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ABSTRACT 
 
This paper presents a critical review of the current work of experiment, theory of micro-nano-
mechanics, and numerical analysis on characterizing mechanical properties of nanocomposites. 
First, the classifications of nanomaterials are presented. Then nanoindentation testing and the 
corresponding finite element modeling are discussed, followed by analytical modeling stiffness of 
nanocomposites. The analytical models discussed include Voigt and Reuss bounds, Hashin and 
Shtrikman bounds, Halpin–Tsai model, Cox model, and various Mori and Tanaka models. These 
micromechanics models predict stiffness of nanocomposites with both aligned and randomly 
oriented fibers. The emphasis is on numerical modeling includes molecular dynamics modeling 
and finite element modeling. Three different approaches are discussed in finite element 
modeling, i.e. multiscale representative volume element (RVE) modeling, unit cell modeling, and 
object-oriented modeling. Finally, the mechanism of nanocomposite mechanical property 
enhancement and the ways to improve stiffness and fracture toughness for nanocomposites are 
discussed.  
 
Key words:  Nanocomposites; Mechanical properties; Multiscale modeling; Finite element 
analysis (FEA); Object-oriented modeling. 
 
 
 

1. INTRODUCTION 
 

Nanoscience and nanotechnology refer to the understanding and control of matter at the 
atomic, molecular or macromolecular levels, at the length scale of approximately 1 to 100 
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nanometers, where unique phenomena enable novel applications. Nanotechnologies are the 
design, characterization, production and application of structures, devices and systems by 
controlling shape and size at nanometer scale. According to Braun et al. [1], from 1980s, the 
growth of research papers dealing with the prefix called ‘nano’ is exponential. Among all the 
work, characterizing and modeling mechanical properties of nanocomposites is one of the most 
important subjects. 
 
Nanocomposites are composite materials in which the matrix material is reinforced by one or 
more separate nanomaterials in order to improve performance properties. The most common 
materials used as matrix in nanocomposites are polymers (e.g. epoxy, nylon, polyepoxide, 
polyetherimide), ceramics (e.g. alumina, glass, porcelain), and metals (e.g. iron, titanium, 
magnesium).   
 
Nanomaterials are generally considered as the materials that have a characteristic dimension (e.g. 
grain size, diameter of cylindrical cross-section, layer thickness) smaller than 100 nm. 
Nanomaterials can be metallic, polymeric, ceramic, electronic, or composite. Nanomaterials are 
classified into three categories depending on their geometry, as shown in Fig. 1 [2,3]:  
 

1. Nanoparticles: When the three dimensions of particulates are in the order of nanometers, 
they are referred as equi-axed (isodimensional) nanoparticles or nanogranules or nanocrystals.  

 
2. Nanotubes: When two dimensions are in the nanometer scale and the third is larger, 

forming an elongated structure, they are generally referred as ‘nanotubes’ or 
nanofibers/whiskers/nanorods.  

 
3. Nanolayers: The particulates which are characterized by only one dimension in nanometer 

scale are nanolayers/nanoclays/nanosheets/nanoplatelets. These particulate is present in the form 
of sheets of one to a few nanometer thick to hundreds to thousands nanometers long.  

 
The nanomaterials can also be distinguished in three types as natural, incidental, and engineered 
nanomaterials depending on their pathway [4]. Natural nanomaterials, which are formed through 
natural processes, occur in the environment (e.g. volcanic dust, lunar dust, magneto-tactic 
bacteria, minerals, etc.). Incidental nanomaterials occur as the result of man made industrial 
processes (e.g. coal combustion, welding fumes, etc.). Engineered nanomaterials are produced 
either by lithographically etching of a large sample to obtained nanoparticles, or by assembling 
smaller subunits through crystal growth or chemical synthesis to grow nanomaterials of the 
desired size and configuration. Engineered nanomaterials most often have regular shapes, such as 
tubes, spheres, rings, etc. U.S. Environmental Protection Agency divides engineered 
nanomaterials into four types. They are carbon-based materials (nanotubes, fullerenes), metal-
based materials (including both metal oxides and quantum dots), dendrimers (nanosized 
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polymers built from branched units of unspecified chemistry), and composites (including 
nanoclays). 
 

                 
 
                                    Figure 1. Various types of nanoscale materials [4]. 
 
Comparing to the conventional micro-composites, nanocomposites greatly improve the physical 
and mechanical properties. The nanoscale reinforcements over traditional fillers have the 
following advantages [5]:  
 1.  Low-percolation threshold (~0.1–2 vol.%). 
 2.  Large number density of particles per particle volume (106–108 particles/µm3). 
 3.  Extensive interfacial area per volume of particles (103–104 m2/ml). 
 4.  Short distances between particles (10–50nm at  ~1–8 vol.%). 

Although any kind of material can be produced to appear in a nanoscaled shape and size, 
carbon nanotubes and nanoplatelets as shown in Fig. 2 are the two kinds of nanoparticles that 
gained the most attention [6]. 

 

             
                          

Figure 2. Schematic of (a) nanotube and (b) nanoplatelet [6]. 
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This paper presents a thorough review of characterizing and modeling mechanical properties of 
nanocomposites. The critical review covers the current work on the experiment, theory, and 
numerical analysis in this area. Nanoindentation testing and the finite element modeling are 
discussed, followed by analytical modeling stiffness of nanocomposites. The numerical modeling 
includes molecular dynamics modeling and finite element modeling. Three different approaches 
are discussed in finite element modeling, i.e. multiscale representative volume element (RVE) 
modeling, unit cell modeling, and object-oriented modeling. Finally, the mechanism of 
nanocomposites mechanical property enhancement is explored, and the ways to improve their 
stiffness and fracture toughness are discussed.  

