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Abstract 
 
We develop a new fully quantum method for determination of widths for nuclear decay by proton emission 
where multiple internal reflections of wave packet describing tunneling process inside proton-nucleus radial 
barrier are taken into account. Exact solutions for amplitudes of wave function, penetrability T and reflection 
R (estimated for the first time for decay problem) are found for n-step barrier (at arbitrary n) which approxi-
mates the realistic barrier. In contrast to semiclassical approach and two-potential approach, we establish by 
this method essential dependence of the penetrability on the starting point Rform in the internal well where 

proton starts to move outside (for example, for  the penetrability is changed up to 200 times; accuracy 

is ). We impose a new condition: in the beginning of the proton decay the proton starts 
to move outside from minimum of the well. Such a condition provides minimal calculated half-life and gives 
stable basis for predictions. However, the half-lives calculated by such an approach turn out to be a little 
closer to experimental data in comparison with the semiclassical half-lives. Estimated influence of the exter-
nal barrier region is up to 1.5 times for changed penetrability. 
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1. Introduction 
 
Nuclei beyond the proton drip line are ground-state pro-
ton emitters, i.e. nuclei unstable for emission of proton 
from the ground state. Associated lifetimes, ranging from 

 sec to few seconds, are sufficiently long to obtain 
wealth of spectroscopic information. Experimentally, a 
number of proton emitters has been discovered in the 
mass region , 150, and 160 (see [1-4] and ref-
erences in cited papers). A new regions of proton unsta-
ble nuclei is supposed to be explored in close future us-
ing radioactive nuclear beams. 

610

110A 

Initially, the parent nucleus is in quasistationary state, 
and the proton decay may be considered as a process 
where the proton tunnels through potential barrier. In 
theoretical study one can select three prevailing ap-
proaches [5]: approach with distorted wave Born ap-
proximation (DWBA), two-potential approach (TPA), 
and approach for description of penetration through the 

barrier in terms of one-dimensional semiclassical method 
(WKBA). In systematical study these approaches are 
correlated between themselves, while calculation of pe-
netrability of the barrier is keystone in successful estima-
tion of gamma widths. While the third approach studies 
such a question directly, in the first and second ap-
proaches the penetrability of the barrier is not studied 
and the width is based on correlation between wave 
functions in the initial state (where the proton occupies 
the bound state before decay) and the final one (where 
this proton has already penetrated through the barrier 
without its possible oscillations inside internal well and it 
moves outside). However, the most accurate information 
on correspondence between amplitudes and phases of 
these wave functions can be obtained from unite picture 
of penetration of proton through the barrier, which the 
WKBA approach provides (and is practically realized up 
to approximation of the second order). Importance of 
proper choice of needed boundary condition, the most 
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correctly and closely corresponded to decay, reinforces 
our interest in the fully quantum consideration of unite 
tunneling process in this task, while the detailed analysis 
of selection this boundary condition and its real influence 
on results is practically missed in TPA and DWBA ap-
proaches. 

Affirmed errors in calculations of half-lives by modern 
TPA and WKBA models are about some percents. In this 
paper we show that if to take into account influence by 
the internal and external regions of the barrier neglected 
in TPA, DWBA and WKBA approaches, that one can 
obtain change of results up to 200 times (i.e. 20000 per-
cents)! Note that our method has not been accepted by 
authors of TPA, DWBA and WKBA models. But it is 
easy to clarify effectiveness and proper description and 
estimation of the penetration through the barrier in any 
model if to use well known tests of quantum mechanics 
(like  where T and R are penetrability and 
reflection concerning the barrier). In this paper we show 
that in the WKBA, TPA, DWBA models such tests are 
not applicable, while we give apparatus how to work 
with them. We analyze in details which approach has 
more grounds, is really fully quantum, richer and more 
accurate. And we give clear and simple explanation for 
difference between our approach and their ones consisted 
in essential role of the boundary condition. 

= 1T R

The main objective of this paper is to pass from semi-
classical unite description of the process of penetration 
of proton through the barrier used in the WKBA ap-
proach to its fully quantum analogue, to put a fully 
quantum grounds for determination of the penetrability 
in this problem. In order to provide such a formalism, we 
have improved method of multiple internal reflections 
(MIR, see [6-10]) generalizing it on the radial barriers of 
arbitrary shapes. In order to realize this difficult im-
provement, we have restricted ourselves by consideration 
of the spherical ground-state proton emitters, while nu-
clear deformations are supposed to be further included 
by standard way. This advance of the method never stu-
died before allows to describe dynamically a process of 
penetration of the proton through the barrier of arbitrary 
shape in fully quantum consideration, to calculate pene-
trability and reflection without the semiclassical restric-
tions, to analyze abilities of the semiclassical and other 
models on such a basis. 

This paper is organized in the following way. In Sec-
tion 2, formalism of the method of multiple internal re-
flections in description of tunneling of proton through 
the barrier in proton decay is presented. Here, we give 
solutions for amplitudes, define penetrability, width and 
half-life. In Section 3, results of calculations are con-
fronted with experimental data and are compared with 
semiclassical ones. Here, using the fully quantum basis 

of the method, we study a role of the barrier shape in 
calculations of widths in details. In particular, for the 
first time we observe essential influence of the internal 
well before the barrier on the penetrability that necessi-
tates to introduce initial condition which should be im-
posed on the proton decay in its fully quantum consid-
eration. We discuss shortly possible interconnections 
between the proposed approach and other fully quantum 
methods of calculation of widths. In Section 4, we sum-
marize results. Appendixes include proof of the method 
MIR and alternative standard approach of quantum me-
chanics used as test for the method MIR and for the re-
sults presented. 
 
