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Abstract 
 
Weak and strong coupling interactions and trapped effects have always played a significant role in under-
standing physical and chemical properties of materials. Triple-well anharmonic potential may be modeled for 
interpretation of energy spectra from the nuclear to macro molecular systems, and also crystalline systems. 
Exact periods of a trapped particle in each well of the potential are explicitly derived. For the extended 
Duffing system, it is predicted that infinite series of both frequency and spatial trajectory approach to exact 
results in the limit of weak-coupling cases (g→0). 
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1. Introduction 
 
The physics of nonlinear systems is one of the important 
research interests in both quantum and classical mechan-
ics, and its oscillatory representation [1-7] occupies spe-
cial place for dynamical systems. There are different 
kinds of nonlinear oscillator problems that arise in the 
study of dynamical systems. In that, the extension of 
well-known nonlinear pendulum theory to the one di-
mensional oscillator model has been widely used to si-
mulate classical and quantum systems (see some of ref-
erences [1-17]).  

Nonlinear oscillatory systems are widely used tools for 
the modeling of atomic, molecular and crystalline sys-
tems [12-23]. Although overall reliability of the quantum 
and classical interpretations is controversial, the simple 
theoretical correspondence and appropriate calculations 
make them popular, among the theoretically physicists 
and chemists [19-25]. Now, let us consider a second or-
der one dimensional anharmonic oscillator equation, 

        3 5 0x t cx t g x t ax t        (1) 

with the arbitrary parameters of c, g and a. Note that if 
the parameters in the equation are chosen as c = w0

2, g = 
–1/6 w0

2 and a = –1/20, it turns to fifth order non-linear 
equation of elementary (1+1) dimensionally pendulum, 
and also to the Duffing equation [26-28] for a = 0. How- 
ever, using the perturbation approximations [21], a mod-
el of nonlinear problem, other words the extended Duff-

ing equation, reduces to approximately solvable case. So, 
we called it here after the extended Duffing oscillator. 

It is important that the range of applicability of this 
equation is fairly wide than that of Duffing oscillator, 
and in particular, it includes extra free parameter (a). 
Other words, the arbitrary parameters (i.e., g and a) stand 
for the perturbation parameter and coupling constants for 
weak-coupling systems, respectively. It may be modeled 
for coherent tunneling via adiabatic passage in a triple- 
well system and coherent transport of electrons between 
quantum dots or atoms in micro-magnetic traps [18]. 
Generally, for weak-coupling systems, anharmonic terms 
can be treated as a perturbation, that well-known first 
detailed example is quartic anharmonic potential by 
Bender and Wu [24, 25]. By our assumptions, in order to 
parallel analysis, this new nonlinear equation may be 
called Duffing+ax5 equation.  

Let us integrate the dynamical system in Equation (1) 
with respect to time,  

p x  , 

       2 2 2 4 6
0

1 1 1 1

2 2 4 6
p t w x t gx t agx t E      (2) 

where the integral constant E (Energy) can be imposed in 
terms of the potential parameters. By using the initial 
conditions for frequency (w0) and location (x0) at t = 0, 
and also for the parameters a and g, it can be settled as, 

   2 2 4 6
0 0 0 02 1/ 2 1/ 3E w x gx agx    
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So, the reducible potential in Equation (2) can be 
written as, 

       2 2 4 6
0

1 1 1

2 4 6
V x w x t gx t agx t      (3) 

which has different shapes, as a modeling of systems, for 
given potential parameters w0, a and g (see Figure 1). 
Note that, if one wants to get the special shapes of the 
potential, such as one and two or three wells, the restric-
tions must be constructed among the parameters as in 
Table 1, which shows the possible range of the potential 
parameters for triple-well behavior. 