 
2. CHARACTERIZING AND MODELING OF NANOCOMPOSITES 

 
2.1 Nanoindentation Tests and Computing Simulations 

 
There are different ways to experimentally characterize nanocomposites. For example, tensile 
and flexural tests (mostly conducted on Instron machines), impact tests (conducted on pendulum 
impact testing machine) [7-11], and micro-compression tests [12,13].  Nanoindentation test is 
one of the most effective and widely used methods to measure the mechanical properties of 
materials. This technique uses the same principle as microindentation, but with much smaller 
probe and loads, so as to produce indentations from less than a hundred nanometers to a few 
micrometers in size. During the past dozen years or so, it has been widely used in measuring the 
mechanical properties of various nanocomposites [14-25] and human enamel and dentin [26-38]. 

 
Hardness (H) and elastic modulus (E) are calculated from the load-displacement curve obtained 
from a nanoindentation test. A typical load-displacement curve is shown in Fig. 3. As the 
indenter penetrates into the specimen, the loading curve climbs up. At some point, the maximum 
load Pmax is reached, and then followed by the unloading. If the material is perfectly elastic and 
has no hysteresis, the loading curve and the unloading curve will be identical. hmax gives a 
measure of the total maximum deformation, while hf represents the maximum permanent 
(plastic) deformation (final penetration depth). 
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Figure 3. Typical load-displacement curve of the nanoindentation test. 
 
The most commonly used method to obtain the hardness and the elastic modulus of a material by 
nanoindentation is the Oliver-Pharr method [25]. According to this method, the nanoindentation 
hardness as a function of the final penetration depth of indent can be determined by: 

 
A

P
H max=        (2.1) 

where Pmax is the maximum applied load measured at the maximum depth of penetration (hmax), 
A is the projected contact area between the indenter and the specimen. For a spherical indenter, 

fRhA π2=  (where R is the radius of the indenter), whereas for a pyramidal (Berkovich or 

Vickers) indenter, A can be expressed as a function of hf as 
128/1
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where C1 to C8 are constants and can be determined by standard calibration procedure. The final 
penetration depth, hf, can be determined from the following expression:  

∗−=
S

P
hh f
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where ε is a geometric constant, ε=0.75 for a pyramidal indenter, and ε=0.72 for a conical 
indenter. S* is the contact stiffness which can be determined as the slope of the unloading curve 
at the maximum loading point, i.e. 
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The reduced elastic modulus Er is given by 
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where β  is a constant that depends on the geometry of the indenter. For both a Berkovich and a 
Vicker’s indenter, β =1.034, whereas for both a conical and a spherical indenter, β =1. The 
specimen elastic modulus (Es) can then be calculated as: 
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Where siE ,  and si ,υ  are the elastic modulus and Poisson’s ratio, respectively, for the indenter 

and the specimen. For a diamond indenter, Ei  is 1140 GPa and iυ  is 0.07. The contact stiffness, 
S*, can be derived from the unloading curve which simply obeys the following power law 
  n

fhhBP )( −=       (2.7) 

where B and n are empirical constants that can be determined by fitting the experimentally 
measured pairs of data (P, h) during unloading. Thus the contact stiffness can be expressed as 
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Therefore, the specimen’s hardness H and elastic modulus sE  will be obtained from this set of 
equations. 

Indentation is a highly nonlinear problem. It involves large plastic deformation, material 
nonlinearity, and contact. In order to better understand and characterize the mechanical 
properties and to provide guidelines for proper design of experiments, finite element method is 
often used to simulate the nanoindentation tests [14, 15, 18, 38-51]. It is also noted that the 
primary mechanical properties extracted from a nanoindentation test are the hardness and the 
elastic modulus. Finite element simulation could be employed to get other properties, such as 
yield stress and hardening [38, 52-58]. Fig. 4(a) shows the geometry of indentation of a 
cylindrical specimen with a conical indenter, and 4(b) shows the Mises stress contour from the 
finite element analysis [15]. Note that the finite element meshes are the two-dimensional (axi-
symmetric) elements. Fig. 5 shows a three- dimensional nanoindentation finite element mesh 
system [18]. Note that because of symmetry, only half of the specimen volume was modeled.  
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Figure 4. (a) Geometry of indentation of a cylindrical specimen with a conical indenter. (b) The 
Mises equivalent stress field in the specimen during indentation at hmax = 600 nm. (The stress 
values must be multiplied by 107 to respect the scale of the problem) [15]. 
 
2.2 Analytical Modeling Stiffness of Nanocomposites 

 
It is well known that composite materials have advantages over traditional materials. 
Nanocomposites, where nano-sized reinforcements (fillers) are dispersed in the base material 
(matrix), offer a novel class of composites with superior properties and added functionalities [59-
62].   Although the applicability of continuum mechanics (including micro mechanics) to 
nanocomposites has been subjected to debate [59,63], many recent works directly applying 
continuum mechanics to nanostructures and nanomaterials have reported meaningful results and 
elucidated many issues [64-73]. Thus, mechanics-based formulas for predicting the mechanical 
properties will be reviewed.  
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     Figure 5. Illustration of a three dimensional nanoindentation finite element model [18]. 
 
In nanocomposites, there are typically three kinds of fillers. They are cylinder-like nanofibers 
(nanotubes), flake-like (disk-like) platelets (nanolayers, nanoclays), and spheroid-like 
particulates, refer to Figs. 1 and 2. For the fiber-reinforced nanocomposites, there are two cases 
depending on the orientation of the fibers, i.e. aligned fibers and randomly oriented fibers, see 
Fig. 6 below.  

 
The popular micromechanical models for prediction of modulus of elasticity are summarized and 
discussed in the following: 
 
2.2.1 Voigt upper bound and Reuss lower bound (V-R model) 

 
Assumed aligned fibers, and fibers and matrix are subjected to the same uniform strain in the 
fiber direction, Voigt [74] got the effective modulus in the fiber direction as: 

 mfL EEE )1( φφ −+=       (2.9) 

Reuss [75] applied the same uniform stress on the fiber and matrix in the transverse direction 
(normal to the fiber direction), and got the effective modulus in the transverse direction as: 

 
mfT EEE
φφ −

+=
11       (2.10) 

where φ  is the volume fraction of fiber in the two-phase composite system, and subscripts “f” 
and “m” respectively refer to the fiber and matrix, whereas the subscripts “L” and “T” refer to 
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the longitudinal and transverse directions, respectively. Equation (2.9) is the parallel coupling 
formula, and it is also called the “rule of mixtures”, whereas (2.10) is the series coupling 
formula, and it is also called the “inverse rule of mixtures”. 
 

