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Abstract 
 
The motion of electron wave packets of a metal is examined classically in the presence of the magnetic field 
with the aim to calculate the time intervals between two states lying on the same Fermi surface. A lower lim-
iting value of the transition time equal to about 10–18 sec is estimated as an average for the case when the 
states are lying on the Fermi surface having a spherical shape. Simultaneously, an upper limit for the electron 
circular frequency in a metal has been also derived. A formal reference of the classical transition time to the 
time interval entering the energy-time uncertainty relations known in quantum mechanics is obtained. 
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1. Introduction 
 
In general, any progress in foundations of quantum me-
chanics, on one side, and in an analysis of the time prob-
lem on another side, represent not an easy task. Never-
theless, some new views concerning both these domains 
could be reported [1,2]. Another situation does exist in a 
rather elementary physics which is usually treated as a 
source of well-established statements and ideas. How-
ever, one of the aims of the present paper is to demon-
strate, with a reference to the time problem, that there 
exist some connections between the classical physics and 
quantum theory which seemed to escape till present from 
our knowledge. 

The Lorentz force of the magnetic field acting on a 
charged particle gives regularly the particle rotation in a 
plane normal to that field. For an ensemble of electrons 
present on the metal Fermi surface taken as an example 
the effect is represented by rotation of the electron states 
in the momentum space. The Lorentz force limited to the 
action of a constant magnetic field does not change the 
electron energy, so the gyrating electrons remain in fact 
in each instant of time on the same Fermi surface. A 
separate problem concerns anisotropic Fermi surfaces for 
which the frequency of gyration is influenced by the sur-
face shape as well as the direction of the field with re-

spect the crystallographic axes. But in a simple case rep-
resented by free electrons the Fermi surface is a sphere 
and gyration frequency 0  remains practically the 
same for all electrons on that sphere:  

0

eB

mc
                    (1) 

B in (1) is the magnetic induction of the applied field; see 
e.g. [3]. Beyond of the electron gyration, another effect 
of B is a splitting of a quasi-continuous ensemble of the 
electron states filling the Fermi sphere into discrete lev-
els called the Landau levels [3,4]. However, for not very 
strong magnetic fields, the Landau levels become so nu-
merous that their mutual distances are very small, there-
fore a new quasi-continuous ensemble of states filling 
the Fermi sphere formed in the presence of B does not 
differ much from the ensemble in the absence of B. In 
the present paper the discrete structure of the electron 
states due to the Landau degeneracy has been neglected. 

Another point is that the Fermi surface is not necessar-
ily an ensemble of completely filled electron states. 
Some of states can be empty and a transition of an elec-
tron from a filled state on the Fermi surface to an empty 
state on the same surface can take place practically with 
no expense of the electron energy. In principle, the 
probability and time necessary for such a transition can 
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be provided by a time-dependent quantum theory. This 
applies equally to the cases of the absence, or presence, 
of the magnetic field. But the aim of the paper is to ap-
proach, in the first step, the electron transitions on the 
Fermi surface in a semiclassical way. We shall see (Sec-
tion 5) that the action of an external magnetic field sim-
plifies much the problem of the electron transitions. In 
the next step, we demonstrate that the same method gives 
an easy insight into the time limitations associated with 
the transition process. 
 
2. Energy Balance for the Electron 

Transitions 
 
The Fermi surface is a convenient idea because it puts an 
order in a huge amount of electron states in a metal hav-
ing the same energy. The states are defined in the mo-
mentum space of the vector k: for free electrons the sur-
face becomes a sphere and the states located on it have 
the same amount of the electron momentum. If one state 
k on the surface, called further for convenience the hole 
state, is shifted to another state k + q, called the electron 
state, and this second state is located on the same surface 
of the Fermi sphere as the k state, the requirement of a 
constant energy FE  on the surface, where  


2 2

2 2 2 ,
2 2F F x y zE k k k k

m m
   
  2



        (2) 

gives the equation  

   
 

222 2 2

2
.

x y z x x y y

z z

k k k k k k k

k k

       

  
     (3) 

This equation is equivalent to  

 

   

2

2 2
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.

x x y y z z x

y z

k k k k k k k

k k

       

   
    (3a) 

The notation  

  , , , ,x y z x y zq q q k k k     

for the vector q has been applied in (3) and (3a), and the 
subscript F in (2) is henceforth omitted for the sake of 
simplicity. 