On the other hand, for given initial energy (E) and ini-
tial parameters, dynamical equation of the system in Eq-
uation (2) can be written as, 

p x  , 

 2 3 5
0p w x g x ax              (4) 

For chosen g and a parameters, which they are gene-
rating three-well and one-well potentials, phase portraits 
are shown in Figures 2 (a) and (b), respectively. It is seen 
that the closed orbits are for bonded cases in the trajecto-
ries, are correspond different potential shapes. However, 
both of bounded (closed orbits) and unbounded cases 
(open orbits) can be situated, i.e., all initial conditions 
could not lead to the stable equilibrium points and closed 
orbits. Other words, the image of a periodic solution in 
the phase portrait is a closed trajectory that is usually 
called periodic orbit also. Therefore, instead of trying to  

Table 1. The range of the parameter a  for given some g 
values of triple-well potentials in the interval  
( 50 1/ 6)g     

g Range of a  

–1/6 1 32 0a    

–1/4 3 64 0a    

–7/12 7 64 0a    

–1 3 16 0a    

–2 3 / 8 0a    
–5 15 /16 0a    
–10 15 / 8 0a    
–50 75 / 8 0a    

 
solve the equation for all phase paths, we would like to 
find the periodic solutions as 

   2π /x t x t w              (5) 

for the bonded cases, with the initial conditions, 

 0 1x  ,  0 0x              (6) 

By our initial assumptions, we apply the Lindstedt- 
Poincaré perturbation method [26-28] to the non-linear 
Duffing + ax5 oscillatory system, in following section 
(Section 2). In Section 3, we derive the exact quarter 
periods expressions for a particle in the triple-well poten-
tial. Hence, we calculate the weak and strong interaction  

 

 
Figure 1. The shapes of triple–well (sextic oscillator) potential versus anharmonicity parameters a, and x. The other anhar-
monicity parameter is fixed (g = –1/6) to treat pendulum problem. 
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Figure 2. The phase portraits of sextic anharmonic oscillator potential with fixed g = –1/6 and different values of anharmo-
nicity parameter a; a) for tree-finite gap cases, a = –3/100; and b) for one-finite gap cases, a = –5/100. The values of the para-
meters chosen as the corresponding coefficients of the Taylor expansion of sin(θ). 
 
limit cases for the purposed system in Sec.4. Finally, the 
paper ends with discussion section Sec.5. 
 
2. Weak-Coupling Interactions 
 
Classical Lindstedt-Poincaré approach [26-28], it’s mod-
ified version [23, 29-30] and also linear delta expansion 
method [31] are powerful methods for generating peri-
odic perturbation series of the non-linear anharmonic 
oscillatory systems. We now consider rescale time ac-
cording to 

wt   

( )q x
w

    
 

                (7) 

then, Equation (1) can be written as 

 2 2 3 5
0( ) ( ) ( ) ( ) 0, w q w q g q aq          (8) 

with the initial conditions, 0 (0) ,   (0) 0q x q  , where, 
the prime denotes differentiation with respect to new 
time variable, ξ. Thus, the periodicity is  

( ) ( 2π)q q    for new variables. The fact that peri-
odic solutions of equations can be expressed as an infi-
nite series [23] for small coupling parameter  
( 2 2

0 0/g w x ), 
2
0

0 2
0 0

( ) ( )

n

n
n

x g
q q w

w
 





 
  

 
             (9) 

and also, frequency w can be expanded as 

2
0

0 2
0 0

n

n
n

x g
w w w

w





 
  

 
              (10) 

Then, substituting series of w and q(ξ) in Equation (8) 
and comparing the coefficients of the same power of the 
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perturbation parameter g, it can be obtained a recursive 
set of simple ordinary differential equations: 

 

( ) ( ) ( ),      (0) (0) 0n n n n nq q f q q          (11) 

where 

1 1 1 1

0 1
1 1 1 0 0

1 11 1

1
0 0 0 0

( ) 2 ( ) 2 ( ) ( ) ( ) ( ) ( )

                   ,  1, 2,3,...

n n n m n n m

n n l n l m l n m l m l n m l
l m l m l

n i j n i j kn n i

i j k l n i j k l
i j k l

f w q w q w w q q q q

a q q q q q n

      
     