               
                     a. Aligned fibers                                             b. Randomly oriented fibers 
 

             
 
                    c. Aligned platelets                                          d.  particulates 
 
     Figure 6. Schematics of nanocomposites:  (a) with aligned fibers; (b) with randomly 
     oriented fibers; (c) with aligned platelets; and (d) with randomly oriented particulates [6]. 
 
Equations (2.9) and (2.10) can be extended to any two-phase composites regardless the shape of 
the filler, and LE  and TE  represent the upper and lower bounds of the modulus of the composite, 
respectively. Note that in these formulas, only three parameters are involved, i.e. modulus of the 
fiber and the matrix, and the fiber volume fraction.  
 
2.2.2 Hashin and Shtrikman upper and lower bounds (H-S model) 
 
Hashin and Shtrikman [76,77] assumed macroscopical isotropy and quasi-homogeneity of the 
composite where the shape of the filler is not a limiting factor, and estimated the upper and lower 
bounds of the composite based on variational principles of elasticity. Depending on whether the 
stiffness of the matrix is more or less than that of the filler, the upper and lower bounds of the 
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bulk moduli, upperK  and lowerK , and shear moduli, upperG  and lowerG , of the composite are given 

as: 
1
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where the subscripts “f” and “m” refer to the filler (fiber) and matrix, respectively. The upper 
and lower bounds of the elastic modulus can then be calculated using the following relation: 
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Similar to Voigt and Reuss models, H-S model only involves three parameters. 
 
2.2.3 Halpin-Tsai model (H-T model) 

 
For aligned fiber-reinforced composite materials, Halpin and Tsai [78-81] developed the 
equations for prediction of elastic constants based on the work of Hermans [82] and Hill [83]. 
The H-T model is a semi-empirical model, and the longitudinal and transverse moduli are given 
by: 
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where  l and d are the length and diameter of the fiber, and Lη  and Tη  take the following 
expressions:  
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For aligned nanoplatelets as shown in Fig. 6 (c), equations (2.16) to (2.19) may still be used by 
replacing (l/d) with (D/t), where D and t are respectively the diameter and thickness of the 
platelet (refer to Fig. 2).  



Vol.9, No.4                         Characterizing and Modeling Mechanical Properties of  Nanocomposites                           285 
 

H-T model takes the consideration of the fiber geometry, and has five independent parameters. 
 
2.2.4 Hui-Shia model (H-S model) 

 
Mori and Tanaka [84] developed analytical expressions for elastic constants based on the 
equivalent inclusion model of Eshelby [85]. Taya and Mura [86] and Taya and Chou [87] used 
Mori-Tanaka approach to predict the longitudinal modulus of fiber-reinforced composites, Weng 
[88] and Tandon and Weng [89] further developed equations for the complete set of elastic 
constants of composite materials with aligned spheroidal isotropic inclusions.  Based upon the 
results of Tandon and Weng [89], Hui and Shia [90] and Shia et al. [91] derived simplified 
formulas for predicting the overall moduli of composites with aligned reinforcements with 
emphases on fiber-like and flake-like reinforcements, and found that their theoretical predictions 
agree well with experimental results. The H-S model presents the Young’s modulus as follows: 
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and α  is the aspect ratio of the filler, defined as the ratio of the filler’s longitudinal (with 
Young’s modulus LE ) length to its transverse (with Young’s modulus TE ) length. For example, 
refer to Fig. 2, dl /=α  for nanotube, Dt /=α  for nanoplatelet, and LE  will be along axis 3, 
and TE  will be along axis 1 (or 2).  
 

2.2.5 Wang-Pyrz model (W-P model) 
 

For a composite material composed of an isotropic matrix and randomly oriented transversely 
isotropic spheroids, Qiu and Weng [92] and Chen et al. [93] gave the formulas for the overall 
bulk and shear moduli using the Mori-Tanaka method. These formulas are expressed in terms of 
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the Eshelby tensor [85], thus are not final. Wang and Pyrz [94] further gave the closed and 
concise formulas for the overall bulk modulus and shear modulus as follows: 

)1(1 αφ
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The expressions for ϕ , ψ , α  and β  are given in the Appendix.  
Note that W-P model is based on the Mori-Tanaka approach, and deals with the composite 

materials reinforced with randomly oriented and transversely isotropic spheroids. By varying the 
aspect ratio, the oblate spheroids can be approximate to platelets, and the prolate spheroids can 
be approximate to fibers. 

 
2.2.6 Cox model (Shear lag model) 

 
Shear lag model was the first micro-mechanics model for fiber-reinforced composites. Cox [95] 
analyzed a single fiber of length l and radius fr , which is encased in a concentric cylindrical 

shell of matrix having radius R. He derived the longitudinal modulus as 
mfLL EEE )1( φφη −+=      (2.27) 

where Lη  is a length-dependent efficiency factor, 

 
2/

)2/tanh(1
l

l
L β

βη −=       (2.28) 

with 

 
)/ln(

4
2

2

φ
μ

β
Rff

m

KEr
=       (2.29) 

RK  is a constant that depends on the fiber packing arrangements. For some typical fiber packing 
arrangements, the values of RK  are given in Table 1 [96].   
 
