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Abstract 
 
In this paper we substantiate a necessity of introduction of a concept the counterpart of rapidity into the 
framework of relativistic physics. It is shown, formulae for energy and momentum defined via counterpart of 
rapidity are regular near the zero-mass and speed of light states. The representation for the energy-mo- 
mentum is realized as a mapping from the massless-state onto the massive one which looks like as a 
“q”-deformation. Quantization of the energy, momentum and the velocity near the light-speed is presaged. 
An analogue between the relativistic dynamics and the statistical thermodynamics of a micro-canonical 
ensemble is brought to light. 
 
Keywords: Relativistic Dynamics, Complex Algebra, Rapidity, Energy-Momentum, Background Energy, 

Statistical Thermodynamics 

1. Introduction 
 
The developments of the basic theories in the fields of 
solid state and elementary particles exhibit a crucial im- 
portance of the behavior of the physical systems near the 
critical points. The experimental results and their theo- 
retical treatments have discovered the new physical phe- 
nomena named as spontaneously broken symmetries near 
the ground state. That a ground state of a quantal system 
need not possess the Hamiltonian’s symmetries, and 
therefore degenerate, was first appreciated and realized in 
non-relativistic many body systems and in many con- 
densed matter situations. Also that had been realized, the 
state of superconductivity possesses with lower entropy 
(hence, with higher order) then a normal state. Following 
this understanding Heisenberg [1] and Nambu [2] made 
the seminal suggestion that this may also be true for the 
vacuum state of a relativistic quantum field theory. 

For the relativistic mechanics the state with = 0, m  
=v c , i.e., the state with proper mass equal to zero and 

the velocity equal to speed of light, is a singular point of 
the theory. The massive particles, according to laws of 
the relativistic mechanics, cannot attain the velocity  
equal to speed of light. The formulae of the Lorentz 
transformations and formulae for the energy-momentum  

of the relativistic massive particle are singular near the 
velocity equal to speed of light, whereas they are well de- 
fined for the rest state. In general, it is supposed that near 
the speed of light the dynamics of a massive elementary 
particle more does not obey the classical mechanics of a 
single particle and one must work in the scope of the 
quantum field theory. In fact, acceleration of the charged 
particle induces radiation of electromagnetic fields and 
leads to cumulative process of creation of a cascade of 
elementary particles. Noteworthy a crucial gap between 
massive and massless states: the particle with extremely 
small value of mass can stay in the rest state, meanwhile 
its neighbour, the particle with = 0m , has to move with 
the speed of light. 

The irregular behavior of the conventional representa- 
tions for energy-momentum near the zero-mass point is a 
well-known problem of the relativistic mechanics. In fact, 
the celebrated formulae for the energy-momentum 0 , p p  
defined via velocity v ,  

2

02 2

2 2

= ,   =

1 1

mv mc
p cp

v v

c c
 

       (1.1) 

could not be used to obtain any reasonable limit at the 
points =v c , = 0m , because the indeterminacy of type  
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0

0
, meanwhile, the energy and momentum of the particle  

with = , = 0v c m  are given by a certain finite value. In 
fact, in order to prove this assertion we may use the 
expression of the energy via momentum  

2 2 2=E c p m c             (1.2) 

For small values of the mass, mc p , we can use 
the following approximation  

2 2 2 3

2
= 1 =

2

m c m c
E pc pc

pp
       (1.3) 

Hence, when 0m  , 0p p  the velocity tends to 
speed of light, 0/ = / 1v c p p  . The energy and mo- 
mentum at this limit numerically are equal to each other 
and equal some finite value. 

The following question gives arise: what kind of the 
law of relativistic dynamics can help us to solve this 
indeterminacy? Or, in the other words, how we must mo- 
dify, or generalize, the conventional frames of the theory 
in order to elaborate some pathway from the state with 
non-vanishing proper mass to the state with zero-mass? 

In order to answer these questions we have to deepen 
the concept of rapidity. The rapidity is well-known quan- 
tity of the relativistic kinematics, this is an hyperbolic 
angle used as a parameter of the Lorentz-boost in the 
Lorentz group of transformations. Most physicists main- 
tained that the rapidity is a merely formal quantity be- 
cause the rapidity did not receive any physical interpre- 
tation in the framework of the relativistic kinematics [3]. 
Nevertheless, it had been noted that the rapidity plays an 
important role in establishing some link between the 
hyperbolic geometry and relativistic kinematics. This link 
firstly had been discovered by V. Varicak [4], H. Hergoltz 
[5] and A. A. Rob [6]. Contemporary model of relativistic 
kinematics based on non-associative algebras and on the 
concept of gruppoids had been constructed by A. Ungar 
[7]. 

