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Abstract 

The static electromagnetic fields are studied here based on the standard spaces of the physical presentation, and the 
modal equations of static electromagnetic fields for anisotropic media are deduced. By introducing a set of new poten-
tial functions of order 2, several novel theoretical results were obtained: The classical potential functions of order 1 
can be expressed by the new potential functions of order 2, the electric or magnetic potentials are scalar for isotropic 
media, and vector for anisotropic media. The amplitude and direction of the vector potentials are related to the anisot-
ropic subspaces. Based on these results, we discuss the laws of static electromagnetic fields for anisotropic media. 

Keywords: Anisotropic Media, Static Electromagnetic Field, Standard Spaces, Modal Equation Formatting 

1. Introduction 

By the Maxwell’s electromagnetic field equations, we 
know that the electric and magnetic field are independent 
each other under the condition of static fields. The clas-
sical electromagnetic field theory also believes that the 
static electric field can be described by a scalar potential 
function, and the magnetic field by a vector one. Fur-
thermore, for the passive region, the magnetic field can 
also be described by a scalar potential function [1,2].  
But it should be pointed out that these results can only be 
obtained in the condition of isotropy, and are also only 
suit for the isotropic media. However, with the develop-
ment of material science, more and more anisotropic 
dielectric or magnetic materials are applied to various 
fields, such as electron devices, communications and 
sensors, even for the traditional geological structure, we 
also can see the electrically anisotropic media or mag-
netically anisotropic media. It is found by recent re-
search works that the limitations of classical static elec-
tromagnetic field theory have become obvious for these 
anisotropic media. For example, the above results for 
isotropic media don’t exist for anisotropic media, even 
we don’t know the definite form of the electric field po-
tential function or magnetic field potential function, 
which make a great difficulty in solving the problem of 
anisotropic static electric or magnetic fields [3-5]. Unlike 
the classical static electromagnetic field theory, which 
studies the Maxwell’s equations under the geometric 

representation, in this paper, the Maxwell’s equations are 
restudied under the physical representation. As the result 
of this, the modal equations of static electric or magnetic 
fields are deduced, which give the novel expressions for 
the potential functions of static electric or magnetic 
fields for anisotropic media, and bring to light the intrin-
sic laws of static electromagnetic field. 

2. Standard Spaces of Electromagnetic  
Media 

In anisotropic electromagnetic media, the dielectric per-
mittivity and magnetic permeability are tensors instead 
of scalars. The constitutive relations are expressed as 
follows 

D E                     (1) 

B H                     (2) 

where the dielectric permittivity matrix   and the 
magnetic permeability matrix   are usually symmetric 

ones, and the elements of the matrixes have a close rela-
tionship with the selection of reference coordinate. Sup-
pose that if the reference coordinates is selected along 
principal axis of electrically or magnetically anisotropic 
media, the elements at non-diagonal of these matrixes 
turn to be zero. Therefore, Equations (1) and (2) are called 
the constitutive equations of electromagnetic media un-
der the geometric presentation. Now we intend to get rid 
of effects of geometric coordinate on the constitutive 
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equations, and establish a set of coordinate-independent 
constitutive equations of electromagnetic media under 
physical presentation. For this purpose, we solve the fol-
lowing problems of eigen-value of matrixes 

 - 0I j                   (3) 

 - 0I                    (4) 

where  1,2,3i i   and  1,2,3ig i   are respectively 

eigen dielectric permittivity and eigen magnetic perme-
ability, which are constants of coordinate-independent. 