                         Table 1. Values for RK  in Eq. (2.29) 

FIBER PACKING RK  
Cox 3/2π =3.628 
Composite cylinders 1.000 
Hexagonal 32/π =0.907 
Square 4/π =0.785 

 
It is well known that the orientation of the dispersed phase has a dramatic effect on the 
composite modulus. It is apparent from their geometry that flake-like platelets can provide equal 
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reinforcement in two directions, if appropriately oriented, while fibers provide primary 
reinforcement in one direction. If the longitudinal modulus LE  and the transverse modulus TE  
are known, then the effective modulus of the composite with randomly oriented fibers and 
platelets in all three orthogonal directions are given by [97]: 
 TL

fiber
D EEE 816.0184.03 +=      (2.30) 

TL
platelet
D EEE 51.049.03 +=      (2.31) 

 
2.3 Molecular Dynamics Simulation 
 
In modeling mechanical properties of nanocomposites, there are two main approaches: one is 
molecular dynamics simulation using direct methods, and the other is finite element simulation 
using “continuum” methods. Molecular dynamics simulation is a technique that allows one to 
determining the physical and mechanical properties of materials in nanoscale through solving 
Newton’s equations of motion with the atoms interacting through assumed interatomistic 
potentials [98, 99]. It generates information such as atomic positions, velocities and forces from 
which some macroscopic properties can be derived by means of statistical mechanics. Molecular 
dynamics simulation usually consists of three constituents: (1) a set of initial conditions (e.g., 
initial positions and velocities of all particles in the system); (2) the interaction potentials to 
represent the forces among all the particles; (3) the evolution of the system in time by 
numerically solving a set of classical Newtonian equations of motion for all particles in the 
system [100]. In 1997, Cornwell et al. used molecular dynamics to predict the elastic properties 
of single-walled carbon nanotubes [101]. In recent years, molecular dynamics simulation has 
been extensively used in predicting mechanical properties of carbon nanotubes and nanotubes 
reinforced composites [102-109], graphite/epoxy nanocomposites [110-112], and other 
nanocomposites [113-119].  

 
Molecular dynamics simulation involves the proper selection of interaction potentials, numerical 
integration, periodic boundary conditions, and the controls of pressure and temperature to mimic 
physically meaningful thermodynamic ensembles. The interaction potentials together with their 
parameters form a force field which describes in detail how the particles in a system interact with 
each other. Such a force field may be obtained by quantum method, empirical method or 
quantum-empirical method. The criteria for selecting a force field include the accuracy, 
transferability and computational speed. The total potential energy U may consist of a number of 
bonded and non-bonded interaction terms: 
 ∑ ∑ ∑ ∑ ∑ −++++= bondednoninversiontorsionanglebond UUUUUU  (2.32) 

The first four terms represent bonded interactions, i.e., bond-stretching between two bonded 
atoms, angle-bending by three neighboring atoms, angle variation between two planes formed by 
four neighboring atoms, and angle variation of two planes formed by four atoms where one atom 
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is bonded to other three, as shown in Fig. 7 [120]. The last term represents non-bonded 
interactions between two atoms. It usually includes van der Waals and electrostatic interactions. 
 

 
 

          Figure 7. Bond structures and corresponding energy terms of a graphene cell [120]. 
 

Molecular dynamics simulations can be performed in different ensembles, such as grand 
canonical (μ VT), microcanonical (NVE), canonical (NVT) and isothermal–isobaric (NPT). The 
constant temperature and pressure can be controlled by adding an appropriate thermostat (e.g., 
Berendsen, Nose, Nose–Hoover and Nose–Poincare) and barostat (e.g., Andersen, Hoover and 
Berendsen), respectively. The software packages available for molecular dynamics simulations 
include DL-POLY developed by Daresbury Laboratory [121, 122], LAMMPS developed by 
Sandia National Laboratories [123], and TINKER developed by University of Washington [124].  
 
To demonstrate how to use molecular dynamics simulation to evaluate the mechanical properties 
of nanocomposites, the work by Adnan et al. [125] using molecular dynamics simulation to 
investigate the effect of filler size on elastic properties of polyer nanocomposites will be 
presented below. Adnan et al. constructed the nanocomposite by reinforcing amorphous 
polyethylene (PE) matrix with nano sized buckminister fullerene bucky-ball. Three types of 
bucky-balls,  32018060 C and ,C ,C (subscripts denote number of carbon atoms) with three different 
diameters (0.7, 1.2 and 1.7 nm, respectively) were utilized to incorporate size effect in the 
nanocomposites. The PE matrix was represented by united atom (UA)-CH2- units. All bucky-
balls were infused in matrix by approximately 4.5 vol%. Once the molecular structures were 
developed, the corresponding molecular mechanics force fields were defined. The PE chains 
were described by appropriate bond stretching, angle bending and dihedral potentials between -
CH2- units. The non-bonded van der Waals interactions within or between PE chains were 
modeled using lennard-Jones (LJ) potential [126, 127]. The functional form and parameters of 
the force field are shown in Table 2. 
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                     Table 2. Functional form and parameters for the force field [125] 
Interactio
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            Figure 8. Cells of different neat and nanocomposites model used for simulation [125]. 
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Fig. 8 shows the cells of different neat and nanocomposites model used for simulation. Periodic 
boundary conditions were employed to replicate the unit cells in three dimensions. Software 
package DL_PLOY (version 2.14) was used in the simulation. All the calculations were carried 
out at a temperature of 3000K with 0.5 fs time steps. Two major steps of simulation for both neat 
polymer and nanocomposites were performed. In the first step, the equilibrium state of the 
molecular model was obtained, and then the model was subjected to different strain fields and re-
equilibrated. Adnan et al. applied a uniform strain field (0.5%) to the periodic cells of both neat 
polymer and nanocomposites. For the cases of hydrostatic tension and hydrostatic compression, 
they evaluated the bulk modulus K, and their results were shown in Table 3.  

 
            Table 3. Evaluation of bulk modulus K for various nanocomposites [125] 

System Type Hydrostatic Compression Hydrostatic Tension 
K(GPa) % Gain/loss K(GPa) % Gain/loss 

PE-C60  3.529 17.39 3.478 22.29 

PE-C180  3.454 14.90 3.272 15.04 

 
It is evident from Table 3 that elastic properties of nanocomposites are improved appreciably 
with the infusion of bucky-balls in PE matrix, and they are also significantly affected by the size 
of reinforcing bucky-balls.   
 
