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Abstract 

This paper considers optimal investment and risk control problem under the 
Hull and White Stochastic Volatility (SV) model for an Insurer who aims to 
optimize the investment and risk control strategies. The surplus process of 
the insurer is assumed to follow the Brownian motion with drift. An Insurer 
can invest in the financial market consisting of risk-free and risky assets 
whose price process satisfies Hull-White SV model. By applying the stochas-
tic dynamic programming approach, we derive closed-form expressions for 
the optimal strategies and the value function. We find that under the Hull 
and White model, the interest rate and risk aversion parameters both influ-
ence optimal strategies. Moreover, we provide a numerical example to illu-
strate the model’s economic implications.  
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1. Introduction 

The insurance company is a financial intermediary obliged for compensation to 
a client if an uncertain event occurs. Its main goal is to protect the financial se-
curity of an individual, organization, or other entity in the case of unexpected 
loss through compensation. Since the discovery of first insurance risk model 
(Cramér-Lundberg model) at the beginning of the 20th century, many scholars 
have paid attention to study investment and risk control policies for Insurance 
Fund. For example, [1] [2] applied the classical Cramér-Lundberg model to de-
scribe the risk process where the insurer can invest in a risky asset only to mi-
nimize the ruin probability. Later, the studies [3] [4] [5] [6] [7] extended the 
model by considering investment in the risky asset, non-zero interest rate, and 
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reinsurance to minimize the ruin probability. Moreover, [8] studied the optimal 
reinsurance and investment problem of minimizing the ruin probability. Also, [9] 
[10] considered the optimal asset allocation in the jump-diffusion process, where 
the compound Poisson risk process characterizes the claim process. 

Furthermore, [11] [12] [13] introduced the Constant Elasticity of Variance 
(CEV) model into the optimal reinsurance and investment problem for insurers. 
In particular, [12] considered an optimal reinsurance-investment problem of an 
insurer whose surplus process follows a jump-diffusion model, [13] investigated 
the excess-of-loss reinsurance and investment problem for a compound Poisson 
jump-diffusion risk process. Likewise, [14] studied both an insurer’s and a rein-
surer’s utilities. 

Similarly, [11] [15] introduced zero-coupon bonds and Treasury Infla-
tion-Protected Securities (TIPS) in the financial market. So the financial market 
consists of cash, zero-coupon bond, stock, and TIPS. While [15] assumed that 
the instantaneous nominal interest rate follows the Ornstein-Uhlenbeck process. 
They applied stochastic dynamic programming to derive the closed-forms of op-
timal reinsurance and investment strategies. [11] derived the time-consistent 
reinsurance-investment strategy under the mean-variance criterion for an in-
surer by applying the stochastic control theory. 

The studies mentioned above, assume that the price processes of risky assets 
follow Geometric Brownian Motion, where the volatilities of risky assets are as-
sumed to be constant or deterministic functions [16] [17]. This view is contrary 
to results found in the empirical results which support the presence of stochastic 
volatility (SV). In particular, [16] [17] applied Hestons SV model in the reinsur-
ance. They obtained the optimal reinsurance and investment strategies with the 
stock price given by the Hestons SV model. For the meantime, SV is the current 
model which accommodates the volatility smile, the volatility clustering, and the 
heavy-tailed nature of return distributions. For more details about stochastic vo-
latilities, a reader can refer to [18]. 

In this study, we assume that the price of risky assets follows the Hull and 
White Stochastic Volatility Model. The surplus process for the insurer follows 
Brownian motion with drift, and the insurer invests the surplus in risk-free and 
risky assets. Also, it is allowed to purchase proportional reinsurance as the risk 
control strategy. We first find the optimal investment and risk control strategies, 
by the first-order necessary condition for maximum. We also derive the optimal 
value function by plugging a reasonable conjecture into the HJB equation and 
solving nonlinear second-order partial differential equations. Moreover, we or-
ganize the rest of this paper as follows. In Section 2, we show various stages of 
model formulation, starting from classical risk model, financial market, by in-
corporating the Hull and White stochastic volatility model for the price of the 
risky asset and reinsurance policy. In Section 3, we present the value function 
with the corresponding HJB and derive the first order maximizing condition to 
our problem. In Section 4, we find an explicit solution for the problem by solv-
ing the HJB equation for CARA utility function. In Section 5, we demonstrate 
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our model by a numerical example, and Section 6 concludes our work. 