Equations (3), or (3a), represent rather complicated 
relations between six parameters xk , y , k zk  and xk , 

y, k zk , among which for the moment no time parame-
ter is involved. 
 
3. Physical Example of the Energy Balance 

Represented in Section 2 
 
Physically, a typical example of the electron-hole pair is 

given in semiconductors: for an electron state lying on 
the Fermi surface near a narrow energy gap an absorp-
tion of a low-frequency photon having the wave vector q 
can take place leading to the momentum balance [3]  

=e h k k q                  (4) 

between the electron  and the hole  momenta. 
For an idealized situation of the energy of transition 
equal to zero, and the Fermi surface not completely filled, 
an electron can be scattered elastically to another state on 
the same Fermi surface. Assuming that only perfectly 
free electrons are present on the surface, the relation  

( )ek ( )hk

=ek kh                  (4a) 

satisfied for the electron and hole momenta is, in this 
case, equivalent to the effect of the principle of the con-
servation of energy. 

A creation of the electron-hole pair can be followed by 
a recombination of that pair. In this way a situation on 
the Fermi surface becomes equal to that from before the 
scattering process. Necessarily, the recombination proc-
ess should occupy some time. Usually this time is tried to 
be estimated by applying the quantum-mechanical time- 
dependent perturbation theory. In such a theory a refer-
ence is made to an energy-absorption process leading to 
a filling of the hole state by an electron. In this case the 
hole state, which is assumed to be lower, is recombined 
with an electron state of a higher energy. The electron 
transitions of this kind lead to the well-known lumines-
cence processes associated with emission of a rather 
small amount of energy involved in a single transition 
[5-8], whereas higher amounts of energy accompany the 
recombinations due to the electrons entering transitions 
characteristic for the Auger effect, or the X-ray emission. 
In the first step, our aim is to present an approach to the 
time intervals between electron and hole states within a 
framework which is outside the quantum theory, so the 
approach is of a classical kind. 
 
4. Effect of the Magnetic Field on the 

Electron Wave Packets 
 
First we demonstrate that an external magnetic field act-
ing on the electon states simplifies the energy balance of 
Section 2. Classically, when the electric field is ne-
glected and only the magnetic field is present, the motion 
of the electron wave packet is governed by the Lorentz 
equation (see e.g. [9]):  

 ;
d e

dt c
 

k
v B                (5) 

v is a classical velocity of the electron motion in the or-
dinary space. Since the Fermi energy in a metal is about 
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103 times smaller than the rest energy of an electron, no 
relativistic effects seem to be of importance for the mo-
tion described by the equation (5). 

Moreover, the magnetic field can be assumed so weak 
that the spherical shape of the Fermi surface remains 
practically unchanged. This means that so many Landau 
levels are below the Fermi energy that the circles repre-
senting the cross-sections of the cylinders of the Landau 
levels with the Fermi surface cover quasicontinuously 
that surface [3,4]. 

