbf{r}_1 \rangle$	0.9798	0	11/21	4	(-0.2191)	(0)	(0)
Sm ³⁺	£5	6 U	0 0792	1	0	10	0.8650	0.2724	0
5111	J	$ n_{5/2}\rangle$	0.9783	1	U	10	(0.8458)	(0.2978)	(0)

J. MULAK ET AL.

Sm ³⁺	£ ⁵	6 H	_0.9853	2	1035	0	0.7272	-0.1291	0.6885
5111	J	11 _{7/2}	-0.9855	2	1055	9	(0.7176)	(-0.1129)	(0.7035)
Sm ³⁺	£ ⁵	6 <i>H</i>	0.0800	2	2242	10	0.7883	-0.1551	0.6503
5111	J	11 _{9/2} /	0.9899	3	2243	10	(0.7786)	(-0.1423)	(0.6845)
Sm ³⁺	£ ⁵	⁶ H \	0.0006	4	2571	7	0.9585	-0.0042	0.6924
511	J	11/2/	-0.9900	4	5571	,	(0.9587)	(-0.0108)	(0.7152)
Sm ³⁺	f ⁵	⁶ <i>H</i>	_0 9869	5	1978	6	1.2281	0.3162	0.4041
511	J	11/2	-0.7607	5	ч <i>)</i> / б	0	(1.2375)	(0.3128)	(0.4146)
Sm ³⁺	f^5	$ {}^{6}E_{\alpha} \rangle$	-0 9846	6	6297	7	0	0	0
Sill	J	1/2	0.9010	Ū	0297	,	(0)	(0)	(0)
Sm ³⁺	f^5	$ {}^{6}H_{\cdots}\rangle$	-0.9782	7	6431	8	1.5794	0.9086	-0.8624
5	J	15/2 /	0.5702		0.01	Ū	(1.6095)	(0.9134)	(-0.9000)
Sm ³⁺	f^{5}	$ {}^{6}F_{2/2}\rangle$	0.9779	8	6548	10	0.0565	0	0
	5	5/2/					(0.0596)	(0)	(0)
Sm ³⁺	f^5	$ {}^{6}F_{5/2}\rangle$	-0.9719	9	7052	20	0.0033	-0.1068	0
	v	1 527					(0.0130)	(-0.1260)	(0)
Sm ³⁺	f^{5}	$ {}^{6}F_{7/2}\rangle$	-0.9752	10	7922	16	-0.1085	-0.1612	-0.2209
	5	1 121					(-0.0920)	(-0.2030)	(-0.2276)
Sm ³⁺	f^5	$ {}^{6}F_{9/2}\rangle$	0.9824	11	9105	13	-0.2631	-0.1020	0.2790
	5	9/2/					(-0.2595)	(-0.1391)	(0.2617)
Sm ³⁺	f^5	$ {}^{6}F_{11/2}\rangle$	-0.9873	12	10503	6	-0.4884	0.2495	-0.0652
	0	1					(-0.4951)	(0.2465)	(-0.0853)
Eu ³⁺	f^6	$ {}^{7}F_{0}\rangle$	-0.9663	1	0	6	0	0	0
		1 - 7					(0)	(0)	(0)
Eu ³⁺	f^{6}	$ {}^{7}F_{1} \rangle$	-0.9729	2	382	8	-0.5317	0	0
							(-0.5477)	(0)	(0)
Eu^{3+}	f^{6}	$\left {}^{7}F_{2} \right\rangle$	-0.9809	3	1052	9	-0.4240	-0.3961	0
							(-0.4382)	(-0.3984)	(0)
Eu^{3+}	$f^{_6}$	$ {}^{7}F_{3}\rangle$	0.9867	4	1914	9	-0.2150	0.1805	-0.2154
							(-0.2277)	(0.1880)	(-0.2129)
Eu^{3+}	f^{6}	$\left {}^{7}F_{4} \right\rangle$	-0.9890	5	2898	9	0.1621	0.5883	0.7592
							(0.1528)	(0.6075)	(0.7650)
Eu^{3+}	f^{6}	$\left {}^{7}F_{5} \right\rangle$	-0.9873	6	3957	6	0./301	0.4986	-0.7222
			0.2075				(0.7277)	(0.5125)	(-0.7419)
Eu^{3+}	f^{6}	$\left {}^{7}F_{6} \right\rangle$	0.9814	7	5055	8	1.4991	-0.7080	0.2161
							(1.5159)	(-0./188)	(0.2277)
Gd^{3+}	$f^{ 7}$	$ {}^{s}S_{_{7/2}} angle$	0.9879	1	0	5	0	0	0
							(0)	(0)	(0)

Tb ³⁺	f^8	$ {}^{7}F_{\epsilon} \rangle$	-0.9793	1	0	9	-1.5028	0.7060	-0.2170
	5	0/					(-1.5159)	(0.7188)	(-0.2277)
Th ³⁺	£8	$ {}^{7}F \rangle$	-0.9852	2	2036	7	-0.7299	-0.4962	0.7184
10	J	- 5/	0.9652	2	2050	,	(-0.7277)	(-0.5125)	(0.7419)
Th ³⁺	£8	$ {}^{7}F \rangle$	0.9781	3	3373	12	-0.1703	-0.5725	-0.7560
10	J	4/	0.9781	5	5525	12	(-0.1528)	(-0.6075)	(-0.7650)
Th ³⁺	£ ⁸	$ {}^{7}F \rangle$	-0.9763	4	4317	12	0.2068	-0.1773	0.2150
10	J	13/	0.9705	-	4517	12	(0.2277)	(-0.1880)	(0.2129)
Th ³⁺	£8	$ {}^{7}F \rangle$	_0.9745	5	5021	14	0.4186	0.3839	0
10	J	1 2/	-0.9745	5	5021	14	(0.4382)	(0.3984)	(0)
Th ³⁺	£8	$ {}^{7}E\rangle$	0 9739	6	5487 10		0.5298	0	0
10	J	1/	0.9759	0			(0.5477)	(0)	(0)
Th ³⁺	f^8	$ ^{7}F_{\circ}\rangle$	0 9736	7	5717	7	0	0	0
10	J	- 0/	0.9750	7	5717	,	(0)	(0)	(0)
Dv^{3+}	f9	$ {}^{6}H_{corr}\rangle$	-0.9708	1	0	8	-1.5745	-0.9047	0.8503
Dy	J	15/2	0.9700	1	Ū	0	(-1.6095)	(-0.9134)	(0.9000)
Dv ³⁺	£9	$ {}^{6}H$	-0.9830	2	3432	7	-1.2254	-0.3172	-0.3992
Dy	J	13/2	0.7050	2	5132 ,	,	(-1.2375)	(-0.3128)	(-0.4146)
Dv ³⁺	£9	$ {}^{6}H$	-0.9577	3	5776	14	-0.9743	0.1970	-0.2401
Dy	J	11/2	-0.9377	5 5770	14	(-0.9587)	(0.0108)	(-0.7152)	
Dv ³⁺	£9	${}^{6}F$	0.9624	4	7377	11	0.4928	-0.4364	-0.3538
Dy	J	11/2	0.9024	4	1311	11	(0.4951)	(-0.2465)	(0.0853)
Dx ³⁺	£9	6H \	0.9685	5	7640	18	-0.7764	0.1267	-0.6407
Dy	J	9/2	-0.9085	5	/049	18	(-0.7786)	(0.1423)	(-0.6845)
Dx ³⁺	£9	6 _{<i>F</i>} ∖	0.0440	6	9721	16	0.2334	0.1231	-0.2286
Dy	J	9/2	0.9440	0	8751	10	(0.2595)	(0.1391)	(-0.2617)
Dx ³⁺	£9	6H \	0.0652	7	0082	15	-0.7167	0.1037	-0.6715
Dy	J	11 7/2	0.9055	/	9083	15	(-0.7176)	(0.1129)	(-0.7035)
Dx ³⁺	£9	6H \	0.9625	8	10149	12	-0.8418	-0.2803	0
Dy	J	11 5/2	0.9025	0	10149	12	(-0.8458)	(-0.2978)	(0)
Dv ³⁺	£9	⁶ <i>F</i> ∖	-0.9603	9	10626	22	0.0595	0.1840	0.2116
Dy	J	1 7/2	-0.7005)	10020	22	(0.0920)	(0.2030)	(0.2276)
Dv ³⁺	f9	$ {}^{6}F$	0.9653	10	12019	18	-0.0340	0.1464	0
Dy	J	5/2 /	0.2023	10	12017	10	(-0.0130)	(0.1260)	(0)
Dv^{3+}	f^9	$ {}^{6}F_{,*} \rangle$	0.9561	11	12818	17	-0.0502	0	0
- /	3	3/2		- *		- ,	(-0.0596)	(0)	(0)
Dy ³⁺	f^{9}	$ {}^{6}F_{1/2}\rangle$	0.9570	12	13358	9	0	0	0
2	v	1 1/2/			13338	9	(0)	(0)	(0)