2.4 Finite Element Modeling 

 
As a very general and powerful numerical analysis tool, finite element method was used to 
predict mechanical properties of composite materials started in early 1970s [128-129]. Since 
then, various finite element models have been developed to characterize all kinds of composite 
materials [e.g. 130-136]. In 1991, Sumio Iijima, a Japanese scientist, discovered carbon 
nanotubes (CNTs) which possess exceptionally high stiffness and strength, as well as superior 
electrical and thermal properties [137-139].  Soon after that CNTs were used as reinforcement in 
developing nanocomposite materials. In the past decade or so, there have been explosively 
experimental work [e.g. 7, 8, 140-155] and analytical work [e.g. 156-169], as well as finite 
element modeling work [e.g. 170-198] on developing, analyzing and characterizing CNT 
reinforced nanocomposites and other nanocomposites. In the following, three finite element 
modeling approaches will be discussed. They are multiscale representative volume element 
(RVE) modeling, unit cell modeling, and object-oriented modeling. 

 
2.4.1  Multiscale RVE modeling 

 
Liu and Chen [180] extended the RVE concept used by Hyer [199] and Nemat-Nasser and Hori 
[200] for conventional fiber-reinforced composites at the microscale to nanoscale, and evaluated 
the effective mechanical properties of CNT-based composites by using a three-dimensional 
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nanoscale RVE based on elasticity theory and solved by the finite element method. An RVE is 
composed of a single (or multiple) nanofiller(s) with surrounding matrix material, plus proper 
boundary conditions to account for the effects of the surrounding materials. It is used as a 
building block to assemble the composite. Zhang et al. [201] linked continuum analysis with 
atomistic simulation by incorporating interatomic potential and atomic structures of CNTs 
directly into the constitutive law. Shi et al. [185] presented a hybrid atomistic/continuum 
mechanics method to study the deformation and fracture behavior of CNTs embedded in 
composites. The method is based on a representative unit cell divided into three distinct regions 
analyzed using an atomistic potential, a continuum method based on the Cachy–Born rule and a 
micromechanics method, respectively. Li and Chou [180] proposed a multi-scale modeling 
approach to study the compressive behavior of CNT/polymer composites. They modeled the 
nanotube at the atomistic scale and analyzed the matrix deformation using the continuum finite 
element method. The van der Waals interactions between carbon atoms and the finite element 
nodes of the matrix were simulated using truss rods.  

 
The multiscale RVE integrates nanomechanics and continuum mechanics, thus bridging the 
length scales from the nano- through the mesoscale. The procedure of multiscale RVE modeling 
is exhibited by the work of Tserpes et al. [172] in the following.  Tserpes et al. proposed a 
multiscale RVE to investigate the tensile behavior of CNT/polymer composites. The RVE is a 
rectangular solid whose entire volume is taken up by the matrix, and the nanotube is modeled as 
a three-dimensional (3D) elastic beam. The 3D solid elements and beam elements are used to 
model the matrix and nanotube, respectively. The RVE is synthesized in two steps. First, the 
behavior of the isolated nanotube is simulated using the progressive fracture model [202]. The 
concept of the model is based on the assumption that carbon nanotubes, when loaded, behave 
like space-frame structures. The bonds between carbon atoms are considered as load-carrying 
members while carbon atoms as joints of the members. The non-linear behavior of the C-C 
bonds is modeled by the modified Morse interatomic potential [203], and the nanotube structure 
is modeled by finite element method. Second, the nanotube is inserted into the matrix to form the 
RVE. The matrix is modeled by solid elements, and the nanotube is represented by 3D elastic 
beam elements created by binding the nodes of the matrix. The synthesis of the RVE is shown in 
Fig. 9.   
 
2.4.2 Unit cell modeling 

 
The conventional unit cell concept is the same as the RVE [132, 204]. Here we define a unit cell 
as a special RVE that it has a relatively big size (usually in micrometers) and contains a 
significant number of fillers (usually in tens to hundreds or more). Such defined unit cell is still 
the building block of the composite, but as it gets more complicated, analytical models are 
difficult to establish or too complicated to solve, and numerical modeling and simulation become 
a necessity.  
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                                              Figure 9. Synthesis of the RVE [172]. 

 
 

The most common method used to characterize the mechanical properties of nanocomposites 
with unit cell is the finite element method. Hbaieb et al. [177] examined the Young’s modulus of 
nanoclay/polymer nanocomposites with both 2D and 3D unit cells using the finite element 
method. Four unit cells were created. They are, respectively, 2D and 3D aligned and randomly 
oriented nanoclay particles models, as shown in Fig. 10. Two kinds of boundary conditions are 
considered. They are periodic boundary conditions and symmetrical boundary conditions. For 
the 2D models (both aligned and random cases) the periodic boundary conditions are: 

u(RE)=u(LE)+ 1δ  
v(RE)=v(LE) 
u(TE)=u(BE) 
v(TE)=v(BE)+ 2δ  

where RE, LE, TE, BE and 1δ  and 2δ  are the right, left, top, bottom edges and the axial and 
transverse displacements, respectively. The symmetrical boundary conditions for the 2D models 
are: 

u(LE)=0  
v(BE)=0 
u(RE)=δ   
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where δ  is the given normal displacement in the x direction. In addition, all edges are free of 
shear traction and the top edge is free of normal traction as well.   
       
For the 3D models (both aligned and random cases) only symmetrical boundary conditions are 
applied, and they are given as: 

u(LF)=0  
v(BF)=0 
w(BKF)=0 
u(RF)=δ  

where LF, BF, BKF and RF stand for left face, bottom face, back face and right face. All other 
faces are free of any displacement or traction constraints. The numerical results indicated that 2D 
models do not predict the elastic modulus of clay/polymer nanocomposites accurately. The Mori-
Tanaka model [89] gives reasonably accurate predictions of the stiffness of the nanocomposites 
whose volume fraction is less than 5% for aligned particles but underestimates the stiffness at 
higher volume fractions. For randomly oriented particles the W-P model [94] overestimates the 
stiffness of the nanocomposites.  
 