2. Mathematical Model 

Assume that ( ), , ,tΩ     denotes a complete filtered probability space satis-
fying the general condition with a reference filtration 0t≥ .   is a martingale 
probability measure equivalent to the real-world measure probability and 0T >  
is a time horizon.  

2.1. Risk Control Process 

Suppose that the surplus of the insurance company follows Brownian motion 
with drift. For a better understanding of the model formulation, we introduce 
the Cramér-Lundberg model as follows:  

( ) ( )0 , 0,R t x ct Z t t= + − >                      (1) 

( )R t  denotes the insurer’s capital at time t, 0x  is the initial capital, 0c > , 
( )Z t  denotes the premium income rate and the claims respectively. We also 

consider that the basis for calculating the premium rate of an insurer is the ex-
pected value principle. The respective mathematical expressions are:  

( )
( )

( ) ( )
1

, 1, 2, , and 1 .
N t

i
i

Z t Y i N t c θ λµ
=

= = = +∑   

where ( )N t  is the number of claims up to time t and follows a Poisson process 
with intensity 0λ > . Also 0θ >  is the safety loading interpreted as a risk 
premium rate and iY  denotes the ith claim and are independent and identically 
distributed random variables. To avoid the Insurer, from bankruptcy instantly 
we assume, c λµ>  as the necessary condition. Let the claim process ( )Z t  
follow the Brownian motion with drift:  

( ) ( )d d d .Z t t W tµλ σ= −                      (2) 

Therefore, the surplus process for insurance becomes:  

( ) ( )d d d d d .R t c t Z t t Wλµθ σ= − = +               (3) 

Thus, the risk process is perturbed by Brownian motion and the insurer can 
choose proportional reinsurance over other types of reinsurance. Furthermore, 
we denote the risk exposure by [ ]0,1α = , the proportional reinsurance level by 

( )1 α−  and the premium rate for the reinsurance is ( )0 1c φ λµ= + . Therefore, 
the insurer diverts a portion of the premium to the reinsurer at the rate of 

( ) ( )1 1φ λµ α+ − , where 0φ >  is the safety loading of the reinsurer and φ θ> . 
Thus, the surplus process ( )R t  without investment satisfies the SDE:  

( ) ( )( ) ( ) ( ) ( )d 1 d d .R t t t t W tλµ α φ φ θ α σ= + − − +            (4) 

Following similar process as in [15] and references therein, and the expected 
value principle, the surplus diffusion process can be approximated by the fol-
lowing equation:  

https://doi.org/10.4236/jmf.2019.93014


P. K. Mwanakatwe et al. 
 

 

DOI: 10.4236/jmf.2019.93014 257 Journal of Mathematical Finance 

 

( ) ( ) ( ) ( ) ( )d d d .R t t t t W tλµ θ φ α φ α σ= − + +              (5) 

2.2. Financial Market 

Assume that the insurance company invests its surplus in the financial market 
where it is exposed to all of the common risk factors and hence prone to market 
fluctuations. Since the volatility is not constant, it is essential to model it as a risk 
factor of its own. The price process for a risk-free asset is given by:  

( ) ( ) ( )d d , 0 1, 0,B t B t r t B r= = >                   (6) 

where 0r >  is the free-risk interest rate. The dynamics of risky asset price is 
driven by SDE below:  

( ) ( ) ( ) ( )( ) ( )d d d , 0 0,s sS t S t t v t W t Sµ= + >  

( ) ( )( ) ( ) ( )d d d , 0 0,vv t k v v t t w W t v= − + >              (7) 

where ( )v t  is the instant variance, sµ  is the appreciation rate, k is the mean 
reversion, v  is the long-run mean, and w is the volatility-volatility (vol-vol) 
determining the variance of ( )v t . Moreover, sW  and vW  are the standard 
Brownian motions with cross-variation satisfying the condition: 
d , ds vW W tρ=  with correlation [ ]1;1ρ ∈ − . As noted in [18], the relationship 
between volatility and price is necessary to capture the so-called leverage effect, 
this effect is the tendency of volatility to increase as prices drop and decrease as 
prices rise.  