     
    

        

    
   

      

 

   

   
       (12) 

 
without impairing the generality, we can impose initial 
values: w0 = 1 and x0 = 1. The initial trajectory could be 
chosen as 0  ( ) cos( )q   . Otherwise, ( )nf   functions 
can be expanded to a Fourier series  

 
2

,
0

( ) ( ) cos (2 1)
n

n n k
k

f f a k 


       (13) 

with starting coefficients as fn,0 = 0. Note that choosing 
of this initial value, the secular terms in the solutions of 
Equation (11) are vanish. On the other hand, we can write   

 
2

,

2
1

( )
( ) ( ) cos( ) cos[(2 1) ]

1 2 1

n
n k

n n
k

f a
q l a k

k
  



  
 

  (14) 

 

where 

   

2 1
,2 ,

2 2
1

( )
( )

4 1 1 1 2 1

n
n n n k

n
k

f f a
l a

n k





 
   

     (15) 

Note that, these general expressions can be predicted 
analytically using simple algebra. Substituting general 
definitions (12-13) in differential Equation (11), we find 
the corresponding series for ( , )w a g  and ( , , ; )x w a g t  
(Equations (9) and (10)), 

2
2 33 5 21 19 215

( , ) 1 ( )
8 16 256 128 3072

a a a
w a g g g O g

           
   

 

                 (16) 

1 5 1
( , , ; ) cos( ) cos( ) cos(3 ) cos(5 )

32 24 128 32 384

a a a
x w a g t wt wt wt wt g

              
    

 

2 223 605 3791 3 205 5
 cos( ) cos(3 )

1024 12288 147456 128 4096 192

a a a a
wt wt

            
   

 

2 2
2 31 7 95

cos(5 ) cos(7 ) cos(9 ) ( )
1024 12288 4096 294912 98304

a a a a
wt wt wt g O g

          
    

         (17) 

 
It is note that, these infinity series of w(a,g) approach 

the exact results in the limit g→0 for the weak-coupling 
systems and, the series of trajectory x(w,a,g;t) coincide 
with the fourth-order Runge-Kutta method results. On 
the other hand, it is seen that when a is choosed as zero, 
this formulation is reduced to solution of well-known 
Duffing oscillator [9-11,23,26-28]. However, fn,k(a) and 
ln(a) functions are listed in Tables 2 and 3, respectively.  

3. Exact Solutions of a Particle in the 
Triple-Well Potential 

Classically, it is simple to combine time and space va-
riables under certain conditions. Substituting p (from 
Equation (4)), it can be integrated over a quarter period. 
Thus, we obtain exact quarter period for a particle in the 
triple-well potential as 

   

0

0 2 2 2 2
0 1 2

d

2

3

x x

w ag
x x x u x u




  
       (18) 

where 
2
0

1

3

2 4

x
u G

a
    , and 

2
0

2

3

2 4

x
u G

a
     , 

with 
 2 2 2 4

0 0 03 3 / 16 / ( ) 4 / 4

4

a w ag x a x
G

  
 . 

Changing the variable x2 = y, period integral turns to 

   

2
0

2
0 0 1 2

π 1 3 d
  

2 2

x y

w ag y x y y u y u


  
    (19) 

and help of integral tables in Ref.[32] (equation number 
is 3.147), we can calculate the last integral. For given 
possible energies or initial conditions, a matter of prac-
tical importance is to determine the classical period of 
trapped particle. Now, let us suppose the potential have 
three well (see Figure 1). and a particle has been trapped 
one of the wells. It is note that the use of different values  
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Table 2. The coefficients of inhomogeneous oscillatory equations, , ( )n kf a , of weak coupling cases ( ) 3n  in Equation (13). 
Coefficients were computed using Equation (13). 