2. Theoretical Approach 
 
An approach for description of one-dimensional motion 
of a non-relativistic particle above a barrier on the basis 
of multiple internal reflections of stationary waves rela-
tively boundaries has been studied in number of papers 
and is known (see [11-13] and references therein). Tun-
neling of the particle under the barrier was described 
successfully on the basis of multiple internal reflections 
of the wave packets relatively boundaries (approach was 
called as method of multiple internal reflections or me-
thod MIR, see [6-9]). In such approach it succeeded in 
connecting: 1) continuous transition of solutions for 
packets after each reflection, total packets between the 
above-barrier motion and the under-barrier tunneling; 2) 
coincidence of transmitted and reflected amplitudes of 
stationary wave function in each spatial region obtained 
by approach MIR with the corresponding amplitudes 
obtained by standard method of quantum mechanics; 3) 
all non-stationary fluxes in each step, are non-zero that 
confirms propagation of packets under the barrier (i.e. 
their “tunneling”). In frameworks of such a method, 
non-stationary tunneling obtained own interpretation, 
allowing to study this process at interesting time moment 
or space point. In calculation of phase times this method 
turns out to be enough simple and convenient [10]. It has 
been adapted for scattering of the particle on nucleus and 
 -decay in the spherically symmetric approximation 
with the simplest radial barriers [6,7,9] and for tunneling 
of photons [7,10]. However, further realization of the 
MIR approach meets with three questions.  

1) Question on effectiveness. The multiple reflections 
have been proved for the motion above one rectangular 
barrier and for tunneling under it [7,10,13]. However, 
after addition of the second step it becomes unclear how 
to separate the needed reflected waves from all their va-
riety in calculation of all needed amplitudes. After ob-
taining exact solutions of the stationary amplitudes for 
two arbitrary rectangular barriers [6,9], it becomes un-
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clear how to generalize such approach for barriers with 
arbitrary complicate shape. In [14] multiple internal re-
flections of the waves were studied for tunneling through 
a number of equal rectangular steps separated on equal 
distances. However, the amplitudes were presented for 
two such steps only, in approximation when they were 
separated on enough large distance, and these solutions 
in approach of multiple internal reflections were based of 
the amplitudes of total wave function obtained before by 
standard method (see Appendix A, Equations (7), (18) 
and (19) in this paper). So, we come to a serious unre-
solved problem of realization of the approach of multiple 
reflections in real quantum systems with complicated 
barriers, and clear algorithms of calculation of ampli-
tudes should be constructed. 

possible interference between incident and reflected 
waves which can be non zero. The penetrability is de-
termined by the barrier shape inside tunneling region, 
while internal and external parts do not take influence on 
it. The penetrability does not dependent on depth of the 
internal well (while the simplest rectangular well and 
barrier give another exact result). But, the semiclassical 
approach is so prevailing that one can suppose that it has 
enough well approximation of the penetrability estimated. 
It turns out that if in fully quantum approach to deter-
mine the penetrability through the barrier (constructed on 
the basis of realistic potential of interaction between 
proton and daughter nucleus) then one can obtain answer 
“No”. Fully quantum penetrability is a function of new 
additional independent parameters, it can achieve essen-
tial difference from semiclassical one (at the same 
boundary condition imposed on the wave function). This 
will be demonstrated below. 

2) Question on correctness. Whether is interference 
between packets formed relatively different boundaries 
appeared? Whether does this come to principally differ-
ent results of the approach of multiple internal reflections 
and direct methods of quantum mechanics? Note that 
such interference cannot be appeared in tunneling through 
one rectangular barrier and, therefore, it could not visible 
in the previous papers. 

 
2.1. Decay with Radial Barrier Composed from 

Arbitrary Number of Rectangular Steps 
 
Let us assume that starting from some time moment be-
fore decay the nucleus could be considered as system 
composite from daughter nucleus and fragment emitted. 
Its decay is described by a particle with reduced mass m 
which moves in radial direction inside a radial potential 
with a barrier. We shall be interesting in the radial poten-
tial V(r) with barrier of arbitrary shape which has suc-
cessfully been approximated by finite number N of rec-
tangular steps:  

3) Question on uncertainty in radial problem. Calcula-
tions of half-lives of different types of decays based on 
the semiclassical approach are prevailing today. For ex-
ample, in [15] agreement between experimental data of 
 -decay half-lives and ones calculated by theory is 
demonstrated in a wide region of nuclei from  up 
to nucleus with  and  (see [16] for 
some improved approaches). In review [17] methodology 
of calculation of half-lives for spontaneous-fission is 
presented (see Equations (21-24) in p. 321). Let us con-
sider proton-decay of nucleus where proton penetrates 
from the internal region outside with its tunneling 
through the barrier. At the same boundary condition, 
reflected and incident waves turn out to be defined with 
uncertainty. How to determine them? The semiclassical 
approach gives such answer: according to theory, in 
construction of well known formula for probability we 
neglect completely by the second (increasing) item of the 
wave function inside tunneling region (see [18], Equation 
(50.2), p. 221). In result, equality  has no 
any sense (where T and R are coefficients of penetrability 
and reflection). Condition of continuity for the wave 
function and for total flux is broken at turning point. So, 
we do not find the reflection R. We do not suppose on  

106 Te
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where i  are constants ( ). We define the first 
region 1 starting from point min , assuming that the 
fragment is formed here and then it moves outside. We 
shall be interesting in solutions for above barrier energies 
while the solution for tunneling could be obtained after 
by change i i

V = 1i 
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N

ki  . A general solution of the wave 
function (up to its normalization) has the following form:  
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where j  and j  are unknown amplitudes, AT and AR 
are unknown amplitudes of transmission and reflection,  

 ,lmY    is spherical function,  1
= 2ik m E 
 iV

1

  

are complex wave number in the corresponding region 
with number i, E is energy of the emitted proton. We 
shall be looking for solution for such problem by ap-
proach of multiple internal reflections. Here, we restrict 
ourselves by a case of the orbital moment  while 
its non-zero generalization changes the barrier shape 
which was used as arbitrary before in development of 
formalism MIR and, so, is not principal. 

