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Abstract 
This paper studies equilibrium equity premium in a semi martingale market 
when jump amplitudes follow a binomial distribution. We take n to be the 
number of times. An investor is trading in this market with p being the 
probability that there is a shift in the price at the trading time t. We find sig-
nificant variations in the equilibrium equity premium for the martingale and 
semi martingale markets in terms of wealth value, volatility and other para-
meters under study. In this market, the equilibrium equity premium remains 
constant regardless of volatility and wealth value. 
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1. Introduction 

A semi martingale market is a partially predictable market with a decomposition  

0 ,tX X M A= + +  

such that ( )0t t T
M M

≤ ≤
=  is a square-integrable martingale with 0 0M =  and 

( )0t t T
A A

≤ ≤
=  being a predictable process of finite variation A  with 0 0A = . 

This market is so attractive to investors as it is deemed fair and enables 
uncertainity risks to be compensated fairly. This fair compensation is usually 
termed as Risk Premium which of late has attracted a lot of attention from 
researchers. [1] and [2] had considered cases where this premium evolves 
according to a compensated compound poisson process in the martingale 
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market, but to make it more interesting, our paper considers the evolution of the 
model in the semi martingale market by fixing the jump amplitudes to follow a 
Binomial distribution. 

[3] modeled a stock price as a production process in a production economy 
with jump diffusion and established a general equilibrium model for the equity 
premium. These authors proposed a pricing kernel and used it to price options. 
Specifically, [3] derived analytical expressions for the return distributions in the 
physical and the risk-neutral measures, and their model provided empirical 
evidence supporting the negative risk-neutral skewness and the relation between 
the moments of the risk-neutral and physical distributions. Their model 
provided more empirical evidence supporting the negative excess return of a 
Delta-hedged portfolio. 

More recent studies [4] [5] [6] and [7] have developed an equilibrium asset 
and option pricing model in a production economy under jump diffusion. Their 
model was based on the intertemporal general equilibrium model of a 
production economy. Asset pricing in [8] provided analytical formulas for an 
equity premium and a more general pricing kernel that links the physical and 
risk neutral densities, which explained the two empirical phenomena of the 
negative variance risk premium and implied volatility smirk when a market 
crash is expected. [8] showed that jump size was indeed negative and that the 
risk aversion coefficient assumed a reasonable value when taking the jump into 
account. However, despite studying the systematic risk premium of the market 
portfolio, [8] did not model the impact of new technological developments and 
the dynamics of individual stock prices. 

A discrete random variable (RV) is a Binomial if it arises from Bernoulli trials. 
There is a fixed number, n, of independent trials which by independence, means 
the result of any trial (for example, trial 1) does not affect the results of the 
following trials, and all trials are conducted under the same conditions. Under 
these circumstances, we define the binomial random variable X as the number of 
successes in n trials. The notation ( )~ ,X B n p  is usually used to imply that X 
is a random variable following a binomial distribution. The mean is npµ =  
and the standard deviation is npqσ =  for some probability of failure q. The 
probability of exactly x successes in n trials is p. In this market, everytime we 
observe a jump (shift in price), we record it as a success with probability of 
occurence, p. Therefore, ( )d dtp E N tλ= =  which studies by [9] and [10] took 
as the probability that tN  will jump once in the given period. 

In literature, Jump Diffusion has been widely used in Option Valuation as 
opposed to modelling equity premium. In discrete time, the theory was 
proposed by [11] and later developed by [3] [4] [5] [6] [7] [12]-[17] where the 
Binomial option pricing model has been extensively used. More recent studies 
[4] [5] [6] [7] [15] [16] and [17] have developed an equilibrium asset and option 
pricing model in a production economy under jump diffusion. For general cases, 
one can see [18]-[28]. In our case, we use the binomial principles in finance to 
model equilibrium equity premium when the price process is a semi martingale. 

https://doi.org/10.4236/jmf.2018.83038


G. M. Mukupa, E. R. Offen 
 

 

DOI: 10.4236/jmf.2018.83038 601 Journal of Mathematical Finance 
 

Unlike [9] who fixed P to positive jumps, we take this probability whenever we 
observe a jump (whether positive or negative). This allows us to study the impact 
of jumps themselves on the equity premium. 