n k , ( )n kf a  

1 

1 
5 1

16 4
a   

2 
1

16
a  

2 
 

1 23 205 5

16 512 24
a a   

2 
7 3

512 128
a   

3 23 95

256 6144
a a   

4 25

6144
a  

3 

1 2 3297 7243 87565 233935

2048 16384 196608 1572864
a a a     

2 2 39 1409 10271 41065

256 16384 131072 1572864
a a a    

3 2 33 97 2021 2465

2048 8192 65536 147456
a a a     

4 2 35 395 55

4096 196608 49152
a a a    

5 2 325 1195

131072 4718592
a a   

6 335

4718592
a  

 
Table 3. The coefficients of the solutions of weak coupling cases ( ) 4n  in Equation (14), which were calculated using Equa-
tion (15). Coefficients depend on coupling parameter a. 

n ( )nl a  

1 
1 1

32 24
a   

2 223 605 3791

1024 12288 147456
a a   

3 2 3547 6743 81461 60769

32768 131072 1572864 3538944
a a a     

4 2 3 46713 322145 3829667 181124033 1067484605

524288 6291456 50331648 3623878656 86973087744
a a a a     

 
of potential parameters leads to different varieties of po-
tential shapes and equilibrium conditions. Therefore, 
having defined equilibrium points, our task now is to 
find period of trapped particle in one of potential wells: 

1) At middle well: choosing the parameters as, 
2

2 1 0,  ,  ,  ,  0a u b u c x u c d     , and then using the 
equation (3.147.2) in Ref. [32], 

   

2
0

2
0 0 1 2

1 3 d
 

2 2

x y

w ag y x y y u y u




  
      (20) 

we can find the exact quarter period as 

 
 
 

2
2 1 0

22
2 0 12 0 1

3 1
 ,

2 2

u u x
F

w ag u x uu x u

   
   

   (21) 

where ( , )F k  is elliptic integral of the first kind [32] 

2 2
0

d
( , )

1 sin ( )
F k

k

 





            (22) 

2) At right (or left) well: there are two different cases. 
If the particle has positive energy, we set the parameters 
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as 2
2 1 0,  ,  ,  ,  0a u c u b x u a d     , and then, we  

use the equation (3.147.6) in Ref. [32], 

   

2

2
0

2
0 1 2

π 1 3 d
 

2

u

x

y

w ag y x y y u y u


  
     (23) 

Thus, we can find exact half period of particle with 
positive energy as 

 
 
 

2
2 0 1

22
2 1 02 1 0

π 3 1 π
,

2

u x u
F

w ag u u xu u x

       

  (24) 

On the other hand, if the particle has negative energy 
and in right (or left) well, we set the parameters as: 

2
2 0 1,  0,  ,  ,  a u c b x u a d u     , and then using equ-

ation (3.147.6) in Ref.[32], 

   

2

2
0

2
0 1 2

π 1 3 d
 

2

u

x

y

w ag y x y y u y u


  
    (25) 

we can find the exact half period as 

 
 
 

2
2 0 1

22
0 1 20 1 2

π 3 1 π
,

w 2

u x u
F

ag x u ux u u

       

 (26) 

It is note that, if we expand Equation (21) for limit 
(g→0),  as expected for weak coupling cases, there is 
an excellent agreement between expansion and Equation 
(16), i.e., they are the same. 
 
4. Strong-Coupling Limit 
 
Let us rewrite Equation (21), for middle range, as 

 
2

2 2 0
0

π 1 3 1
3 3 16 / 4 4

2 ( ) 4 2 12

wa
w g w a g a a

K r g
                            (27) 

 
where K(r)=F(/2, r) is elliptic K function, (8.112.1) in 
Ref.[32],. The new variable is 2 /r   with  

 23 3 4 16 4g g a g a ag     , 

 

12 9 6g ag     , 

respectively . Our purpose is to find the series expansion 
of the periods in large asymptotic limit, g→∞. Hence, we 
can write frequency series as, 

22 2 2
0 0 0

0 1 2 , ( )

n

n

w w w
w g b b b b g

g g g

      
            