= 0l

According to the method of multiple internal reflec-
tions, scattering of the particle on the barrier is consid-
ered on the basis of wave packet consequently by steps 
of its propagation relatively to each boundary of the bar-
rier (the most clearly idea of such approach can be un-
derstood in the problem of tunneling through the sim-
plest rectangular barrier, see [7,9,10] and Appendix A 
where one can find proof of this fully quantum exactly 
solvable method, one can analyze its properties). Each 
step in such consideration of propagation of the packet  

will be similar to one from the first  steps, inde-
pendent between themselves. From analysis of these 
steps recurrent relations are found for calculation of un-
known amplitudes for arbitrary step n, summation of 
these amplitudes are calculated. We shall be looking for 
the unknown amplitudes, requiring wave function and its 
derivative to be continuous at each boundary. We shall 
consider the coefficients 1 , 2 , 3   and 

2N 

T  T  T 
1R , 

2R , 3R   as additional factors to amplitudes . 
Here, bottom index denotes number of the boundary, 
upper (top) signs “+” and “–” denote directions of the 
wave to the right or to the left, correspondingly. At the 
first, we calculate 
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 

 

1 1
1 1 1 1 1 1

=1 1

1 1
1 1 1 1 1 1

=1 1

1 1 1
=1

= 1 =
1

= 1 =
1

= 1

m j j j
j j j j j j j j

m j j

m j j j
j j j j j j j j

m

,

,
j j

j j j j j
m

T R T
R R T R T R R R

R R

T R T
R R T R T R R R

R R

T T T R R

  
        

       


  
        

       



   
  

      

      










  




  



    1

1

= ,
1

m j j

j j

T T

R R

 


 


 
   




                   (5) 

 
and selecting as starting the following values:  
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the amplitudes of transmission and reflection:  

1= , =T N RA T A R

               (8) 

and corresponding coefficients of penetrability T and 
reflection R:  

2

1

= , =n
MIR T MIR R

k
T A R A

k

2
.         (9) 

We check the property:  

2 2

1

= 1 or = 1,n
T R MIR MIR

k
A A T R

k
      (10) 

which should be the test, whether the method MIR gives 
us proper solution for wave function. Now if 
the particle is located below then height of one step with 

energy of 

number m, then for description of transition of this parti-
cle through such barrier with its tunneling it shall need to 
use the following change:  

.m mk i                 (11) 

For the potential from two rectangular steps (with dif-
ferent choice of their sizes) after com
all amplitudes obtained by meth
re

parison between the 
od of MIR and the cor-

sponding amplitudes obtained by standard approach of 
quantum mechanics, we obtain coincidence up to first 15 
digits. Increasing of number of steps up to some thou-
sands keeps such accuracy and fulfillment of the prop-
erty (10) (see Appendix B where we present shortly the 
standard technique of quantum mechanics applied for the 
potential (19) and all obtained amplitudes). This is im-
portant test which confirms reliability of the method 
MIR. So, we have obtained full coincidence between all 
amplitudes, calculated by method MIR and by standard 
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e define the  width of the decay of the studied 
m rocedure in [19,23]:  

approach of quantum mechanics, and that is way we ge-
neralize the method MIR for description of tunneling of 
the particle through potential, consisting from arbitrary 
number of rectangular barriers and wells of arbitrary 
shape. 
 
2.2. Width   and Half-Life 
 
W 
quantum syste  following by the p

2

= ,
4pS F T

m



               (12) 

where pS  
T

is spectroscopic factor and F is normalization 
factor.  is penetrability coefficien
particle from the internal region outside with its tunnel-

ug

t in propagation of the 

ing thro h the barrier which we shall calculate by ap-
proach MIR or by approach WKB. In approach WKB we 
define it so:  
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The   half-life of the decay is related to the   
width by the well known expression:  
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en proton and the 
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ha
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Here A and Z are the nucleon and proton numbers of 
the daughter nucleus, Q is the Q-value for the pro-
ton-decay, RV  

of t
he

is the strength of the nuclear component, 
R is radius he daughter nucleus, is the effective 
radius of t  nuclear component, d is diffusen
parameters are defined in [20]. Note that in this paper we 
are concentrating on the principal resolution of question 
to provide fully quantum basis for calculation of the 
penetrability and half-life in the problem of the proton 
de

clu

 mr  
 ess. All 

cay, while the proton-nucleus potential can be used in 
simple form that does not take influence on the reliability 
of the developed methodology of the multiple internal 
reflections and could be naturally in ded for modern 
more accurate models. 
 
3. Results 
 
Today, there are a lot of modern methods able to calcu-
late half-lives, which have been studied experimentally 
well. So, we have a rich theoretical and experimental 
material for analysis. We shall use these nuclei: 157

73 Ta , 
161
75 Re , 167

77 Ir  for = 0l , and 109 112 147 r 
0

53 I , 55 Cm , 69 Tm  fo
l  . Such a choice we explain by that they 

 qu
have small 

coefficient of adruple deformation 2  
 spheri

an
cal. 

d at good 
We shall a

st
pproximation ca nsidn be co ered as
udy proton-decay on the basis of leaving of the particle 

with reduced mass from the internal region outside with 
its tunneling through the barrier. This particle is sup-
posed to start from min 1R r r   and move outside ( 1r  
is defined in Equation (1)). Using the coefficients jT   
and jR  in Equations (4) - (6), we calculate total ampli-
tudes of transmission TA  and reflection RA  by Equa-
tion (8), the penetrability coefficient MIRT  by Equation 
(9). We check the found amplitudes, coefficients MIRT  
and MIRR  comparing them with corresponding ampli-
tudes and coefficients calculated by the standard ap-
proach of quantum mechanics presented in Appendix B. 
We restrict ourselves by Equation (14) for 1F  and fin  
width 

d
  by Equation (12) and half-live MIR  by Equa-

tion (15). We define the penetrability WKBT  by Equation 
(13), calculate  -width and half-live WKB  by Equa-
tions (12) and (15). 
 
3.1. Dependence of the Penetrability on the 

Starting Point 
 
The first interesting result which we have btained is 
essential dependence of the penetrability o  the position 
of the first region where we localize the wave incidenting 
on the barrier. In particular, we have lyzed how 
much the internal bo

o
n

ana
undary takes influence on the 

la-
equal 

minR  
penetrability. In order to obtain well accuracy of calcu
tions, we have chosen width of each interval to be 
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0.01 he left boundary of the first 
terval as a starting point 

 fm. We consider t minR  
in start

gins to move outside and is incident on the internal part 
of the barrier in the first stage of the proton decay. In 
Figure 1 one can see that half-live of the proton decay of 
the 157

73 Ta  emitter is changed essentially at displacement 
of 

R , from  proton be- here

startR . So, we establish esse tial dependence of the 
penetrability on the starting point 

n

startR , where the pro-
ton starts to move outside by approach MIR. At 

= 7.2127startR  fm this dependence allo  to achieve 
very close coincidence between the half-live calculated 
by the approach MIR and experimental data. 
 
