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Abstract

We develop a new fully quantum method for determination of widths for nuclear decay by proton emission
where multiple internal reflections of wave packet describing tunneling process inside proton-nucleus radial
barrier are taken into account. Exact solutions for amplitudes of wave function, penetrability T and reflection
R (estimated for the first time for decay problem) are found for n-step barrier (at arbitrary n) which approxi-
mates the realistic barrier. In contrast to semiclassical approach and two-potential approach, we establish by

this method essential dependence of the penetrability on the starting point Rgyy, in the internal well where

proton starts to move outside (for example, for 1727 Ta the penetrability is changed up to 200 times; accuracy

is |T+R-1|<1.5-10""). We impose a new condition: in the beginning of the proton decay the proton starts

to move outside from minimum of the well. Such a condition provides minimal calculated half-life and gives
stable basis for predictions. However, the half-lives calculated by such an approach turn out to be a little
closer to experimental data in comparison with the semiclassical half-lives. Estimated influence of the exter-

nal barrier region is up to 1.5 times for changed penetrability.

Keywords: Tunneling, Multiple Internal Reflections, Wave Packet, Decay by Proton Emission,

Penetrability and Reflection, Half-Life

1. Introduction

Nuclei beyond the proton drip line are ground-state pro-
ton emitters, i.e. nuclei unstable for emission of proton
from the ground state. Associated lifetimes, ranging from
10 sec to few seconds, are sufficiently long to obtain
wealth of spectroscopic information. Experimentally, a
number of proton emitters has been discovered in the
mass region A~110, 150, and 160 (see [1-4] and ref-
erences in cited papers). A new regions of proton unsta-
ble nuclei is supposed to be explored in close future us-
ing radioactive nuclear beams.

Initially, the parent nucleus is in quasistationary state,
and the proton decay may be considered as a process
where the proton tunnels through potential barrier. In
theoretical study one can select three prevailing ap-
proaches [5]: approach with distorted wave Born ap-
proximation (DWBA), two-potential approach (TPA),
and approach for description of penetration through the
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barrier in terms of one-dimensional semiclassical method
(WKBA). In systematical study these approaches are
correlated between themselves, while calculation of pe-
netrability of the barrier is keystone in successful estima-
tion of gamma widths. While the third approach studies
such a question directly, in the first and second ap-
proaches the penetrability of the barrier is not studied
and the width is based on correlation between wave
functions in the initial state (where the proton occupies
the bound state before decay) and the final one (where
this proton has already penetrated through the barrier
without its possible oscillations inside internal well and it
moves outside). However, the most accurate information
on correspondence between amplitudes and phases of
these wave functions can be obtained from unite picture
of penetration of proton through the barrier, which the
WKBA approach provides (and is practically realized up
to approximation of the second order). Importance of
proper choice of needed boundary condition, the most
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correctly and closely corresponded to decay, reinforces
our interest in the fully quantum consideration of unite
tunneling process in this task, while the detailed analysis
of selection this boundary condition and its real influence
on results is practically missed in TPA and DWBA ap-
proaches.

Affirmed errors in calculations of half-lives by modern
TPA and WKBA models are about some percents. In this
paper we show that if to take into account influence by
the internal and external regions of the barrier neglected
in TPA, DWBA and WKBA approaches, that one can
obtain change of results up to 200 times (i.e. 20000 per-
cents)! Note that our method has not been accepted by
authors of TPA, DWBA and WKBA models. But it is
easy to clarify effectiveness and proper description and
estimation of the penetration through the barrier in any
model if to use well known tests of quantum mechanics
(like T+R=1 where T and R are penetrability and
reflection concerning the barrier). In this paper we show
that in the WKBA, TPA, DWBA models such tests are
not applicable, while we give apparatus how to work
with them. We analyze in details which approach has
more grounds, is really fully quantum, richer and more
accurate. And we give clear and simple explanation for
difference between our approach and their ones consisted
in essential role of the boundary condition.

The main objective of this paper is to pass from semi-
classical unite description of the process of penetration
of proton through the barrier used in the WKBA ap-
proach to its fully quantum analogue, to put a fully
quantum grounds for determination of the penetrability
in this problem. In order to provide such a formalism, we
have improved method of multiple internal reflections
(MIR, see [6-10]) generalizing it on the radial barriers of
arbitrary shapes. In order to realize this difficult im-
provement, we have restricted ourselves by consideration
of the spherical ground-state proton emitters, while nu-
clear deformations are supposed to be further included
by standard way. This advance of the method never stu-
died before allows to describe dynamically a process of
penetration of the proton through the barrier of arbitrary
shape in fully quantum consideration, to calculate pene-
trability and reflection without the semiclassical restric-
tions, to analyze abilities of the semiclassical and other
models on such a basis.

This paper is organized in the following way. In Sec-
tion 2, formalism of the method of multiple internal re-
flections in description of tunneling of proton through
the barrier in proton decay is presented. Here, we give
solutions for amplitudes, define penetrability, width and
half-life. In Section 3, results of calculations are con-
fronted with experimental data and are compared with
semiclassical ones. Here, using the fully quantum basis
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of the method, we study a role of the barrier shape in
calculations of widths in details. In particular, for the
first time we observe essential influence of the internal
well before the barrier on the penetrability that necessi-
tates to introduce initial condition which should be im-
posed on the proton decay in its fully quantum consid-
eration. We discuss shortly possible interconnections
between the proposed approach and other fully quantum
methods of calculation of widths. In Section 4, we sum-
marize results. Appendixes include proof of the method
MIR and alternative standard approach of quantum me-
chanics used as test for the method MIR and for the re-
sults presented.