 1,2,3ij i   and  1,2,3i i   are respectively eigen 

electric vector and eigen magnetic vector, which show 
the electrically principal direction and magnetically prin-
cipal direction of anisotropic media, and are all coordi-
nate-dependent. We call these vectors as standard spaces. 
Thus, the matrix of dielectric permittivity and magnetic 
permeability can be spectrally decomposed as follows 

                    (5) 

                    (6) 

where  1 2 3, ,diag      and  1 2 3, ,diag      

are the matrix of eigen dielectric permittivity and eigen 
magnetic permeability, respectively.  1 2 3, ,j j j   and 

 1 2 3, ,     are respectively the modal matrix of 

electric media and magnetic media, which are both or-
thogonal and positive definite ones, and satisfy 

T I   ， T I   . 
Projecting the electromagnetic physical qualities of the 

geometric presentation, such as the electric field intensity 
vector E , magnetic field intensity vector H , magnetic 
flux density vector B  and electric displacement vec-
tor D , into the standard spaces of the physical presenta-
tion, we get 

* 1,2,3i iD j D i            (7) 

* 1, 2,3i iE j E i            (8) 

* 1, 2,3i iB B i             (9) 

* 1, 2,3i iH H i            (10) 

These are the electromagnetic physical qualities under 
the physical presentation. 

Substituting Equations (7)-(10) into Equations (1) and 
(2) respectively, and using Equations (5) and (6) yield, 
we have 

    * *D E                   (11) 

    * *B H                   (12) 

or 

* * 1, 2,3i i iD E i               (13) 

* * 1,2,3i i iB H i               (14) 

The above equations are just the modal constitutive 
equations in the form of scalar. 

3. Matrix form of Static Electromagnetic  
Field Equation 

The classical static Maxwell’s equations in passive re-
gion can be written as  

=0, =0E D                 (15) 

=0, =0H B                 (16) 

where  is a Hamilton operator. It is seen from the 
above equations that the electric field and magnetic field 
are not only independent, but also the same in the form 
of equation. So, it is undistinguishable to study the prob-
lems of electric field or magnetic field under the static 
condition. For this purpose, we consider here only the 
problem of electric field. 

From Equation (15), we can see that one is a vector 
equation, another is scalar one. It is well known that the 
vector equation can be written as the matrix one, but the 
scalar equation can not. By the first one of Equation (15), 
we have 

   0E                  (17) 

where 

 
0

0

0

z y

z x

y x

  
 

    
   

             (18) 

It is an operator matrix of order 1.  
In order get the matrix expression of static electromag-
netic equations, both of Equation (15) should be re-
formed in a suitable form.

 For dynamic electromagnetic fields, a matrix equation 
of electromagnetic waves be dedued by author [6] 

      2
tE E               (19) 

where 

    
 

 
 

zz yy xy xz

yx xx zz yz

zx zy xx yy

      
 
           
 
       

   (20) 

It is an operator matrix of order 2. For static electro- 
mag-netic fields, we have 

   0E                  (21) 

Now, rewriting the second one of Equation (15) in the 
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index form of tensor 

' 0i iD                    (22) 

Differentiating the above equation with index j , it 

become a vectorial one 

' 0i ijD                    (23) 

Rewritting it in the matrix form, we get 

   0D                  (24) 

where 

 
11 21 31

12 22 32

13 23 33

   
      
                   (25) 

In this paper,    and    is defined as the matrix 

of electic intensity and electic displacement operators 
respectively 

4. Eigen Equations of Static Electric Fields 

Now, we transform the matrix equations of static electric 
field into modal ones. 

Substituting Equation (7) into Equation (21), and mul-
tiplying it with the transpose of modal matrix in left, we 
have 

     * 0
T

E               (26) 

It be proved [6] that the matrix of electric intensity 
operator can also be spectrally decomposed, that is 

     *T                    (27) 

Thus, Equation (26) can be uncoulped and become 

 * * 0E                   (28) 

or 
* * 0 1,2,3i iE i                (29) 

in which 

   * * * 1,2,3
T

i i i i              (30) 

where 

      * T

i i i                 (31) 

In same way, substituting Equation (7) into Equation 
(24), and multiplying it with the transpose of modal ma-
trix in left, we have

 
     * 0

T
D               (32) 

let 

     *T                    (33) 

and substituting Equation (11) into Equation (32),we 
have 

  * * 0E                  (34) 

Comparing Equation.(34) with Eq.(28) ,we get 

 * *                         (35) 

It is seen that 
*    is also a diagonal matrix. We call 

it as eigen matrix of electric displacement operator. Thus, 
we have 

* * 0 1,2,3i iD i                (36) 

So, Equations (29) and (36) constitute of the eigen 
equations of static electric field. Different from the clas-
sical ones, they show the simplicity and symmetry of 
static electromagnetic law. 