J. MULAK ET AL.

Ho ³⁺	f^{10}	⁵ <i>I</i> \	0.9681	1	0	6	-0.6021	-0.6350	-1.6074
110	J	18/	0.9081	1	0	0	(-0.6562)	(-0.6797)	(-1.7060)
Ho ³⁺	£ ¹⁰	5 <i>I</i> \	0.9857	2	5066	6	-0.5324	-0.3942	-0.2371
110	J	17/	0.9857	2	5000	0	(-0.5524)	(-0.4042)	(-0.2398)
TT- ³⁺	£10	51	0.075(2	9612	11	-0.4943	-0.3011	0.2350
Но	J	16/	-0.9756	3	8013	11	(-0.4796)	(-0.2613)	(0.3105)
TT- ³⁺	C ¹⁰	51	0.0402	4	11205	12	-0.4517	-0.2619	0.2542
по	J	15/	0.9492	4	11203	15	(-0.4428)	(-0.2437)	(0.2958)
11o ³⁺	£10	51	0.0472	5	12207	12	-0.4854	-0.4136	-0.7128
HO	J	I ₄ /	-0.9472	5	13307	12	(-0.4540)	(-0.4103)	(-0.7679)
TT 3+	C10	5 E \	0.0044	ſ	1 47 47	10	0.5502	-0.3680	0.0816
Ho	f^{**}	$ F_5 \rangle$	0.9044	6	14/4/	12	(0.7278)	(-0.3843)	(0.1484)
TT- ³⁺	C ¹⁰	5 C	0.9420	7	17((0)	15	0.0188	0.0463	0
HO	J	$ S_2\rangle$	0.8429	/	1/000	15	(0)	(0)	(0)
Ho ³⁺	£ ¹⁰	3 ₁	0.0462	21	28805	2	1.2573	1.0060	-0.6106
по	J	1.9/	0.9402	21	28803	2	(1.1349)	(1.1236)	(-0.8368)
Er ³⁺	£ ¹¹	4 1	0.0852	1	0	2	0.6798	0.6933	1.7442
EI	J	1 _{15/2}	0.9852	1	0	3	(0.6438)	(0.6850)	(1.7999)
Er ³⁺	£ ¹¹	$ ^{4}I$	0.0055	2	6514	3	0.5670	0.4715	0.6150
LI	J	13/2 /	0.9955	2	0314	3	(0.5569)	(0.4691)	(0.6217)
Er ³⁺	£11	4 1	0.0004	2	10170	5	0.3778	0.2335	0.2376
LI	J	11/2	0.9094	3	10170	5	(0.5045)	(0.3935)	(0.3399)
Er ³⁺	£ ¹¹	$ ^{4}I$	0.6085	4	12286	7	0.0067	0.3294	0.5419
LI	J	¹ 9/2 /	0.0985	4	12280	,	(0.4954)	(0.4904)	(1.1085)
Er ³⁺	£11	$ {}^{4}E$	0.7512	5	15028	7	-0.3421	0.3340	0.1925
LI	J	1 9/2 /	0.7512	5	15058	,	(-0.7136)	(0.4051)	(-0.1799)
Fr ³⁺	f^{11}	$ ^{4}S \rangle$	0 8293	6	18546	6	-0.1689	0	0
LI	J	03/2/	0.0275	0	10540	0	(0)	(0)	(0)
Fr ³⁺	f^{11}	$ ^{2}H(2)\rangle$	0.6715	7	19185	5	0.0534	-0.2887	0.4731
LI	J	(=) _{11/2} /	0.0715	,	17105	5	(0.0076)	(-0.5373)	(-0.0066)
Fr ³⁺	£ ¹¹	$ {}^{4}F$	-0.9610	8	20192	7	-0.4633	-0.0505	0.4215
LI	J	7/2	-0.9010	0	20172	,	(-0.4601)	(-0.0537)	(0.4552)
F r ³⁺	f^{11}	$ {}^{4}F\rangle$	-0.9254	9	21953	7	-0.3151	-0.1413	0
L1	J	5/2 /	0.7207	,	21700	,	(-0.3220)	(-0.1890)	(0)
Er ³⁺	f^{11}	$ {}^{4}F$) _0.7031 10 22	22316	4	-0.3403	0	0		
	J	3/2/	0., /01			·	(-0.3578)	(0)	(0)
Tm ³⁺	f^{12}	$ {}^{3}H_{\downarrow}\rangle$	0.9956	1	0	2	1.5291	0.9373	-1.1246
	J	6/	0.7750		v	-	(1.5158)	(0.9583)	(-1.1386)

Tm ³⁺	f^{12}	$ {}^{3}F\rangle$	0.8028	2 5308	3	-0.1561	0.7045	0.6365	
1111	J	4/	0.0020	2	5508	5	(-0.4672)	(0.2906)	(-0.1558)
Tm ³⁺	£12	$ {}^{3}\boldsymbol{\mu}\rangle$	1	2	8102	1	1.3100	0.6833	-0.4451
1 111	J	115/	1	3	0192	1	(1.3100)	(0.6833)	(-0.4451)
T ³⁺	£12	³ U	0.7(99	4	12200	2	0.7100	0.4743	-0.9252
1 111	J	114/	0.7088	4	12390	3	(1.2367)	(0.7395)	(-0.7706)
T ³⁺	3+ 012	3E	1	5	120/1		-0.3416	0.0627	0.3193
1 111	J		1	5	13901	1	(-0.3416)	(0.0627)	(0.3193)
Tm ³⁺	3+ 612	3 E \	0.9905	6	14650	2	-0.5151	-0.2386	0
Im	J		0.8805	0	14037	3	(-0.3187)	(0.1328)	(0)
Tm ³⁺		0 7543	7	20057	2	0.5216	1.0655	0.8922	
1 111	J	$ \mathbf{O}_4 $	0.7545	/	20937	3	(0.3058)	(1.2150)	(1.5299)
Tm ³⁺	C ¹²	$ ^{3}\mathbf{D}$	0.6028	o	27041	2	-0.6780	0.1478	0
1 111	J	1 ₂ /	.) 0.6938 8 27041	27041	5	(-0.8366)	(0)	(0)	
Tm ³⁺	£12	$ {}^{3}P$	0.9714	0	33755	2	0	0	0
1 111	J	10/	0.9714	7	33733	2	(0)	(0)	(0)
Tm ³⁺	f^{12}	$ 1_I \rangle$	0 9956	10	34201	2	3.0185	-1.4165	0.4414
1111	J	6/	0.7750	10	54201	2	(3.0318)	(-1.4375)	(0.4554)
Tm ³⁺	f^{12}	$ ^{3}P\rangle$	1	11	34636	1	0.5477	0	0
1111	J	-1/	Ĩ		51050	1	(0.5477)	(0)	(0)
Tm ³⁺	f^{12}	$ ^{3}P_{2}\rangle$	-0 7047	12	37213	3	-0.9160	-0.5731	0
1111	J	- 2/	0.7017	12	5,215	5	(-0.8366)	(0)	(0)
Yh ³⁺	f ¹³	$ {}^{2}F_{-}\rangle$	1	1	0	1	1.3801	-0.9670	0.3054
10	J	- //2/	•	-	Ŭ	1	(1.3801)	(-0.9670)	(0.3054)
Yh ³⁺	f^{13}	$ {}^{2}F\rangle$	1	2	10450	1	1.1711	-0.7560	0
	J	5/2/	<u> </u>	2		•	(1.1711)	(-0.7560)	(0)

eigenstates obtained in the more accurate *J*-mixing approach based on the M. Reid *f*-shell programs [7] and the free-ion data reported by Carnall *et al.* [8]. In the considered *J*-mixed superpositions the average number of RS components is 7, whereas the average number of the constituent matrix elements is 13. In turn, the maximal number of the components reaches 22, whereas the maximal number of the matrix elements amounts to 64 (including 42 off-diagonal ones) what occurs for the 9th eigenstate of Dy³⁺ ion (**Table 1**) with $|{}^{6}F_{7/2}|$ state as the upper component.