3.2. Dependence of the Penetrability on the  

rnal Region 
 
The region of the barrier located be n turning points 

2R  and 3R  is main part of the potential used in calcu-
enetrability in the semiclassical approach 

(up to the second correction), while the internal and ex-
ternal parts of this potential do not take influ

ws us

e

x

max >R R
e sam

Exte

n of th

 us an

s
g width o

twe

nce e

 (
be th

latio e p

e

cre
f

in 

ence on it. 
alyze whether conv ists in calcula-

 in-
da ). Keep-

 each interval (st , we shall 

L t

a

t

erge

ry maxR
ep) to 

tions of the penetrability in the approach MIR if to
e the external boun 3

ein
increase maxR  (through increasing number of intervals 

he external region), starting from the external turning 
point 3R , and calculate the corresponding penetrability 

MIRT . In Figure 2 [left panel] one can see how the pene-
trability is changed for 157

73 Ta  with increasing maxR . 
Dependence of the half-life MIR  on maxR  is shown in 
Figure 2 [right panel]. One can see that the method MIR 
gives convergent values for the etra  half-life 
at increasing of maxR . From such figures we find that 
inclusion e external region into calculations changes 
the half-life up to 1.5 times ( min = 0.20

pen bility and

 of th
  sec is the mi-

nimal lf-life calculated at 3 max 250R R   fm, and 

as 0.30
ha

=  sec is the half-life calculated at max = 250R  
fm, a minerror = / 1.5s     percents). So, error  
determination of the penetra y in semiclassical 
approach (if to take the external region into account) is 
expected to be the same as a minimum on such a basis. 
 
3.3. Results of Calculations of Half-Lives in Our 

and Semiclassical App
 

e demonstrated above, the fully qu
culat ity of the barrier for the proton 
decay give us its essential dependence on the starting 
point. In order to give power of predictions of half-lives 
calculated by the approach MIR, we need to find recip

or 50
bilit

roa

rtainty in calc

 in
the 

u

ches 

As we hav
ions o

 to re

antum cal-
e penetrabil

e 
e such unce lations of the 

  

f th

b solva le
half-lives. So, we shall introduce the following hypothesis:

 

Figure 1. Proton-decay for the  nucleus: dependence 
of the half-life 

157
73 Ta

 MIR  on the starting point startR  (at 
 fm ere calc= 7.2127startR wh ulated  MIR

exp

 at 
th erimental

max =R 250  
fm coincides wi  exp  data   for this nucleus). 
 

 
 

 

Figure 2. Proton-decay for the nucleus: in the left 
panel the dependence on penetr on the exter-
nal boundary

157
73 Ta  

ability MIR  
 maxR  is presente  right panel the 

dependence  half-live 
d, in the

 of the  MIR  on maxR  is presented (we 
use fm whe= 7.startR 2127 re calculated  MIR

p

 at 
fm co with experimental data 

max = 250R  
incides ex  for this nucleus). 

In all calculations factor F is the same. 
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we shall assume that in the first stage of the proton decay 
proton starts to move outside the most probably at the 
coordinate of minimum of the internal well. 

If such a point is located in the minimum of the well, 
the penetrability turns out to be maximal and half-life 
minimal. So, as criterion we could use minimum of 
half-live for the given potential, which has stable basis. 
We should take into account that the half-lives obtained 
before are for the proton occupied ground state while it 
needs to take into account probability that this state is 
empty in the daughter nucleus. In order to obtain proper 
values for the half-lives we should divide them on the 
spectroscopic factor S (which we take from [5]), and the
to compare them with experimental data. Results of such

a
omp

ves 

oton Decay 

fferent ap-
pr

 

ma-
tion (  given so [5]: 
amplitude, which in the distorted wave Born approxi

DWBA) is

1, 1; , 1= .A Z A Z Ap Ap Ap AT V           (18) 

The DWBA calculations of the decay width requires 
knowledge of the quasistationary initial state wave func-
tion, , the final state wave function, Ap Ap

e func
1A , and 

in potential. The initial state wav tion, teraction 

1A , is 
ncti

written as a product of the da leus 
on, 

ughter-nuc
wave fu A , and the proton wave function, nlj . 
The radial wave function of the proton   =r  l

 l
Schröd
should

r r
ing
 be i

 is d by numerically in
er eq tion with one-body po

rre part of the Coulomb w

foun
ua

gular 

tegrating
tential, and it 

ave funct

 the 

ion, 
 lG r

compl
tion o
inside s
tion in

, in
ex an
f con

pat
 wh

n 
 

calculations and experimental dat  for some proton 
emitters are presented in Table 1. To c lete a picture, 
we add half-li calculated by the semiclassical ap-
proach to these data. 
 
3.4. Comparison with Other Approaches of 

Calculations of Widths of Pr

 asym tic region. So, such wav
d it nes non-zero flux. As 
tinu f total flux (i.e. absenc

ial r ) we cannot obtain zer
ole  of its definition, and

particular. 
In the final state the wave function of the decaying 

nuclear system can be written as a product of the intrin-
sic wave function of the proton and the daughter nucleus 
(an inner core). Radial part of the proton wave function 
is 

pto
 defi
ity o
egion
region

e functio
we use co

e of so
o wave fu
 at = 0r

n is 
ndi-

urces 
nc-
, in 

 
Half-life of the proton decay is defined on the basis of 
width   which can be calculated by di

oaches. For determination of width we shall use sys-
tematics of different approaches proposed in Ref. [5]. 
The proton emitters are narrow resonances with ex-
tremely small widths. Perturbative approach based on 
standard reaction theory could be expected to be accurate. 
Let us analyze two following approaches in such a direc-
tion. 
 
3.4.1. The Distorted Wave Born Approximation  

Method 
The resonance width can be expressed through transition 

   :l lr F r r , where  lF r
rds, this

 is the regular Cou-
lomb function. By other wo  wave function is real, 
and, therefore, it gives zero flux exactly determined on 
the basis of the total wave function in the final state. The 
total wave functions in the initial and final states corre-
spond to different processes (with different total fluxes). 
They, complete wave functions, do not take reflection 
from the barrier inside the internal region into account 
(but they are defined by different boundary conditions in 
the initial and final states only). Here, question about  

n emitters. Here, 
 
Table 1. Experimental and calculated half-lives of some proto th

pS  is theoretical spectroscopic factor, WKB  
is half-life calculated by in the semiclassical approach,  MIR is half-life calculate  by in the approach MIR, d =  th

pWKB WKB S , 
=  th

MIR MIR pS , exp  th
pS , exp  is experimental data. Values for are used from Table IV in Ref. [5] (see p. 1770); in ca

fm; number of intervals in region from 
lcula-

tions for each nucleus we use: min  fm, max= 0.11R =R 250  minR  to maximum of the 
barrier is 10000, from maximum of the barrier to maxR  is 10000. 

