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Abstract 
Based on stochastic discount factor theory, this paper proposes a method to 
convert the traditional systemic risk measures of financial markets, such as 
VaR, ES, MES and SES, into risk-neutral measures. We proposed a novel way 
to neutralize the returns without relying on option price information. Then, 
we empirically analyzed and compared the systemic risks and changes be-
tween the A-shares in Shanghai and H-shares in Hong Kong before and after 
a stock market crash, and we found that systematic risk measures under risk 
neutrality could more accurately determine market system risks than tradi-
tional systemic risk measures. Moreover, these systemic risk measures have a 
certain market risk warning effect. 
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1. Introduction 

Systemic risk is the most important risk that must be faced and managed in the 
financial market. For example, in the 2014-2015 stock market disaster in China 
and the Hong Kong stock market crash, the Shanghai 50 Index fell from 3303 to 
2376 in a short period of 10 days. The Hong Kong Hang Seng Index dropped 
from 28,524.6 points in May 2015 to 19,594.6 in December 2015, and the de-
creasing amplitude reached 28.1% and 31.3%, respectively. With the develop-
ment of financial globalization, various extreme events in financial markets have 
forced financial institutions to shift their attention from day-to-day financial 
market fluctuations to extreme events. Risk managers also have to identify and 
guard against such changes caused by the events. They remodel the financial 
risks by using the events to achieve the goal of optimizing the risk management 
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system. This has also made the research of financial systemic risk a hot topic in 
academic and industry circles. 

Financial risk managers usually divide risk into two categories: moment-based 
risk measures and quantile-based risk measures. Since market investors general-
ly believe that the probability of a left tail event (i.e., a sharp drop in price) is 
much greater than the probability of a right tail event (i.e., a sudden increase in 
price), risk managers are most likely to follow the classics, such as [1] [2] [3]. 
What is concerned is the risk that occurs in the left-tail of the distribution of re-
turns. Therefore, the commonly used risk measurement method in risk man-
agement is based on quantile-based tail risk metrics, with the value of risk (VAR) 
and expected losses (ES) as the main representatives. The VAR model is used to 
measure the maximum possible losses of a certain asset portfolio within a certain 
holding period and a given confidence interval, and it can comprehensively re-
flect the risk measurement of a financial asset. Artzner et al. (1999) [4] proposed 
an axiomatized system for consistent risk metrics that includes the attributes of 
transformation invariance, subadditivity, positive homogeneity and monotonic-
ity. They point out that only risk metrics that satisfy these four attributes at the 
same time are consistent risks metrics. However, the VAR model does not have 
subadditivity, and the ES model compensates for the subadditivity of the VAR 
model. Furthermore, they propose the conditional risk value CoVAR on the ba-
sis of the value-at-risk VAR model to measure the risk spillover effect of indi-
vidual institutions. [5] and [6] used the CoVAR method to propose a profit dis-
tribution model for the entire financial system based on the risk of a particular 
financial institution, namely, the “bottom-up” approach. Paper [7] proposed the 
Marginal Expected Shortfall (MES) on the basis of the expected losses of the ES 
model to reflect the marginal contributions of individual institutions to the sys-
temic risk. Compared to CoVaR’s “bottom-up” thinking, MES is concerned with 
the distribution of the returns of individual institutions when the entire financial 
system is in crisis. That is, it follows a “top-down” thinking to satisfy the additiv-
ity. Paper [8] derived the SES model based on the binary GARCH model and the 
nonparametric inference of the dynamic MES. 

The traditional VAR and ES estimation methods are mainly based on the as-
sumption of the normal distribution in [9] [10]. Since the logarithmic returns of 
most assets are asymmetric and thick-tailed, they do not obey the normal distri-
bution. Nonparametric methods do not need to assume the statistical distribu-
tion of market factor changes and can effectively address asymmetry and 
thick-tailed features. Therefore, more scholars use nonparametric estimation 
methods to estimate the VAR and CoVaR [11] [12] [13] [14]. 