2.3. Wealth of an Insurance Fund 

We consider that the amount of wealth ( )X t  invested in risky asset is ( )tβ  
and the rest ( ) ( )( )X t tβ−  is invested in riskless asset, and the reinsurance lev-
el is ( ) [ ]0,1tα = . The dynamics of the wealth process of an Insurance Fund 

( )X t  is given by the SDE:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( ) ( ) 0

d d d

d d , 0 0.s s

X t t t t W t

t t v t W t X t t r X x

λµ θ φ α φ α σ

β µ β

= − + +  

+ + + − = >
 (8) 

Proposition 2.1. The surplus process for an Insurance Fund evolve according 
to the SDE:  

( ) ( ) ( )( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

d d

d d d .

s

s

X t rX t t r t

t t v t t W t t W t

β µ λµ θ φ

λµα φ β α σ

 = + − + − 

+ + +
      (9) 

Definition 2.2. A strategy ( ) ( )( ),t tβ α=  is said to be admissible if   is 
progressively measurable on the corresponding Brownian filtration t  and sa-
tisfies the following conditions:  

1) ( )( )2
0

d a.s ,
T

t t Tα < ∞ ∀ < ∞∫E  

2) ( )( )2
0

d a.s .
T

t t Tβ < ∞ ∀ < ∞∫E  
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Therefore the SDE given by (9) has a strong unique solution, for all 
( ) ( )( ),t tβ α= .  

Moreover, assume that the main objective of insurer is to maximize the ex-
pected utility of terminal wealth, the utility function ( )U x  is continuous, twice 
differentiable and concave with 0u′ >  and 0u′′ <  respectively. Thus, the op-
timization problem is:  

( )max X T=   
E  s.t. (7) and (9)                  (10) 

3. The HJB Equation 

We derive the HJB equation by using the stochastic control method.  
Proposition 3.1. Assume that ( ) ( )1,2,2, ,J t x v C∈  such that the value function 
( ), ,J t v x  and all its partial derivatives are continuous and differentiable, then 

the value function ( ), ,J t v x  satisfies the HJB equation:  

( ) ( )( )
( ){ } ( ) ( )

,
sup , , 0, , , ,t
t t

J J t x v J T x v U x
β α

+ Λ = =             (11) 

( ), ,J T x v  is the boundary condition, ( ), ,J t x vΛ  is:  

( )
( ) ( ) ( )

( ) ( )

,

22 2 2

max

1 1 0.
2 2

s x v

xx vv xv

rx r J k v v J

v J wv J w v vJ

β α
β µ λµ αφ φ θ

β σ α βρ


 + − + − + + − 


+ + + + =


 

Furthermore, we denote the partial derivatives for the value function by 
, , , ,t x v xx vvJ J J J J  and xvJ .  
Proposition 3.2. Assume that the HJB equation has a classical solution 
( ) ( )1;2;2, ,J t v x C∈ , and fulfills the conditions that , 0x vJ J > , and 

, , 0xx vv xvJ J J < . Then, maximum condition leads to:  

( ) ( )* , , ,s x xv

xx

r J w v vJ
t x v

vJ
µ ρ

β
− +

= −                (12) 

and 

( )*
2, .x

xx

J
t x

J
λµφ

α
σ

= −                       (13) 

where *β , and *α  are the optimal investment and risk control strategies.  
Then, substituting (12) and (13) into the HJB, we get the non-linear, 

second-order PDE:  

( ) ( ) ( )

( ) ( )

( )

2

2 22 2
2

1
2

1 1
2 2

0.

t x v vv

sxv x

xx xx

x xv
s

xx

J rx J k v v J wv J

rJ J
wv

J v J

J J
w r v

J

λµ θ φ

µ λµφρ
σ

ρ µ

+ + − + − +  

 −   − − +  
   

− − =

        (14) 
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4. The Optimal Strategies 