2. Theoretical Approach

An approach for description of one-dimensional motion
of a non-relativistic particle above a barrier on the basis
of multiple internal reflections of stationary waves rela-
tively boundaries has been studied in number of papers
and is known (see [11-13] and references therein). Tun-
neling of the particle under the barrier was described
successfully on the basis of multiple internal reflections
of the wave packets relatively boundaries (approach was
called as method of multiple internal reflections or me-
thod MIR, see [6-9]). In such approach it succeeded in
connecting: 1) continuous transition of solutions for
packets after each reflection, total packets between the
above-barrier motion and the under-barrier tunneling; 2)
coincidence of transmitted and reflected amplitudes of
stationary wave function in each spatial region obtained
by approach MIR with the corresponding amplitudes
obtained by standard method of quantum mechanics; 3)
all non-stationary fluxes in each step, are non-zero that
confirms propagation of packets under the barrier (i.e.
their “tunneling”). In frameworks of such a method,
non-stationary tunneling obtained own interpretation,
allowing to study this process at interesting time moment
or space point. In calculation of phase times this method
turns out to be enough simple and convenient [10]. It has
been adapted for scattering of the particle on nucleus and
a -decay in the spherically symmetric approximation
with the simplest radial barriers [6,7,9] and for tunneling
of photons [7,10]. However, further realization of the
MIR approach meets with three questions.

1) Question on effectiveness. The multiple reflections
have been proved for the motion above one rectangular
barrier and for tunneling under it [7,10,13]. However,
after addition of the second step it becomes unclear how
to separate the needed reflected waves from all their va-
riety in calculation of all needed amplitudes. After ob-
taining exact solutions of the stationary amplitudes for
two arbitrary rectangular barriers [6,9], it becomes un-
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clear how to generalize such approach for barriers with
arbitrary complicate shape. In [14] multiple internal re-
flections of the waves were studied for tunneling through
a number of equal rectangular steps separated on equal
distances. However, the amplitudes were presented for
two such steps only, in approximation when they were
separated on enough large distance, and these solutions
in approach of multiple internal reflections were based of
the amplitudes of total wave function obtained before by
standard method (see Appendix A, Equations (7), (18)
and (19) in this paper). So, we come to a serious unre-
solved problem of realization of the approach of multiple
reflections in real quantum systems with complicated
barriers, and clear algorithms of calculation of ampli-
tudes should be constructed.

2) Question on correctness. Whether is interference
between packets formed relatively different boundaries
appeared? Whether does this come to principally differ-
ent results of the approach of multiple internal reflections
and direct methods of quantum mechanics? Note that
such interference cannot be appeared in tunneling through
one rectangular barrier and, therefore, it could not visible
in the previous papers.

3) Question on uncertainty in radial problem. Calcula-
tions of half-lives of different types of decays based on
the semiclassical approach are prevailing today. For ex-
ample, in [15] agreement between experimental data of
a -decay half-lives and ones calculated by theory is
demonstrated in a wide region of nuclei from '“Te up
to nucleus with A, =266 and Z; =109 (see [16] for
some improved approaches). In review [17] methodology
of calculation of half-lives for spontaneous-fission is
presented (see Equations (21-24) in p. 321). Let us con-
sider proton-decay of nucleus where proton penetrates
from the internal region outside with its tunneling
through the barrier. At the same boundary condition,
reflected and incident waves turn out to be defined with
uncertainty. How to determine them? The semiclassical
approach gives such answer: according to theory, in
construction of well known formula for probability we
neglect completely by the second (increasing) item of the
wave function inside tunneling region (see [18], Equation
(50.2), p. 221). In result, equality T>+R>=1 has no
any sense (where T and R are coefficients of penetrability
and reflection). Condition of continuity for the wave
function and for total flux is broken at turning point. So,
we do not find the reflection R. We do not suppose on

eiklr +ARe—ik]r’
ikyr —ikyr
a,er +pe 7,

x(r)=
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possible interference between incident and reflected
waves which can be non zero. The penetrability is de-
termined by the barrier shape inside tunneling region,
while internal and external parts do not take influence on
it. The penetrability does not dependent on depth of the
internal well (while the simplest rectangular well and
barrier give another exact result). But, the semiclassical
approach is so prevailing that one can suppose that it has
enough well approximation of the penetrability estimated.
It turns out that if in fully quantum approach to deter-
mine the penetrability through the barrier (constructed on
the basis of realistic potential of interaction between
proton and daughter nucleus) then one can obtain answer
“No”. Fully quantum penetrability is a function of new
additional independent parameters, it can achieve essen-
tial difference from semiclassical one (at the same
boundary condition imposed on the wave function). This
will be demonstrated below.

2.1. Decay with Radial Barrier Composed from
Arbitrary Number of Rectangular Steps

Let us assume that starting from some time moment be-
fore decay the nucleus could be considered as system
composite from daughter nucleus and fragment emitted.
Its decay is described by a particle with reduced mass m
which moves in radial direction inside a radial potential
with a barrier. We shall be interesting in the radial poten-
tial V(r) with barrier of arbitrary shape which has suc-
cessfully been approximated by finite number N of rec-
tangular steps:
atR ,, <r<r
atn <r<r, (region 2),

V(r)={"% (1)

Vy, athy_ <r<R__ (region N),

(region 1),

where V, are constants (i =1---N ). We define the first
region 1 starting from point R, , assuming that the
fragment is formed here and then it moves outside. We
shall be interesting in solutions for above barrier energies
while the solution for tunneling could be obtained after
by change i — k. A general solution of the wave
function (up to its normalization) has the following form:

x(r)

l//(r’avgo):TYlm (99(0)’ (2)
(region 1),
(region 2),
3

(region N —1),

<r<R,, (region N),
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where «; and pB; are unknown amplitudes, A and Ag
are unknown amplitudes of transmission and reflection,

Yin (6,9) is spherical function, k; =%J2m(E—Vi)

are complex wave number in the corresponding region
with number i, E is energy of the emitted proton. We
shall be looking for solution for such problem by ap-
proach of multiple internal reflections. Here, we restrict
ourselves by a case of the orbital moment | =0 while
its non-zero generalization changes the barrier shape
which was used as arbitrary before in development of
formalism MIR and, so, is not principal.