In total, we have taken into account 105 lower lying eigenstates of the three-valent RE ions from $Ce^{3+}(4f^1)$ up to Yb³⁺ (4 f^{13}). **Table 1** lists also the basic attributes of the considered eigenstates: the upper RS component,

its amplitude in the normalized superposition, the consecutive number in the ion's spectrum [7], the eigenenergy in cm⁻¹, and the number of components with the amplitude exceeding 0.01. It is instructive to compare the asphericities of the pure RS states [6] with those of the corrected *J*-mixed eigenstates. It turns out that from among the 105 analysed states only about 20% of them differ markedly in the asphericities from their RS counterparts, *i.e.* their upper states. Primarily, these are the states of the following ions: Tm³⁺ (4f¹²), Er³⁺ (4f¹¹), Nd³⁺ (4f³), and Pr³⁺ (4f²) (**Table 1**). By sheer coincidence two various states of Tm³⁺ ion: the 8th and 12th are characterized by the same dominating component $|{}^{3}P_{2}|$, but it does not lead to any misunderstanding because we do not use this ambiguous state description.

 A_k .

Table 2. Multipole characteristics of the RE⁺³ ion eigenstates (selected from Table 1) distinguished by the strongest (the upper half) and the weakest (the lower half)

<i>A</i> =	(A_2^2)	$+A_{4}^{2}$	+.	A_6^2		•
------------	-----------	--------------	----	---------	--	---

RE ion	The upper state $^{2S+1}L_{j}$	А
Pr ³⁺	${}^{1}I_{6}$	3.3784
Tm ³⁺	${}^{1}I_{6}$	3.3634
Pr ³⁺	${}^{3}H_{6}$	2.1217
Tm ³⁺	${}^{3}H_{6}$	2.1169
Nd^{3+}	⁴ I _{15/2}	2.0160
Sm^{3+}	${}^{6}H_{_{15/2}}$	2.0159
Dy ³⁺	⁶ H _{15/2}	2.0051
Er ³⁺	⁴ I _{15/2}	1.9962
Pm ³⁺	⁵ <i>I</i> ₈	1.8909
Ho ³⁺	⁵ <i>I</i> ₈	1.8301
Nd ³⁺	${}^{4}S_{_{3/2}}$	0.0361
Ho ³⁺	⁵ <i>S</i> ₂	0.0500
Dy ³⁺	${}^{6}F_{_{3/2}}$	0.0502
Sm^{3+}	${}^{6}F_{_{3/2}}$	0.0565
Sm ³⁺	${}^{6}F_{_{5/2}}$	0.1068
Dy^{3+}	${}^{6}F_{_{5/2}}$	0.1503
Er ³⁺	${}^{4}S_{_{3/2}}$	0.1688
Pm ³⁺	⁵ F ₁	0.2180
Nd ³⁺	$^{2}H(2)_{11/2}$	0.2402
Nd ³⁺	$^{2}P_{_{3/2}}$	0.2818
	3/2	

RE ion	The upper state $^{2S+1}L_{j}$	A_2
Pr ³⁺	¹ <i>I</i> ₆	-3.0273
Tm ³⁺	${}^{1}I_{6}$	3.0185
$\mathrm{Sm}^{\mathrm{3+}}$	${}^{6}H_{15/2}$	1.5794
Dy^{3+}	${}^{6}H_{15/2}$	-1.5745
Tm ³⁺	${}^{3}H_{6}$	1.5291
Pr^{3+}	${}^{3}H_{6}$	-1.5204
Tb ³⁺	${}^{7}F_{6}$	-1.5028
Eu^{3+}	${}^{7}F_{6}$	1.4991
Ce ³⁺	${}^{2}F_{_{7/2}}$	-1.3801
Yb^{3+}	${}^{2}F_{_{7/2}}$	1.3801
		A_{4}
Pr ³⁺	¹ <i>I</i> ₆	1.4303
Tm ³⁺	${}^{1}I_{6}$	-1.4165
Tm ³⁺	$^{1}G_{4}$	1.0665
Ce ³⁺	${}^{2}F_{_{7/2}}$	0.9670
Yb ³⁺	${}^{2}F_{_{7/2}}$	-0.9670
Pr ³⁺	${}^{3}H_{6}$	-0.9511
Tm ³⁺	${}^{3}H_{6}$	0.9373
Pr ³⁺	$^{1}G_{4}$	-0.9275
$\mathrm{Sm}^{\mathrm{3+}}$	${}^{6}H_{15/2}$	0.9086
Dy^{3+}	${}^{6}H_{15/2}$	-0.9047
		$A_{_6}$
Nd ³⁺	⁴ I _{15/2}	-1.7765
Er ³⁺	⁴ I _{15/2}	1.7442
Pm ³⁺	⁵ <i>I</i> ₈	1.6571
Ho ³⁺	⁵ <i>I</i> ₈	-1.6074
Pr ³⁺	${}^{3}H_{6}$	1.1338
Tm ³⁺	${}^{3}H_{6}$	-1.1246
Nd ³⁺	⁴ I _{9/2}	-1.0773
Pr^{3+}	$^{1}G_{t}$	-1.0310

 ${}^{3}H_{4}$

 ${}^{1}G_{4}$

 Tm^{3+}

Tm³⁺

Table 3. Multipole characteristics of the RE⁺³ ion eigen-

states (selected from Table 1) distinguished by the strongest

There exist the following *J*-mixing mechanisms that produce the observed changes in the asphericity of the states. Firstly, the normalization of any superposition of states reduces naturally the upper state amplitude, whereas its square determines the upper state asphericity input. Secondly, additional diagonal and off-diagonal terms in the the matrix element $\langle \Psi | | C^{(k)} | | \Psi \rangle$ expansion differ in magnitudes and signs. The sign of each individual diagonal term is specified exclusively by the sign of the respective A_k on the involved component. Its magnitude, however, comes from the product of $|A_k|$ and the square of the component amplitude in the superposition. In turn, any off-diagonal term is a product of 6 factors including two involved amplitudes (Equation (2)).

-0.9252

0.8922

Table 4. Multipole characteristics of the RE^{+3} ion eigenstates (selected from Table 1) distinguished by the weakest $|A_k|$.

Table 5. Multipole	characteristics	of the RE ⁺	³ ion eigen-
states (selected from	n Table 1) disti	inguished by	the largest
$ A_k /A$.			