5. General Solution of Eigen Equations of 
Static Electric Fields 

Let 
* * 1, 2,3i i iE i              (37) 

* * 1, 2,3i i iD i              (38) 

where   is an unknown row vector, which is new 

electric potential function of order 2. 
Substituting Equations (37) and (38) into Equations 

(29) and (36) respectively, a unified equation are ob-
tained as follows 

* * 0 1, 2,3i i i               (39) 

where,  * * * 1,2,3i i i i     is i th modal operator of 
electric field, and a differential operator of order 4. Def-
erent from the Laplce’s equation for the classical electric 
potential function of order 1, the new electric potential 
function of order 2 can be solved by the modal differen-
tial equation of higher order, and the classical electric 
potential function of order 1 can be expressed by the new 
electric potential function of order 2. Once the modal 
potential functions are solved from Equation (41), the 
electric intensity and electric displacement can be ob-
tained by the following conversion 

       * * *
1 1 1 2 2 2 3 3 3          E       (40) 

       * * *
1 1 1 1 2 2 2 2 3 3 3 3             D  (41) 

In order to get the classical electric potential function 
of order 1, we rewritting Equation (40) by using Equa-
tions (30) and (35) 

            * * * *T T

i i i i i i i i
i i

         E  (42) 
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let 

   * T

i i i i                     (43) 

It is just the electric potential function of order 1 for 
anisotropic media. Thus the electric intensity and electric 
displacement can be expressed by the electric potential 
function of order 1 as follows 

       * * *
1 1 2 2 3 3        E        (44) 

       * * *
1 1 1 2 2 2 3 3 3         D     (45) 

6. The Modal Boundary Condition of Static 
Electric Field 

It is seen from above that in order to get the solutions of 
the electric intensity and electric displacement, we can 
turn to solving the modal potential functions. So, the 
modal Equation (39) should have the corresponding mo-
dal boundary condition.  

An effective boundary case is: Electric displacement 
functions of two side of interface should be equal 

     1 2D D                (46) 

or 

   1 2 1,2,3i iD D i              (47) 

Rewriting Equation (46) in the modal form, we have 

         1 * 1 * 2 * 2 *                 (48) 

or 

       1 * 1 * 2 * 2 * 1,2,3i i i i i          (49) 

and 

           1 1 * 1 * 2 2 * 2 * 1, 2,3i i i i i i i         (50) 

7. Application 

In this section, we discuss the laws of static electric field 
only in anisotropic dielectrics. 

7.1. Isotropic Crystal 

The matrix of dielectric permittivity of isotropic dielec-
trics is following 

0 0

0 0

0 0












 
 
 
  

                 (51) 

The eigen-values and eigen-vectors are respectively 
shown as below 

 11 11 11, ,diag                (52) 

1 0 0

0 1 0

0 0 1

 
   
  

                (53) 

We can see from the above equations that there is only 
one eigen-space in isotropic crystal, which is a triple- 
degenerate one, and the space structure is following 

   3
1 1 2 3, ,W   W              (54) 

The basic vector of one dimension in a triple-degenerate 
subspace is 

 *
1

3
1,1,1

3

T              (55) 

The eigen electric displacement operator of isotropic 
crystal are 

 * 2 2 2
1 1 2 3

1

3
                  (56) 

   *
1 1 2 3

3
, ,

3
                (57) 

