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Abstract 
We have developed an extended model for stock price behaviour that is able 
to accommodate fat-tailed distributions with support as large as [ ],−∞ ∞ . The 
“homogeneously saturated” (HS) model avoids exponential price changes for 
large fluctuations by means of a saturation parameter. In the limit where the 
saturation parameter is zero, the standard model of stock price behaviour (i.e., 
geometric Brownian motion) is recovered. We compare simulated stock price 
series generated for both the standard and HS model for the DJIA and five 
random stocks from the NYSE and NASDAQ exchanges. We find that in all 
cases, the HS model provides a better fit to the observed price series than the 
standard model. This has implications to many areas of finance including the 
Black-Scholes formula for option pricing. 
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1. Introduction 

The standard model of stock price behaviour generates prices through geometric 
Brownian motion with a deterministic drift rate [1] [2] [3] [4]. This model is 
used throughout the financial world; most notably in deriving the Black-Scholes 
formula of option pricing. The standard model for generating stock prices is 

( ) ( ) ( ) ( )d
d
S t

S t S t f t
t

α σ= +                      (1) 

where ( )S t  is the price of the stock at time t, α  is the drift rate, σ  is the 
volatility of the stock price and ( )f t  is a zero mean, normally distributed, 
stochastic, uncorrelated in time, noise driving term. Using ( ) ( )t f tη α σ= + , 
we can simplify Equation (1) to 

( ) ( ) ( )d
.

d
S t

t S t
t

η=                         (2) 
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Integrating Equation (2) gives the predicted price of the stock at a later time t: 

( ) ( )
0e ,t

sS t S ω=                          (3) 

where the subscript s denotes the standard model, 0S  is the price of the stock at 
0t = , and for clarity, we have made the substitution 

( ) ( )
0

d .
t

t t tω η ′ ′= ∫                         (4) 

Equations (3) and (4) suggest that the price of the stock depends exponentially 
on the integral of the noise driving term, ( )f t . Since this term is assumed to be 
normally distributed, the probability of a large price is essentially zero and the 
predicted price remains bounded. If, however, the underlying noise is not nor-
mally distributed, Equation (3) might predict wild price swings that are unrealis-
tic and not observed on the market. 

Stock returns are generally assumed to follow a normal distribution, in part 
owing to mathematical simplicity. It has been known for some time, however, 
that this assumption is not supported by actual stock prices (e.g., [5] [6] [7]). For 
example, daily returns of the DJIA and the S&P 500 indices are described by a 
fat-tailed distribution [3] [8]. Prices predicted by the standard model, using a 
normal distribution as the noise driving term, will therefore be inaccurate and 
simply substituting a fat-tailed distribution will permit the infinite prices men-
tioned above. 

A simulation of stock prices using Equation (2) and drawing ( )tη  from dif-
ferent distributions is given in Figure 1. The fat-tailed distribution used in  
 

 
Figure 1. Simulated stock price over 1000 days using the standard model, Equation (2), 
with 0 1000S = , 1t =  day, and ( )1η  drawn from different distributions but for the 

same sequence of pseudo random numbers. The black line shows daily increments from a 
normal distribution with 0.01, 0.001σ µ= = ; the blue line shows draws from a Student’s 
T with 2.5ν = ; the green line, a Student’s T with 2.0ν = ; and the red line, a Student’s T 
with 1.5ν = . Each Student’s T distribution has 0.01β =  and 0.001µ = . It is evident 
that when the noise used in the standard model is a fat-tailed distribution (e.g., Student’s 
T), the predicted price is subject to large fluctuations. The extent of these fluctuations in-
creases with fatter tails (i.e., smaller ν ).  
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this comparison is the Student’s T distribution (see Appendix A), where the 
“fatness’’ of the tails is governed by the shape parameter ν . It is clear from Fig-
ure 1 that when a fat-tailed distribution is used in the standard model, large 
price fluctuations can result. 

There exist several approaches to pricing stocks when the noise driving term 
is a fat-tailed distribution. One approach is to modify the tails of the distribution 
such that the contributions far into the tails are negligible while not affecting 
significantly the central portion of the distribution, which fits well the observed 
data (e.g. [9] [10] [11] [12] [13]). Capping the value of the stock [8] [14], or 
truncating the distribution [13] are alternative possibilities. 