                         
Figure 10. Mesh details of the model for (a) 2D aligned particle distribution, (b) 2D 
randomly oriented-particle distribution, (c) 3D aligned particle distribution, and (d) 3D 
randomly oriented-particle distribution. Particle volume fraction is 5%, the particle aspect 
ratio is 50, Ep/Em=100, ν m=0.35, ν p=0.2. Subscripts p and m represent particle and 
matrix, respectively [177]. 

 
Recently, Lee et al. [170] used a 3D unit cell model to analyze the deformation behavior of 
randomly distributed Al18B4O33 whisker-reinforced AS52 magnesium alloy matrix composite. 
The Al18B4O33 whiskers are mμ3010 −  long and mμ0.15.0 −  in diameter. The dimensions of 
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the unit cell are 3202010 mμ××  which contains (fully or partially) 260 whiskers. The volume 
fraction of the whiskers is 15%. Fig. 11 shows a typical unit cell (with the meshes of the 
whiskers) and an optical micrograph of the composite. For the Young’s modulus and overall 
elastic-plastic response of the composite, the finite element modeling results are in excellent 
agreement with the experimental results.  
 
 

            
Figure 11. (a) 3D random whisker-reinforced composite model, and (b) an optical micrograph of 
squeeze-infiltrated Al18B4O33/Mg random whisker composite [170]. 
 
2.4.3 Object-oriented modeling 

 
In both multiscale RVE modeling and unit cell modeling, two basic assumptions are made. First, 
nanofillers can be idealized to simple geometries such as spheres, ellipsoids, cylinders, or cubes. 
And second, nanocomposites can be reproduced by assembling a large number of such RVEs (or 
unit cells). This can be a serious limitation when dealing with complex and highly heterogeneous 
nanocomposites. For example, for highly variable and irregular angular structure of fillers, using 
approximation of simple geometrical particles could not capture the complex morphology, size, 
and spatial distribution of the reinforcement.  Therefore, the object-oriented modeling which is 
able to capture the actual microstructure morphology of the nanocomposites becomes necessary 
in order to accurately predict the overall properties. 

 
The object-oriented modeling is a relatively new approach. It incorporates the microstructure 
images such as scanning electron microscopy (SEM) micrographs into finite element grids. Thus 
the mesh reproduces exactly the original microstructure, namely the inclusions size, morphology, 
spatial distribution, and the respective volume fraction of the different constituents.  A object-
oriented finite element code, OOF [205, 206], developed by National Institute of Standards and 
Technology (NIST), has been extensively used in analyzing fracture mechanisms and material 
properties of heterogeneous materials [207-216] and mechanical properties of nanocomposites 
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[8, 178, 179, 217]. In the following, a 2D object-oriented finite element modeling will be 
discussed, followed by a 3D modeling. 
 
 

                       
 
Figure 12. Typical example of creating OOF model of PP/organoclay nanocomposites  (5 
wt% in clay content): (a) original SEM image, (b) captured SEM image portion, (c) image 
segmentation using pixel selection, and (d) finite element mesh (highlighted regions contain 
organoclay particles and the rest are PP matrices) [8]. 

 
 

Dong et al. [8] studied the mechanical properties of polypropylene (PP)/organoclay 
nanocomposites with different clay contents ranging from 1 to 10 wt%. Their work started with 
the specimen fabrication through experimental characterization to theoretical predictions and 
numerical modeling using OOF. SEM micrographs from longitudinal loading direction of the 
specimen were captured and mapped onto the finite element model, as shown in Fig. 12. The 
actual nano/microstructures (their size, shape, and distribution etc.) of the PP and the organoclay 
were used in the computational model, and each phase was attributed the corresponding material 
properties. The OOF modeling results for the tensile modulus show a good agreement with the 
experimental data and theoretical predictions. 

 
Chawala et al. [178] used 3D object-oriented finite element modeling to evaluate the mechanical 
behavior of SiC particle-reinforced Al composites. For a volume of 320100100 mμ××  cell, 
there are about 100 SiC particles which produce 20% volume fraction. They compared the 
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results of the Young’s modulus and the stress-strain relations from the object-oriented 
(microstructure-based) model with the results of the experiment and the numerical results from 
simplified models (which include rectangular prism, multiparticle-ellipsoids, and multiparticle-
spheres, etc.). Some of the results were shown in Fig. 13. Their results indicate that 3D 
microstructure-based model can accurately predict the properties of particle-reinforced 
composites, while the simple analytical models can not as they do not account for the 
microstructural factors that influence the mechanical behavior of the material. 
 

 

                  
 
Figure 13. Comparison between 3D finite element models incorporating actual 
microstructure and approximation to spherical particles: (a) FEM models, (b) von Mises 
stress distribution in particles, and (c) plastic strain in matrix [178]. 
 
3. MECHANICAL PROPERTY ENHANCEMENT 

 
Fillers added to matrix can change the mechanical properties of the matrix material. Comparing 
to traditional composite materials, nanocomposites have the following characterizations:  

1. Nanoparticles can substantially improve the mechanical properties of the host matrix 
materials [140,142,218-220]. Even at very low filler volume content such as 1-5%, a 
considerable improvement of the mechanical properties can be achieved [143, 221-223].  

2. It is observed that for some nanocomposites, with the same filler volume fraction, the 
stiffness and strength increases as the particle size decreases [125,182, 224-227].   
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3. In general, the stiffness of nanocomposites tends to increase as the filler volume fraction 
increases. This function may be nonlinear. There may exist a critical volume fraction 
beyond which the stiffness starts decrease [228]. 

 
For conventional composite materials, micromechanics theories consider that the overall 
mechanical properties of composites are functions of constituent properties, constituent volume 
fraction, inclusion shapes and orientations, and state of dispersion. It does not consider the 
interactions between filler and matrix at their interface. For nanocomposites, the mechanical 
property enhancement not only depends on the above factors, but also depends on the interaction 
between the filler and the matrix.  