RE ion	The upper state $^{2S+1}L_{j}$	A_2	RE ion	The upper state ${}^{2S+1}L_j$	A_2/A
Sm ³⁺	⁶ F _{5/2}	0.0033	Pr ³⁺	${}^{3}P_{2}$	0.9917
Er ³⁺	⁴ I _{9/2}	0.0067	Tm ³⁺	${}^{3}P_{2}$	-0.9771
Ho ³⁺	⁵ S ₂	0.0188	Pr ³⁺	${}^{3}F_{2}$	0.9659
Nd^{3+}	${}^{4}G_{_{5/2}}$	0.0321	Sm ³⁺	⁶ H _{5/2}	0.9538
Dy^{3+}	⁶ F _{5/2}	-0.0340	Dy^{3+}	${}^{6}H_{11/2}$	-0.9528
Nd^{3+}	⁴ S _{3/2}	0.0362	Dy^{3+}	${}^{6}H_{_{5/2}}$	-0.9488
Pr ³⁺	$^{1}G_{4}$	-0.0421	Nd ³⁺	${}^{2}H(2)_{_{9/2}}$	0.9486
Dy ³⁺	$^{6}F_{_{3/2}}$	-0.0502	Dy ³⁺	⁶ <i>H</i> _{13/2}	-0.9233
Er ³⁺	$^{2}H(2)_{11/2}$	0.0534	Sm^{3+}	⁶ <i>H</i> _{13/2}	0.9227
Sm^{3+}	${}^{6}F_{_{3/2}}$	0.0565	Er ³⁺	${}^{4}F_{_{5/2}}$	-0.9124
		$A_{_4}$			$A_{_4}/A$
Nd ³⁺	$^{2}H(2)_{11/2}$	0.0001	Sm ³⁺	⁶ F _{5/2}	-1.0000
Sm^{3+}	${}^{6}H_{11/2}$	-0.0042	Nd^{3+}	${}^{4}G_{_{5/2}}$	0.9977
Ho ³⁺	⁵ S ₂	0.0463	Dy ³⁺	⁶ F _{5/2}	0.9731
Er ³⁺	${}^{4}F_{_{7/2}}$	-0.0505	Ho ³⁺	⁵ S ₂	0.9165
Nd^{3+}	${}^{4}F_{_{7/2}}$	0.0533	Pr ³⁺	${}^{3}F_{4}$	-0.8541
Pr ³⁺	${}^{3}F_{3}$	-0.0627	Tm ³⁺	${}^{3}F_{4}$	0.7322
Tm ³⁺	${}^{3}F_{3}$	0.0627	Tm ³⁺	${}^{\scriptscriptstyle 1}G_{\scriptscriptstyle 4}$	0.7181
Nd ³⁺	$^{2}H(2)_{_{9/2}}$	-0.0638	Eu ³⁺	${}^{7}F_{2}$	-0.6826
Pr ³⁺	${}^{3}F_{2}$	-0.0909	Tb^{3+}	${}^{7}F_{2}$	0.6759
Sm^{3+}	${}^{6}F_{9/2}$	-0.1020	Pr ³⁺	$^{1}G_{4}$	-0.6685
		$A_{_6}$			$A_{_6}/A$
Sm ³⁺	⁶ F _{11/2}	-0.0652	Nd ³⁺	4 I _{15/2}	-0.8812
Nd^{3+}	$^{2}H(2)_{_{9/2}}$	-0.0732	Ho ³⁺	⁵ I ₈	-0.8783
Ho ³⁺	${}^{5}F_{5}$	0.0816	Pm ³⁺	⁵ I ₈	0.8764
Nd^{3+}	${}^{4}F_{_{9/2}}$	0.1040	Er ³⁺	$^{4}I_{_{15/2}}$	0.8737
Er ³⁺	${}^{4}F_{_{9/2}}$	0.1925	Er ³⁺	⁴ I _{9/2}	0.8545
Nd ³⁺	${}^{4}G_{_{7/2}}$	0.1939	Er^{3+}	$^{2}H(2)_{_{11/2}}$	0.8496
Nd ³⁺	$^{2}H(2)_{11/2}$	-0.2027	Nd ³⁺	⁴ I _{9/2}	-0.8485
Dy^{3+}	${}^{6}F_{_{7/2}}$	0.2116	Nd^{3+}	${}^{2}H(2)_{11/2}$	-0.8440
Eu ³⁺	${}^{7}F_{3}$	-0.2154	Tb ³⁺	${}^{7}F_{4}$	-0.7846
Eu^{3+}	${}^{7}F_{6}$	0.2161	Eu ³⁺	${}^{7}F_{4}$	0.7794

Table 6. Multipole characteristics of the RE⁺³ ion eigenstates (selected from Table 1) distinguished by the smallest $|A_k|/A$.

RE ion	The upper state $^{2S+1}L_{j}$	$A_{_2}/A$
Er ³⁺	${}^{4}I_{9/2}$	0.0000
Pr ³⁺	${}^{1}G_{4}$	-0.0300
Nd^{3+}	${}^{4}G_{_{5/2}}$	0.0671
Er^{3+}	$^{2}H(2)_{11/2}$	0.0970
Tm ³⁺	${}^{3}F_{4}$	-0.1625
Eu ³⁺	$^{7}F_{4}$	0.1664
Tb ³⁺	${}^{7}F_{4}$	-0.1766
Dy ³⁺	$^{6}F_{_{7/2}}$	0.2064
Dy^{3+}	$^{6}F_{_{5/2}}$	-0.2304
Nd ³⁺	4 I _{9/2}	-0.3268
		$A_{_4}/A$
Er ³⁺	${}^{4}F_{_{7/2}}$	-0.0812
Nd ³⁺	${}^{4}F_{_{7/2}}$	-0.0837
Dy ³⁺	⁶ H _{7/2}	0.1054
Dy ³⁺	${}^{6}H_{_{9/2}}$	0.1249
Pr ³⁺	${}^{3}P_{2}$	0.1288
Pr ³⁺	${}^{3}F_{3}$	-0.1323
Tm ³⁺	${}^{3}F_{3}$	0.1323
Sm ³⁺	${}^{6}H_{_{9/2}}$	-0.1503
Dy ³⁺	${}^{6}H_{_{11/2}}$	0.1926
Nd ³⁺	$^{2}H(2)_{9/2}$	-0.2078
		$A_{_6}/A$
Sm ³⁺	⁶ F _{11/2}	-0.1187
Ho ³⁺	${}^{5}F_{5}$	0.1229
Eu ³⁺	${}^{7}F_{6}$	0.1292
Tb ³⁺	${}^{7}F_{6}$	-0.1296
Tm^{3+}	${}^{1}I_{6}$	0.1311
Pr ³⁺	${}^{1}I_{6}$	-0.1334
Nd ³⁺	${}^{4}F_{_{9/2}}$	0.1578
Ce ³⁺	${}^{2}F_{_{7/2}}$	-0.1783
Yb ³⁺	${}^{2}F_{_{7/2}}$	0.1783
Dy ³⁺	⁶ <i>H</i> _{11/2}	-0.2347

Its sign results from the product of 6 signs, and is in principle accidental. To cope with this matter effectively one should consider all the additional diagonal and off-diagonal contributions along with their various possible magnitudes and signs. Based on these investigations four types of the resultant A_k modifications can be noticed in **Table 1**.

- Due to insignificant *J*-mixing admixtures to the upper state only small changes (within a few percent) arise in the pertinent $|A_k|$, which are the algebraic sum of the normalization effect and the additional diagonal and off-diagonal corrections. Such effect occurs for about 80% of the states listed in **Table 1**. However, the proximity of the A_k values for the RS and those for the corrected *J*-mixed states can be also accidental. For example, in the 23rd eigenstate of Nd³⁺ ion the amplitude of its upper state $|{}^{3}P_{3/2}|$ reaches merely 0.7205 and its contribution to A_2 of the superposition is only $(0.7205)^2(0.2981) = 0.1548$. Nevertheless, the remaining diagonal (0.2128) and off-diagonal (-0.0858) inputs are relatively large, and effectively lead to $A_2 = 0.2818$ that accidentally is close to 0.2981, which is the value for the $|{}^{3}P_{3/2}|$ state.
- The sum of the corrections is substantial with respect to A_k of the upper state and has the same sign as the A_k . Here an enhancement of $|A_k|$ occurs. Such resultant effect is observed for the states: 13th of Nd³⁺, 7th of Er³⁺, 6th, 7th and 12th of Tm³⁺ in the case of A_2 , for the states: 6th of Pr³⁺, 3rd and 4th of Dy³⁺, and 2nd of Tm³⁺ in the case of A_4 , and for the 4th state of Tm³⁺ in the case of A_6 .
- The sum of the corrections is substantial but with the opposite sign than that of the upper state A_k . In this case a partial compensation of $|A_k|$ (including the complete cancelation), or even the sign conversion of A_k , takes place. Such result has been found in the case of A_2 for the states: 6th and 7th of Pr^{3+} , 7th, 10th and 11th of Nd^{3+} , 6th of Ho^{3+} , 3rd, 4th and 5th of Er^{3+} , 2nd, 4th and 8th of Tm^{3+} , in the case of A_4 for the states: 7th and 8th of Pr^{3+} , 7th, 10th and 11th of Nd^{3+} , 4th, 5th and 7th of Er^{3+} , 4th, 6th and 7th of Tm^{3+} , and in the case of A_6 for the states: 1st, 6th and 7th of Pr^{3+} , 7th, 10th, 11th and 13th of Nd^{3+} , 3rd and 4th of Dy^{3+} , 6th of Ho^{3+} , 3rd, 4th, 5th and 7th of Er^{3+} , 3rd, 4th, 5th and 7th of Er^{3+} , 2nd and 7th of Tm^{3+} .
- The corrections generate the only contribution to A_k that for the initial state is equal to zero. It takes place for the states 12th of $Pr^{3+}(A_4)$, 9th of $Nd^{3+}(A_2)$, 7th of $Ho^{3+}(A_2, A_4)$, 6th of $Er^{3+}(A_2)$, 8th and 12th of $Tm^{3+}(A_4)$.