A different approach to pricing stocks when the underlying distribution is 
fat-tailed is to allow for saturation of the stock price by depletion of the resource 
that supports the price (i.e., by depletion of the reservoir of money that is availa-
ble to purchase the stock). This is the approach we investigate in this paper. This 
“homogeneously saturated” (HS) model for the price of a stock is constructed 
and compared to the standard model to gain insight into the pricing of financial 
assets when the underlying distribution is fat-tailed. 

2. Homogeneously Saturated (HS) Model 

The aim of this section is to develop a pricing model which can handle fat-tailed 
distributions as the noise driving term. Let ( )M t  be the amount of money 
available in a reservoir to buy the stock, N the rate at which money is added to 
the reservoir, ( ) ( )S t M tγ  the rate at which money is removed from the re-
servoir due to the purchase of the stock, and ( )M tζ  the rate at which money 
is removed from the reservoir due to the purchase of other goods. We then 
have 

( ) ( ) ( ) ( ) ( )d
d

M t N S t M t M t f t
t

γ ζ δ= − − +             (5) 

where ( )f tδ  is a noise driving term. It is interesting to note that the noise in 
the homogeneously saturated model is ascribed to fluctuations in the amount of 
money available to invest in the stock. All parameters (ζ , N , γ ) in Equation 
(5) have a time dependence, but it is assumed that these parameters vary slowly 
enough that they can be treated as constants. As well, we assume the system is in  

steady state, such that ( )d 0
d

M t
t

= , leading to 

( ) ( )
( )1

f t
M t

S t
α ρ

λ
+

=
+

                          (6) 

where we have made the substitutions: Nα ζ= , ρ δ ζ=  and λ γ ζ= . 
The next step in our derivation is inspired from laser physics, where coupled 

rate equations are used to describe the interaction between the laser output 
(analogous to ( )S t  in our case) and the inversion (analogous to ( )M t  in our 
case) [15]. The saturation of the inversion in a laser enforces conservation of 
energy, thereby forcing the output to be finite and to track the input; a trait we 
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desire in our model. Therefore coupling ( )S t  to ( )M t  will allow for satura-
tion of the stock price such that it cannot continually increase exponentially as 
allowed by the standard model. We therefore make the following assumption: 

( ) ( ) ( )d .
d

S t M t S t
t

=                       (7) 

The validity of Equation (7) will be determined by how well it fits the available 
data. Using Equation (6) in (7) gives 

( ) ( ) ( ) ( )
( )

d .
d 1

S t f t S t
S t

t S t
α ρ

λ
+

=
+

                  (8) 

Making the substitution ( ) ( )t f tη α ρ= +  we have 

( ) ( ) ( )
( )

d .
d 1

t S t
S t

t S t
η

λ
=

+
                        (9) 

The price of the stock in our HS model is therefore 

( )
( )

( )( )
( )
( )( )0 0

0e .
e e

t
s

S t S S t S

S tSS t
ω

λ λ− −
= =                     (10) 

The HS model is similar in form to the standard model, Equation (3), except 
for the ( )( )0e S t Sλ −  term in the denominator of the former. Indeed, when 0λ =  
the HS model reduces to the standard model. The ( )S t  dependency in the de-
nominator of Equation (10) effectively saturates the price of the stock; without it 
wealth would not be conserved and ( )S t  could continually increase exponen-
tially with time. 

To demonstrate the behaviour of the saturation parameter, we generate simu-
lated prices over a 1000 day period using the HS model, Equation (9), by adding 
different and independent one day solutions for ( )1S  for each t to obtain the 
price for the next day, i.e., ( ) ( ) ( )11 1tS t S t S ++ = + , for 0, ,1000t =   with 
( )0 1000S =  and ( )1 1tS +  being the one day solution over the time interval t to 
1t + . These generated price series are shown in Figure 2 for various values of 

λ  and for the same sequence of draws from a pseudo random number genera-
tor (PRNG) to determine ( )1tη  and hence ( )1tS  for each t. ( )1tη  is ( )1η  
created using the tth value from the PRNG sequence for a Student’s T distribu-
tion with shape parameter 2.5ν = , scale parameter 0.01β = , and drift 

0.001µ = . When λ  is zero, the price of the stock increases exponentially with 
the noise driving term and leads to large price swings. The case 0λ =  is equiv-
alent to the standard model with a fat-tailed Student’s T noise source. When 