On the other hand, since the actual stock price includes investor enthusiasm, 
there is a large deviation from the real risk when directly using stock returns to 
measure risk. In the risk-neutral world, we do not need to consider the statistical 
income of investors for risk aversion levels, time preferences, or other changes in 
economic valuations. The expected return rate of all securities is the risk-free in-
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terest rate. Xiao Hui and Wu Chongfeng (2006) proposed that under the frame-
work of a stochastic discount factor, the theory of asset pricing in modern finan-
cial theory can understand many classical problems of modern financial theory 
in a relatively simple way. Therefore, the stochastic discount factor model is an 
approximately unified framework of asset pricing theory in recent years. Existing 
literature has been used to include the tail risk under risk-neutral conditions. 
Ait-Sahalia and Lo (1998; 2000) [15] [16] proposed a risk-based approach to ex-
tracting the risk-neutral density of the S&P 500 Index. These studies emphasize 
that the risk-neutral information from option prices can provide a VAR-based 
measure of tail risk. Recently, Paper [17] proposed a model-free index of inves-
tor panic based on futures prices and S&P 500 index options. In the supplemen-
tal work by [18], they provided empirical evidence that the jump risk component 
of the variance risk premium is a strong predictor of future market returns. 
Based on the S&P 500 Index Options, Paper [19] pointed out that risk-neutral 
indicators have a good predictive effect on future market returns. Paper [20] 
proposed a method to estimate the risk of extreme events. 

However, the abovementioned risk-neutral systemic risk measures are based 
on a sound option market and high-frequency trading data. China has under-
gone drastic changes in its financial market in the past few years. Market man-
agers and investors urgently need effective ways to manage system risks. At the 
same time, China has not established basic derivatives and other financial deriv-
atives trading markets, which makes it difficult for us to effectively measure the 
systematic risks of China’s financial markets using the above methods. As far as 
we know, there is no relevant research. 

Based on the stochastic discount factor, this paper proposes a method for 
conducting systemic risk measurements under risk-neutral conditions. It uses 
this method to analyze the changes of the systemic risk in China’s Shanghai 
stock market and Hong Kong stock market and compares it with traditional risk 
measures. The remainder of the paper is organized as follows. The second sec-
tion is the introduction of the models and methods, the third section is the em-
pirical results, and the final section is the conclusion. 

2. Models and Methods 
2.1. Common System Risk Measures 

There are currently two commonly used indicators for measuring risk in finan-
cial institutions, VAR and ES. The VAR model is used to measure the maximum 
possible losses of a certain asset portfolio within a certain holding period and a 
given confidence interval, and it can reflect the risk measurement of a financial 
asset. 

Assuming the income of the asset to be R, we define VaR qα= − , where qα  
is the quotient of the R in α . 

[ ]{ }sup | Prq z R zα α= < ≤                     (1) 
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where α  is usually 1% or 5%. 
The expected shortfall (ES) refers to the expected losses when the income is 

less than qα . 

 [ ]|ES E R R qα α= − ≤                      (2) 

Therefore, ES is the conditional expected value when the return is smaller 
than qα . When the income is less than qα , the VaR cannot capture the size of 
the losses at this time. Furthermore, the VaR of the portfolio is always higher 
than the VaR of the single asset. Therefore, the ES is usually used to measure the 
losses under extreme conditions. 

In terms of risk management, it is hoped that the possible losses in the finan-
cial market will be broken down into the losses contributed by each asset. 
Therefore, we decompose the returns R of the stock into the sum of the revenue 
of each group of ir : 

[ ]|i
iES y E R R qα α= − ≤∑                     (3) 

Assuming that the system contains N companies, we use MES to represent the 
ith ( 1, ,i N=  ) company’s systemic risk contribution and use ES to the measure 
systemic risk; the ith company’s rate of return is defined as itr . 

[ ], 1 |i t t i
it

ES
MES E r R q

r
α

α−

∂
= = − ≤

∂
                 (4) 

Among them, ,i tMES  is the marginal expected loss of the ith company, 
which measures the ability of the ith company to increase the risks of the entire 
financial system. 

Set iSES , the contribution of asset i to the entire financial system, equal to 
the total systemic risk. When the entire financial system is in crisis ( 1 1W zA< ), 
the bank’s net asset value 1

iw  is lower than the value of standard 0
iza : 

0 1 1 1|i i iSES E za w W zA = − <                    (5) 

In addition, the systematic risk of the unit capital is also an important indica-
tor, which is as follows: 

 0
1 1

0 0 0

1 1|
i ii

i
i i i

za wSES E W zA
w w w

= −
 
 


− <


−                   (6) 

here, 0

0

i

i

a
w

 is the initial leverage ratio, 
0

1
i
i

i i

w
r

w
= −  is the return on capital of the  

ith bank in the next stage, and the conditions of systemic crisis 1 1W zA<  can 
also be expressed as the market return rate R being less than a certain standard 
value C. Brownless and Engle (2012) set C to be −0.02, and the market yield of 
less than −0.02 as a condition for the occurrence of a systemic crisis. From this, 
we can translate Equation (6) into the following: 