According to the method of multiple internal reflec-
tions, scattering of the particle on the barrier is consid-
ered on the basis of wave packet consequently by steps
of its propagation relatively to each boundary of the bar-

will be similar to one from the first 2N —1 steps, inde-
pendent between themselves. From analysis of these
steps recurrent relations are found for calculation of un-
known amplitudes for arbitrary step n, summation of
these amplitudes are calculated. We shall be looking for
the unknown amplitudes, requiring wave function and its
derivative to be continuous at each boundary. We shall
consider the coefficients T,, T,”, T, --- and R/,
Ry, R{ - as additional factors to amplitudes €.
Here, bottom index denotes number of the boundary,
upper (top) signs “+” and “—” denote directions of the
wave to the right or to the left, correspondingly. At the
first, we calculate T, T, Ty, and R, R;
Ry.,:

T+ 2k, ei(k,——k,—+1)rj T- 2Kj, ei(ki‘kiﬂ)ri

rier (the most clearly idea of such approach can be un- i T K +k. Kk >
derstood in the problem of tunneling through the sim- ;o 1o 4)
plest rectangular barrier, see [7,9,10] and Appendix A R = kj _kj+1 QZikjr,— - I(j+1 _kj e’Ziijrlrj
where one can find proof of this fully quantum exactly ) k; +kj,, T k; +k;,, ’
solvable method, one can analyze its properties). Each
step in such consideration of propagation of the packet Using recurrent relations:
< < = m THRITS
+ _p+ + BT - _ p+ -1 -l
R, =R, +T  RT, [1+Z(Rj R) j— RI + it
m=1 IRNE
- - & sm TR T
- _p- - BT+ + 5-\" |- p- 1N i
R, =R, +TLR T, (1+Z(RMR1 ) j R, prar=p 5)
m=1 JH1TNj
~ ~ = ~ \M f+T+
+ T+ + P- _ j o+l
T, =TT, (1+mzl(Rj+,Rj) ]—m,

and selecting as starting the following values:

ﬁﬁ_l =R, ﬁf =R, -[71+ =T, (6)
we calculate successively coefficients Ri, - R,
R, -+ Ry, and T, Ty, - At finishing, we de-
termine coefficients /;:
~ o L m -l‘:Jr
_T+ +B- _ j-1
B; —T,-_I(H;(Rj Rj—l) j—ﬁ (7

the amplitudes of transmission and reflection:
Ar =T~N+_1, Ag = I:’é; (®)

and corresponding coefficients of penetrability T and
reflection R:

k 2 2
Tuir =k_n|Ar| > Ruir =|AR| . ©
1
We check the property:

k
k_n|AT|2+|AR|2=10rTMIR+RMIR=17 (10)
1
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J+1

which should be the test, whether the method MIR gives
us proper solution for wave function. Now if energy of
the particle is located below then height of one step with
number m, then for description of transition of this parti-
cle through such barrier with its tunneling it shall need to
use the following change:

k, > i< a1

For the potential from two rectangular steps (with dif-
ferent choice of their sizes) after comparison between the
all amplitudes obtained by method of MIR and the cor-
responding amplitudes obtained by standard approach of
quantum mechanics, we obtain coincidence up to first 15
digits. Increasing of number of steps up to some thou-
sands keeps such accuracy and fulfillment of the prop-
erty (10) (see Appendix B where we present shortly the
standard technique of quantum mechanics applied for the
potential (19) and all obtained amplitudes). This is im-
portant test which confirms reliability of the method
MIR. So, we have obtained full coincidence between all
amplitudes, calculated by method MIR and by standard
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approach of quantum mechanics, and that is way we ge-
neralize the method MIR for description of tunneling of
the particle through potential, consisting from arbitrary
number of rectangular barriers and wells of arbitrary
shape.

2.2. Width T" and Half-Life

We define the I width of the decay of the studied
quantum system following by the procedure in [19,23]:
h2

r=S,F am T, (12)
where S is spectroscopic factor and F is normalization
factor. T is penetrability coefficient in propagation of the
particle from the internal region outside with its tunnel-
ing through the barrier which we shall calculate by ap-
proach MIR or by approach WKB. In approach WKB we
define it so:

Tone = exp{ 2j Q -V (r))d } (13)

where R, and R, are the second and third turning
points. According to [15], the normalization factor F is
given by simplified way as F, or by improved way as
F, , so:

R odr B
SIEos
F, —{Iﬁcoszuk(r')dr’—ﬂdr} )

The 7 half-life of the decay is related to the T
width by the well known expression:

r=hn2/T. (15)

(14)

For description of interaction between proton and the
daughter nucleus we shall use the spherical symmetric

proton-nucleus potential (at case |=0) in Ref. [20]
having the following form:
V(r,1,Q)=vc (r)+vy (r,Q)+v,(r), (16)

where V. (r), vy (r,Q) and v, (r) are Coulomb,
nuclear and centrifugal components

2
Zi, forr>r,,
r
VC(r)= ZeZ rZ
E@?J’ orr =t a7)
V. (A.Z.Q I(1+1
w(rQ)- A2 -y () 1D

I+exp
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Here A and Z are the nucleon and proton numbers of
the daughter nucleus, Q is the Q-value for the pro-
ton-decay, V; is the strength of the nuclear component,
R is radius of the daughter nucleus, r, is the effective
radius of the nuclear component, d is diffuseness. All
parameters are defined in [20]. Note that in this paper we
are concentrating on the principal resolution of question
to provide fully quantum basis for calculation of the
penetrability and half-life in the problem of the proton
decay, while the proton-nucleus potential can be used in
simple form that does not take influence on the reliability
of the developed methodology of the multiple internal
reflections and could be naturally included for modern
more accurate models.