Our contribution in this paper is comparable to [3] and also further 
elaboration by [9] and [10] who considered the martingale case of equilibrium 
equity premium. This contribution enables investors to compare the martingale 
and semi martingale markets in terms of the premium expected for having taken 
some risk in the equity market. This will make them be aware of the necessary 
judgements to be undertaken before one can consider investing in a partly 
predictable market whose price process can either go up or come down in value. 

2. The Model 

To formulate the model, we consider that the price process is arising from a 
Binomial distribution with one parameter p, the probability of observing a jump 
in a given time interval [ )0, t  and since the market is partially volatile, our 
process will evolve as a compensated compound poisson process similar to that 
of [3] and also further elaboration by [9] and [10]. 

Let’s consider a Jump Diffusion process; 

( ) ( )d d d e 1 d e 1 d .x x
t t tX t B N E tµ δ λ= + + − − −  

which is a semi martingale with discontinuities because of the presence of 
jumps. 

We take ,µ δ  and λ  as constants and x as a vector of jump sizes following 
a binomial distribution. The processes tB  and tN  are independent. This 
follows directly from the definition of Brownian motion as being a continuous 
process and the Poisson being discrete which we obviously know that 
continuous processes and discrete are independent. λ  is the frequency of the 
Poisson process. We set ( )e 1x −  in the jump process so that e 1 0x − =  if there 
is no jump as x is then a zero vector. E is the expectation which makes the 
process e 1x −  deterministic. d tN  models the sudden changes as a result of 
rare events happening and d tB  models small continuous changes generated by 
the noise whose volatility is a constant δ . 

The compensated compound Poisson process ( ) ( )e 1 d e 1 dx x
tN E tλ− − −  has 

the mean of zero because  

( ) ( ) ( ) ( ) ( ) ( )e 1 d e 1 d e 1 d e 1 d 0x x x x
t tE N E t E E N E E tλ λ − − − = − − − =   

and ( )d dtE N tλ= . 
To solve  

( ) ( )d d d e 1 d e 1 d ,x x
t t tX t B N E tµ δ λ= + + − − −  

we do not need to apply Itô Lemma with Jumps because the diffusion part is a 
continuous semi martingale whose procedure for solution does not require the 
integrating factor. We solve for the price process at the terminal time T as 
follows: 
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( ) ( )d e 1 d d e 1 dx x
t t tX E t B Nµ λ δ = − − + + −   

By integration we have  

( ) ( )
1

e 1 e 1 , fori
N

xx
T t

i
X X E B T t

τ

τµ λ τ δ τ
=

 = + − − + + − = −  ∑  

as the investment period. 
Suppose also that, at the risk-free rate ρ , the money market account ( )0X t  

is such that  

( ) ( ) ( )0 0d dX t t X t tρ=  

whose total supply is assumed to be zero. Consider here that ρ  is risk-free 
because it is the rate for the non risky asset (money account). 

Since the value of someone’s investment in this production economy at any 
time t is given by t tV Xφ= , for some portfolio ( )1 ,φ ω ω= −  consisting of 
1 ω−  non risky assets and ω  risky assets, we have that by the self financing 
strategy,  

d dt tV Xφ=  

so that the total wealth at any time t is  

( ) ( )0 1tV V t V t= +  

where ( )0V t  is the value of the money market account and ( )1V t  is the value 
of the investment in the stock market at time t.  

Now  

( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )

0 1 0

0

d d d 1 d d

1 d e 1 d d e 1 d .

t

x x
t t

V V t V t X t X t

X t t E t B N

ω ω

ω ρ ω µ λ ωδ ω

= + = − +

 = − + − − + + − 
 

Since the equity premium φ µ ρ= − , we have that µ φ ρ= + , hence 

( ) ( ) ( )
( )

0 0d e 1 d

d e 1 d .

x
t

x
t t

V X t X t E t

B N

ρ ωρ ωφ ωρ λω

ωδ ω

 = − + + − − 

+ + −
 

The investor’s optimal control problem then is to maximize his expected 
utility function  

( ) ( )max d ,
T

t tt
E y t U r t∫  

subject to 

( ) ( ) ( )
( )

0 0d e 1 d

d e 1 d

x
t t

x
t t

V X t X t E r t

B N

ρ ωρ ωφ ωρ λω

ωδ ω

 = − + + − − − 

+ + −
 

The wealth ratio ω  and consumption rate tr  are control variable. The 
general equilibrium occur when 1ω = . 