1
1 1

0

1
i

i it
t ti

SES
zLEV MES

w
−

− −= − +                      (7) 
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here, 1
i
tSES −  and 1

i
tMES −  indicate the conditional expectations based on time t 

− 1’s information, respectively, and 1tLEV −  indicates the bank’s leverage at 
time t − 1. The marginal expected loss MES and the leverage ratio LEV are de-
fined as follows: 

[ ]1 |i
t iMES E r R C− = − <                     (8) 

book _ asset book _ equity market _ equity
market _ equity

i i i
i t t t

t i
t

LEV
− +

=          (9) 

2.2. Risk-Neutral Systematic Risk Measurement 
2.2.1. The Theory of Random Discount Factor 
We define ,i tP  as the price of securities i at time t, where tC  is the consump-
tion at t, te  is the foreign wealth of investors at t, iε  denotes the shares of in-
vestors in securities i, and , 1i tX +  is the profits and losses of asset i at t + 1. 

,t t i t iC e P ε= −                         (10) 

 1 1 , 1t t i t iC e X ε+ + += +                       (11) 

Then, investors always hope to maximize the utility of current consumption 
and future consumption, That is to say, investors want to maximize the utility 
function with respect to iε , we should refer to a conditional expectation at time 
t and take the utility of your future consumption ( )( )1t tE u C + . This problem 
can be expressed as follows: 

 ( ) ( ) ( )( )1 1max ,t t t t tU C C u C E u Cβ+ += +               (12) 

where β is the subjective time discount factor of investors that balances current 
consumption and future consumption, ( )tu C  denotes the utility, and 

( )( )1t tE u C +  is the expectation of future consumption. 
To simplify the problem, we can assume that there is only one risky asset, and 

as long as the expectation is well defined, then the return on the risky asset can 
be subject to any probability distribution. For the optimization problem of the 
objective function maxU , the Lagrangian rule can be used to solve the problem. 
The first-order optimal condition of ε can be obtained as follows: 

( ) ( )( ), 1 , 1t i t t t i tu C P E u C Xβ + +′ ′=  

For ( )u ∗  is monotone concave function, above formula can be rewritten as 
follows: 

( ), 1 , 1i t t t i tP E M X+ +=  

( )
( )

1
1

t
t

t

u C
M

u C
β +

+

′
=

′
 

where 1tM +  is the marginal substitution rate. When the marginal replacement 
rate is high, the value of future consumption is high. If the return on assets is 
high, consumers are willing to pay higher prices. 

The discount factor of the asset price is usually expressed in the form of re-
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turns. Define tR  as the total returns of the asset. Then, it is equal to 1 plus the  

proportional return, and 1t
t

t

X
R

P
+= . 

The pricing relationship given is equivalent to the following: 

 ( )t tE M R = 1                          (13) 

Assuming that there are N risky assets, we can write the discount model as 
follows: 

 ( ),t j tE M R = 1                         (14) 

where ,j tR  is the return of asset i. 
Therefore, the time series of the logarithmic returns under risk-neutral condi-

tions can be expressed as follows: 

,
Q
i t t tR M R=                          (15) 

The choice of the discount factor itself is an optimization problem. Here, we 
use the results given by Dimitrios Bisias (2012): 

 
( )1

1
G

t
N

G Ai

R
M

R R
N =

=
∑

                     (16) 

 
1

 
1

N N
G tiR r

−

=
=∏                         (17) 

 1

1 N
A tiR r

N =
= ∑                        (18) 

2.2.2. Application of Random Discount Factor 
When investors have high expectations of the stock’s return, they are willing to 
pay higher prices for this, and thus the stock price inevitably contains investor 
enthusiasm. This kind of investor expectations can be more clearly reflected in 
the risk-neutral world. Almeida et al. [21] proposed to use the data of stock 
prices to predict the tail risk. In this static setting, an admissible SDF is a random 
variable m for which ( ),t i tE M R  is finite and satisfies the Euler equation: 

( ),t i tE M R = k1  

where k1  represents a K-dimensional vector of ones. 
Almeida used the method in [21] to find the stochastic discount factor, and 

then used Equation (15) to find the income in the risk-neutral world ,
Q
i tR . We 

define i
tTR  as follows: 

, , , ,|i Q Q
t i t i i t iTR ES R Z R Zα α = − ≤                    (19) 

where i
tTR  represents the risk of the ith asset, Q represents the risk neutrality, 

α  is the probability level, and ,iZ α  represents the quantile of the ith asset. 
Equation (16) is based on the application of Equation (3), which is the ES model. 
Since there are many kinds of stocks, we need to reduce the dimensions of stocks. 
Almeida et al. [21] adopted the principal component analysis method. They can 
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treat each of the obtained principal components as an asset, and then use for-
mula (19) to calculate each dimension. By using the tail risk of the principal 
components, we can get the average of the tail risks of all the obtained principal 
components, which we can treat as a risk measurement value for the stock mar-
ket. We define ,t hTRM  as a risk measurement value for the stock market as fol-
lows: 

, 1

1 n k
t h tkTRM TR

n =
= ∑                     (20) 

where h represents the width of the window and n represents the number of 
principal components selected. 