Therefore, the static electric field equation in isotropic 
crystal can be written as below 

 22 2 2
1 0x y z               (58) 

Thus, the electric strength and electric displacement of 
isotropic crystal become 

     * 2 2 2
1 1 1 1 2 3 1

1

1

1

E   
 
          
 
     (59) 

     * 2 2 2
1 1 1 1 11 1 2 3 1

1

1

1

    
 
          
 
 

D

   (60) 

The classical electric potential function of order 1 is 

 1 1 2 3 i                  (61) 

So, the electric intensity and electric displacement of 
isotropic crystal can also be expressed by the classical 
electric potential function of order 1 as follows

 

  1

x

y

z

E 
 
 

   
  

             (62) 

or 

1 E                (63) 
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  11 1

x

y

z

D  
 
 

  
  

            (64) 

or 

11 1   D               (65) 

It is seen that Equations (62)-(65) are the same as the 
classical results, in which the electric potential is a scalar. 
But from the following analysis, we will see that only for 
isotropy we have same results as classical theory. 

7.2. Uniaxial Crystal 

The matrix of dielectric permittivity of uniaxial dielec-
trics is following 

11

11

33

0 0

0 0

0 0






 
 
 
  

                (66) 

The eigen-values and eigen-vectors are respectively 
shown as below 

 11 11 33, ,diag                (67) 

1 0 0

0 1 0

0 0 1

 
   
  

                (68) 

We can see from the above equations that there are 
two eigen-spaces in uniaxial crystal, one of which is a 
double-degenerate space, and the space structure is fol-
lowing 

     2 1
1 1 2 2 3,W W   W          (69) 

The basic vectors in two subspaces are following 

 *
1

2
1,1,0

2
T              (70) 

 *
2 0,0,1

T               (71) 

The eigen electric strength qualities of uniaxial crystal 
are respectively shown as below 

* T
2 2 3E E  E =              (72) 

T * T *
1 1 2 2E E  E              (73) 

Multiplying Equation (57) with 2 ,
 
using T

2 1 0    

and  T 1 1, 2i i i    , we get 

   T* T * T * 2 2
1 2 2 2 2 1 2E E E E E    E E    (74) 

The eigen electric displacement operators of uniaxial 
crystal are respectively shown as below 

 *
1 11 22

1

2
                     (75) 

*
2 33                     (76)

   *
1 1 2

2
, , 0

2
                  (77) 

   *
2 30,0,                  (78) 

Therefore, the static electric field equation in uniaxial 
crystal can be written as below 

 22 2 *
1 0x y                   (79) 

4 *
2 0z                   (80) 

It is seen from Equations (79) and (80) that there are 
two static electric fields in uniaxial crystal. Thus, the 
electric intensity and electric displacement become 

     

 

 
 

* *
1 1 1 2 2 2

11 22 1 33 2

*
11 22 1

*
11 22 1

*
33 2

1 0

1 0

0 1

E    

 







   

   
           
   
   
   
      
 
  

          (81) 

     
 
 

* *
1 1 1 1 2 2 2 2

*
11 11 22 1

*
11 11 22 1

*
33 33 2

D      

 

 

 

   

   
      
 

  

          (82) 

The classical electric potential function of order 1 is 

 1 1 2 1

1

2
     

            (83) 

1 3 2                    (84) 

So, the electric intensity and electric displacement of 
uniaxial crystal can also be expressed by the classical 
electric potential function of order 1 as follows

 

 
1 1

2 1

3 2

E





 
    
  

              (85) 

 
11 1

11 1

33 2

x

y

z

D

 
 

 

 
 

   
  

            (86) 

It is seen that the electric intensity and electric dis-
placement of uniaxial crystal are quite different from 
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those in isotropic crystal, and there exist two kinds of 
modal electric potential functions in uniaxial crystal, so 
they become vectorial ones, this is also different from the 
classical results of static electric field. 