Parent nucleus  Half-live-values, sec 

Nucleus Q, MeV Orbit th

pS   WKB   MIR  WKB  MIR  

157

73 84Ta  0.947 1/22s  0.66  11.856 10  11.840 10  12.813 10  12.789 10  13.0 10  

161

75 84Re  1.214 1/22s  0.59  41.605 10  41.577 10  42.720 10  42.673 10  43.7 10  

167

77 90Ir  1.086 1/22s  0.51  22.981 10  22.979 10  25.851 10  25.842 10  21.1 10  

109

53 56I  0.829 5/21d  0.76  62.992 10  63.034 10  63.937 10  63.992 10  41.0 10  

112

55
5

57Cm  0.823 0.59  5/21d  2.080 10  52.088 10  53.526 10  53.539 10  45.0 10  

147

69 78Tm  1.132 0.79  5/21d  56.250 10  56.159 10  57.911 10  57.796 10  43.6 10  
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 of the potential (that has 
another physical basis for the definition of the
width as definition on the basis of the penet
ba

blem

barrier. E

introd

One can calculate the decay width through time-re- 

ato
(or other pote  th

trability f  a barrie
wel

external region  influence on results abso-
lutely (like calc miclassical ap h). But, 
thi sible lve problem ccurately and 
taking whole stu ape of the po tial barrier into 
account that we  demon rated e n the fully
quantum approa R. 
 
3.4.2. Th wo-P al Method 
In the m ified t tential a proa PA) introduced
by Gurvi  and ann i 19] ail xam-
ples can be found in [22], see also [5,21,24]) the decay 

idth is defined e (16) in , a m etails):  

determination of the decay width is passed on successful 
determination of perturbation

 decay 
rability of the 

rrier). However, the question about separation of the 
total wave function in the internal region before the bar-
rier into the incident and reflected waves remains unre-
solved in the DWBA method. 

Now, if we pass from real radial potential in optical 
model approach to complex one, then we shall introduce 
new additional independent parameter into our pro  
while the penetrability could be calculated for real radial 

ssential point in determination of the decay 
width in the DWBA method is accurate normalization of 
the wave functions in the initial and final states. It could 

uce some (essential) uncertainty in calculation of 
width also while the penetrability is independent on such 
normalization absolutely. 

versed capture process. However, in such calculations 
shape of the barrier is approximated by inverse oscill r 

ntials with knowing exact solutions of e 
wave function) and the pene or such r 
could be calculated. It is clear that both internal l and 

do not take
ulations in se proac

s is pos  to reso  this  a
died sh
 have

ten
 abovst  i  

ch MI

e T otenti
od wo-po p ch (T  
tz Kalberm n [  (det s and e

w  so (se  [5] nd so e d

     
2

2

4
= d ,nlj l

rB

r W r r r
k

  


 
      (19) 

where 0= 2k E  ,   is reduced mass, Br  is ra-
dial coordinate of the barrier height,  nlj r  is the ra-
dial wave function for the first radial potential including 
internal well up to point Br ,  l r  is the regular radial 
wave function for the second radial potential including
ex

 
ternal region, starting from point Br  and without the 

internal well and with asymptotic behavior  

     0 = 0, sin π 2  at .l l lr kr l r         (20) 

Both wave functions are real and defined at different 
energy levels. So, in the TPA approach we do not con-
sider fluxes and do not calculate penetrability. We do not 
study possible reflection of proton from the barrier in the 
internal well for the state which describes the penetration 

through the barrier. We escape from a problem of sepa-
ration of the total wave function in the internal into 
the inciden

well 
t and reflected waves which takes influence 

on

ned by increas  inter

 the resulting penetrability essentially (for example, 
for the simplest rectangular barrier with rectangular 
well such an uncorrect separation of the same exact 
wave function can give infinite penetrability that is ex-
plai ed role of ference between inci-
dent and reflected waves). Success in obtaining the re-
sulting width   is dependent on accuracy of corre-
spondence between internal and external wave functions 

 nlj r  and  l r  which should be calculated from 
different Schrödinger equations with independent nor-
malization. The correspondence between these wave 
functions is determined concerning only one boundary 
point Br  (or it possible shift [24]) separating two poten-
tials and boundary conditions at = 0r  or at r  . In 
cont
transm

rincipl
ticular, th
strongly 
its shap

rary, the

e o

 corresponde

oca

e ex

nce bet nt, 
itted and reflected wave e MIR approach is 

ble or

f lity of quant echanics. r-
e tran e in e MIR  is 

de pth  inte nd 
rnal wav tion 

w
s in th

h th
um m
 th

 of the
e fun

een the incide

m) that c

In pa
approach

rnal well a

determined concerning the barrier as the whole potential 
(with needed restrictions of the radial pro -
responds to fully quantum and unified consideration of 
penetration of the proton throug e barrier shown in 
p non-l

ile th

smitted wav
pendent on the de

e, wh te c  l r  
hese de
n the wa


n t
d i

 in the 
solu ely inde nt o h 

s pendence can ve 
TPA app
and shape
function 

roac
 (

h b
uc  de

 is a
h a

t pende
 be f

pt
oun

 r , 
or F 

nlj but starting fro s  
directly inclu s it also her 

words, we ave strong c pondence een incident, 
reflected a d transmitted waves in the MIR approach and 
a possible k correspondence betwee
external wave functions in the TPA approach. This pl
the essential role in calc s of the cay widths

ce between the essential de-

m th
de

e implest WKB
). By otapproach fact

 h orres betw
n
wee n the internal and 

ays 
ulation de  and 

explains so large differen
pendence of penetrability on the starting point in the 
MIR approach and practically full absence of such a de-
pendence in the TPA approach. 