For the magnetic field B assumed along the coordinate 
axis z, so zB B , and small intervals  and t k , the 
Lorentz equation (5) can be simplified to the equations 
pair  

,x y z

e
k v B

c
    t             (5a) 

.y x z

e
k v B

c
   t              (5b) 

The sign of  in (5a) and (5b) is changed in com-
parison to that entering (5) because the travelling of an 
electron to a hole is going from  to k, therefore 
the time interval associated with the travelling process 
should be of an opposite sign to the time interval con-
nected with transitions from k to . In fact, the 
choice of sign of  becomes immaterial because the 
calculation of  defines only the absolute value of that 
interval; see Section 5.  

t

t

 k k

 k k
t

The third equation descending from the Lorentz for-
mula (5) for zB B  is  

= 0.zk                (5c) 

This formula is valid in a free space, similarly to a pre-
cise meaning of (5a) and (5b). But, in the present case, 
the space is constrained to a surface of a Fermi sphere, so 
we assume that, excepting for a stationary motion along 
an orbit localized in a plane normal to the magnetic field, 
the interval zk  satisfies (5c) only at ; see Sec-
tion 5. 

= 0t

 
5. A Coupling of the Classical Momentum 

with an Interval of Time 
 
The wave-packet velocities xv , yv  entering (5a), (5b) 
can be represented by the well-known formulae [3,4,9]:  

1
= =

1
= =

,

,

xF
x

x

yF
y

y

kE
v

k m

kE
v

k m













             (6) 

specialized here for the energy (2) of the free-electron 
states. It should be noted that formulae (6) are valid also 

in the presence of the magnetic field [9]. 
In effect of a substitution of (6) into (5a) and (5b), the 

expression dependent on xk , xk , yk , yk , being a 
component of the energy balance in (3a), vanishes:  

  0.z
x x y y x y y x

eB
k k k k k k k k t

cm
            (7) 

This result reduces (3a) to a simple relation between 

zk , zk  and t . 
For, a substitution of the result of (7) together with (6) 

into Equation (3) of the energy balance gives:  

     

  

  

  
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z
x y
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F z

k k k k k

eB
v v t

c

k k t

k k t

       

     
 

   

   

     (8) 

In (8) the expressions for the frequency  [see (1)], 
as well as (2), have been applied. 

0

In effect, only the terms  

, , ,z z Fk k k t                (8a) 

are coupled by the formula (8) in its final step. This re-
duces the momentum problem in four dimensions (x, y, z, 
t) to that in only two dimensions (z, t). 

Evidently, a substitution of  in (8) implies 
the time interval  

0zk 

= 0.t                   (9) 

 
6. Discussion of the Equation (8) 
 
Since necessarily <z Fk k  [see (2)], the difference 

2 2
F zk k  is a positive number, or zero. For  cho-

sen as an example, a compact form of (8) equal to  
> 0zk

    2 22 2 2
02 z z z F zk k k k k t            (10) 

implies that < 0zk . We obtain in this case from (10)  

    22 2 2
02z z z F zk k k k k t            (11) 

where instead of zk  its absolute value zk  is sub-
stituted. 

As far as = zB B  in (1) does not vanish, we find from 
(11) that for any 0t   the interval zk  cannot be 
equal to zero. In fact, since  and 0> > 0F zk k 0   
the interval zk  should be a non-vanishing positive 
number for any 0t  . Therefore, a finite transition 
time provides us with zk  equal to a positive number 
which cannot be made arbitrarily small. 

Another property is obtained when (11) is divided by 
2
0 . This gives:  
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    22 2
2
0

2
.

z z z
F z

k k k
k k t

  
  


      (12) 

Since Fk , zk , and zk  are proportional to cm–1, and 

0  sec–1, both sides of (12) represent a reciprocal 
value of the velocity square. According to a special the-
ory of relativity such expressions should not become 
smaller than  

 

2

1
,

c
                   (13) 

where c is a speed of light. For the left-hand side of (12) 
this condition means that 0  cannot be an arbitrarily 
large number. In reality, however, in calculating 


t  we 

are not so much interested in a definite size of zk  or 

zk , or the size of B entering 0 , but rather in a basic 
inequality coming from (12) and (13):  

  22 2
2

1
.F zk k t

c
             (14) 

The average value of 2
zk  in (14) is  

2 2

0

1
d

3

kF 21
,z z z F

F

k k k
k

  k         (15) 

therefore, by substituting 2
zk  instead of 2

zk  in (14) we 
obtain for  the relation  t

 22
2

2
.