3. Results and Discussion 

Theorem 1. In a semi martingale market with binomial jumps, an investor’s 
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equilibrium equity premium with CRRA power utility function  

( ) ,0 1t
t

rU r
β

β
β

= < < , in the production economy with jump diffusion is given 

by  

( ) ( ) ( )( )
( ) ( )

1 2
0

1

1 1 e 1

1 e 1 e

n
t

n n

X t V p

q p p q p pβ β

φ ρ ρ β δ λ

λ λ λ

−

−

= − − − + + −

− − + − + − +
 

where ( ) ( ) 1 2
0 1 tX t Vδφ ρ ρ β δ−= − − −  is the diffusive risk premium and 

( )( ) ( ) ( )11 e 1 1 e 1 e
n nn

N p q p p q p pβ βφ λ λ λ λ −= + − − − + − + − +  is the rare-event 
premium. 

Proof. If X is a random variable with a binomial distribution, then eXY =  is 
a logbinomial random variable. 

In particular, if ( )~ ,X B n p  and eXY =  then ek kXY = . Also  

( )ekX
XE m k  =   

where ( )Xm k  is the moment-generating function of X evaluated at k. Hence 

( )e 1 e
nkX kE p p  = − +   

and so 

( ) ( )( ) ( )e 1 e 1 e 1 1 .
nnX

XE p p p m  = − + = + − =   

Let X x=  be a vector of binomially distributed jump sizes then for the 
power utility function of [10], the rare-event premium  

( ) ( )( )1
e 1 1 ex x

N tE V
β

φ λ
− = − −  

 which becomes  

( ) ( )1 1e e 1 ex x xx
N t tE V Vβ βφ λ + − − = − − +  . 

Now, taking [ ]tE V q= , we realise that:  

( ) ( ) ( ) ( )1 1 1e e e 1 e .
nx x x x

XE E E p p mβ β β β β+ − + −     = = = − + =      

( ) ( ) ( )1 1e 1 e 1 .
nx

XE p p mβ β β− −  = − + = −   

Therefore, our rare-event premium 

( ) ( )( ) ( )( )1 1e e 1 ex x xx
N E qE qEβ βφ λ + − − = − − + 

  

now becomes 

( )( ) ( ) ( )11 e 1 1 e 1 1 e
n nn

N p q p p q p pβ βφ λ − = + − − − + − + − +  
  

which implies that our equity premium is now 

( ) ( ) ( )( )
( ) ( )

1 2
0

1

1 1 e 1

1 e 1 e .

n
t

n n

X t V p

q p p q p pβ β

φ ρ ρ β δ λ

λ λ λ

−

−

= − − − + + −

− − + − + − +
 

Figure 1 suggests a constant equity premium regardless of how volatile the 
process becomes. This is a good result for investors in this market because they  
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Figure 1. Power utility volatility effect under binomial distribution. 

 
are assured of some compensation regardless of the fall or rise in the trading 
prices. Infact, when there is no jump expected, the premium is symmetrical 
about zero volatility and increases on either side (see Figure 2). This means that 
the diffusive risk premium always exist and is positive in this market. Therefore, 
the change in the price process due to time, is fairly compensated. In terms of 
Beta effect, it is clear from Figure 3 that the premium is zero whenever 2β <  
and decreases otherwise. This parameter affects the premium in an unattractive 
manner as it is inversely proportional to the equity premium on a large scale. 
This is confirmed in Figure 4 as we observe an inversely proportional 
relationship between the equity premium and beta. This is a case when jumps 
are not expected. However, when jumps are expected, the compensation is fair. 