However, since the contribution of each principal component to the whole is 
different, such a weighted summation is unreasonable. Therefore, we propose a 
formula for calculating the weighted sum in which the weights are obtained by 
principal component analysis. The stochastic discount factor can be expressed as 
follows: 

, 1
1

1 n k
t h k tn k

kk

TRM w TR
w =

=

= ∑
∑

                 (21) 

where , 1, ,kw k n=   denotes the weight of the k-th principal component, and 
it satisfies 

1
1n

kk
w

=
=∑ . 

Furthermore, we expand Equation (19) to obtain two new systemic risk 
measures: 

 , , , ,|i Q Q
t i t i i t iTMR MES R Z R Zα α = − ≤                 (22) 

 , , , ,|i Q Q
t i t i i t iTSR SES R Z R Zα α = − ≤                 (23) 

where i
tTMR  is a risk measure calculated using the MES model, and i

tTSR  is a 
risk measure calculated using the SES model. 

To imitate formula (21), we can obtain formulas (24) and (25). 

 , 1
1

1 n k
t h k tn k

kk

TMRM w TMR
w =

=

= ∑
∑

                  (24) 

 , 1
1

1 n k
t h k tn k

kk

TSRM w TSR
w =

=

= ∑
∑

                  (25) 

2.2.3. Application of Nonparametric Estimation 
As it is difficult to know what kind of distribution the actual financial time series 
data obeys, we generally use nonparametric kernel estimation methods to fit the 
true distribution. The nonparametric kernel method can fit a real distribution 
function under the condition of limited information, and then obtain the VAR 
estimate. Chen and Tang (2005) proved that the kernel estimator of the distribu-
tion function is a uniform estimator of the true distribution function, and the es-
timator has continuity and conductibility. Below, we give the kernel estimator of 
the distribution function. 

https://doi.org/10.4236/jmf.2019.91005


S. B. Dai, H. D. Li 
 

 

DOI: 10.4236/jmf.2019.91005 61 Journal of Mathematical Finance 
 

Suppose ( )1 , ,t t ntr r r ′=  , where ( )1, , ; 1, ,itr i n t T= =   is the time series 
sample of the ith risk asset return rate. The sample mean vector and the sample 
covariance matrices are as follows: 

1

1 T

t
t

r
T

r
=

= ∑
 

( )( )
1

1 T

t t
t

r r r r
T =

′Σ = − −∑  

The portfolio yield is tw r′ , where ( )1, , nw w w ′=   is the weight vector. At 
this time, the sample mean and sample variance are rw′  and w w′Σ , respec-
tively, according to the nonparametric kernels. The estimation method can ob-
tain the nuclear estimator of the distribution function of portfolio returns: 

 ( ) 1

1 T t
t

w r z
F Z K

T h=

′− + =  
 

∑                   (26) 

where ( ) ( )dT
K u k t t

−∞
= ∫ , ( )k t  is a kernel function, and the commonly used 

kernel functions include uniform kernel functions, Gauss kernel functions, Epa-
nechnikov kernel functions, etc. According to [22], the kernel estimation of the 
distribution function is not sensitive to the choice of the kernel function. In 
practice, the Gauss kernel function usually gives a more robust estimation result. 
That is, k(t) is the density of the standard normal distribution. Parameter h is the 
width of the window and is generally established using the rule of thumb: 

0.21.06* *h T w w− ′Σ=                   (27) 

The advantage of the nuclear density estimation is to fully utilize the informa-
tion of the data itself, to avoid the subjective knowledge brought in by the sub-
jective person and to maximize the approximation of the sample data with re-
spect to parameter estimation. 