According to our point of view, the rapidity is one of 
principal notions of the relativistic dynamics. An ess- 
ential role plays a quantity dual to the rapidity, we de- 
nominate as the counterpart of rapidity. Introduction of 
the counterpart of rapidity is related with discovery of a 
new features of dynamical variables of the relativistic 
mechanics. The counterpart of rapidity is a rapidity re- 
lated with the systems of references coming from the 
light-speed state toward to the rest state. Therefore the ex- 
pressions for energy, momentum and velocity expressed 
via the counterpart of rapidity are regular at the state 
with = 0, =m v c . The new representation for energy 
and momentum can be considered as a mapping from the 
massless state onto the state with mass. 

An important feature of the counterpart of rapidity is 
that the hyperbolic angle is proportional to the proper 
mass of a particle. The part of the hyperbolic angle in- 
dependent of the mass can be interpreted via the concept 
of background energy. The relativistic energy-momentum 
within the framework of the new representation formally 
coincides with formulae of statistical thermodynamics of 
an single oscillator which allows one to give an inter- 
pretation of the background energy by introducing the 
quantities of the state like temperature and entropy. 

The paper besides of the Introduction and Conclusions 
is presented by the following sections. 

Section 2 presents elements of the relativistic dynamics 
of charged particle. In Section 3, an evolution generated 
by mass-shell equation is explored. Transmission between 
translation and hyperbolic rotation is established. In Sec- 
tion 4, the representation for the momenta is modified by 
introducing a fundamental constant of mass. The modified 
formula is interpreted as a mapping from massless state 
onto the state with nontrivial mass. A hypothesis on quan- 
tization of the velocity near light velocity is suggested. In 
Section 5, an analogue between formulae of relativistic 
mechanics and formulae of statistical thermodynamics is 
demonstrated. 
 
2. Elements of Relativistic Dynamics of 

Charged Particle 
 
In this section we will remind only selected elements of 
the relativistic dynamics of charged particle necessary in 
subsequent sections. 

Consider a motion of the relativistic particle with 
charge e  in the external electromagnetic fields E


 and 

B


. The relativistic equations of motion with respect to 
the proper time   are given by the Lorentz-force 
equations [8]:  

   0
0

dd
=  ),  =

d d

pe e e
p

mc m mc 
  

p
E p B E p   (2.1) 

0d d
= ,  =

d d

pc t

m m 
r p

             (2.2) 

These equations imply the first integral of motion  
2 2 2 2
0 =p p M c                (2.3) 

The constant of motion has obtained its interpretation 
as a square of proper mass of the relativistic particle, so 
that, 2 2=M m . In the case of stationary potential field, 
i.e. when = ( ),e V rE  the equations imply the other 
constant of motion, the energy of the relativistic particle  

0= ( )E cp V r               (2.4) 

In order to give a main idea we shall restrict ourselves 
by considering only lengths of the momenta. For that 
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purpose let us consider the projection of Equation (2.1) 
onto direction of motion. In this way we come to the 
following set of equations  

0
0

dd d
= ,  = ,  =

d d d

pp e
p p E

mc


  

     (2.5) 

where  

 = ,  =E
p


p

n E n              (2.6) 

Equation (2.5) can be integrated with respect to para- 
meter  . We find  

    
    

0 = cosh sinh ,  

=  sinh cosh  

p A B

p A B

 

 




       (2.7) 

Let 0=   for the rest state where = 0p . Then (2.7) 
is redefined as follows  

   0 0 0=  cosh ,  =  sinhp mc p mc       (2.8) 

Velocity with respect to coordinate time is defined by  

 0
0

= = tanh
v p

c p
             (2.9) 

Comparing this formula with the formulae used in the 
relativistic kinematics we come to conclusion that the 
parameter coincides with hyperbolic angle denominated 
in Lorentz-kinematics as the rapidity. In Equation (2.5) 
the rapidity   is presented as a complementary dy- 
namical variable. 