       

                        (28) 

 
where first three coefficients are 

0

2π

4 3
b

 



   (29) 

and,  

    
1

3 2 32 π 3 2
2

aa
b a

  


 
  

    
 

 

  (30) 

 
 

   



223

2 3 2 2 2 2 2

7 6 5 3 4 4 3 3 3

2 3 2 2
2

12 2 9 6π 2 288 2576

3 16 2

     82944 290304 228096 1152 134784 1152 12416
2

1728 2592
     46656

a a aa aa a
b

a

a a a a a a a

a a
a

     
          

  


   
 

               

      


   


 

 
with the abbreviations 

29 12 12a a    , 9 6a    , 3 2a    , 

3 6a    ,  

2

2
EllipticK


 

 
    

, 
2

2
EllipticE


 

 
    

 

 
2

2 1

  










 , 
2

1

 







,

 144 216a a

a








  , 

3/2
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a

a
  


    respectively. 

In order to compare, we figure out the weak-coupling 
and strong-coupling expansions together with the exact 
result in Figure 3. It can be indicated that the curve of 
exact result is appearing as a ‘cut line’ between last term 
of the expansions odd and even order for two different  
classes of interactions. In the other words, if the order of 
last term of expansion is even (odd) then, corresponding 
curve lies below (above) the curve of exact results. Note 
that the plot of extended Duffing systems is similar to 
that of the Duffing systems (see Figure 1 in Ref. [23]). 
In Figure 4, we plot of weak-coupling perturbation se-
ries (10) versus to the coupling parameter a for fixed g = 
–1/6, where corresponding perturbation orders are 
marked in label (1 - 11). It should also be noted that, as 
expected for weak-coupling cases, the convergence rate 
increases while value of a decreases (see Figure 4).  

In addition to the Duffing systems, a more general sit-
uation has been investigated for the Duffing and Duff-
ing+ax5 dynamical systems. On the other hand, we also 
solve the equation by numerical Runge-Kutta (RK) me-
thod that, the solutions coincide with LP profiles only in 
small absolute value of parameter g (|g|<1). The results 

are shown in Figure 5, where we plot spatial profile of 
oscillator versus time. These results are interesting not 
only in the convergence of both dynamical properties but 
also in the context of realistic physical systems. It is 
shown that period of system increases, while the absolute 
value of parameter g decreases. 
 
5. Conclusions 
 
We have shown that dynamical solutions of the extended 
Duffing oscillator, the corresponding to the family of 
quantum triple-well potentials can be closely approx-
imated by choosing appropriate potential parameters. 
The basic advantages of the approach are due to its spe-
cific properties of quantum triple-well oscillator potential. 
We can say that our algorithm is more flexible for other 
polynomial potentials, and also reproduces infinite per-
turbation series for the trajectories and the frequencies of 
a trapped particle within limit of weak and strong coupl-
ing interactions. Of course, weak and strong coupling 
interactions and the trapped effects are important inmany 
fields of physics such as particle physics, atomic, mole-
cular and macromolecular systems. It should be re-
marked that, there is a good agreement between the 
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Figure 3. The plot of exact result is versus coupling parameter g for middle range of potential (solid curve). For 
the parameter, a = –3/100, the truncated perturbation expansions of weak-coupling cases (dashed curves) are 
labeled with 1 9  and the strong coupling cases (dotted curves) with 1 9 . 
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Figure 4. The plot of weak-coupling perturbation series (10) versus parameter a for middle range (for fixed g = –1/6). The 
numbers at the figure indicate that the order of perturbation series. 
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Figure 5. Numerically and approximately (with perturbation theory) calculated profiles of trajectory,  , , ;x w a g t , for dif-
ferent values of the perturbation parameter g. In the figure, the value of the parameter a = –3/100, and n denotes the order of 
perturbation. 
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results of the Lindstedt-Poincaré perturbation method 
and our analytic results for weak coupling cases. 
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