The detailed mechanisms of the asphericity modifications induced by the *J*-mixing effect will be thoroughly analyzed for some representative examples in Section 6.

3. The Asphericity of an Electron Eigenstate and Its Crystal-Field Splitting

The asphericity A_k for k = 2,4 and 6 of any electronic state may serve as a reliable measure of its capability for CF splitting produced by the $H_{CF}^{(k)}$ - the *k*-th component of the H_{CF} . It stems from the fundamental relationship between the CF splitting second moment σ_k and the A_k [10,13,14]

$$\sigma_k^2 = \left[\frac{1}{(2J+1)} \right] A_k^2 S_k^2, \qquad (3)$$

where $S_k^2 = [1/(2k+1)] \sum_q |B_{kq}|^2$ is the square of the CF strength of the 2^k -pole H_{CF} component [9-12], and (2J+1) is the degeneracy of the given state with a good quantum number J. In fact, the above relationship (Equation (3)) arises from the spherical harmonic addition theorem [19] concerning the expansion of $1/r_{ij}$ into the series of $C_q^{(k)}(\vartheta_i, \varphi_i) \cdot C_q^{(k)*}(\vartheta_j, \varphi_j)$ components. They are the products of the conjugated spherical harmonics defined for the separated indices *i* and *j*. In the CF context the first factor refers to the electronic density angular distribution of the central ion unperturbed eigenstate, whereas the second refers to the surrounding charges. In fact, this separation lies in the background of the whole formalism exposing the scalar product nature of CF Hamiltonian.

As it is seen from Equation (3) the asphericity A_k can be treated as a potential capability of the considered state for the 2^k-pole CF splitting since the second factor S_k represents a separate and unrelated external impact. The A_k can be either positive or negative (Section 2) what symbolically may be imagined as asphericities of convex or concave type. The A_k sign does not affect the σ_k , but is crucial calculating the resultant asphericities of the superposition of states.

The question arises how the global second moment σ can be expressed by means of the asphericities of the involved electron eigenstate. As it is known, the square of the global second moment σ^2 is a simple sum of the second moment squares of the individual components [6,10,13,14,20].

$$\sigma^{2} = \left[\frac{1}{(2J+1)} \right] \left(A_{2}^{2} S_{2}^{2} + A_{4}^{2} S_{4}^{2} + A_{6}^{2} S_{6}^{2} \right).$$
(4)

To describe σ^2 it is convenient to introduce two auxiliary vectors: $A(A_2^2, A_4^2, A_6^2)$ and $S(S_2^2, S_4^2, S_6^2)$ within the three-dimensional orthogonal reference frame based on the A_k (or S_k) axes. Then, $\sigma^2 = [1/(2J+1)]A \cdot S$ is defined by their scalar product. All the components of the A and S vectors are positive by definition and can be expressed by the spherical angular coordinates only within the ranges of $0 \le \theta \le \pi/2$ and $0 \le \phi \le \pi/2$. Equation (4) shows that the CF splitting is determined by the two inseparable mutually entangled quantities A_k and S_k . The figurative vectors A and S may be orthogonal, what happens when both the vectors lie either along the two frame axes or one of them lies along an axis whereas the second belongs to the perpendicular plane. Then, always $\sigma^2 = 0$, in spite of some non-zero A_k and S_k . Simultaneously, Equation (4) enables us to critically verify the meaning of such quantities like $S = \left(\sum_k S_k^2\right)^{1/2}$ and $A = \left(\sum_k A_k^2\right)^{1/2}$ [6]. In general, no apparent physical sense can be assigned to these quantities.

4. The Range of Capability of the 4 f^N Tripositive Free Ion Eigenstates for Crystal-Field Splitting

Similarly to the approximated RS states $\left| {}^{2S+1}L_{J} \right\rangle$ of triply ionized lanthanides [6], the eigenstates amended by the *J*-mixing [7] are characterized by an exceedingly diversified multipole structure both in qualitative and quantitative way (Table 1). Such random, to a large extent, diversity stems from a stochastic character with respect to the magnitude and sign of the multifactorial expression for the $C^{(k)}$ operator reduced matrix element (Equation (2)). The chaotic dispersion of the A_k magnitudes and signs is well exhibited in Tables 2-6 by the eigenstates chosen from among all the 105 studied ones: the top ten states of the strongest or weakest $A = (A_2^2 + A_4^2 + A_6^2)^{1/2}$ (**Table 2**), the ten of the strongest $|A_k|$ (**Table 3**), the ten of the weakest $|A_k|$ (**Table 4**), and finally the ten states of the highest $|A_k|/A$ (**Table 5**), as well as the ten ones of the lowest $|A_k|/A$ (**Table** 6). The $|A_k|/A$, which is a cosine of the angle between the (A_2, A_4, A_6) vector and the distinguished axis representing the A_k , gives the relative weight of the chosen 2^{k} -pole in the eigenstate multipole structure. It is enough to notice that A takes values from 0 to 3.3784, whereas the entirely independent one of another $|A_k|$ change within the ranges: $0 < |A_2| \le 3.0273$, $0 < |A_4| \le 1.4303$, and $0 < |A_6| \le 1.7765$. As it is seen, the multipole structure of the considered states is widely differentiated. In consequence, the states being characterized by only one prevailing multipole are not excluded. For example, the 12th eigenstate $|{}^{3}P_{2}\rangle$ of Pr^{3+} ion is characterized by the predominant role of the 2²-pole component $(|A_2|/A) =$ 0.9917), the 9th eigenstate $|{}^{6}F_{5/2}\rangle$ of Sm³⁺ ion by the 2⁴-pole component ($|A_4|/A\rangle \approx 1.0000$), and the 4th eigenstate $|{}^{4}I_{15/2}\rangle$ of Nd³⁺ ion by the prevailing 2⁶-pole component ($|A_6|/A\rangle = 0.8812$), however not so distinctly as in the two previous cases.

The highest total asphericities (the top A values), which represent the strongest total capabilities for the CF splitting, are found in the states with large L (and J) quantum numbers (**Table 2**). Such states are weakly dis-

turbed by the *J*-mixing interaction due to a small number of the partner RS states of the same *J* and large energy gaps between them. Their calculated asphericities are close to those for the relevant upper states. On the contrary, the eigenstates with the weakest asphericities have quite often their A_k significantly changed with respect to those for their RS counterparts. In general, it results from a similar level of the *J*-mixing corrections in both the cases, and a substantial difference in their initial magnitudes.

Tables 1-6 indicate an evident correspondence between the calculated A_k for the pairs of the lanthanide ions with the complementary electron configurations $4f^N$ and $4f^{14-N}$: (Ce³⁺, Yb³⁺), (Pr³⁺, Tm³⁺), (Nd³⁺, Er³⁺), (Pm³⁺, Ho³⁺), (Sm³⁺, Dy³⁺) and (Eu³⁺, Tb³⁺). The opposite A_k sign of the pair-partners results from the opposite sign of the related matrix elements of the $U^{(k)}$ operators [18], and is mainly a consequence of the Hund's rules governing the eigenstates sequence, it means their location in the free-ion energy spectrum.