0λ > , the price of the stock approximately linearly follows the noise; i.e., it be-
comes saturated. Variations in the price of the stock are increasingly damped 
with higher values of λ . See Appendix B for a justification of the approach 
( ) ( ) ( )11 1tS t S t S ++ = + . 
To reiterate, λ  describes the rate at which money is removed from the 

money reservoir owing to purchase of the stock. 0λ =  (as in the standard 
model) means that buying the stock has no effect on the money supply; essen-

https://doi.org/10.4236/jmf.2018.81001


N. Koning et al. 
 

 

DOI: 10.4236/jmf.2018.81001 5 Journal of Mathematical Finance 
 

tially the standard model assumes an infinite reservoir of money is available to 
buy the stock. From Equation (9), it can be observed that the reciprocal of the 
saturation parameter, 1λ− , has the same units as the stock price ( )S t . One can 
identify 1λ−  as the stock price at saturation. When ( ) 1S t λ−= , the instantane-
ous rate of change with time of ( )S t  is one-half of what it would be with 

0λ = ; see Equation (9). For ( ) 1S t λ−
 , the reservoir of money is not depleted 

(or saturated) by the rate of transactions, and the rate of change of ( )S t  is sim-
ilar in magnitude to the standard model. For ( ) 1S t λ−

 , the reservoir of money 
that is available to purchase the stock is saturated (or depleted) by the rate of 
transactions and the time rate of change of ( )S t  is greatly diminished. 

3. Results 

The goal in developing the HS model is to provide an extension to the standard 
model that can accommodate assets whose returns are fat-tail distributed. In this 
section we compare the HS model to the standard model using real data in an 
effort to corroborate our claim. 

Our metric for how close simulated prices match the observed will be the 
mean absolute percentage error (MAPE) ([16], e.g.), defined as 

( )
1

1, 100
n

t t

t t

A OM A O
n A=

−
= × ∑                  (11) 

where n is the number of simulated days, tA  is the observed price on day t, and 

tO  is the simulated price on day t. Of course since we are drawing randomly 
from distributions, any given simulated price series will yield a different M. We 
therefore create a set of k = 100,000 simulated price series for each model and 
compare the average M from those trials. That is, we compare 

( ) ( )( )avg,
1

1 SIM ,OBS
k

D D
i

M M
k

λ λ
=

= ∑              (12) 

where D is the distribution (either N for normal or ST for Student’s T), 
( )SIMD iλ  is a simulated price series obtained using Equation (9) (for a given 

λ  and distribution), and OBS is the observed price series. 
As an example, we use closing values of the Dow Jones Industrial Average 

(DJIA) for 1000 days starting on January 1 2010 as our observed price series. The 
returns along with the Normal and Student’s T best fit are shown in the first 
panel of Figure 3 and the best fit parameters to the 1000 one-day returns are 
given in the first row of Table 1. It is clear from both Figure 3 and the 2χ  in 
the table that the Student’s T is the superior fit to the DJIA one-day returns. 

We begin by determining the saturation parameter, 0λ , that gives the best fit 
between the Student’s T simulated price series and the observed DJIA price se-
ries. We do this by using Equation (12) as a function of λ  in a standard opti-
mization technique (i.e., Brent’s Method [17]). We find that 4

0 2.04 10λ −= × , 
with avg 7.5%M =  for the DJIA data. We then proceed to determine 

https://doi.org/10.4236/jmf.2018.81001


N. Koning et al. 
 

 

DOI: 10.4236/jmf.2018.81001 6 Journal of Mathematical Finance 
 

 
Figure 2. Simulated stock prices ( )S t  over a 1000 day period using the HS model for 

1t =  day, 0 1000S = , and for various values of λ . The same sequence of draws from a 
Student’s T distribution with 2.5ν = , 0.01β = , and 0.001µ =  were used to create 
the ( )S t  for the different values of λ . As λ  increases, the large price swings seen 

with the standard model ( 0λ = ) are suppressed. 
 

 
Figure 3. Normal and Student’s T fits to daily returns from six different assets. The best 
fit parameters for each distribution are given in Table 1. In all cases the Student’s T pro-
vides a superior fit. 
 

• ( )avg, 0NM  (i.e., standard model, Equation (9) with 0λ =  and η  drawn 
from the normal distribution with parameters given in Table 1). 