3. Results

Today, there are a lot of modern methods able to calcu-
late half-lives, which have been studied experimentally
well. So, we have a rich theoretical and experimental
material for analysis. We shall use these nuclei: '3 Ta,

¥'Re, ¥'Ir for 1=0, and 21, {’Cm, ' Tm for
I #0. Such a choice we explaln by that they have small
coefficient of quadruple deformation f, and at good
approximation can be considered as spherical. We shall
study proton-decay on the basis of leaving of the particle
with reduced mass from the internal region outside with
its tunneling through the barrier. This particle is sup-
posed to start from R, <r<r and move outside (I
is defined in Equation (1)). Using the coefficients Tji
and RJ-i in Equations (4) - (6), we calculate total ampli-
tudes of transmission A; and reflection A, by Equa-
tion (8), the penetrability coefficient T,,; by Equation
(9). We check the found amplitudes, coefficients T,
and Ry comparing them with corresponding ampli-
tudes and coefficients calculated by the standard ap-
proach of quantum mechanics presented in Appendix B.
We restrict ourselves by Equation (14) for F, and find
width ' by Equation (12) and half-live 7,,; by Equa-
tion (15). We define the penetrability T, by Equation
(13), calculate I' -width and half-live 7, by Equa-
tions (12) and (15).

3.1. Dependence of the Penetrability on the
Starting Point

The first interesting result which we have obtained is
essential dependence of the penetrability on the position
of the first region where we localize the wave incidenting
on the barrier. In particular, we have analyzed how
much the internal boundary R, takes influence on the
penetrability. In order to obtain well accuracy of calcula-
tions, we have chosen width of each interval to be equal
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0.01 fm. We consider the left boundary R, of the first
interval as a starting point R, , from here proton be-
gins to move outside and is incident on the internal part
of the barrier in the first stage of the proton decay. In
Figure 1 one can see that half-live of the proton decay of
the ') Ta emitter is changed essentially at displacement
of Ry, . So, we establish essential dependence of the
penetrability on the starting point R, , where the pro-
ton starts to move outside by approach MIR. At
Ryat = 72127 fm this dependence allows us to achieve
very close coincidence between the half-live calculated
by the approach MIR and experimental data.

3.2. Dependence of the Penetrability on the
External Region

The region of the barrier located between turning points
R, and R, is main part of the potential used in calcu-
lation of the penetrability in the semiclassical approach
(up to the second correction), while the internal and ex-
ternal parts of this potential do not take influence on it.
Let us analyze whether convergence exists in calcula-
tions of the penetrability in the approach MIR if to in-
crease the external boundary R_, (R, >R;). Keep-
ing width of each interval (step) to be the same, we shall
increase R, (through increasing number of intervals
in the external region), starting from the external turning
point R,, and calculate the corresponding penetrability
Tur - In Figure 2 [left panel] one can see how the pene-
trability is changed for Ta with increasing R, .
Dependence of the half-life r,,; on R, is shown in
Figure 2 [right panel]. One can see that the method MIR
gives convergent values for the penetrability and half-life
at increasing of R, . From such figures we find that
inclusion of the external region into calculations changes
the half-life up to 1.5 times (7, =0.20 sec is the mi-
nimal half-life calculated at R, <R <250 fm, and
7,, =0.30 sec is the half-life calculated at R, =250
fm, error=7, /7,

max

in 1.5 or 50 percents). So, error in
determination of the penetrability in the semiclassical
approach (if to take the external region into account) is
expected to be the same as a minimum on such a basis.

3.3. Results of Calculations of Half-Lives in Our
and Semiclassical Approaches

As we have demonstrated above, the fully quantum cal-
culations of the penetrability of the barrier for the proton
decay give us its essential dependence on the starting
point. In order to give power of predictions of half-lives
calculated by the approach MIR, we need to find recipe
able to resolve such uncertainty in calculations of the
half-lives. So, we shall introduce the following hypothesis:
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Figure 1. Proton-decay for the ' Ta nucleus: dependence

of the half-life z,,, on the starting point R, (at
Ry = 7.2127 fm where calculated 7,,, at R,, =250
fm coincides with experimental data z,,, for this nucleus).
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Figure 2. Proton-decay for the 1'Ta nucleus: in the left
panel the dependence on penetrability 7,,, on the exter-
nal boundary R, is presented, in the right panel the
dependence of the half-live z,,, on R, is presented (we
use R, =7.2127 fm where calculated z,,, at R, =250
fm coincides with experimental data 7, for this nucleus).
In all calculations factor F is the same.
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we shall assume that in the first stage of the proton decay
proton starts to move outside the most probably at the
coordinate of minimum of the internal well.

If such a point is located in the minimum of the well,
the penetrability turns out to be maximal and half-life
minimal. So, as criterion we could use minimum of
half-live for the given potential, which has stable basis.
We should take into account that the half-lives obtained
before are for the proton occupied ground state while it
needs to take into account probability that this state is
empty in the daughter nucleus. In order to obtain proper
values for the half-lives we should divide them on the
spectroscopic factor S (which we take from [5]), and then
to compare them with experimental data. Results of such
calculations and experimental data for some proton
emitters are presented in Table 1. To complete a picture,
we add half-lives calculated by the semiclassical ap-
proach to these data.

3.4. Comparison with Other Approaches of
Calculations of Widths of Proton Decay

Half-life of the proton decay is defined on the basis of
width " which can be calculated by different ap-
proaches. For determination of width we shall use sys-
tematics of different approaches proposed in Ref. [5].
The proton emitters are narrow resonances with ex-
tremely small widths. Perturbative approach based on

standard reaction theory could be expected to be accurate.

Let us analyze two following approaches in such a direc-
tion.