 
3.1 Mechanisms of stiffness and strength enhancement 

 
It is widely accepted that there is an interphase exist between the nanofillers and the matrix 
material in nanocomposites. This interphase is a transition region, which extends nanometers to 
micrometers over which the mechanical and physical properties change from the properties of 
filler to the properties of the matrix. Among many researchers who studied the nanocomposites 
interphase behavior, Boutaleb et al. [156] investigated the influence of interphase on the overall 
behavior of silica spherical nanoparticle/polymer composites by means of analytical and finite 
element methods. Fig. 14 shows a schematic of a composite material containing randomly 
located spherical nanoparticles (left) and a spherical nanoparticle coated with a graded interphase 
(right). The interphase is represented as a third phase around the nanoparticles. A model of 
axisymmetric RVE with periodical boundary conditions was examined. The analysis results 
show that the interphase is a dominant parameter controlling the overall nanocomposite 
behavior.   

 
To estimate the elastic modulus of the interphase in polymer nanocomposites, Saber-Samandari 
and Khatibi [229] developed a 3D unit cell model to represent the three constituent phases 
including particle, interphase and matrix. The elastic modulus of the interphase at any point, r, is 
described by a power law as: 
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where Em and Ef are matrix and nanoparticle elastic moduli, respectively, rf and ri are the filler 
and interphase radii, and n is the intragallery enhancement factor which depends on the 
chemistry and surface treatment of the particles considered. 
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Figure 14. Schematic of a composite material containing randomly located spherical 
nanoparticles (left) and a spherical nanoparticle coated with an interphase (right) [156]. 
 
How exactly the interphase affects the nanocomposites properties is still a research topic. Some 
intend to think the interphase refined the grain size of matrix leads to smaller critical flaw size 
and higher strength. Some researchers believe that nanoparticles yield dislocations around them, 
and these dislocations release residual stresses in the matrix. Thus the defect size along the grain 
boundaries is reduced. There are also some researchers who think nanofillers impart additional 
strength of their own to the matrix through the interphase. Nevertheless to say, the strengthening 
mechanism of nanocomposites is not fully understood. Several mechanical properties of 
nanocomposites are also improved for the same reason, such as hardness, wear resistance, and 
thermal shock resistance.   

 
The interaction between nanofillers and matrix is the key to the nanocomposites properties 
enhancement. There are many factors affecting that interaction, such as the filler volume 
(weight) fraction, degree of dispersion, the filler geometry and orientation, etc. We assume the 
same volume fraction and identical degree of dispersion, only the filler geometry (aspect ratio) 
and orientation will be considered. We define a reactive surface area per unit volume of filler,γ , 
as 

V
A

=γ       (3.2)    

where A and V are surface area and volume of the filler, respectively.  Table 4 shows the major 
axis and the γ  value for some typical geometry of the nanofillers. 

 
Consider three most common geometries, i.e., sphere (nanoparticles), disk (nanoplatelets, 
nanolayers), and cylinder (nanotubes, nanofibers). For the cuboid, if a=b=c, it becomes a cube, 
close to sphere; if a=b>>c, it becomes a platelet; if a>>b≈ c, it becomes a rod, close to cylinder. 
Assume that the diameter of the sphere, the diameter of the cylinder cross-section, and the 
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thickness of the disk are the same. According to the values in Table 4, the reinforcement 
efficiency of the three geometries in the major axis direction, from good to poor, is sphere-
cylinder-disk. But nanoplatelets are thought to possess better reinforcement effects than those of 
spherical and fiber-like particles [230]. 

 
Table 4. γ  value and the major axis for typical filler geometries 

Name Shape γ Parameters 
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As the filler orientation is very important in reinforcement, equation (3.2) has to be modified to 
account for the effect of orientation of the filler surfaces. Now we define an effective surface 
area per unit volume of filler,γ , as 

V
A

=γ       (3.3) 

where A  is the effective filler surface area, and it represents the portion of surfaces which is 
normal to the direction of major axis (see Table 4). The value of γ  for sphere, disk, and cylinder 
in the major axis is 3/2t, 2/t, and 4/t, respectively. Therefore, in the major direction shown, the 
order of reinforcement efficiency, from good to poor, is cylinder-disk-sphere.  

 
If the nanofillers are randomly oriented, the reinforcement efficiency of nanospheres is probably 
better than that of nanolayers, and the reinforcement efficiency of nanolayers is probably better 
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than that of nanocylinders. This is because sphere is isotropic, and disk is transversely isotropic, 
and cylinder is anisotropic. 

 
For all the geometries of the filler, as the characteristic dimension (the smallest dimension) 
decreases, the value of γ  will increase. That is, the smaller the filler, the better enhancement it 
will provide. This is similar to the Hall-Petch effect on the strength of metals. Hall-Petch relates 
the yield stress of a metal to its average grain diameter d as 

2/1
0

−+= kdy σσ      (3.4) 

where 0σ  and k  are the constants related to the material of interest. The yield stress increases as 
the grain size decreases. It is also interesting to note that just as Hall-Petch equation does not 
apply to extremely fine grain sizes, fine size filler enhancement on nanocomposites may also 
have a limit. Schiotz and Jacobsen [231] investigated nanocrystalline copper, and pointed out 
that there may be a maximum in the strengthening that can be obtained by decreasing the grain 
size, so that below a certain critical grain size the strength begins to decrease again as the grain 
size decreases. 
 
3.2 Fracture Toughness 

 
Nanocomposites can not only improve stiffness and strength, but also fracture toughness [232-
242]. In general, the fracture toughness of nanocomposites increases as the volume fraction 
increases, and increases as the nanofiller size decreases. For silica/epoxy nanocomposites, 
Ragosta et al. [235] found the fracture toughness improved as the volume fraction of 15-nm 
silica particles increases. Similar results were obtained by Zhang et al. [234] with 25-nm silica 
particles, and by Chen et al. [232] with 12-nm silica particles. Through experiments and an 
analytical model, Adachi et al. [233] studied the mode I fracture toughness of silica/epoxy 
nanocomposites, and found that the toughness increased drastically as the silica volume fraction 
increased and the particle diameters decreased. In nanocomposites with a low volume fraction of 
particles, the volume fraction affected the fracture toughness more; and with high volume 
fractions, the particle size affected the fracture toughness more. 