The simplest example demonstrated why this depend-
ence really exists and it could be not small, can be found 
in classical tasks of quantum mechanics. Let us consider 
definition of the penetrability in [18] (see Equation 
(25.3), p. 103): 

22

1

= ,
k

D A
k

              (21) 

where D is the penetrability,  and  are wave 
umbers of transmitted and inci  waves  concern-

potential and its as-

1k
dent

2k
, i.e.n

ing the left asymptotic part of the 
ymptotic right part (see Figure 5 in [18], p. 103), A is the 
transmitted amplitude of the wave function. This formula 
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-
ymptotic presentations (2  and (25.2) of waves) and, 
so, changes the total pene lity D. Result o
tial dependence of the pen ility of the starting point 

he MIR ap oa
i c b

ntra

e exact
le examples were analyzed for comparison

o

n her

on (de

flectio

shows that decreasing of the left part of potential in-
creases the wave number 1k  (as is connected with as

5.1)
trabi

etrab
n the essen-

formR  by t pr ch has the similar sense, but 
has been obtained concerning the real sti arrier with 
the internal well and takes into account change of the 
internal amplitudes also. This co dicts with a possible 
little dependence of penetrability on the shape of the in-
ternal well in the TPA approach. 

Now let us come back to one of the most important 
papers at TPA—the paper [22], where som ly 

. In the solvab
fir

ri

st example with rectangular barrier and well (see Sec-
tion VI.A, pp. 1752-1753, (4.6)) the width does really 
not contain dependence on depth of the well, because the 
depth is defined as zero initially. Answer on question 
what would happen with the width if to displace it below, 
the MIR method gives (and penetrability is determined 
by Equation (21)). The next example with Coulomb tail 
takes already non-zero well into account explicitly. Here, 
we already see explicit dependence of the width on the 
depth of the well (see Equation (4.18), pp. 1754-1755 in 
cited paper), that confirms reliability of logic above. So, 
these points seem to be reduction of the TPA approach 
and confirm that this approach does not determine the 
penetrability in the fully quantum consideration in the 
problem of prot n decay. At the same time, comparison 
of results obtained by such approach and results obtained 
by p cipally ot  fully quantum developments some-
times leads to some confusion as the TPA approach has 
been called as the fully quantum. So, approaches for de-
termination of the decay widths on the basis of penetra-
bility are physically motivated, can be more accurate and 
have perspective for research. 
 
4. Conclusions 
 
The new fully quantum method (called as the method of 
multiple internal reflections, or MIR) for calculation of 
widths for the decay of the nucleus by emission of proton 
in the spherically symmetric approximation and the real-
istic radial barrier of arbitrary shape is presented. Note 
the following:  
 Solutions for amplitudes of wave functi scribed 

motion of the proton from the internal region outside 
with its tunneling through the barrier), penetrability T 
and re n R are found by the method MIR for 
n-step radial barrier at arbitrary n. These solutions are 
exactly solvable and have been obtained in the fully 
quantum approach for the first time. At limit n   
these solutions could be considered as exact ones for 

the realistic proton-nucleus potential with needed ar-
bitrary barrier and internal hole. Estimated error of 
the achieved results is 151 < 1.5 10T R    . 

 In contrast to the semiclassical approach and the TPA 
approach, the approach MIR gives essential depend-
ence of the penetrability on the starting point 

ce on n of  (see Figur
The amplitudes calculated by MIR approac  
compared with the sp
tained (for the sam ential) b ependen

form

inside the internal well where proton starts to move 
outside in the beginning of the proton decay. For 
example, the penetrability of the barrier calculated by 
MIR approach for 157

73 Ta  is changed up to 200 times 
in dependen

R  

e 1). 
h we

t stan-

 positio

 corre
e pot

ch

formR

on
y ind

ding amplitudes ob-

dard stationary approach of quantum mechanics pre-
sented in Appendix B and we obtained coincidence 
up to first 15 digits for all considered amplitudes. 
This important test confirms that presence of the es-
sential dependence of the penetrability of the starting 
point formR  is result independent on the fully quan-
tum method applied. Su  a result raises necessity to 
introduce initial condition which should be imposed 
on the proton decay in its fully quantum consideration. 
Comparison with the WKB and TPA approaches 
shows that such approaches have no such a perspec-
tive (having physical sense and opening a possibility 
to obtain a new information about the proton decay), 
which fully quantum study of the penetrability gives. 

 In order to resolve uncertainty in calculations of the 
half-lives caused by the dependence of the penetrabil-
ity on formR , we introduce the following initial con-
dition: in the first stage of the proton decay the pro-
ton starts to move outside at the coordinate of mini-
mum of the internal well. Such condition provides 
minimal value for the calculated half-life and gives 
stable basis for predictions in the MIR approach. 
However, the half-lives calculated by the MIR ap-
proach turn out to be a little closer to experimental 
data in comparison with the half-lives obtained by the 
semiclassical approach (see Table 1). 

 Taking the external region of the potential after the 
barrier into account, half-live calculated by the MIR 
approach is changed up to 1.5 times (see Figure 2). 

A main advance of the MIR method developed in this 
paper is not a new attempt to describe experimental data 
of half-lives more accurately than other approaches do 
this, but rather this method seems to be the first tools for 
estimation of the penetrability of any desirable barrier of 
the proton decay in the fully quantum consideration. 
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le through 

nsional rect

Appendix A 
 
Tunneling of Packet through One-Dimensional 
Rectangular Step 
 
A main idea and formalism of the multiple internal re-
flections can be the most clearly understood in the sim-
plest problem of tunneling of the partic
one-dimensional rectangular barrier in whole axis [6-10]. 
Let us consider a problem of tunneling of a particle in 
positive x-direction through an one-dime an-
gular potential barrier (see Figure 3). Let us label a re-
gion I for < 0x , a region II for 0 < <x a  and a region 
III for >x a , accordingly. We shall study an evolution 
of its tunneling through the barrier. 

In standard approach, with energy less than the barrier 
height the tunneling evolution of the particle is described 
using a non-stationary propagation of wave packet (WP)  

   
0

/ , = , e d ,iEtx t g E E k x E         (22) 

where stationary wave function (WF) is:  



  = e e , for 0 < < ,

e , for >

x x

ikx
T

e e , for < 0,ikx ikx
RA x

x x a

A x

     



 

a

    (23) 

and 

 

1
= 2k mE


,  1

1
= 2m V E 


, E and m are the  

total energy and mass of the particle, accordingly. The 
weight amplitude  g E E  

 an
can be written in the stan-

dard gaussian form d satisfies to a requirement of the 
normalization   2

d = 1g E E E
he particle. On

, value E is an aver-
age energy of t e can calculate coefficients 

TA , RA ,   and   
WF 

analytically, using a requirements 
ity of of a continu  x  

rrier. Sub
incid

part 
 the in

and its derivative on each 
he b stituting in Equation (22) 

ent , transmitted 
d by Equa-

itted or re-
flected WP, accordingly. 