The difference between the bottom parts of the energy diagrams of Pr^{3+} and Tm^{3+} ions serves as a good example of such case. In the energy spectrum of Pr^{3+} ion the RS states $\begin{vmatrix} {}^{3}H_{4} \\ \rangle$ and $\begin{vmatrix} {}^{3}F_{4} \\ \rangle$ interacting via *J*-mixing are located one to another as far as possible: the $\begin{vmatrix} {}^{3}H_{4} \\ \rangle$ is the lowest state of the term ${}^{3}H$, whereas the $\begin{vmatrix} {}^{3}H_{4} \\ \rangle$ the highest one of the term ${}^{3}H$, whereas the $\begin{vmatrix} {}^{3}H_{4} \\ \rangle$ the highest one of the term ${}^{3}F$. In Tm^{3+} ion, in the reverse order, the $\begin{vmatrix} {}^{3}H_{4} \\ \rangle$ is the lowest state of the term ${}^{3}F$. In Tm^{3+} ion, in the reverse order, the $\begin{vmatrix} {}^{3}F_{4} \\ \rangle$ the lowest state of the term ${}^{3}F$. In fact, the $\begin{vmatrix} {}^{3}F_{4} \\ \rangle$ state lies below the state $\begin{vmatrix} {}^{3}H_{4} \\ \rangle$ [16]. The energy gap between the states $\begin{vmatrix} {}^{3}H_{4} \\ \rangle$ and $\begin{vmatrix} {}^{3}F_{4} \\ \rangle$, their so-called energy denominator, determines the efficiency of the *J*-mixing interaction.

5. Electronic State Capability for CF Splitting and Parametrization of the Involved CF Hamiltonian

Equations (3) and (4) reveal the direct relationship between the CF splitting second moments (σ and σ_k) available from the experimentally fitted splitting diagrams, and the relevant A_k and S_k in the form of their products. Having known the capabilities A_k one gets the S_k which are consistent with the experimental data. Thus, we have an additional condition imposed on the CFPs for each individual multipole, *i.e.* for CFPs with a fixed k index. Therefore any correct fitting procedure must lead to CFPs obeying Equations (3) and (4). To fully realize the significance of the above defined capability of electronic states for CF splitting and its indispensability in practical CF calculations let us verify, as an example, the parametrization of the CF Hamiltonian for eight lower lying electronic states of Tm³⁺ ion doped into single 1385

crystal (C_2 sites) of cubic yttrium oxide Y_2O_3 [21]: $|{}^{3}H_6\rangle$, $|{}^{3}F_4\rangle$, $|{}^{3}H_5\rangle$, $|{}^{3}H_4\rangle$, $|{}^{3}F_3\rangle$, $|{}^{3}F_2\rangle$, $|{}^{1}G_4\rangle$, and $|{}^{1}D_2\rangle$ (**Table 1**). Mind the 8th state of Tm³⁺ ion (**Table 1**), the amplitude of the $|{}^{1}D_2\rangle$ component is equal to 0.5871, so it is not the actual upper component.

Based on Table IX in [21] all the eight σ^2 values for the considered states are known and amount to in $[(cm^{-1})^2]$: 70205, 40019, 45836, 29941, 2965, 13548, 83061 and 10004 in order of the above mentioned states. Next, all the needed capabilities (asphericities) A_k calculated for the corrected electronic states of Tm³⁺ ion by M. Reid [7] are compiled in **Table 1**. We have then the following set of eight linear equations (of Equation (4) type) for S_2^2 , S_4^2 and S_6^2 :

$$\frac{1}{13} \Big[(1.5291)^2 S_2^2 + (0.9373)^2 S_4^2 + (-1.1246)^2 S_6^2 \Big] = 70205$$

$$\frac{1}{9} \Big[(-0.1561)^2 S_2^2 + (0.7045)^2 S_4^2 + (0.6365)^2 S_6^2 \Big] = 40019$$

$$\frac{1}{11} \Big[(1.3100)^2 S_2^2 + (0.6833)^2 S_4^2 + (-0.4451)^2 S_6^2 \Big] = 45836$$

$$\frac{1}{9} \Big[(0.7100)^2 S_2^2 + (0.4743)^2 S_4^2 + (-0.9252)^2 S_6^2 \Big] = 29941$$

$$\frac{1}{7} \Big[(-0.3416)^2 S_2^2 + (0.0627)^2 S_4^2 + (0.3193)^2 S_6^2 \Big] = 2965$$

$$\frac{1}{5} \Big[(-0.5151)^2 S_2^2 + (-0.2386)^2 S_4^2 \Big] = 13548$$

$$\frac{1}{9} \Big[(0.5216)^2 S_2^2 + (1.0655)^2 S_4^2 + (0.8922)^2 S_6^2 \Big] = 83061$$

$$\frac{1}{5} \Big[(-0.6780)^2 S_2^2 + (0.1478)^2 S_4^2 \Big] = 10004$$
(5)

By definition, only positive solution is admitted, what is rather a strong requirement. For the corrected Tm³⁺ free-ion eigenstates we have found the proper solution of (Equation (5)). By means of the least square deviations Gauss method we have obtained in $[(cm^{-1})^2]$: $S_2^2 = 121980$, $S_4^2 = 578760$, and $S_6^2 = 93240$. The second moments calculated for these values of S_k are: 70120, 36440, 45280, 30170, 3715, 13060, 84940 and 13740, respectively. Taking into account all possible inaccuracies in the estimated σ^2 and in the calculated A_k , as well as their wide ranges of variation, the presented calculations reproduce the observed σ^2 quite accurately.

The role of the capabilities A_k in the approach is readable. It is proper to add that there is no solution of Equation (5) in the case of A_k for the pure RS eigenstates of Tm³⁺ ion.

The presented example highlights the σ^2 additivity principle which ensures the appropriate multipole moments yielded by the surroundings of Tm³⁺ ion in Y₂O₃ crystal lattice. Additionally, it evidences a good quality fitting of the CF levels given in [21] and the correctness of the RE^{3+} free-ion electronic eigenstates composition calculated by M. Reid [7].

The CFPs for Tm³⁺:Y₂O₃ given in Table IV [21] yield the following S_k^2 in $[(cm^{-1})^2]$: $S_2^2 = 124613$, $S_4^2 = 352704$, and $S_6^2 = 28718$, which differ from those obeying the σ^2 additivity. Although the corresponding CFPs reproduce the considered CF splitting diagrams [21] sufficiently well they do not represent the proper multipolar characteristics of the C_2 site in Y₂O₃.

Similar breaking of the multipolar additivity of σ^2 , calculated from the fitted parametrization of the corresponding CF Hamiltonian, has been evidenced previously for Nd³⁺:Y₂O₃ [20]. One can therefore suspect a remarkable part of published H_{CF} parametrizations to suffer from this type of physical shortcoming. This can be also a source of the overwhelming inflation of formally good but non-equivalent H_{CF} parametrizations. Concluding, the capabilities A_k for the free-ion eigenstates of tripositive rare-earth ions given in **Table 1** are crucial in order to verify any related CF Hamiltonian.

6. Discussion

The calculated asphericities $A_k = \langle \Psi | | C^{(k)} | | \Psi \rangle$ of the trivalent $4f^N$ ions are not the actual ones due to approximate nature of the applied eigenfunctions $|\Psi\rangle$, but their reliability can be improved replacing the initial functions (e.g. those of the RS type) by their various superpositions. In the case of simultaneous diagonalisation of the interaction matrix including the Coulomb repulsion and the spin-orbit coupling these are the superpositions of the RS functions with the same J but different L and S quantum numbers [7]. The A_{i} variations seen in Table 1 are limited mainly by the scale of the component admixtures. Additional role is played by magnitudes of the relevant diagonal and off-diagonal matrix elements of the $C^{(k)}$ operator within the superposition, as well as the mutual competition between the corrections. In most cases the amplitudes of the admixtures are rather small. Therefore, for the majority of the lower lying eigenstates (about 80%) of the trivalent lanthanide ions there appear only insignificant differences between the A_{μ} calculated for the model RS states [6] and those including their *J*-mixing (Table 1). Nevertheless, for certain part of the eigenstates, particularly the exited ones, the observed changes become essential, indeed. They illustrate well the types of the resultant J-mixing effects mentioned in Section 2. Some instructive mechanisms leading to such variations are analyzed in details for several chosen examples below.