Theorem 2. In the semi martingale market with binomial jumps, the investo’s 
equilibrium equity premium with square root utility function ( ) , 0t t tU r r r= >  
is given by  

( ) ( )( )
2

0

1 1
2 2

1 e 1
2

1 e 1 e

n

t
n n

X t p
V

q p p q p p

δ
φ ρ ρ λ

λ λ λ
−

= − + + + −

   
− − + − + − +      

   

 

where ( )
2

0 2 t

X t
Vδ
δ

φ ρ ρ= − +  is the diffusive risk premium and  

( )( )
1 1
2 21 e 1 1 e 1 e

n n
n

N p q p p q p pφ λ λ λ λ
−   

= + − − − + − + − +      
   

 is the  

rare-event premium. 
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Figure 2. Power utility volatility effect under binomial distribution when no 
jump is expected. 

 

 
Figure 3. Power utility beta effect under binomial distribution. 

 
Proof. For the square root utility function, the rare-event premium is given by 

( )
1
2e 1 1 e

xx
N tE Vφ λ

−  
= − −      

 (see [10]) 

( )

( ) ( )

1 1 1
2 2 2

1 1
2 2

e 1 1 e e e 1 e

e e 1 e

x x xx x
N t t t

x xx

E V E V V

E qE E qE

φ λ λ

λ

− −

−

    
= − − = − − +          

    
= − − +            
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Figure 4. Power utility beta effect under binomial distribution when no jump is expected. 
 

Since ( )~ ,x B n p , we have that  

( ) ( )( ) ( )e 1 e 1 e 1 1
nnX

XE p p p m  = − + = + − =   

and  

1 1
2 2 1e 1 e .

2

n
X

XE p p m
     = − + =          

 

Also  

1 1
2 2 1e 1 e .

2

n
X

XE p p m
− −     = − + = −          

 

Thus our rare-event premium is  

( )( )
1 1
2 21 e 1 1 e 1 1 e

n n
n

p q p p q p pλ
−    

 + − − − + − + − +           
 

and therefore our equity premium is 

( ) ( )( )
12
2

0

1
2

1 e 1 1 e
2

1 e

n
n

t

n

X t p q p p
V

q p p

δ
φ ρ ρ λ λ

λ λ
−

 
= − + + + − − − +  

 

 
− + − +  

 

 

We observe a constant premium of 1.722 in Figure 5 regardless of volatility in 
the process for square root utility. What is important here is that, the premium 
factor is positive indicating a fair compensation on the investment. However, 
Figure 6 is consistent with Figure 2 when no jumps are expected. These two 
figures confirm the positive judgement that this premium posses in the semi  
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Figure 5. Square root utility volatility effect under binomial distribution. 

 

 
Figure 6. Square root utility volatility effect under binomial distribution when 
no jump is expected. 

 
martingale market. Investors should therefore take advantage and consider 
investing in a market like this one. 

In practice, the square root utility has many advantages in finance and 
economics including it’s ability to minimize shocks in the stock market. We 
were also able to see that the results for this utility function in terms of 
equilibrium equity premium were significantly reasonable compared to other 
utility functions in the martingale market. 

Theorem 3. An investor’s equilibrium equity premium with quadratic utility 
function ( ) 2 , 0t t tU r r ar a= − >  in the semi martingale market with normal 
jumps is given by  
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( ) ( )( ) ( )( )

( ) ( )( )

2

0

2 2 2

1 e 12 1 e 1
1 2 1 2

2 1 e 2 1 e 1
1

1 2 1 2 1 2

n
n

t

n n

q paX t p
aV aq

aq p p aq pq
aq aq aq

δ
φ ρ ρ λ

 + −
= − + + + − −

− −


− + + − + − + −
− − −


 

where ( )
2

0
2

1 2 t

aX t
aVδ
δ

φ ρ ρ= − +
−

 is the diffusive risk premium and  

( )( ) ( )( ) ( )

( )( )