We assume, that a time, for which the WP tunnels 
through the barrier, is enough small. So, the time neces-
sary for a tunneling of proton through a barrier of decay, 
is about seconds. We consider, that one can ne-
glect a s g of the WP for this time. And a breadth 
of the WP appears essentially more narrow on a com-
parison with a barrier breadth. Considering only 
sub-barrier processes, we exclude a component of waves 
for above-barrier energies, having included the additional 
transformation  

boun

tr

da
instead of 

 ,k x
tion (23), 

ry of t


 or 
we

a
 the 

 
ve

 ,k x
reflected
 recei

 ,inc k x
 ,k x  define

nt, transm
ref

cide

2110  
preadin

     1 ,g E E g E E V E     

 

Figure 3. Tunneling of the particle through one-dimen-
sional rectangular barrier.  
 
where  -function satisfies to the requirement  

 
0, for < 0

=


 



;
 

1, for > 0.

The method of multiple internal reflections considers 
the propagation process of the WP describing a motion 
of the particle, sequentially on steps of its penetration in 
relation to each boundary of the barrier [11-13]. Using 
this method, we find expressions for the transmitted and 
reflected WP in relation to the barrier. At the first step 
we consider the WP in the region I, which is incident 
upon the first (initial) boundary of the barrier. This 
package transforms into the WP, transmitted through this 
boundary and tunneling further in the region II, and into 
the WP, reflected from the boundary and propagating 
back in the region I. This we consider, that the WP, tun-
neling in the region II, is not reached the second (final) 
boundary of the barrier because of a terminating velocity 
of its propagation, and consequently at this step we con-
sider only two regions I and II. Because of physical rea-
sons to construct an expression for this packet, we con-
sider, that its amplitude should decrease in a positive 
x-direction. We use only one item  exp x 

nd incr
 in Equ-

ation (23), throwing the seco easing item 
 exp x   

of a finite
(in an opposite case we requirement 

ness of the WF for an in barrier). 
In result, in the region II we obtain:  

 break a 
definitely wide 

   1 0
1

0

/( , ) = e d ,

for 0 < < .

tr
x iEtx t g E E V E E

x a

  


   
  (25) 

Thus the WF in the barrier region constructed by such 
way, is an analytic continuation of a relevant expression 
for the WF, corresponding to a similar problem with 
above-barrier energies, where as a stationary expression 
we select the wave  2exp ik x , 

the first step 
propagated to the right. 

Let’s consider further. One can write ex-     (24) 
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ncident and the reflected WP in rela-
on to the first boundary as follows 

pressions for the i
ti

     

     

1
0

d ,inc
/, = ikx iEt

1 0
ref 1

0

/

for < 0,

, = d ,

for < 0.

R
ikx iEt

x t g E E V E e E

x

x t g E E V E A e E

x

 


   
 (26) 

A sum of these expressions represents the complete 
WF in the region I, which is dependent on a time. Let’s 
require, th is WF and its d  continuously 
transfor o the WF (25) and its derivative at point 

= 0x  (we assume, that the 




  

at th erivative
m int

weight amplitude 
 g E E  differs weakly at transmitting and reflecting 

of the WP in relation to the barrier boundaries). In result, 
we obtain two equations, in which one can pass from the 
time
and ob

-dependent WP to the corresponding stationary WF 
tain the unknown coefficients 0  and 0

RA . 
At the second step we consider th WP, t ling in 

d boundary of 
the barrier at point

e unne
the region II and incident upon the secon

 =x a . It transforms into the WP, 
transmitted through this boundary and propagated in the 
region III, and into the WP, reflected from the
and tunneled back in the region II. For a determination of 
these packets one can use Equation (22) with account 

whe e as the stationary WF we use: 

from the un e 

 boundary 

Equation (24), r

   


 

inc

2 0
tr

2 0
ref

, , = ,  for 0 < < ,

,  for > ,

, r 0 < < .

tr

ikx

x

k x k x e x a

k x x a

k x x a

  



 

  (27) 

Here, for forming an expression for the WP reflected 
 bo dary, w select an increasing part of the 

stationary solution 0 exp



2 1 0

,

,  fo

x

TA e

e







x  y. Imposing a con-
dition of continuity on the time-dependent WF and its 
derivative at poin

 

=

onl

t x a , we obtain 2 uations, 
from w ind the unknowns co 0

T

 new eq
hich we f efficients A  and 

0 . 
At the third step the WP, tunneling in the reg  II, is 

in

cted

     (28) 

Using a conditions of continuity for the time-dependent 
WF and its derivative at point , we obtain the un-
knowns coefficients 

ion
cident upon the first boundary of the barrier. Then it 

transforms into the WP, transmitted through this bound-
ary and propagated further in the region I, and into the 
WP, refle  from boundary and tunneled back in the 
region II. For a determination of these packets one can 
use Equation (22) with account Equation (24), where as 
the stationary WF we use:  

 


3 2
inc ref

3
tr

, ( , ),  for 0 < < ,k x k x x a

k x

 






 

2

3 1
ref

, ,  for > 0,

, ,  for 0 < < .

ikx
R

x

A e x

k x e x a 









 

= 0x
1
RA  and 1 . 

rocesAnalyzing further p bl ses of the transmis-
sion and the reflection of the WP through the boundaries 
of the barrier, we come to a conclusion, that any of fol-
lowing steps can be reduced to one of 2 considered 
above. For the unknown coefficients

ossi e p

 n , n , n
TA  and 

n
RA , used in expressions for the WP, f t of 

e internal reflections from n 
obtain the recurrence relations:  

orming in r
the boundaries, one ca

esul
som

0 2

1 = ,n n

k i i k

i k 0

2
= , = e ,

= ,

= e , = .

n n a

R

T R

k i k

k i
A

i k k i

A A
i k i k

  


 

12 2n n a ika n ni i

 
 

    
 




 



 


 

   (29) 