The evolution governed by Lorentz-force Equation 
(2.1) changes the quantities 0 ,p p  in a such way that re- 
main invariant the mass-shell Equation (2.3). The rapidity 
during of this evolution undergoes to translations. 

Notice, however this is not unique form of variation of 

0 ,p p  remaining invariant the mass-shell Equation (2.3). 
Now let us explore another form of evolutions of the 
energy-momentum which also remain invariant the mass- 
shell equation. 

Following references [9,10], let us introduce two 
quantities 2 1> > 0q q  by  

    2
0 2 1 2 1 1 2

1 1
= , = ,  =

2 2
p q q mc q q p q q   (2.10) 

Inversely,  

1 0 2 0= ,  = .q p mc q p mc         (2.11) 

The quantities 1 2,q q  form the set of eigenvalues of 
the quadratic polynomial  

2 2 2 2 2
0 02  = 0,  0X cp X c p p p        (2.12) 

with respect to which relationships (2.10) play the role of 
Vieta’s formulae. Under translation 0=Y X p  the 
quadratic polynomial takes the form of mass-shell equa- 
tion:  

2 2 2 2 2
0= = .Y p p m c  

Observation 2.1 
The mass-shell equation remains invariant under 

additive changes (simultaneous translations) of the pair 
of quantities 1 2,q q ,  

1 1 2 2= (0) ,  = (0) .q q q q          (2.13) 

These translations result an additive change of the 
kinetic part of the energy  

0 0= (0)p p              (2.14) 

In the same spirit as a solution of the quadratic 
equation 2 = 1x  , the imaginary i , generates algebra 
of complex numbers, the solution of quadratic Equation 
(2.12) generates an algebra of general complex numbers 
[12,13]. In references [14,15], some geometrical and 
algebraical properties of the evolution governed by by 
quadratic Equation (2.12) had been explored. Since 1 2,q q  
are roots of the quadratic Equation (2.10), the following 
Euler formulae hold true  

     0 0 1 0exp = ; ,  ; , ,  = 1,2.k kx g p p x g p p k    

(2.15) 

Form the following ratio  

  2

1

exp 2 =
q D

mc
q D





          (2.16) 

where  

 
 

0 0

1 0

; ,
=

; ,

g p p
D

g p p




            (2.17) 

Translations = , = 1, 2k kq q k   remain invariant 
m , hence  

   2

1

exp 2 =
q D

mc
q D

 
  


  

      (2.18) 

Let, = D  . Then,  

  2
0

1

exp 2 =
q

mc
q

            (2.19) 

The formula (2.19) is a Key-formula of the hyperbolic 
calculus. This formula establishes some interrelation be- 
tween simultaneous translations of denominator and nu- 
merator of the fraction and the hyperbolic rotation. 

3. Counterpart of Rapidity and 
Representations for Energy-Momentum 
Regular Near Zero-Mass State 

From Key-formula (2.19) by taking into account (2.11) 
we get  

   0 0 0=  cothp mc mc         (3.16) 

Any set of momenta 2
0{ , }p p  with 2 2

0 >p p  real 
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positive finite numbers may serve as a generator of the 
evolution where the initial point is defined by  

 
2

02
2

01

exp 2 = =
p mcq

mc
p mcq





       (3.17) 

and  

   0 =  coth ,  =
sinh

mc
p mc mc p

mc



    (3.18) 

From these equations the following useful relationship 
is derived  

  0exp =
p mc

mc
p




          (3.19) 

With respect to   the evolution of energy- mo- 
mentum is given by following equations: 

2
0 0

d d
= ,  =  

d d
p p p p p

 
       (3.20) 

The evolution of kinetic energy is described by non- 
linear equation  

2 2 2
0 0

d
= 0

d
p p m c


            (3.21) 

Thus, we possess now with two different repre- sen- 
tations for the energy and momentum via hyperbolic 
trigonometry. 

One is a function of the rapidity   given by  

0( )  = cosh( ),  = sinh( ).I p mc p mc     (3.22) 

And the other one describes an evolution with respect 
to counterpart of rapidity = mc  :  

   0( )  = coth ,  =
sinh

mc
II p mc mc p

mc



  (3.23) 

The former is regular at the rest state, these formulae 
we shall denominated as the low-speed representation. 
The latter is regular at the state of speed of light, these 
formulae, correspondingly, we shall named as highspeed 
representation. 