3. Empirical Analysis 
3.1. Data and Processing 

In this paper, we use the daily returns of the 20 constituent stocks of the Shang-
hai 50 Index of the Shanghai Stock Market and the 31 constituent stocks of the 
Hong Kong stock market Hang Seng Index to conduct the empirical research. 
The market data of the Shanghai Stock Market is from the Wind database (the 
leading financial data service provider in China, its market share in China is 80%. 
Wind database has built a comprehensive database of the most complete and 
accurate financial and financial data warehouses with financial and financial da-
ta as the core) from January 1, 2014, to December 31, 2016. We screened the 
daily data of the stocks of the Shanghai 50 Index after it was recaptured. From 
2014 to 2016, due to the company’s major restructuring, stock increase and 
mergers and acquisitions, etc., the company will stop the company, resulting in 
the lack of data. After eliminating the stocks that caused the missing data due to 
these events, in Shanghai 50 Index, we can obtain daily data on 20 stocks as we 
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can see in Table 1. Take 2015 daily data as an example, there are 244 daily clos-
ing price data for each stock in the year. The names of the stocks and their codes 
are as follows: 

First, we use the daily closing price tP  to obtain the log yield tr , where 
2, ,t T=  . 

1

log t
t

t

P
r

P−

 
=  

 
 

We analyzed the daily returns of these 20 stocks. Figure 1, respectively, shows 
the return curves and normal distribution test results of 4 stocks, namely, CITIC 
Securities, Huaxia Bank, Baosteel Co., Ltd. and Minsheng Bank. 

From Figure 1, it shows the return curves and normal distribution test results 
of 4 stocks, namely, CITIC Securities, Huaxia Bank, Baosteel Co., Ltd. and Min-
sheng Bank. We can see that the price of the stock is random walking. 

In this paper, the critical value of the Kolmogorov-Smirnov test in Table 2 is 
0.05. From Table 2, the sig is less than 0.05, we can see that the logarithmic re-
turns of the four stocks do not satisfy the normal distribution. This further vali-
dates the rationality of using nonparametric tests to process stock data. 
 
Table 1. Table type styles. 

Stock Name Stock Code Stock Name Stock Code 

CITIC Securities 600030 Conch Cement 600585 

Baosteel Co., Ltd. 600019 Daqin Railway 601006 

Huaxia Bank 600015 China Shenhua 601088 

Minsheng Bank 600016 ABC 601288 

Shanghai Port Group 600018 China Ping An 601318 

Sinopec 600028 Ban of Communications 601328 

China Unicom 600050 ICBC 601398 

Northern Rare Earth 600111 China Pacific Insurance 601601 

Guizhou Maotai 600519 China Life Insurance 601628 

China Petroleum 601857 China Architecture 601668 

 

Table 2. The normal test results of the daily distributions of 4 stocks. 

 

Kolmogorov-Smirnov Shapiro_Wilk 

Statistics Df Sig Statistics Df Sig 

CITIC Securities 0.112 243 0 0.954 243 0 

Huaxia Bank 0.118 243 0 0.957 243 0 

Baosteel Co., Ltd. 0.14 243 0 0.95 243 0 

Minsheng Bank 0.137 243 0 0.952 243 0 
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Figure 1. Scatter plot of the actual logarithmic gains. 

3.2. Empirical Analysis of China’s Shanghai Stock Market 
3.2.1. Principal Component Analysis (PCA) of 20 Stocks in the Shanghai  

Market 
First, we analyze the principal component of the daily logarithmic return se-
quence of 20 stocks. Figure 2 shows the cumulative interpretation ratio of each 
principal component to the total variation.  

The abscissa of Figure 2 represents each principal component. Each rectangle 
represents the strength of the explanatory power of each principal component. 
The larger the rectangular area, the stronger the explanatory power of the factor. 
According to PCA, the index variables related to each other are converted into 
index variables that are not related to each other. There are a total of 20 stocks 
with logarithmic gains corresponding to 20 irrelevant principal components. 
The vertical axis represents the explanatory power of each principal component. 
The rectangular region in Figure 2 represents the explanatory force of each dif-
ferent principal component, and the trapezoidal line corresponds to the cumula-
tive sum of the explanatory forces of the principal component. In the component 
analysis method, the selected principal component meets the requirement as 
long as the cumulative ability to interpret the original data reaches 70% or more. 

From Figure 2, we can see that if we select the first five principal components, 
we can explain more than 80% of all the data. Therefore, we choose five princip-
al components here. At this point, we can treat the time series of each principal 
component as a variable in order to achieve the effect of dimension reduction. 
Then, we can use Equations (15)-(18) to find the corresponding risk-neutral 
discount factor and calculate the logarithmic returns of the five factors under 
risk-neutrality. Figure 3 gives the scatter plots of the five factors in risk neutral-
ity and actual data. 
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Figure 2. PCA of the 2015 daily returns of 20 Shanghai SSE stocks. 
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Figure 3. Scatter plots of logarithmic gains in the context of actual returns and 
risk-neutrality. 
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In the risk-neutral condition and with the actual logarithmic return rate, the 
descriptive statistical characteristics of each factor are obtained using SPSS as in 
Table 3. 