3.4.1. The Distorted Wave Born Approximation
Method

The resonance width can be expressed through transition

amplitude, which in the distorted wave Born approxima-
tion (DWBA) is given so [5]:

TA+1,Z+1;A,Z = <V/Ap\PAp |VAp|\PA+1>' (18)

The DWBA calculations of the decay width requires
knowledge of the quasistationary initial state wave func-
tion, W,,,, the final state wave function, W,y ,,, and
interaction potential. The initial state wave function,
W ,. . is written as a product of the daughter-nucleus
wave function, @,, and the proton wave function, CI)n,j .
The radial wave function of the proton y,(r)=
¥, (r)/r is found by numerically integrating the
Schrédinger equation with one-body potential, and it
should be irregular part of the Coulomb wave function,
G, (r), in asymptotic region. So, such wave function is
complex and it defines non-zero flux. As we use condi-
tion of continuity of total flux (i.e. absence of sources
inside spatial region) we cannot obtain zero wave func-
tion in whole region of its definition, and at r=0, in
particular.

In the final state the wave function of the decaying
nuclear system can be written as a product of the intrin-
sic wave function of the proton and the daughter nucleus
(an inner core). Radial part of the proton wave function
is w,(r):R(r)/r, where F(r) is the regular Cou-
lomb function. By other words, this wave function is real,
and, therefore, it gives zero flux exactly determined on
the basis of the total wave function in the final state. The
total wave functions in the initial and final states corre-
spond to different processes (with different total fluxes).
They, complete wave functions, do not take reflection
from the barrier inside the internal region into account
(but they are defined by different boundary conditions in
the initial and final states only). Here, question about

Table 1. Experimental and calculated half-lives of some proton emitters. Here, S;“ is theoretical spectroscopic factor, z,,;
is half-life calculated by in the semiclassical approach, z,,, is half-life calculated by in the approach MIR, %, = rWKB/S;“ ,

Fuir = Twir/ Sy Tap IS €xperimental data. Values for S)',
=250 fm; number of intervals in region from R, to maximum of the
barrier is 10000, from maximum of the barrier to R, is 10000.

tions for each nucleuswe use: R, =0.11 fm, R

'max

are used from Table IV in Ref. [5] (see p. 1770); in calcula-

Parent nucleus

Half-live-values, sec

Nucleus Q, MeV Orbit 5:: Tone Tyir Tune Tur
“'Ta,, 0.947 2s,, 0.66 1.856-10" 1.840-10"' 2.813-10" 2.789-10" 3.0-10™
“'Re,, 1.214 2s,, 0.59 1.605-10°* 1.577-10" 2.720-10" 2.673-10° 3.7-10*
I, 1.086 2s,, 0.51 2.981-107 2.979-107 5.851-107 5.842.107 1.1-107
5 L 0.829 1d,, 0.76 2.992-10° 3.034-10° 3.937-10° 3.992-10° 1.0-10™
2Cm,, 0.823 1d,, 0.59 2.080-10° 2.088-10° 3.526-10° 3.539-107 5.0-10*
¥ Tm,, 1.132 1d,, 0.79 6.250-10° 6.159-10° 7.911-10°° 7.796-107° 3.6-10"
Copyright © 2011 SciRes. JMP
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determination of the decay width is passed on successful
determination of perturbation of the potential (that has
another physical basis for the definition of the decay
width as definition on the basis of the penetrability of the
barrier). However, the question about separation of the
total wave function in the internal region before the bar-
rier into the incident and reflected waves remains unre-
solved in the DWBA method.

Now, if we pass from real radial potential in optical
model approach to complex one, then we shall introduce
new additional independent parameter into our problem
while the penetrability could be calculated for real radial
barrier. Essential point in determination of the decay
width in the DWBA method is accurate normalization of
the wave functions in the initial and final states. It could
introduce some (essential) uncertainty in calculation of
width also while the penetrability is independent on such
normalization absolutely.

One can calculate the decay width through time-re-
versed capture process. However, in such calculations
shape of the barrier is approximated by inverse oscillator
(or other potentials with knowing exact solutions of the
wave function) and the penetrability for such a barrier
could be calculated. It is clear that both internal well and
external region do not take influence on results abso-
lutely (like calculations in semiclassical approach). But,
this is possible to resolve this problem accurately and
taking whole studied shape of the potential barrier into
account that we have demonstrated above in the fully
quantum approach MIR.

3.4.2. The Two-Potential Method

In the modified two-potential approach (TPA) introduced
by Gurvitz and Kalbermann in [19] (details and exam-
ples can be found in [22], see also [5,21,24]) the decay
width is defined so (see (16) in [5], and some details):

o [y (W (1) 2 (1) ar

where szZ,LJEO/h, M is reduced mass, ry is ra-
dial coordinate of the barrier height, w,; (r) is the ra-
dial wave function for the first radial potential including
internal well up to point ry, g, (r) is the regular radial
wave function for the second radial potential including
external region, starting from point r; and without the
internal well and with asymptotic behavior

2(0)=0, 7, (r) > sin(kr—ml/2+6) atr > 0. (20)

4
hj‘ , (19)

Both wave functions are real and defined at different
energy levels. So, in the TPA approach we do not con-
sider fluxes and do not calculate penetrability. We do not
study possible reflection of proton from the barrier in the
internal well for the state which describes the penetration

Copyright © 2011 SciRes.

through the barrier. We escape from a problem of sepa-
ration of the total wave function in the internal well into
the incident and reflected waves which takes influence
on the resulting penetrability essentially (for example,
for the simplest rectangular barrier with rectangular
well such an uncorrect separation of the same exact
wave function can give infinite penetrability that is ex-
plained by increased role of interference between inci-
dent and reflected waves). Success in obtaining the re-
sulting width ' is dependent on accuracy of corre-
spondence between internal and external wave functions
Wy (r) and  (r) which should be calculated from
different Schrodinger equations with independent nor-
malization. The correspondence between these wave
functions is determined concerning only one boundary
point Iy (or it possible shift [24]) separating two poten-
tials and boundary conditions at r =0 orat r —»>o.In
contrary, the correspondence between the incident,
transmitted and reflected waves in the MIR approach is
determined concerning the barrier as the whole potential
(with needed restrictions of the radial problem) that cor-
responds to fully quantum and unified consideration of
penetration of the proton through the barrier shown in
principle of non-locality of quantum mechanics. In par-
ticular, the transmitted wave in the MIR approach is
strongly dependent on the depth of the internal well and
its shape, while the external wave function y, (r) in the
TPA approach is absolutely independent on these depth
and shape (such a dependence can be found in the wave
function ¢, (r), but starting from the simplest WKB
approach factor F directly includes it also). By other
words, we have strong correspondence between incident,
reflected and transmitted waves in the MIR approach and
a possible week correspondence between the internal and
external wave functions in the TPA approach. This plays
the essential role in calculations of the decay widths and
explains so large difference between the essential de-
pendence of penetrability on the starting point in the
MIR approach and practically full absence of such a de-
pendence in the TPA approach.