7.3. Biaxial Crystal 

The matrix of dielectric permittivity of biaxial dielectrics 
is following 

11

22

33

0 0

0 0

0 0






 
 
 
  

               (87) 

The eigen-values and eigen-vectors are respectively 
shown as below 

 11 22 33, ,diag               (88) 

1 0 0

0 1 0

0 0 1

 
   
  

               (89) 

We can see from the above equations that there are 
three eigen-spaces in biaxial crystal, and the space struc-
ture is following 

           1 1 1
1 1 2 2 3 3W W W    W   (90) 

The eigen-qualities and eigen electric displacement 
operators of biaxial crystal are respectively shown as 
below 

* T
1 1 1E E  E =             (91) 

* T
2 2 2E E  E =             (92) 

* T
3 3 3E E  E =             (93) 

   * *
1 11 1 1,0,0

T           (94) 

   * *
2 22 2 20, ,0

T          (95) 

   * *
3 33 3 30,0,

T          (96) 

Therefore, the static electric field equation in biaxial 
crystal can be written as below 

4 *
1 0x                 (97) 

4 *
2 0y                 (98) 

4 *
3 0z                 (99) 

It is seen from Equations (97)-(99) that there are three 
static electric fields in biaxial crystal. Thus, the electric 
intensity and electric displacement become 

       * * *
1 1 1 2 2 2 3 3 3

* * *
1 1 2 2 3 3

11 1

22 2

33 3

1 0 0

0 1 0

0 0 1

E      

  







     

     
               
     
     
 
    
   

 (100) 

 
11 11 1

22 22 2

33 33 3z

D

 

 

 

 
    
   

            (101) 

The classical electric potential function of order 1 is 

1 1 1                  (102) 

2 2 2                  (103) 

3 3 2                  (104) 

So, the electric intensity and electric displacement of 
uniaxial crystal can also be expressed by the classical 
electric potential function of order 1 as follows

 

 
1 1

2 2

3 3

E





 
    
  

              (105) 

 
11 1

22 2

33 3

x

y

z

D

 
 

 

 
 

   
  

             (106) 

It is seen that the electric intensity and electric dis-
placement of biaxial crystal are quite different from 
those in isotropic crystal, and there exist three kinds of 
modal electric potential functions in uniaxial crystal, so 
they become vectorial ones, this is also different from the 
classical results of static electric field. 

7.4. Monoclinic Crystal 

The matrix of dielectric permittivity of monoclinic di-
electrics is following 

11 12

12 22

33

0

0

0 0

 
 



 
 
 
  

                (107) 

The eigen-values and eigen-vectors are respectively 
shown as below 

 1 2 33, ,diag                (108) 
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 

 

 

T

12 1 11

2 2 12
1 11 12

T

12 2 11

2 2 12
2 11 12

T

, 1, 0

1, , 0

0, 0,1

  
  

  
  



 



  
   
   

        

 







   (109) 

where 

   
2

11 22 2
1,2 11 22 12

1

2 2

 
   

       
 

3 33  (110) 

We can see from the above equations that there are 
also three eigen-spaces in monoclinic crystal, and the 
space structure is following 

           1 1 1
1 1 2 2 3 3W W W    W       (111) 

The eigen-qualities and eigen electric displacement 
operators of monoclinic crystal are respectively shown as 
below 

 
 * T

1 1 1 11 1 12 22 2
1 11 12

1
E E E  

  
     

 
 E =  

(112) 

 
 * T

2 2 12 1 2 11 22 2
2 11 12

1
E E E  

  
     

 
 E =

 
(113) 

* T
3 3 3E E  E =               (114) 

   

* 2 2
1 1 11 1 22 1 1 1 2

*
1 1 1 1 2 1 1 1 2

2

, ,0
T

a b a b

a b a b

       

       

     (115) 

   

* 2 2
2 2 11 2 22 2 2 1 2

*
2 2 1 2 2 2 1 2 2

2

, ,0
T

a b a b

a b a b

       