From the low-speed representation we come to the 
formula for energy near the rest state for slow motion, 
this is, so-called, non-relativistic limit. 

In order to obtain the non-relativistic limit we use 
expansion of (3.22) for small values of 1  :  

2
0

1
= 1 ,  = .

2
p mc p mc   

 
 

Removing from these equations  , we get  

2

0 =
2

p
p mc

mc
              (3.24) 

or,  

 
2

( ) 0= =
2nonrel

p
E c p mc

m
        (3.25) 

where ( )nonrelE  is expression for kinetic energy of New- 
tonian mechanics. 

The high-speed representation allows to obtain analo- 
gous expression for energy near the light-speed state. For 
small values of 1   we come to the following ex- 
pansion  

 0

1 1 1
= coth = ,  = .

2
p mc mc p mc 

 
 

 
 

 

Removing from these equations  , we get  
2 2

0 = .
2

m c
p p

p
             (3.26) 

From comparison of formulae (3.25) and (3.26) we 
conclude that the mass and momentum at these limits are 
mutually replaced. Formulae (3.23) near the light-speed 
state are given by  

 
2 2

0

1 1
= coth = ,  = .

2

m c
p mc mc p 

 
  

It is seen, at the limit = 0m  we have  

   0 0

1 1
= 0 = = 0 = .p m p m

c
      (3.27) 

Here we introduced the new quantity 0  which is 
equal to energy-momentum of the relativistic system at 
the state = 0,  =m v c . In the rest state the energy is 
equal to the proper inertial mass (in energy units) and, in 
the same manner, in the state of the light-speed the 
energy is equal to 0 . Thus, the relativistic dynamics of 
the relativistic particle beside the inertial mass m  con- 
tains a parameter dual to the proper mass (we suggest to 
denominate this value as light-mass). The parameter 0  
determines the value of the kinetic energy of the motion. 
This quantity corresponds to the energy of the particle in 
its massless state. 

Now let us underline some reciprocity between two 
hyperbolic angles   and  . For that purpose intro- 
duce complementary to v  velocity v  obeying the fo- 
llowing equation  

2 2 2=v v c              (3.28) 

Notice that v  is related with hyperbolic parameter 
(  ) in a manner quite similar as v  is expressed via 
rapidity ( ) :  

 
2

2 2 2 2 2 2
2
0

= = 1 = tanh
p

v c v c c
p


 

  
 

  (3.29) 

Interrelation between   and   is expressed by the 
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following formulae of reciprocity  

   exp = coth ,  exp = coth
2 2

     
   
   

  (3.30) 

From these formulae it follows that = 0 and =   
when = 0v , and =   and = 0  when =v c . In 
some sense the pairs ( , )v   and ( , )v   are reciprocal 
to each other. 
 
4. q-Deformation and Quantization of the 

Energy-Momentum  
 
Let us introduce some parameter in unit of mass and label 
this parameter by  . Define a dimensionless variable 
  by  

= c                  (4.1) 

Re-write formulae for the energy-momentum (3.18) in 
these variables  

0= ,  =  coth
sinh

mc m
p p mc

m





 
    

 
 

   (4.2) 

Here we should notice that the formula for the mo- 
mentum admits the following integral representation  

2

2
1/200

2 1/2
0

0

sinh

= =  exp d

mc

mc
x x

cp mc




 
    

  


   (4.3) 

In [16] it has been shown that 1   geometrically can 
be interpreted as a curvature of a hyperbolic space. In 
this space the length of the circle with radius m  is de- 
fined by formulae [17]:  

 = 1 := 2 sinh
m

L  


   
 

       (4.4a) 

Correspondingly, the length of the circle with radius 
m  is equal  

  = 2 sinh
m

L   


   
 

        (4.4b) 

Taking into account this correspondence let us per- 
form the following modifications in the formulae for 
energy-momentum  

2

0

sinh
= sinh =

sinh

m
mc mc c

mp p


 



 
          
 

     (4.5) 

2
0 0

0

= coth = sinh coth
p pmc m m

mc c


  
               

  (4.6) 

Noteworthy, the constant   now is not an arbitrary 
constant, but it has to be understood as a fundamental 
constant of the theory. Let us remember the formula of 
q-deformation of a quantity N :  