 
Just as for stiffness and strength, the toughening mechanism of nanocomposites is also mainly 
from the interaction between the fillers and the matrix. Awaji et al. [243] observed silicon 
carbide/alumina nanocomposites by transmission electron microscopy (TEM), and found that 
silicon carbide nanoparticles were dispersed both inside the alumina grains and on the grain 
boundaries. The fracture toughness is improved by the change of fracture mode from 
intergranular fracture of monolithic alumina to transgranular fracture of nanocomposites. Fig. 15 
shows a schematic illustration of the toughening mechanism [244]. Nanoparticles are dispersed 
within the matrix grains. Then sub-grain boundaries or dislocation networks are generated 
around the nanoparticles (Fig. 15A). When the tip of a propagating large crack reaches this area, 
these dislocations in the matrix will operate as nano-crack nuclei in the vicinity of the 
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propagating crack tip (Fig. 15B). The highly stressed frontal process zone (FPZ) ahead of the 
crack tip is then released by nano-crack nucleation, and the nano-cracks expand the FPZ size, 
enhancing the fracture toughness of the materials [236].  
 

 

            
 
Figure 15. Schematic description of the toughening mechanism in nanocomposites.  

                  (A) Intra-type nano-structure, (B) FPZ creation [244]. 
 
4. CONCLUDING REMARKS 

 
Characterizing and modeling mechanical properties of nanocomposites is reviewed and 
evaluated. Nanocomposites are made by dispersing nanofillers (e.g., silicate and ceramic 
nanoparticles, CNTs, etc.) into matrix (e.g., some polymers, ceramics, metals, etc.). Comparing 
with conventional composite materials, nanocomposites have numerous advantages such as high 
mechanical and physical properties, and high reinforcement efficiency. The high enhancement of 
mechanical properties of nanocomposites is mainly attributed to the interaction between the 
nanofillers and the matrix material through the interphase which is a transition region from the 
nanofillers to the matrix, and the high value of the reactive surface area per unit volume of 
nanofillers.  

 
Comprehensive understand of the mechanisms of mechanical property enhancement is crucial in 
order to achieve the longstanding goal of predicting nanoparticles–nanocomposites–property 
relationships in material design and optimization. Experimental characterizing and 
nanomechanics-based computer modeling and simulation of mechanical properties of 
nanocomposites are the two wings in understanding the mechanisms. Many traditional 
simulation techniques have been employed, and some novel simulation techniques have been 
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developed to study nanocomposites. These techniques represent approaches at various time and 
length scales from molecular scale to microscale, and then to macroscale, and have shown 
success to various degrees in addressing many aspects of nanocomposites. The simulation 
techniques developed thus far have different strengths and weaknesses, depending on the need of 
research. Despite substantial progress made in the past decade, there are a number of challenges 
in computer modeling and simulation. New concepts, theories and computational tools should be 
developed. In general, there are two fronts that should be pointed out. First, there is a need to 
develop new and improved simulation techniques at individual time and length scales. Secondly, 
it is important to integrate the developed methods at wider range of time and length scales, 
spanning from quantum domain to molecular domain, to mesoscopic domain, and finally to 
macroscopic domain, to form a useful tool for exploring the structural and mechanical properties, 
as well as optimizing design of nanocomposites [100]. Specific challenges and the solution 
strategies are discussed in the following: 
 

1. In either developing new or characterizing the current exist nanocomposites, a 
comprehensive approach should be adopted that integrates the experimental techniques 
with nanomechanics-based analytical explorations and computer modeling and 
simulation.  

2. New computational tools are specially needed in the area of multiscale RVE modeling. 
The multiscale RVE modeling is in nature a “local-global” approach. In order to catch the 
local nano/micro characteristics, quantum mechanics or molecular dynamics needs to be 
explored. But the prediction of global macro-mechanical properties requires the 
continuum mechanics-based finite element method. How to transit from local to global 
becomes a research issue. Ogata et al. [198] proposed a way of combing quantum 
mechanics, molecular dynamics, and finite elements. In regions where the atoms obey the 
laws of continuum mechanics, the finite element method is used. However, in critical 
areas such as the extremity of a fracture, molecular dynamics and even quantum 
mechanics are required to obtain a more detailed study of the fracture process. The 
transition from the global to local levels involves a change of scale. Xiao and Belytschko 
[245] proposed a way of improving the numerical compatibility between regions modeled 
by molecular dynamics and those modeled using the finite element method. The 
suggested method is introducing a broad transition region by superposing the finite 
element mesh of the continuum region on the atomistic structure of the molecular 
dynamics region. Clearly, there is still a lot of work needs to be done in connecting the 
local parameters to the global parameters. 

3. In object-oriented finite element modeling, 2D modeling has been extensively used in 
nanocomposites [e.g. 8, 179, 217], and there are also some works on 3D modeling [e.g. 
178]. There are still issues to be resolved in 3D modeling, especially advanced object-
oriented 3D finite element codes.  
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APPENDIX 
 
Formulas Related to the Overall Moduli: 
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119 )43()3)(1(
2
11 BRAfRF −++−+= θθ  

The constants R, iA (i =1, 2, 3, 4) and iB  (i =1, 2) are non-dimensional ones related to the elastic 
constants of the isotropic matrix and the transversely isotropic inhomogeneity.  
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where k, n, m, p, and l are the notations adopted by Hill. They can be expressed in general by 
stiffness tensor components as 
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For an isotropic material, the above constants degenerate into 
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f  and θ  are related to the geometry of the spheroidal inhomogeneity, which are  
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