The simplest example demonstrated why this depend-
ence really exists and it could be not small, can be found
in classical tasks of quantum mechanics. Let us consider
definition of the penetrability in [18] (see Equation
(25.3), p. 103):

D =ﬁ|A|2, 1)
kl

where D is the penetrability, k, and k, are wave
numbers of transmitted and incident waves, i.e. concern-
ing the left asymptotic part of the potential and its as-
ymptotic right part (see Figure 5 in [18], p. 103), A is the
transmitted amplitude of the wave function. This formula
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shows that decreasing of the left part of potential in-
creases the wave number Kk, (as is connected with as-
ymptotic presentations (25.1) and (25.2) of waves) and,
so, changes the total penetrability D. Result on the essen-
tial dependence of the penetrability of the starting point
Rim by the MIR approach has the similar sense, but
has been obtained concerning the realistic barrier with
the internal well and takes into account change of the
internal amplitudes also. This contradicts with a possible
little dependence of penetrability on the shape of the in-
ternal well in the TPA approach.

Now let us come back to one of the most important
papers at TPA—the paper [22], where some exactly
solvable examples were analyzed for comparison. In the
first example with rectangular barrier and well (see Sec-
tion VLA, pp. 1752-1753, (4.6)) the width does really
not contain dependence on depth of the well, because the
depth is defined as zero initially. Answer on question
what would happen with the width if to displace it below,
the MIR method gives (and penetrability is determined
by Equation (21)). The next example with Coulomb tail
takes already non-zero well into account explicitly. Here,
we already see explicit dependence of the width on the
depth of the well (see Equation (4.18), pp. 1754-1755 in
cited paper), that confirms reliability of logic above. So,
these points seem to be reduction of the TPA approach
and confirm that this approach does not determine the
penetrability in the fully quantum consideration in the
problem of proton decay. At the same time, comparison
of results obtained by such approach and results obtained
by principally other fully quantum developments some-
times leads to some confusion as the TPA approach has
been called as the fully quantum. So, approaches for de-
termination of the decay widths on the basis of penetra-
bility are physically motivated, can be more accurate and
have perspective for research.

4. Conclusions

The new fully quantum method (called as the method of
multiple internal reflections, or MIR) for calculation of
widths for the decay of the nucleus by emission of proton
in the spherically symmetric approximation and the real-
istic radial barrier of arbitrary shape is presented. Note
the following:

o Solutions for amplitudes of wave function (described
motion of the proton from the internal region outside
with its tunneling through the barrier), penetrability T
and reflection R are found by the method MIR for
n-step radial barrier at arbitrary n. These solutions are
exactly solvable and have been obtained in the fully
quantum approach for the first time. At limit n — oo
these solutions could be considered as exact ones for

Copyright © 2011 SciRes.

the realistic proton-nucleus potential with needed ar-
bitrary barrier and internal hole. Estimated error of
the achieved results is [T +R—1|<1.5-107".

e In contrast to the semiclassical approach and the TPA
approach, the approach MIR gives essential depend-
ence of the penetrability on the starting point R
inside the internal well where proton starts to move
outside in the beginning of the proton decay. For
example, the penetrability of the barrier calculated by
MIR approach for 1 Ta is changed up to 200 times
in dependence on position of R, (see Figure 1).
The amplitudes calculated by MIR approach we
compared with the corresponding amplitudes ob-
tained (for the same potential) by independent stan-
dard stationary approach of quantum mechanics pre-
sented in Appendix B and we obtained coincidence
up to first 15 digits for all considered amplitudes.
This important test confirms that presence of the es-
sential dependence of the penetrability of the starting
point R, is result independent on the fully quan-
tum method applied. Such a result raises necessity to
introduce initial condition which should be imposed
on the proton decay in its fully quantum consideration.
Comparison with the WKB and TPA approaches
shows that such approaches have no such a perspec-
tive (having physical sense and opening a possibility
to obtain a new information about the proton decay),
which fully quantum study of the penetrability gives.

e In order to resolve uncertainty in calculations of the
half-lives caused by the dependence of the penetrabil-
ity on R, ., we introduce the following initial con-
dition: in the first stage of the proton decay the pro-
ton starts to move outside at the coordinate of mini-
mum of the internal well. Such condition provides
minimal value for the calculated half-life and gives
stable basis for predictions in the MIR approach.
However, the half-lives calculated by the MIR ap-
proach turn out to be a little closer to experimental
data in comparison with the half-lives obtained by the
semiclassical approach (see Table 1).

e Taking the external region of the potential after the
barrier into account, half-live calculated by the MIR
approach is changed up to 1.5 times (see Figure 2).

A main advance of the MIR method developed in this
paper is not a new attempt to describe experimental data
of half-lives more accurately than other approaches do
this, but rather this method seems to be the first tools for
estimation of the penetrability of any desirable barrier of
the proton decay in the fully quantum consideration.
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Appendix A

Tunneling of Packet through One-Dimensional
Rectangular Step

A main idea and formalism of the multiple internal re-
flections can be the most clearly understood in the sim-
plest problem of tunneling of the particle through
one-dimensional rectangular barrier in whole axis [6-10].
Let us consider a problem of tunneling of a particle in
positive x-direction through an one-dimensional rectan-
gular potential barrier (see Figure 3). Let us label a re-
gion [ for x<0,aregionIl for 0 <x<a and aregion
IIT for x> a, accordingly. We shall study an evolution
of its tunneling through the barrier.