1
( ) :=

N N

q

q q
N

q q








           (4.7) 

From this point of view the last expression in (4.5) is 
q-deformation of   with parameter of deformation 

= exp( / )q m  . In notations of (4.7), Equation (4.5) can 
be written as follows  

= ( ) ,  = expq

c m
q

p

 


 
 
 

        (4.8) 

Notice,  = 1 = 1
q

  for any q . There fore  

 0, = 1 = .p m c   

On the other hand, if = 0m  and = 1q  then from 
(4.8) it follows  

  0= 0 = =
c

p m
c





           (4.9) 

Hence at the point = 1  momentum of the particle 
with mass m  is equal to the momentum of the massless 
particle  

    00, = 1 = = 0, = 1 = =p m p m c
c

  


   (4.10) 

Notice, however, the velocity of the particle at this 
point is not equal to the light velocity. In fact, these for- 
mulae imply existence of a point on the axis of momenta 
where the momenta of the massive and massless particles 
are equal. At this point the energy and the velocity are 
given by  

  2
0 = 1 = cosh ,   =

cosh 

m c
cp c v

m
 




 
    

 
 

  (4.11) 

Now remember on integral representation (4.3). Now 
this fraction was replaced by  

0

sinh
=

sinh

m
c

mcp p


  



 
 
 
 
 
 

       (4.12) 

It is interesting to observe that for the new fraction 
(4.12) we shall obtain a sum instead of an integral if we 
assume that   is an integral number. Let J  be a half- 
integer number with = 0,1/ 2,1,3 / 2,2,J  , and 

= 2 1 = 1,2,3,J   . Then the following equation 
holds true. 
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 

=

sinh 2 1
= = exp .

sinh

J

n J

m
J

c m
n

mp

 





     
    

 
 

  

This formula prompts us to introduce a hypothesis on 
quantization of  . Experimentally the quantization can 
be observed near the light velocity where the velocity of 
the massive particle brings nearer the light velocity spas- 
modically according to law  

 
= .

cosh 2 1

c
v

m
J


  
 

 

 
5. Analogue with Statistical 

Thermodynamics 
 

In this section we are going to observe an interesting 
analogy between the formulae obtained in the previous 
sections for the energy-momentum and the well-known 
formulae of the statistical thermodynamics. This ana- 
logue exhibits a correspondence between the present re- 
presentation of energy-momentum and the average energy 
of the single quantum mechanical oscillator. In this way 
we will come to the interpretation of   as an absolute 
temperature of a heat reservoir. 

Let us start from formula for the momentum of the 
form  

 
1

=
2 2sinh  

p

mc mc
           (5.1) 

Notice that this expression can be represented as a sum 
of geometrical series. In fact,  

 
 
   

=0

exp1
= = exp

2sinh 1 exp 2 n
n

mc
E c

mc mc




 




    

  (5.2) 

here the expression  

2 1
= 2

2nE mc n
  
 

 

can be considered as a spectrum of the quantum  

oscillator where the role of zero point energy 
2


 is  

taken over by the energy at the rest 2mc  of the particle. 
Furthermore, it is puzzled that the formula for the length 
of momentum per unit of mass is quite similar to the 
formula for single-particle partition function Z . The 
partition function for the single oscillator is [18]:  

   

exp
2

, ,1 =
1 exp

Z T V





  
 

 




         (5.3) 

where  

1
= ,

T
  

with absolute temperature T  given in energy unit. Con- 
tinuing the observation let us notice that the expression 
for the energy 0cp  of the form  

 
2

0

1 1
= 2   

2 exp 2 1
cp mc

mc
 

 
  

      (5.4) 

is quite similar the expression for the mean energy of the 
single oscillator  

 
1 1

=< >,  < >=   
2 exp 1

U   


 
 

  



    (5.5) 

These observations lead us to the following corres- 
pondence between dynamic variables of the relativistic 
mechanics and the statistical thermo-dynamics:  

2

0

1 1 1
2   ,   ,    mc

c T
  


           (5.6) 

In reference [15] we have justified the following re- 
lationship between energy and momentum  

0

d
= ln .

d
cp p


              (5.7) 