Let us consider the 6th state of Pr^{3+} ion (**Table 1**) of the composition:

$$0.8087 \left| {}^{3}F_{4} \right\rangle + 0.1225 \left| {}^{3}H_{4} \right\rangle - 0.5753 \left| {}^{1}G_{4} \right\rangle$$

with the dominant $|{}^{3}F_{4}\rangle$ component. The diagonal contributions to the A_{2} amount to:

$$(0.8087)^2 (0.4672) = 0.3778,$$

 $(0.1225)^2 (-1.2367) = -0.0186,$
 $(-0.5753)^2 (-0.3058) = -0.1012,$

and the only off-diagonal input

$$\langle (0.8087)^{3} F_{4} | | C^{(2)} | | (0.1225)^{3} H_{4} \rangle = -0.0141.$$

The accumulation of the three negative corrections reduces the A_2 from 0.4672 down to 0.2439. The diagonal contributions to the A_4 are negative and reach:

$$(0.8087)^2 (-0.2906) = -0.1901,$$

 $(0.1225)^2 (-0.7395) = -0.0111,$
 $(-0.5753)^2 (-1.2150) = -0.4021,$

and the off-diagonal element

$$\langle (0.8087)^{3}F_{4} || C^{(4)} || (0.1225)^{3}H_{4} \rangle = 0.0549$$
.

Here, the strong diagonal input of the $|{}^{1}G_{4}\rangle$ determines the magnitude and sign of the $A_{4} = -0.2906$. In turn, the diagonal contributions to the A_{6} are equal to:

$$(0.8087)^2 (0.1558) = 0.1019,$$

 $(0.1225)^2 (0.7706) = 0.0116,$
 $(-0.5753)^2 (-1.5299) = -0.5064,$

and the off-diagonal input is

$$\langle (0.8087)^{3} F_{4} || C^{(6)} || (0.1225)^{3} H_{4} \rangle = 0.1649$$

Again, as above, the diagonal negative input of the $|{}^{1}G_{4}\rangle$ dominates and the ultimate $A_{6} = -0.2280$ results from a partial compensation of all the contributions.

The 7th state of Nd³⁺ ion, is composed of

$$-0.3700 | {}^{3}F_{9/2} \rangle - 0.1458 | {}^{4}G_{9/2} \rangle + 0.1525 | {}^{4}I_{9/2} \rangle + 0.3381 | {}^{2}G(1)_{9/2} \rangle - 0.2799 | {}^{2}G(2)_{9/2} \rangle - 0.2805 | {}^{2}H(1)_{9/2} \rangle + 0.7398 | {}^{2}H(2)_{9/2} \rangle$$

with the prevailing $|{}^{2}H(2)_{9/2}\rangle$ state. All the weak diagonal contributions to the A_2 are almost compensated achieving in sum 0.0092 with respect to the dominant state input $(0.7398)^2(-0.0069) = -0.0038$. The decisive are the positive off-diagonal terms

$$\langle (0.338) 1^2 G(1)_{9/2} || C^{(2)} || (-0.2799)^2 G(2)_{9/2} \rangle = 0.1655,$$

along with

$$\langle (0.2805)^2 H(1)_{9/2} || C^{(2)} || (0.7398)^2 H(2)_{9/2} \rangle = 0.1225,$$

giving finally the $A_2 = 0.2920$. Here, the dominant state input to the A_4 amounts to $(0.7398)^2(0.4816) = 0.2636$ and the sum of all the seven diagonal elements 0.1675 is somewhat less. In this situation the relatively large and negative off-diagonal element

$$\langle 0.2805^{2}H(1)_{9/2} || C^{(4)} || (0.7398)^{2}H(2)_{9/2} \rangle = -0.2508$$

decides both on the magnitude and sign of the $A_4 = -0.0638$. Similarly, for the very small positive sum of the partial diagonal elements (0.0055), the final $A_6 = -0.0732$ is determined by the prevailing, as for the modulus, negative off-diagonal element

$$\langle (0.2805)^2 H(1)_{9/2} || C^{(6)} || (0.7398)^2 H(2)_{9/2} \rangle = -0.1010.$$

The 11th state of the Nd^{3+} , is given by

$$-0.2407 | {}^{4}G_{11/2} \rangle + 0.0994 | {}^{4}I_{11/2} \rangle - 0.3573 | {}^{2}H (1)_{11/2} \rangle + 0.8955 | {}^{2}H (2)_{11/2} \rangle - 0.0515 | {}^{2}I_{11/2} \rangle$$

with the dominant $|{}^{2}H(2)_{11/2}\rangle$ component. The sum of the diagonal contributions to the A_2 is -0.0740, including the input -0.0632 from the $|{}^{2}H(1)_{11/2}\rangle$. The resultant $A_2 = 0.1289$ is the outcome of mutual competition of the positive off-diagonal term given by

$$\langle (-0.3573)^2 H(1)_{11/2} || C^{(2)} || (0.8955)^2 H(2)_{11/2} \rangle = 0.2080$$

and the negative diagonal contribution coming mainly from the state $|{}^{2}H(1)_{11/2}\rangle$. The sum of the diagonal elements combining to the A_4 amounts to 0.4454 and is close to the contribution of the dominating $|{}^{2}H(2)_{11/2}\rangle$ state, *i.e.* $(0.8955)^{2}(0.5373) = 0.4309$. However, it is practically entirely compensated $(A_4 = 0.0001)$ by the sum of two negative off-diagonal elements:

$$\langle (-0.3573)^2 H(1)_{11/2} || C^{(4)} || (0.8955)^2 H(2)_{11/2} \rangle$$

= -0.4314

and

$$\langle (-0.2407) {}^{4}G(1)_{11/2} | | C^{(4)} | | (0.0994) {}^{4}I_{11/2} \rangle = -0.0139.$$

The resultant $A_6 = -0.2027$ is determined by relatively strong off-diagonal input

$$\langle (-0.3573)^2 H(1)_{11/2} || C^{(6)} || (0.8955)^2 H(2)_{11/2} \rangle$$

= -0.1791.

All the diagonal elements contribute only -0.0081.

The J-mixing of the RS states can activate some idle

states making them susceptible to CF splittings. In other words, they lose their initial effective spherical symmetry. As an example let us examine the 6th state od Er^{3+} ion consisting of

$$0.8293 | {}^{4}S_{3/2} \rangle + 0.044 | {}^{4}D_{3/2} \rangle + 0.2390 | {}^{4}F_{3/2} \rangle - 0.4174 | {}^{2}P_{3/2} \rangle - 0.2797 | {}^{2}D(1)_{3/2} \rangle - 0.0274 | {}^{2}D(2)_{3/2} \rangle.$$

The prevailing element $|{}^{4}S_{3/2}\rangle$ is characterized by zero asphericities A_2 , A_4 and A_6 . However, the corrected eigenstate acquires the asphericity $A_2 = -0.1689$ by accumulation of the negative diagonal contributions:

$$(0.2390)^2 (-0.3578) = -0.0204$$
,
 $(-0.4174)^2 (-0.2981) = -0.0519$,
 $(-0.2797)^2 (-0.5707) = -0.0446$,

and the off-diagonal ones:

$$\left\langle \left(0.0443\right)^{4} D_{3/2} \left\| C^{(2)} \right\| \left(0.8293\right)^{4} S_{3/2} \right\rangle = -0.0480 ,$$

$$\left\langle \left(-0.2797\right)^{2} D(1)_{3/2} \left\| C^{(2)} \right\| \left(-0.0274\right)^{2} D(2)_{3/2} \right\rangle$$

$$= -0.0045.$$

The states $|{}^{4}S_{3/2}\rangle$ and $|{}^{4}D_{3/2}\rangle$ do not bring any diagonal inputs, and the state $|{}^{2}D(2)_{3/2}\rangle$ gives only 0.0005.

The ground state of Pr³⁺ ion is given by

$$0.9856 |{}^{3}H_{4}\rangle + 0.1662 |{}^{1}G_{4}\rangle - 0.0311 |{}^{3}F_{4}\rangle$$

and its A_2 and A_4 asphericities change only slightly with respect to the parameters for the pure $|{}^{3}H_4\rangle$ state. However, the $|A_6\rangle$ asphericity is noticeably reduced. The diagonal contribution of the $|{}^{1}G_4\rangle$ state

$$(0.1662)^2(-1.5299) = -0.0423$$

and the off-diagonal term

$$\langle (0.9856)^{3}H_{4} || C^{(6)} || (-0.0311)^{3}F_{4} \rangle = -0.0510$$

weaken the positive input of the $|{}^{3}H_{4}\rangle$ upper state $(0.9856)^{2}(0.7706) = 0.7486$ down to the value of 0.6555. It corresponds to attenuation of the state capability for the CF splitting by $H_{CF}^{(6)}$. An increase in both the $|{}^{3}F_{4}\rangle$ and $|{}^{1}G_{4}\rangle$ admixtures deepen the tendency. It is worth to remember analyzing the CF splitting of the $U^{4+}(5f^{2})$ ion ground state.