Using Equations (26)-(27), we can draw the nonparametric estimation of the 
Shanghai 50 Index in risk neutrality and actual returns. 

Figure 4 shows the nuclear density estimates of the daily logarithmic returns 
under actual returns and in a risk-neutral world. The horizontal axis of Figure 4 
represents the logarithmic returns and the ordinate represents the number of 
sample points. The value of the bandwidth is given by Equation (27). Ret 
represents the income diagram of the five principal components in real returns, 
while mTR represents the income of the five principal components in the 
risk-neutral world. 
 
Table 3. The statistical characteristics of each principal component. 

  Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

Actual  
Returns 

Mean −0.0039 −0.0027 −0.0038 −0.0034 −0.0027 

Variance 0.0995 0.0805 0.0761 0.0676 0.0637 

Skewness −0.3449 −0.3068 −0.3487 −0.2956 −0.2873 

Kurtosis 4.2425 4.3599 4.6308 4.1745 3.5489 

Risk-Neutral 
Returns 

Mean 0.0828 0.0026 0.1239 −0.0583 0.0227 

Variance 1.7299 0.9495 1.0254 1.0646 1.112 

Skewness 0.3938 −0.98207 −0.1357 0.73253 −0.0577 

Kurtosis 4.9521 4.2098 1.8152 8.0202 1.8552 
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Figure 4. Diagram of nonparametric estimation of risk-neutral and actual data. 

 
Figure 5 is a probability density graph of the nonparametric estimation of ac-

tual data and a risk-neutral world. The horizontal axis represents the rate of re-
turn, and the vertical axis represents the size of the probability density. The in-
come of the five factors based on the actual data can be seen. The rate is relative-
ly concentrated, and the range of relative and risk-neutral fluctuations is not 
large. This indicates that the market volatility in 2015 is relatively stable. Then, 
in the risk-neutral world, the range of rate of return is higher, especially at the 
left tail where the probability density of returns can be seen as being thicker in 
the left-biased phenomenon. 

3.2.2. System Risk Comparison in Shanghai Stock Market 
In approximately 2015, China’s stock market experienced an extremely low limit 
of 1000 shares. Therefore, we first compared the results of systemic risk for 2014, 
2015, and 2016. Under risk-neutral conditions, the calculation results of the four 
systemic risk measures are compared, and we compare them from two horizon-
tal dimensions (risk neutrality and actuality) and longitudinally (comparison at 
different time periods). Moreover, when calculating the MES and SES models, 
we can set the risk-neutral threshold and the actual benefit threshold to be the 
same. 

Using formula (1), we define α as 5%, and we can obtain a VaR. Using Equa-
tion (19), when R qα≤ , we can calculate the corresponding i

tTR  value. The 
risk-neutral logarithmic gains obtained above and the yields of the five factors 
based on the actual data are brought into Equations (3)-(5), and Equations (21) 
and (22) are used to find i

tTMR  and i
tTSR . Table 4 shows the system-risk 

comparison results for China’s A-share market during 2014-2016. 
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Figure 5. Probability density graph for nonparametric estimation of 
risk-neutral and actual data. 

 
Table 4. Comparison of the systematic risks from 2014 to 2016. 

Year 
 

VAR ES MES SES 

2014 

Real −3.3256 0.0045 0.0045 0.3803 

Risk  
Neutral 

−3.2706 0.0099 0.3466 0.4829 

2015 

Real −3.1382 0.0123 0.0123 0.3899 

Risk  
Neutral 

−3.1446 0.0083 0.3251 0.4759 

2016 

Real −3.1559 0.0207 0.0203 0.2843 

Risk  
Neutral 

−3.2013 0.0072 0.2907 0.4714 
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From Table 4, we can find that investors in the risk-neutral world have more 
enthusiastic reactions in 2014, the risk neutral value under the MES model is 
0.3466, the real value under the MES model is 0.0045, and the risk neutral value 
is about 77 times of the real value under. Based on the limited combinations of 
these 20 stocks, we can see that it contributes to the overall systemic risk. The 
systemic risk measurement in the risk-neutral world is even stronger, thus indi-
cating that the financial system has also reached a critical state. This also verifies 
that there has been skyrocketing and slumping trends in the 2015 stock market. 

To further study the response of the model to the turbulent market, we com-
pared the risk measures in 12 months of 2015. The results are shown in Figure 
6. 