Considering the propagation of the WP by such way, 
we obtain expressions for the WF on each region which 
can be written through series of multiple WP. Using Eq-
uation (22) with account Equation (24), we determine 
resultant expressions for the incident, transmitted and 
reflected WP in relation to the barrier, where one can 
need to use following expressions for the stationary WF: 

 

 

 

inc

tr
=0

ref
=0

, e ,  for < 0,

, e ,  for ,

, e ,  for < 0.

ikx

n ikx
T

n

n ikx
R

n

k x x

k x A x a

k x A x














 







      (30) 

Now we consider the WP formed in result of sequen-
tial n reflections from the boundaries of the barrier and 
incident upon one of these boundaries at point = 0x  
( = 1i ) or at point =x a  ( = 2i ). In result, this WP 
transforms into the WP  ,i

tr x t , transmitted through 
boundary with number i, and into the WP  ref ,i x t , 
reflected rom this boundary. For an independent on x 
parts of the stationary WF one can write:  

f

       

       

       

1 1 1
ref= ,tr incT R

1

1 1

2 2 2
ref

2 2

= ,
exp exp exp exp

= , = ,
exp exp exp exp

inc

tr inc
2
inc

1 1 1 1
ref

1 1= , = ,
exp exp exp exp

tr inc inc

x ikx ikx ikx

T R
ikx x x x




   
  



 

 

 
 

(or “–”) c -
ne

T R
ikx x x x

   
  

 

 
(31) 

where the sign “+” orresponds to the WP, tun

  

ling (or propagating) in a positive (or negative) 
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ecisely describe an 
arb ich s formed in result of n-multiple 
reflectio  to kn  a “path” of its propagation along 
the barri ng t urrence relations Equation (29), 
the coe ts  can be obtained. 

x-direction and incident upon the boundary with number 
i. Using iT   and iR , one can pr

itrary WP wh
ns, if
er. Usi

fficien

 ha
ow
he rec
 and iT 

iR

1
0

1 2 1

1
0

1 2 1= , = , = .R n n
R A R R

 
  

Using the recurrence relations, one can find series of 
coefficients n

= , = , = ,
n n
T R
n n

n n

A A
T T T

 
 


  


     (32) 

 , n , n
TA  and n

RA . However, these 
can be calculated easier, using coefficients iTseries   

Analyzing all possible “paths” of the WP 
propagations along the barrier, we receive:  

 

and  iR .

 

   

   

2
0

1 1 2 1 2 1
=0 =1

2
0

2 1
=0 =1

0
2 1

=0 =1

1 = ,

2 e
1 = ,

2
1 =

nn
R

n n sub

a
nn

n n sub

nn

n i s

k D
A R T R T R R

F

k i k
R R

F

k i k
R R

F


 


 

 
     

2 1 2 1
=0 =1

4 e
1 = ,

a ika
nn

T
n n sub

i k
A T T R R

F

   
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

 
 

 
 

    
 

   
 

   
 

 

 

 

   
 

 

,
ub

 (33) 

where  

 2 2

2

2 2 2 1
0 2

2
= .

2 ,

1 ,

sub

a

F k D ik D

D e 

 

mV
k k 

 




  

          (34) 

 


All series n , n , n
TA  and n

RA , obtained 
using the method of multiple internal reflections, coin-
cide with the corresponding coefficients  ,  , TA  
and RA  of the Equation (23), calculated by a st nary atio
methods [18]. Using the following substitution  

2 ,i k                   (35) 

where  2 1

1
= 2k m E V


 is a wave number for a case  

of above-barrier energies, expression for the coefficients 
n , n , n

TA  and n
RA  for each step, expressions for 

the WF for each step, the total Equations (33) and (34) 
the co esponding expressions for a prob-

 o rticle p gation above this barrier. At the 
a  of t WP and the time-dep

 to ge a sign of argument at 

tran
lem
tran
one

sform
f th

sform
 can 

 into 
e pa

tion
need

rr
ropa

he 
 chan

endent WF 

 -function. Besid

2 2

=0 =0

1.n n
T R

n n

A A
 

            (36) =

 

We

f to use only condi-
tion of continuity of the wave function and its derivative 
at each boundary, but on the whole region of the studied 
potential. At first, we find functions 

Appendix B 
 
Direct Method 
 

 shall add shortly solution for amplitudes of the wave 
function obtained by standard technique of quantum 
mechanics which could be obtained i

2f  and 2g  (from 
the first boundary):  

 1 2 12 122 1 1
2 2

2 1 1 2

2
= e , = ei k k xik xk k k

f g
k k k k


 

 .    (37) 

Then, using the following recurrent relations:  

   
   

1

2
1 1 2

1 2
1 1

e
e ,

e

j j

j j

j j

ik x
j j j j j ik x

j ik x
j j j j j

k k f k k
f

k k f k k
 



 

  
 

  
  (38) 

we calculate next functions 3f , 4f , 5f    nf , and 
by such a formula: 

 

   
12 e j j ji k k x

j
1 2

1 1e j jj j ik x
j j j j j

g g
k k f k k



 

 
  

    (39) 

the functions

k  

 3g , 4g , 5g    ng nf  and ng  . From 
we find amplitudes n , n  and amplitude o ran
sion 

f t smis-

TA :  

= 0, = = .ng
n T nA

fn

             (40) 

Now using the recurrent relations:  

1 1 1 1

1 1 1

1
1

1

e e e

e e

j j j j

j j j j

ik x ik x ik x
j j j

j ik x ik x
j

g

f

 


1

j j 



  

  

 


 






   (41) 

and such a formula:  

= ,j j j jf g                (42) 

we consistently calculate the amplitudes , 1n 1n  , 

2n  , 2n     2 , 2 . At finishing, we   find ampli-
tude of reflection RA :  

   1 2 1 1 2 1 1 12
2 2= e e e .i k k x i k k x ik x

RA          (43)

As test we use condition:  

 

2 2

1

= 1.n
T R

k
A A

k
            (44) 

Studying the problem of proton decay, we used such a 
techniques for check the amplitudes obtained previously e llowing property is fulfilled:  s the fo
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nique above. So, result on the large dependence of the 
penetrability of the position of the star
in such figures is independent on the used fully quantum 

ethod. 

by the MIR approach and obtained coincidence up to 
first 15 digits for all considered amplitudes. In particular, 
we reconstruct completely the pictures of the probability 
presented in Figures 1 and 2, but using standard tech-
 

ting point formR  

m