3 Fk t
c

 
1

            (16) 

For numerous metals Fk  is equal to about 108 cm–1, 
or not much above this value [10]. This means that the 
lower limit of the classical interval  is equal ap-
proximately to  

t

  1 18
lim

3 1
 10  sec.

2 6
Ft ck

         (17) 

Beyond of (14), another combination of (12) and (13) 
gives:  

 
2
0

2 1
.z z zk k k

c

  


 2
        (14a) 

For small zk  we have the change of the Bloch’s 
wave vector:  

2π2π 2π
,z

z z

n
k n

L L L
           (15a) 

on condition the change of the quantum number zn , 
which is assumed to be a large number, is equal to 

; symbol L in (15a) represents the length of the 
edge of the metal sample. The interval 

1zn 
zk  in (15a) 

substituted to (14a) gives approximately the condition  
2

02

For 1L   cm and  cm–1, we obtain the 
following requirement giving a limit of the size of 

810z Fk k 
0 :  

 
 

1/228 10
1/22 4

2

15 1
0

4π10 3 10 1 1
cm 4π 10 3 10

sec seccm

10  sec

      
 
  

  

10

 (17a) 
since .  1/2

4π 3.5
 
7. Quantum-Mechanical Approach to the 

Interval Δt 
 
An interesting point is a formal reference of a classical 
relation (14) to the quantum-mechanical uncertainty 
principle coupling time and energy; see e.g. [11]. Con-
sequently to their classical behaviour, zk  and t  in 
(14) can be continuous parameters having no reference to 
the Planck constant . However, the behavior charac-
teristic for quantum mechanics is obtained when both 
sides of (14) are multiplied by the term 



2 2m . This 
gives in place of (14) the formula  

 
2

2

22FE t
mc

  


            (18) 

in which FE  is a quantum-mechanical energy differ-
ence between the Fermi energy at the momentum Fk  
and the energy of electron having the momentum zk :  


2

2 2 .
2F FE k k

m
  

 z            (19) 

Another transformation of (18) gives:  

   2 22 22 F rest Fmc E t E E t            (20) 

where on the left-hand side we have a product of FE  
with another energy difference  

 2 2 2restE mc mc mc     2 .        (21) 

Expression (21) is the change of the electron energy 
from a set of negative values equal approximately to 

 to a set of energies above the rest electron energy 
; see e.g. [9] . 

2mc
2mc

Formally (20) becomes a product of two uncertainty 
relations, one containing the energy interval FE  and 
the other containing the interval :  restE

,FE t                 (20a) 

;restE t                (20b) 

both relations are based on the same time interval t  
entering (14). Because we have regularly rest F , 
a satisfied relation (20a) implies immediately fullfillment 
of (20b).  

E E 

2
z zk k c   .           (16a) 
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8. Concluding Remarks 
 
The time interval of a transition between two electron 
states lying on the same spherical Fermi surface is cal-
culated, in the first step, in a classical approximation as a 
function of: 1) the change of the electron wave vector, 2) 
the actual component value of that vector, and 3) the size 
of the magnetic induction, all quantities were taken along 
the direction of the magnetic field. In the next step, a 
lower boundary for the length of this time interval is ob-
tained in effect of an application of the special theory of 
relativity. 

But the same result for the size of the time interval can 
be approached also on a quantum-mechanical footing. To 
this purpose a product of two uncertainty relations for 
time and energy should be taken into account. In each of 
these relations the size of the time interval is assumed to 
be the same, only the intervals of energy entering the 
uncertainty relations are different. One of these intervals 
is equal to the Fermi energy minus the actual component 
of the electron kinetic energy taken along the magnetic 
field, the other interval, however, amounts twice the rest 
energy of the electron. 
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