As seen from Figure 6, from November 2014 to June 2015, the stock prices 
show a rising trend, during which the Shanghai Composite Index rose from 2400 
to 5178 points, an increase of 115%. During this period, many stocks rose more 
than 5 times. However, during the 17 trading days from June 15 to July 9, 2015, 
the stock market continued to plummet, with the Shanghai Index falling by 32%. 
During the period from May to July, the values of the MES and SES models in 
the risk-neutral situation showed an upward trend, while the values of the MES, 
SES, and ES models in the actual stock market showed a declining trend. After 
the outbreak of systemic risk in June, it began to rise. The systemic risk measures 
based on the actual stock market have a certain lag. 

From August 25 to the end of September of that year, the stock market con-
tinued to plummet by 1000 points. There have been several phenomena of the 
daily limit-down of thousands of stocks. Such a rapid decline has not happened 
in the past 20 years. It is precisely because of this systemic risk that investors’ 
enthusiasm has decreased. At this time, in the risk-neutral situation, both the 
MES and SES have a very high value and have a good forecast of systemic risk. 
However, the value of the MES and SES measured based on the actual market 
data shows a downward trend. Due to the occurrence of pre-systematic risks, the 
valuation of the stock price was rapidly reduced, and the financial market 
reached a critical state and collapsed repeatedly. As a result, investors turned 
pessimistic about the market. Therefore, the rebound began at the end of Sep-
tember. The value of the MES in risk-neutrality began to gradually decrease. In-
vestors also gradually became optimistic and the valuations became more attrac-
tive. Therefore, the market valuation was constantly being repaired. The values 
of MES and SES continued to show a declining trend and were highly consistent 
with the changes in the market. 

Therefore, through comparison, we can find the following. 1) The measure-
ment of systemic risk under risk-neutrality is more related to actual market 
changes, and it can more accurately show real market risks. 2) Compared with 
other three kinds of risk measures, MES is the best systemic risk prediction me-
thod, and it has certain early warning characteristics for the occurrence of sys-
temic risks. 
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Figure 6. Comparison of four risk measures under actual and risk-neutral conditions. 
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3.3. Empirical Analysis of Hong Kong Stock Market in China 

To test whether the method is universal, we use the Hong Kong stocks Hang 
Seng Index to test the Hong Kong market in the same way. We remove the 
stocks that have stalled; we can obtain daily data on 31 stocks as we can see in 
Table 5.  

Figure 7 shows the results of the PCA of the 31 stocks of the Hang Seng Index. 
The abscissa represents each master. The components, according to the method 
of principal component analysis, convert the related indicator variables into in-
dependent indicator variables. There are a total of 31 stocks with logarithmic 
gains corresponding to 31 unrelated principal components. The vertical axis 
represents the explanatory power of each principal component, the rectangle 
represents the magnitude of the explanatory force of each principal component, 
and the trapezoid represents the magnitude of the cumulative explanatory force. 

According to Figure 7, similar to the Shanghai Stock Index, a factor of 80% or 
more of cumulative explanatory power is obtained, which is a total of five fac-
tors. 

First, the longitudinal comparison of the market before and after the large 
fluctuations occurred. The A-share market in China experienced a sharp rise 
and fall in 2015. Therefore, we chose to conduct a vertical comparison from 2014 
to 2016. 

 
Table 5. Names and codes of the 31 constituent stocks of the Hong Kong Hang Seng 
index. 

Stock Name Stock Code Stock Name Stock Code 

Tencent Holdings 00700.HK Swire Pacific Corporation 00019.HK 

CLP Holdings 00002.HK Bank of East Asia 00023.HK 

Hong Kong and China Gas 00003.HK Galaxy Entertainment 00027.HK 

Wharf Group 00004.HK Xinhe Real Estate 00083.HK 

HSBC Holdings 00005.HK Hang Lung Properties 00101.HK 

Hang Seng Bank 00011.HK Kunlun Energy 00135.HK 

Henderson Land 00012.HK China Want Want 00151.HK 

Sun Hung Kai Properties 00016.HK Master Master Holding 00322.HK 

China Petroleum and Chemical 
Corporation 

00386.HK Hengan International 01044.HK 

Hong Kong Exchange 00388.HK Construction Bank 00939.HK 

Li & Fung 00494.HK Cathay Pacific 00293.HK 

China Overseas Development 00688.HK China Offshore Oil 00883.HK 

ICBC 01398.HK China Resources Power 00836.HK 

AIA Insurance 01299.HK China Petroleum Shares 00857.HK 

China Mobile 00941.HK China Shenhua 01088.HK 

China Unicom 00762.HK 
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Figure 7. The principal component graph of the logarithmic 
daily returns of the Hang Seng Index. 