       

    (116) 

   * *
3 33 3 30,0,

T             (117) 

where 

 
1112

2 2 12
11 12

1, 2i
i i i

i

b a b i
 
  


  

 
 

Therefore, the static electric field equation in mono-
clinic crystal can be written as below 

 22 2 *
1 11 1 22 1 1 1 2 12 0a b a b            (118) 

 22 2 *
2 11 2 22 2 2 1 2 22 0a b a b              (119) 

4 *
3 0z                   (120) 

It is seen from Equations (118)-(120) that there exist 
also three static electric fields in monoclinic crystal, 
which is a little different from the results in biaxial crys-
tal because of the distortion of static electric fields. Thus, 
the electric intensity and electric displacement become 

       

 

* * *
1 1 1 2 2 2 3 3 3

1 1 1 2
2 2

1 1 1 2 1 11 1 22 1 1 1 2 12

0

E

a b

a b a b a b

     



      

   
          
 
 

 

 
2 1 2 2

2 2
2 1 2 2 2 11 2 22 2 2 1 2 2

33 3

2

0

0

0

1

a b

a b a b a b 



   
           
 
 
 
   
 
 

   (121) 

       

 

 

* * *
1 1 1 1 2 2 2 2 3 3 3 3

1 1 1 2
2 2

1 1 1 2 1 1 11 1 22 1 1 1 2 1

2 1 2 2
2 2

2 1 2 2 2 2 11 2 22 2 2 1 2 2

3 33 3

2

0

2

0

0

0

1

D

a b

a b a b a b

a b

a b a b a b

        

 

 

 

      

   
          
 
 

   
           
 
 
 
   
 
 

 (122) 

The classical electric potential function of order 1 is 

   1 1 1 1 1 2 1 1 1 1 2 1a a b b a b              (123) 

   2 2 2 1 2 2 2 2 1 2 2 2a a b b a b              (124) 

3 3 3                   (125) 

So, the electric intensity and electric displacement of 
monoclinic crystal can also be expressed by the classical 
electric potential function of order 1 as follows

 

 
1 1 1 2 2 1 2 2

1 1 1 2 1 2 1 2 2 2 3

3

0

0

0 0

a b a b

E a b a b  
          

                   
         

 

(126) 



A Second-Order Eigen Theory for Static Electromagnetic Fields                  

Copyright © 2010 SciRes.                                                                                 JMP 

107

 
1 1 1 2

1 1 1 1 2 1

2 1 2 2

2 2 1 2 2 2 33 3

3

0

0

0

0

a b

D a b

a b

a b

 

   

   
      
 
 

     
          
     

        (127) 

It is seen that the electric intensity and electric dis-
placement of biaxial crystal are aiso quite different from 
those in isotropic crystal. 

8. Conclusions 

In this paper, we construct the standard spaces under the 
physical presentation by solving the eigen-value problem 
of the matrixes of dielectric permittivity and magnetic 
permeability, in which we get the eigen dielectric per-
mittivity and eigen magnetic permeability, and the cor-
responding eigen vectors. The former are coordinate- 
independent and the latter are coordinate-dependent. Be-
cause the eigen vectors show the principal directions of 
electromagnetic media, they can be used as standard 
spaces. Based on the spaces, we get the modal equations 
of static electromagnetic fields by converting the classi-
cal Maxwell’s vector equation to the eigen Maxwell’s 
scalar equation, each of which shows the existence of an 
static electromagnetic field. For example, there is only 
one kind of static electromagnetic field in isotropic crys-
tal, which is identical with the classical result; there are 
two kinds of static electromagnetic fields in uniaxial 
crystal; three kinds of static electromagnetic fields in 
biaxial crystal and three kinds of distorted static electro-

magnetic fields in monoclinic crystal. All of these new 
theoretical results need to be proved by experiments in 
the future. 
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