In standard approach, with energy less than the barrier
height the tunneling evolution of the particle is described
using a non-stationary propagation of wave packet (WP)

w(xt)= [g(E-E)p(k.x)e "/ dE, (22)
0
where stationary wave function (WF) is:
e+ Ae™, forx<o0,
p(x)=<ae™ +pe, for0<x<a, (23)
Ae™, forx>a

and k =%\/2mE , <§=%1/2m(v1 —E), E and m are the

total energy and mass of the particle, accordingly. The
weight amplitude g (E - E) can be written in the stan-
dard gaussian form and satisfies to a requirement of the
normalization _[ |g(E - E)| dE =1, value E is an aver-
age energy of the particle. One can calculate coefficients
A, Ay, o and g analytically, using a requirements
of a continuity of WF ¢(x) and its derivative on each
boundary of the barrier. Substituting in Equation (22)
instead of ¢(k,x) the incident ¢, (k,X), transmitted
@, (k,x) or reflected part ¢, (k,x) defined by Equa-
tion (23), we receive the incident, transmitted or re-
flected WP, accordingly.

We assume, that a time, for which the WP tunnels
through the barrier, is enough small. So, the time neces-
sary for a tunneling of proton through a barrier of decay,
is about 107" seconds. We consider, that one can ne-
glect a spreading of the WP for this time. And a breadth
of the WP appears essentially more narrow on a com-
parison with a barrier breadth. Considering only
sub-barrier processes, we exclude a component of waves
for above-barrier energies, having included the additional
transformation

g(E-E)>g(E-E)o(V,-E). (24)
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Figure 3. Tunneling of the particle through one-dimen-
sional rectangular barrier.

where @ -function satisfies to the requirement

0, forn<0;
o(n) =
(77) {1, for > 0.

The method of multiple internal reflections considers
the propagation process of the WP describing a motion
of the particle, sequentially on steps of its penetration in
relation to each boundary of the barrier [11-13]. Using
this method, we find expressions for the transmitted and
reflected WP in relation to the barrier. At the first step
we consider the WP in the region I, which is incident
upon the first (initial) boundary of the barrier. This
package transforms into the WP, transmitted through this
boundary and tunneling further in the region II, and into
the WP, reflected from the boundary and propagating
back in the region I. This we consider, that the WP, tun-
neling in the region II, is not reached the second (final)
boundary of the barrier because of a terminating velocity
of its propagation, and consequently at this step we con-
sider only two regions I and II. Because of physical rea-
sons to construct an expression for this packet, we con-
sider, that its amplitude should decrease in a positive
x-direction. We use only one item Sexp(—£x) in Equ-
ation (23), throwing the second increasing item
a exp(f X) (in an opposite case we break a requirement
of a finiteness of the WF for an indefinitely wide barrier).
In result, in the region II we obtain:

7 = _Ex-iEt/h
wh(x,t) = {g(E—E)e(vl—E)ﬂOe dE, 25)

for0<x<a.

Thus the WF in the barrier region constructed by such
way, is an analytic continuation of a relevant expression
for the WF, corresponding to a similar problem with
above-barrier energies, where as a stationary expression
we select the wave exp(ik,X), propagated to the right.

Let’s consider the first step further. One can write ex-
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pressions for the incident and the reflected WP in rela-
tion to the first boundary as follows
Vi (1) = [g(E-E)O(V, —E)e™"E/ dE,
0
for x <0, (26)

l//r]ef (X,t) = jg (E - E)gr(\/1 _ E)Age—ikx—iEt/th’
0
for x<0.

A sum of these expressions represents the complete
WEF in the region I, which is dependent on a time. Let’s
require, that this WF and its derivative continuously
transform into the WF (25) and its derivative at point
x=0 (we assume, that the weight amplitude
g (E - E) differs weakly at transmitting and reflecting
of the WP in relation to the barrier boundaries). In result,
we obtain two equations, in which one can pass from the
time-dependent WP to the corresponding stationary WF
and obtain the unknown coefficients A’ and A.

At the second step we consider the WP, tunneling in
the region II and incident upon the second boundary of
the barrier at point x=a. It transforms into the WP,
transmitted through this boundary and propagated in the
region III, and into the WP, reflected from the boundary
and tunneled back in the region II. For a determination of
these packets one can use Equation (22) with account
Equation (24), where as the stationary WF we use:

P (K, X) = gy (k,x) = B, for 0< x<a,
oz (k,x) = A’e™, forx>a, 7)

o (K, x)=a’e™, for0<x<a.

Here, for forming an expression for the WP reflected
from the boundary, we select an increasing part of the
stationary solution &' exp(&x) only. Imposing a con-
dition of continuity on the time-dependent WF and its
derivative at point X=a, we obtain 2 new equations,
from which we find the unknowns coefficients A’ and
a’.

At the third step the WP, tunneling in the region II, is
incident upon the first boundary of the barrier. Then it
transforms into the WP, transmitted through this bound-
ary and propagated further in the region I, and into the
WP, reflected from boundary and tunneled back in the
region II. For a determination of these packets one can
use Equation (22) with account Equation (24), where as
the stationary WF we use:

@e (K, X) =2 (K, X), for 0<x<a,
os (K, x) = Aze™, forx >0, (28)

po; (k.X)=B'e, for0<x<a.
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Using a conditions of continuity for the time-dependent
WF and its derivative at point X =0, we obtain the un-
knowns coefficients A, and A'.