This equation quite analogous to the well-known equa- 
tion of thermodynamics connecting internal energy U  
with the partition function Z :  

d
= ln

d
U Z


              (5.8) 

The evolution with respect to   now obtains its 
interpretation via statistical thermodynamics. In (5.4),  

(5.5) the terms 
2


, as well as quantity 2mc , are  

exactly the contribution of the zero-point energy to the 
total energy. Furthermore, now we are able to introduce 
the notions of the free energy and the entropy. The free 
energy is  

  0 0

2
= ln 2sinh = ln

mc
F mc

P
     

 
   (5.9) 

The entropy is (in unit = 1k , k -constant of 
Boltzmann)  

    = coth ln 2sinS mc mc mc       (5.10) 

Consider N  distinguishable oscillators [19]. It is 
very instructive to calculate from the partition function  

2

e
( ) =

1 e

Nmc

mc
Z N









 
  

          (5.11) 
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the corresponding density of states of the N -oscillator 
system. With the aid of the binomial expansion  

 
 

=0

1 !1
=

!( 1)!1
N

l

N l
x

l Nx

  


  

we write  

     
=0

1)! 1
= exp 2

! 1 ! 2l

N l
Z N mc N l

l N


           
  

Comparing this with the general formula for Z  with 
discrete enumerable energies  

     = expZ N dEg E E c  

we find  

 
2 1)!

= 2 ,  =
2 ! 1 !l l

N N l
E mc l g

l N

     
     (5.12) 

The energies lE  are just the zero-point energies of 
the N  oscillators plus l  quanta of energy 22mc . 
There are exactly lg  ways to distribute these indis- 
tinguishable energy quanta among the N distinguishable 
oscillators. The distribution of indistinguishable quanta 
instead of enumerated particles is the starting point of 
quantum statistics. Consider a collection of N  identical 
quantum oscillators, supposed their distinguishable. The 
total number of distinguishable states  , corresponding 
to the energy E , and all the probabilities turn out to be 
equal, as expected. It is simply = lg . Thus we can 
check whether the entropy = lnS   coincides with 
expression (5.10). Using , 1l N   and Stirling's formula 
we get  

 
 

   

1 !
= ln ,  = , 

1 ! !

 = ln ln ln .

M l
S

N l

S l N l N l l N N

 
 



   

 

To obtain ( , )S E N  the 2= / 2 / 2l E mc N  must be 
inserted:  

2 2

2 2

= ln
2 22 2

ln ln
2 22 2

E N E N
S

mc mc

E N E N
N N

mc mc

         
   

        
   

     (5.13) 

If we want to compare this with Equation (5.10), we 
must express the energy in terms of the “temperature”,  

 
 

2

2 2

2

2 2

1
= | = ln , 

2

exp 2 1
 =

exp 2 1

N

S E Nmc

E mc E Nmc

mcE
or

Nmc mc







 
 





      (5.15) 

which is identical to Equation (5.4). 

It is interesting to compare the limiting cases for sta- 
tistical thermodynamics and for the relativistic me- 
chanics. In the case of high temperatures  

, 0,T
kT


 


 

the classical limit is recovered, because the characteristic 
parameter    measures the ratio of the energy levels 
of the oscillator compared to the mean thermal energy 
kT  which is available. In the mechanics the limit 

= 0  corresponds to the state of massless particle, or to 
the state of light. At the limit of low temperature 
  , one has the largest deviations from the classical 
case, where  

= .
2

N
U


 

In the mechanics the limit    corresponds to the 
rest state = 0p  with the rest energy 2

0 =cp mc . 
 
6. Conclusions and Comments 
 
In the present paper we gave a ground for new repre- 
sentation for energy, momentum and velocity via hy- 
perbolic trigonometry the (hyperbolic) angle of which is 
proportional to the proper mass. The hyperbolic angle 
dual to the rapidity was denominated as counterpart of 
rapidity. We have worked primarily in the scopes of the 
dynamics, not kinematics, and restricted ourselves only 
with one dimensional case. It is well known that in the 
covariant formulation the rapidity is presented by anti- 
symmetric tensor in four-dimensional Minkowski space. 
In that context the question gives arise: what kind tensorial 
object will present the counterpart of rapidity within the 
framework of covariant formulation? This question has a 
certain answer: in the covariant formulation the counter- 
part of rapidity is presented by the four-vector [20]. 
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