We solve the investment and risk control problem by maximizing the expected 
utility of terminal wealth. We choose the exponential utility (CARA) function 
for a risk averse insurer. This plays a prominent role in insurance practices be-
cause it is the only utility function under which the principle of zero utility gives 
a fair premium independent to the level of reserves of an insurance company. 
The CARA function is: 

( ) 1 e , 0.xU x γ γ
γ

−= − >                     (15) 

We try to find the solution for (15) in the form:  

( ) ( ) ( )( ) ( ){ }1, , exp ,J t x v a t x b t g t vγ
γ

 = − − − +           (16) 

substituting partial derivatives of (16) into (14) gives:  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 22 2

2 2

2 2

1 0.
2

s
s

a t x b t a t b t g t v k v v g t

rx a t wv g t wv g t

r
w v v r g t

v

γ γλµ θ φ ρ

µ λµφρ µ
γ σ

 ′ ′ ′− − + + − 

+ + − − +  

 −   − − + + = 
   

      (17) 

Re-arranging (17) leads to: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )2 2
2 2 2 11 0.

2 2

s

s

a t ra t x a t b t b t a t

vg t k v v g t w v v r g t

r
wv g t

v

λµ θ φ

ρ µ

µγ λµφρ
γ σ

′ ′ ′+ − − − −      
′+ + − − −

 −   − − + + = 
   

      (18) 

Then, we split (18) as:  

( ) ( ) 0,a t ra t x′ + =                     (19) 

( ) ( ) ( ) ( ) ( )
21 0

2
a t b t b t a t λµφλµ θ φ

γ σ
 ′ ′− − − + =      

       (20) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )22 2 2 11 0
2 2

s

s

vg t k v v w v v r g t

vw g t r
v

ρ µ

γ ρ µ
γ

 ′ + − − − 

− − + − =
          (21) 

Thus, we find the solutions for (19), (20) and (21) given boundary conditions 
( ) 1a T = , ( ) 0b T =  and ( ) 0g T = . For (19) we get:  

( ) ( )e .r T ta t −=                        (22) 

Following simplifications of (20) we get the homogeneous first order DE:  

( ) ( ) ( ) ( )
21 e

2
r T tb t rb t λµφλµ θ φ

γ σ
− − ′ + = − +  

 
         (23) 

By considering boundary condition ( ) 0b T =  we get:  
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( ) ( )( ) ( ) ( )
21 1e 1 e

2
r T t r T tb t

r
λµφλµ θ φ

γ σ
− − −  = − − +  

   
         (24) 

Again, re-writing Equation (21) simplifies to:  

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2

2

11
2

1 0.
2

s

s

g t vw g t k v v w v v r g t
v v

r
v

γ ρ ρ µ

µ
γ

 ′ − − + − − − 

− + = 
 

  (25) 

Equation (25) is a Riccati DE. For more simplification purposes, we denote A, 
B and C respectively by:  

( )
( ) ( )

( )

2 2

2
2

1 1
2

1
2

s

s

A vw

k v v w v v r
B

v

C r
v

γ ρ

ρ µ

µ
γ

 = − −


− − −
=




= −


                (26) 

Then for the notational convenience Equation (25) turns to:  

( ) ( ) ( )2 0g t Ag t Bg t C′ + + + =                  (27) 

Consideration the boundary condition, ( ) 0g T = , the direct calculations for 
the Riccati Differential Equation leads to:  

( )
( )( )( )

( )( )
1

1
1 2

2
, for 1

e 1

e 1
, for 1

y A B t T

B t T

y A By
A

g t
A

B

ρ

ρ

− + − +

− +

+ − ≠ ±
−

= 
 −
 = ±


           (28) 

Hence, we can summarise the above by the theorem.  
Theorem 4.1. With reference to the value function given by Equation (11), 

the optimal strategies for an insurance company are defined as:  

( ) ( ) ( )
( )

* ,s r w v vg t
t

va t
µ γ ρ

β
γ

− −
=                (29) 

( )
( )

*
2 ,t
a t

µλφα
γσ

=                      (30) 

( ) ( ) ( )( ) ( ){ }1, , exp .J t x v a t x b t g t vγ
γ

 = − − − +           (31) 

where ( )* tβ  and ( )* tα  are the optimal investment, and risk control strate-
gies, ( ), ,J t x v  is the value function. Moreover, ( )a t , ( )g t , and ( )b t  are 
given by Equations (22), (24), and (28) respectively.  