 
According to Table 6, during the period from 2014 to 2015, the Hang Seng 

Index continued to rise until May 2015, and investors’ enthusiasm continued to 
rise. However, after May 2015, the Hang Seng Index dropped from 28,588.52 
points to 18,278.80 points, losing nearly half of the market value and investors’ 
enthusiasm has also significantly declined. This can also explain why the value of 
the MES based on individual stocks in reflecting the systematic risk contribution 
is smaller than the MES value of 2014. 

Figure 8 shows the 12-month changes of the four system risk indicators that 
were calculated based on the 31 stocks in the Hong Kong stock market under the 
real environment and risk-neutrality in 2015. 

Under the influence of the central government’s successive favorable policies, 
the Hong Kong stocks have gained momentum in the first half of the year. On 
June 30, the Hang Seng Index closed at 26,250 points. The cumulative increase 
for the six months exceeded 10%. In the first quarter, the Hang Seng Index fluc-
tuated mainly between 24,000 and 25,000. At this time, the risk was decreasing. 
However, in April, in order to strengthen the Mainland’s succession, the gov-
ernment launched measures to strengthen the interconnection and interflow 
between the two stock markets, including the possibility that mainland public 
funds can buy Hong Kong stocks through the Shanghai-Hong Kong Stock Con-
nect, Mainland insurance funds can invest in Hong Kong stock shares, and there 
are some mutual funds authorized for mutual recognition between the Mainland 
and Hong Kong. The peak in the first half of the year appeared on April 27, and 
the Hang Seng Index closed at 28,588 points, the highest in more than seven 
years. From the end of March to the end of May, the stock prices have been 
showing a rising trend. Under the risk-neutral condition, we can see that VAR, 
ES, MES, and SES have been showing a rising trend, indicating that systemic 
risks are also rising. Starting in May, the market began to decline. At this time, 
the risks of the system continued to rise. However, we can see that the systematic 
risks measured based on actual data from the beginning of May to the end of 
June are decreasing, which is different from the actual situation. 
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Figure 8. Comparison of the four risk measures under actual and risk-neutral conditions. 
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Table 6. Comparison of risk estimation methods of several nonparametric nuclear 
estimates. 

Year 
 

VAR ES MES SES 

2014 
Real −3.1755 0.0007 0.0007 0.3849 

Risk Neutral −2.8682 0.0015 0.4057 0.4946 

2015 
Real −3.1223 0.0081 0.0081 0.3947 

Risk Neutral −3.2038 0.0076 0.353 0.5032 

2016 
Real −3.189 0.0005 0.0005 0.2401 

Risk Neutral −3.141 0.0014 0.4964 0.5002 

 
On July 8, 2015, the Hong Kong stock market collapsed. It once fell more than 

2100 points and tumbled to 23,000 points during the session. There was a 5.84% 
decline (1458 points) to close, the largest single-day decline since October 27, 
2008. The values of the MES and SES in the risk-neutral measurement were not 
much in this period because our model has already measured systemic risk be-
fore. At the end of September, the Hang Seng Index hit its lowest point of 2015 
at 20,368.12. At this time, investor enthusiasm gradually decreased, and the 
market was weak. 

At this point, beginning in October, with the influence of internal and exter-
nal factors such as the Fed’s rate hike, the RMB basket and other internal and 
external factors, the Hong Kong market accelerated rapidly. At the end of De-
cember 2015, it broke the 22,000 mark. The trend of changes in risk-neutrality 
and actual data on systemic risk is consistent with both rising. 

4. Conclusions 

Based on stochastic discount factor theory, we proposed a new method to calcu-
late the financial system risk measurement under risk-neutral conditions, name-
ly, VaR, ES, MES and SES. Then, using these systemic risk measures, we empiri-
cally analyzed the changes in the systemic risks of the Chinese stock market and 
the Hong Kong stock market from 2014 to 2016. Our empirical results show that 
in the period of the systemic risk of market crashes occurring in both markets in 
2015, the risk-neutral systemic risk measures based on stochastic discount factor 
theory are clearly superior to traditional systemic risk measures. Furthermore, 
the change of the risk-neutral systemic risk measurement precedes the change of 
market actual systemic risk. That is, it has a certain early warning for the syste-
matic risk of the financial market. This shows that risk-neutral systemic risk 
measures have more advantages in managing systemic risks. 

In the future, if we want to claim that the change of the risk-neutral systemic 
risk measurement precedes the change of market actual systemic risk, we need to 
denefit what a period of systemic risk is and we have to use early-warning mod-
els to claim that these two risk-neutral systemic risk measures are good predic-
tors of systemic crisis, so we can use this model to establish a daily time series 
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with minute data to construct a daily risk prediction value and achieve a daily 
risk measurement system based on high-frequency data to better perform fore-
casting and management of financial systemic risks. 
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