Analyzing further possible processes of the transmis-
sion and the reflection of the WP through the boundaries
of the barrier, we come to a conclusion, that any of fol-
lowing steps can be reduced to one of 2 considered
above. For the unknown coefficients «", A", Al and
AL, used in expressions for the WP, forming in result of
some internal reflections from the boundaries, one can
obtain the recurrence relations:

0 _ 2k no_ nig_k —2¢a
P e P
n+l _ nig_k O:k_ig
Frmaane R ghe 29)
n_ pn 2I§ —¢a—ika n+l _ n 2'5
APk R T

Considering the propagation of the WP by such way,
we obtain expressions for the WF on each region which
can be written through series of multiple WP. Using Eq-
uation (22) with account Equation (24), we determine
resultant expressions for the incident, transmitted and
reflected WP in relation to the barrier, where one can
need to use following expressions for the stationary WEF:

Pine (k5 X) = eikx, for x < 0’

o, (k,x) e’ forx > a, (30)

- A

n=0
Prr (K. X) =D Age™, forx <0.

n=0

Now we consider the WP formed in result of sequen-
tial n reflections from the boundaries of the barrier and
incident upon one of these boundaries at point X =0
(i=1) or at point x=a (i=2). In result, this WP
transforms into the WPy (X,t), transmitted through
boundary with number i, and into the WP w, (X,t),
reflected from this boundary. For an independent on X
parts of the stationary WF one can write:

(ptlr =T + (pilnc (prlcf — Rt ¢i1nc
exp(=¢x) ' exp(ikx)” exp(-ikx) " exp(ikx)’
O _ 1+ P Do v P
exp(ikx) ’ exp(—(fx)’ exp((fx) ? exp(—(fx)’
¢t1r =T"- (Dilnc (p:cf — R ¢i1nc
exp (—ikx) : exp(&x)” exp(—£x) 1 exp(£x)’

(31

[RE)

where the sign “+” (or “=") corresponds to the WP, tun-
neling (or propagating) in a positive (or negative)
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X-direction and incident upon the boundary with number
i. Using T* and R’, one can precisely describe an
arbitrary WP which has formed in result of n-multiple
reflections, if to know a “path” of its propagation along
the barrier. Using the recurrence relations Equation (29),

the coefficients T," and R" can be obtained.

n n+l
T]+:ﬂ0, T2+: AT , T]*:AR

n n ?

p “ (32)
. 0 . an ~ n+l1
R =~A. R ZF’ R = a"

Using the recurrence relations, one can find series of
coefficients «", A", Al and A;. However, these
series can be calculated easier, using coefficients T;*
and R®. Analyzing all possible “paths” of the WP
propagations along the barrier, we receive:

4o 40 H —£a-ika
A =T2+T1‘[1+Z(R§Rl‘)nj——l4k§e :
n=0 n=1 F

sub

(R;Rl)n)=k§D‘,

M

DA =R +TRTS (1+
n=0

n=l I:sub (33)
= = n)  2k(i&—k)e?
da" =a°(1+Z(R2"R1‘) j——(%ﬁ )e ,
n=0 n=1 Fsub
R R n)  2k(ié+k
S (1 S(rir )| - 2L
n=0 i=1 Fsub
where
Foo =(k* —&")D_+2ikéD,,
D, =1+e™*, (34)
2mV,
ki =k>+&° = hzl'

All series Y a", >B", DAl and Y Ay, obtained
using the method of multiple internal reflections, coin-
cide with the corresponding coefficients o, £, A
and A; of the Equation (23), calculated by a stationary
methods [18]. Using the following substitution

i&—>Kk,, (35)

1 .
where k, = 7 [2m(E-V,) is a wave number for a case

of above-barrier energies, expression for the coefficients
a", p", Al and Ay for each step, expressions for
the WF for each step, the total Equations (33) and (34)
transform into the corresponding expressions for a prob-
lem of the particle propagation above this barrier. At the
transformation of the WP and the time-dependent WF
one can need to change a sign of argument at
@ -function. Besides the following property is fulfilled:
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A

n=0

YA

n=0

+ =1. (36)

Appendix B
Direct Method

We shall add shortly solution for amplitudes of the wave
function obtained by standard technique of quantum
mechanics which could be obtained if to use only condi-
tion of continuity of the wave function and its derivative
at each boundary, but on the whole region of the studied
potential. At first, we find functions f, and g, (from
the first boundary):

f. = Meﬂkle

: 2|(1 ei(k1+k2)xl ) (37)
kz - kl

] g2:kl_k2

Then, using the following recurrent relations:
2ikjx;j
~ (kj+, —kj)e 4t (kj+1 +k1)_e2ik1+|><j
I 2ikj X
(ki Ky )™+ £ (ki k)

we calculate next functions f,, f,, f; -+ f
by such a formula:

., (38)
j+l

and

no

2k o ki ki )X
)
— 39)
Jrk.)eZkJ Iy fj(kj+1_kj)

i+ i

9in :gj‘(k

the functions ¢, ¢,, s g,. From f, and g,
we find amplitudes ¢, B, and amplitude of transmis-

sion A :
9

p£.=0, A =a,=—=". (40)
fn
Now using the recurrent relations:

ikiXi_; —ikiXi_ —iKi_1Xi_;

_ajell|+ﬂje JJ‘_gj_]e J17j-1
ap, = iki_yXi —ikj_;Xj (41)

e M4 fHe S
and such a formula:

ﬂj:aj'fj"‘gja (42)

we consistently calculate the amplitudes «,_,, B,

Ay s Prs a,, fB,. At finishing, we find ampli-
tude of reflection Ay :
AR — azei(k1+k2)xl +ﬁzei(k]—k2)xl _eziklxl . (43)

As test we use condition:
k
k—”|AT|2+|AR|2=1. (44)
1

Studying the problem of proton decay, we used such a
techniques for check the amplitudes obtained previously

JMP
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by the MIR approach and obtained coincidence up to nique above. So, result on the large dependence of the

first 15 digits for all considered amplitudes. In particular, penetrability of the position of the starting point R,
we reconstruct completely the pictures of the probability in such figures is independent on the used fully quantum
presented in Figures 1 and 2, but using standard tech- method.
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