5. Numerical Illustration 

This section, presents some numerical simulations to illustrate the model. The 
parameters used in simulation are given as; Financial Market Parameters: 
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0.09sµ = , 0.04v = , 0.02k = , 0.08w = , 0.30ρ = , 0.05r = , and Insurance 
Parameters: 0.2θ = , 0.4φ = , 1.0σ = , 4.0µλ = , 10T = , 1.2γ = .  

5.1. Analysis of Interest Rate and Risk Aversion on Optimal  
Strategies 

Figure 1 and Figure 2 show the effect of the interest rate on optimal investment, 
and reinsurance strategies respectively. Figure 1 and Figure 2 shows that the 
larger interest rate r, the optimal reinsurance and investment strategies tend to 
decrease. The key reason for this is that with the increase of r, the risk-free asset 
becomes more attractive. Hence the insurer is more likely to invest more in the 
risk-free asset instead of purchasing more reinsurance. 
 

 
Figure 1. Influence of r on β . 

 

 
Figure 2. Influence of r on α . 
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Figure 3 and Figure 4 present the fluctuations in the optimal strategies under 
different risk aversion levels. In particular, we find that γ  exerts an adverse ef-
fect on β  and α . Figure 3 shows that the larger the degree of risk aversion 
γ , the more the risk averse the investor. Also, we have an explicit knowledge 
that the more risk averse investor, will invest less amount of the wealth in the 
risky asset to avoid risk. Figure 4 shows that the optimal reinsurance strategy 
increases as the risk aversion γ  decreases, this implies that the larger coeffi-
cient of risk aversion the more risk averse the insurer. Therefore, the insurer can 
buy more reinsurance to spread risk. 

5.2. Analysis of the Optimal Investment Strategy 

The effect brought by the volatility of volatility w on the investment strategy is  
 

 
Figure 3. Influence of γ  on β . 

 

 
Figure 4. Influence of γ  on α . 
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presented in Figure 5. It shows that, if 0ρ > , the optimal investment strategy 
increases with decrease in volatility of volatility w. Thus if w declines, the volatil-
ity of the risky asset fluctuates drastically. Thus the insurer has to reduce in-
vestment in the risky asset as w decreases. Figure 6 shows similar features on the 
effect of volatility v on the optimal investment strategy. Furthermore, it shows 
that the optimal investment policy decreases if 0ρ <  and increases if 0ρ > . 
That is, if 0ρ > , the risky asset price and its volatility process move in the same 
direction. 

5.3. Analysis of the Optimal Reinsurance 

Figure 7 shows that the optimal reinsurance strategy ( )tα  increases with the 
decrease in the volatility of the surplus process σ , that is, if the risk of the in-
surance business decreases, the insurer have to buy less reinsurance or acquire 
more new business. 
 

 
Figure 5. Impact w on β . 

 

 
Figure 6. Effect of v on β . 

https://doi.org/10.4236/jmf.2019.93014


P. K. Mwanakatwe et al. 
 

 

DOI: 10.4236/jmf.2019.93014 264 Journal of Mathematical Finance 

 

 
Figure 7. Effect of σ  on α . 

6. Conclusion 

We considered that the surplus process for the insurer follows Brownian motion 
with drift. The insurer is allowed to buy proportional reinsurance and can invest 
the surplus in a financial market comprising of risk-free and risky assets. We 
assume that the volatility of a risky asset follows the Hull and White SV model. 
We look for the optimal investment-reinsurance strategy to maximize the ex-
pected exponential utility of terminal wealth. Using stochastic control approach 
and the HJB equation, we obtain exact solutions for the optimal strategies and 
derive the value function. 
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