As is seen in Equation (3) the multipole characteristics of the electron eigenstates along with their CF splitting diagrams sheds a new light on the crystal matrix multipole structure and vice versa. Based on the CF splitting diagrams for several electron eigenstates of known multipole characteristics in a specified crystal matrix (with a definite H_{CF}), as well as the CF splitting diagrams of a specified eigenstate in various CF matrices, we can reconcile the actual A_k for the considered electronic states and the S_k for the CF Hamiltonians, respectively. A great facilitation in such estimations is an incomplete multipolar structure of the analyzed eigenstates. Such incompleteness may result either from the triangle rule for *J*, *J*, *k* numbers (e.g. for J = 1, 3/2 and k = 4, 6 or J = 5/2 and k = 6) or from accidental cancelation of some multipoles due to the *J*-mixing effect, as it is observed for the 11th state of Nd³⁺ and the 4th state of Er³⁺ ions in **Table 1**. Furthermore, in some CF Hamiltonians the three-component multipole structure is not always complete, like e.g. in the cubic H_{CF} which has no quadrupolar component.

In order to properly classify the multipolar characteristics of both the electronic eigenstates and the actual CF Hamiltonians we have to apply such kind of comprehensive reconciliations. The fitted CFP sets, that well reproduce the experimental spectrum of energy levels for intentionally approximated initial eigenfunctions, have by definition an effective character. Therefore, applying the same approximation for all eigenfunctions coming from different energy ranges will undoubtedly lead to errors. Presumably, this is the main reason for difficulties associated with minimization of rms deviations in fitted CFP sets. There are some phenomenological attempts to improve the fitting accuracy. In one of them the two-electron correlation CF is introduced, which may be simply expressed by an effective one-electron CF Hamiltonian being dependent on the considered electronic term. In another one the mean k powers of the unpaired electron radii $\langle r^k \rangle$ is made variable with respect to the electron term [5,22-24]. Both the above approaches are formally admissible, but they can be physically ungrounded.

Yet another reflection arises. The dichotomic structure of the CF Hamiltonian [6] and random diversity of the asphericities by no means do not entitle us to exploit the concept of convergence of the H_{CF} multipole series. The H_{CF} approximation reducing its multipole structure only to the first quadrupolar term is groundless. An exception could be perhaps a unique case when $A_2 = A_4 =$ A_6 . Obviously, the H_{CF} three-multipole (k = 2, 4, 6) series is a finite one, and not truncated. The higher multipoles do not contribute at all. The second independent factor that controls to a similar extent as the external multipoles the resultant hierarchy of the three CF Hamiltonian terms is the capability A_k of the state for the CF splitting.

7. References

[1] B. G. Wybourne, "Spectroscopic Properties of Rare

Earths," John Wiley, New York, 1965.

- [2] B. R. Judd, "Operator Techniques in Atomic Spectroscopy," Mc Graw-Hill, New York, 1963.
- [3] A. R. Edmonds, "Angular Momentum in Quantum Mechanics," Princeton University Press, Princeton, New York, 1960.
- [4] M. Rotenberg, R. Bivins, N. Metropolis and J. K. Wooten, Jr., "The 3-j and 6-j Symbols," MIT Press, Cambridge, MA, 1963.
- [5] J. Mulak and Z. Gajek, "The Effective Crystal-Field Potential," Elsevier, Amsterdam, 2000.
- [6] J. Mulak and M. Mulak, "Multipole Characteristic of the Open-Shell Electron Eigenstates," *Physica Status Solidi B*, Vol. 245, No. 6, 2008, pp. 1156-1164. doi:10.1002/pssb.200743527
- [7] M. Reid, "f-Shell Programs," Private Communication by Courtesy of Z. Gajek, 2010.
- [8] W.T. Carnall, G.L. Goodman, K. Rajnak and R.S. Rana, "A Systematic Analysis of the Spectra of the Lanthanides Doped into Single Crystal LaF₃," *Journal of Chemical Physics*, Vol. 90, No. 7, 1989, pp. 3443-3457. doi:10.1063/1.455853
- [9] F. Auzel and O. L. Malta, "A Scalar Crystal Field Strength Parameter for Rare Earth Ions: Meaning and Usefulness," *Journal of Physique*, Vol. 44, No. 2, 1983, pp. 201-206. doi:10.1051/jphys:01983004402020100
- [10] R. P. Leavitt, "On the Role of Certain Rational Invariants in Crystal-Field Theory," *Journal of Chemical Physics*, Vol. 77, No. 4, 1982, pp. 1661-1663. doi:10.1063/1.444088
- [11] C. Rudowicz and J. Qin, "Noether's Theorem and Conserved Quantities for the Crystal- and Ligand-Field Hamiltonians Invariant under Continuous Rotational Symmetry," *Physical Review B*, Vol. 67, No. 17, 2003, pp. 174420+14.
- [12] C. Rudowicz and J. Qin, "Can the Low Symmetry Crystal (Ligand) Field Parameters Be Considered Compatible and Reliable," *Journal of Luminescence*, Vol. 110, No. 1-2, 2004, pp. 39-64. <u>doi:10.1016/j.jlumin.2004.04.003</u>
- [13] Y. Y. Yeung, "Invariants and Moments," In: D. J. Newman and B. Ng, Ed., *Crystal Field Handbook*, Cambridge University Press, Cambridge, MA, 2000, pp. 160-175. <u>doi:10.1017/CBO9780511524295.010</u>
- [14] J. Mulak and M. Mulak, "On a Complementary Scale of Crystal-Field Parametrization," *Journal of Physics A*: *Mathematical and Theoretical*, Vol. 40, No. 9, 2007, pp. 2063-2076. doi:10.1088/1751-8113/40/9/012
- [15] I. G. Kaplan, "Symmetry of Many Electron Systems," Academic Press, New York, 1975.
- [16] S. Hüffner, "Optical Spectra of Transparent Rare Earths Compounds," Academic Press, New York, San Francisco, London, 1978.
- [17] S. G. Redsun, "3-j, 6-j, 9-j Symbol Calculators," Accessed in January 2011. http://www.svengato.com (postware application).
- [18] C. W. Nielson and G. F. Koster, "Spectroscopic Coeffi-

cients for p^n , d^n and f^n Configurations," MIT Press, Cambridge MA, 1963.

- [19] J. S. Griffith, "The Theory of Transition-Metal Ions," Cambridge University Press, London, New York, 1961.
- [20] J. Mulak and M. Mulak, "A Fundamental Requirement for Crystal-Field Parametrization," *Physica Status Solidi B*, Vol. 248, No. 9, 2011, pp. 2159-2164.
- [21] R. P. Leavitt, J. B. Gruber, N. C. Chang, C. A. Morrison, "Optical Spectra, Energy Levels, and Crystal-Field Analysis of Tripositive Rare-Earth Ions in Y₂O₃. II. Non-Kramers Ions in C₂ Sites," *Journal of Chemical Physics*, Vol. 76, No. 10, 1982, pp. 4775-4788.

doi:10.1063/1.442796

- [22] S. S. Bishton and D. J. Newman, "Parametrization of the Correlation Crystal Field," *Journal of Physics C: Solid State Physics*, Vol. 3, No. 8, 1970, pp. 1753-1761. doi:10.1088/0022-3719/3/8/014
- [23] D. J. Newman, "Theory of Lanthanide Crystal Field," Advances in Physics, Vol. 20, No. 84, 1971, pp. 197-256. doi:10.1080/00018737100101241
- [24] M. F. Reid, "Correlation Crystal Field Analyses with Orthogonal Operators," *Journal of Chemical Physics*, Vol. 87, No. 5, 1987, pp. 2875-2884. doi:10.1063/1.453075