2 2

2

2 1 e1 e 1
1 e 1

1 2 1 2

2 1 e 1
1

1 2 1 2

nn
n

N

n

aq p pq p
p

aq aq

aq pq
aq aq

φ λ
 − ++ −= + − − +
 − −


+ −
− + −

− − 


 is the rare-event 

premium.  
Proof. For the HARA Quadratic utility function,  

( ) ( )1 2 e
e 1 1

1 2

x
t tx

N
t

V aV
E

aV
φ λ

  −
  = − −

  −  
 so that  

( ) ( )

( ) ( ) ( )

2 2 2

2 2 2

2 2

1 2 e
e 1 1

1 2

e 2 e 2 e
e 1

1 2 1 2 1 2

e 2 e 2 e
e 1

1 2 1 2 1 2 1 2

e 2 e
e 1

1 2 1 2 1 2

x
t tx

N
t

x x x
x t t t t

t t t

x x x
x t t t t

t t t t

x x
x

V aV
E

aV

V aV V aV
E

aV aV aV

V aV V aV
E

aV aV aV aV

qE aq E qE
aq aq aq

φ λ

λ

λ

λ

  −
  = − −
  −

  

 −
= − − + − − − − 

 
= − + − + − − − − − 

= − + − + −
− − −

( )22 e

1 2

xaq E

aq

 
 

−  

 

Now since ( )~ ,x B n p , we have that 

( ) ( )( ) ( )e 1 e 1 e 1 1
nnX

XE p p p m  = − + = + − =   

and  

( ) ( )2 2e 1 e 2 .
nX

XE p p m  = − + =   

thus our rare-event premium is  

( )( ) ( )( ) ( )

( )( )

2 2

2

2 1 e1 e 1
1 e 1

1 2 1 2

2 1 e 1
1

1 2 1 2

nn
n

n

aq p pq p
p

aq aq

aq pq
aq aq

λ
 − ++ − + − − +
 − −


+ −
− + −

− − 


 

which implies that our equity premium is 
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( ) ( )( ) ( )( )

( ) ( )( )

2

0

2 2 2

1 e 12 1 e 1
1 2 1 2

2 1 e 2 1 e 1
1

1 2 1 2 1 2

n
n

t

n n

q paX t p
aV aq

aq p p aq pq
aq aq aq

δ
φ ρ ρ λ

 + −
= − + + + − −

− −


− + + − + − + −
− − −


 

The results in Figure 7 and Figure 8 are similar to those obtained under the 
power utility except that, the quadratic utility is affected by the wealth process 

tV . It is clear in Figure 9 that the equilibrium equity premium is constant 
regardless of the wealth value. However, under the quadratic utility function, the 
investor always recieves a fair compensation for having taken some risk as long 
as no jump is expected. This is evident in Figure 10. 
 

 
Figure 7. Quadratic utility volatility effect under binomial distribution. 

 

 
Figure 8. Quadratic utility volatility effect under binomial distribution 
when no jump is expected. 
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Figure 9. Quadratic utility wealth effect under binomial distribution. 

 

 
Figure 10. Quadratic utility wealth effect under binomial distribution when no 
jump is expected. 

 
All in all, it is important to note that the real life processes are not martingales 

but prices are normalized so that the processes can then be martingales. This 
means that jumps must be expected in any normalized market although most 
scholars have generally assumed the processes without jumps. In comparison, 
the results in the martingale market are similar to those of the semi martingale 
market but the premium is not as attractive as the one realised from the semi 
martingale market. Infact, in this market, the equity premium is always positive 
regarless of the utility function the investor is following. We therefore urge 
investors to consider investing in this market. 
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4. Conclusions and Suggestions 

The martingale and semi martingale markets differ significantly in terms of how 
much compensation an investor recieves for having taken some risk in the 
investment. This is the case whenever jump amplitudes follow a binomial 
distribution in a semi martingale market. We observe consistent results in the 
equity premium of the power, square root and quadratic utility functions in 
terms of volatility effect, but the quadratic utility is affected also by the wealth 
process tV . We therefore advise investors consuming quadratically to consider 
investing in the semi martingale market with jumps as long as the amplitudes 
follow a binomial distribution. This is to avoid external shocks and variance in 
the premium when jumps are not expected.  
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