• ( )avg, 0STM  (i.e., Student’s T distribution directly inserted in the standard  
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Table 1. Best fit parameters for Normal and Student’s T distributions to one-day returns 
with ±uncertainties (confidence level = 0.95) in parentheses. Each stock data set starts on 
January 1 2010 and runs for 1000 days. The reduced χ2 for each fit is also given. β is the 
scale parameter for the Student’s T distribution; see Appendix A. 

 Normal Student’s T 

 ( )310σ ×  ( )310µ ×  2χ  ν  ( )310β ×  ( )310µ ×  2χ  

DJIA 7.18 (0.82) 0.82 (0.69) 3.28 2.65 (1.55) 5.72 (0.79) 0.85 (0.85) 1.81 

TRP 9.56 (0.69) 0.43 (0.56) 1.23 4.99 (2.34) 8.40 (0.59) 0.33 (0.48) 0.57 

PAGG 10.75 (1.05) 0.58 (0.85) 2.31 3.87 (2.70) 9.13 (1.13) 0.42 (0.90) 1.60 

VBF 6.09 (0.80) 0.04 (0.71) 4.15 1.69 (0.95) 4.66 (0.74) -0.04 (0.59) 1.96 

PNW 8.86 (0.78) 0.71 (0.65) 1.88 3.88 (2.49) 7.63 (0.81) 0.46 (0.90) 1.15 

HBCP 10.61 (1.11) 0.37 (0.92) 2.70 2.61 (1.41) 8.49 (1.10) 0.14 (0.86) 1.51 

 
model). 

• ( )avg, 0STM λ  (i.e., HS model, Equation (9) with 0λ λ=  and η  drawn 
from the Student’s T distribution with parameters given in Table 1). 

The results for the DJIA are given in the first row of Table 2. There are several 
things to notice. First, the standard model performs relatively poorly for the 
DJIA with avg 33%M = . This can be expected since the daily returns of the DJIA 
are fit much better by a fat-tailed distribution. Second, when a fat-tailed distri-
bution is substituted into the standard model directly, avgM  is actually larger 
than with a normal distribution despite the better fit to the one-day returns. This, 
as we mentioned earlier, is expected due to the large probability of large price 
swings when directly using a fat-tailed distribution in the standard model. These 
two points taken together justify the need for a better pricing model that can 
handle fat-tailed distributions. Third, the HS model with 42.04 10λ −= × , clearly 
gives superior results to the standard model with an avgM  of only 7.5%. 

To test these ideas further, we have randomly selected five stocks from the 
NYSE and NASDAQ exchanges; TRP, PAGG, VBF, PNW and HBCP. The re-
sults from these additional stocks are given in Figure 3, Table 1, and Table 2. 
Specifically, Figure 3 displays best fits of normal and Student’s T distributions to 
the daily returns for the five random stock selections and for the DJIA. The pa-
rameters determined for the best fit distributions are used in the simulations 
with the standard and HS models for the stock price. 

In 4 out of the 6 cases, the standard model performs relatively poorly. The ex-
ceptions are TRP with avg 19.3%M =  and VBF with avg 13.5%M = . For TRP 
this is expected since its returns are actually well fit by a normal distribution. 
VBF, on the other hand, is poorly fit by a normal distribution so its low avgM  is 
surprising. 

In all cases, except marginally PNW, simply substituting a fat-tailed distribu-
tion into the standard model results in a higher avgM  than the standard model. 
This, as we mentioned previously, is due to the large price swings inherent 
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Table 2. Comparison between simulated and observed price series for different models. 
The average MAPE (Equation (12)) generated from 100,000 simulated price series and 
the observed price series (see Figure 5) for various assets are given. ( )avg, 0NM  

represents the standard model (i.e., Equation (9) with 0λ =  and η  drawn from the 
normal distribution), ( )avg, 0STM  Equation (9) with 0λ =  and η  drawn from the 

Student’s T distribution, ( )avg, 0STM λ  the HS model with 0λ λ=  and η  drawn from 

the Student’s T distribution. The best fit parameters used for each distribution are given 
in Table 1. The minimum and maximum M are given in parenthesis. 

Stock 0λ  ( )avg, 0NM  ( )avg, 0STM  ( )avg, 0STM λ  

DJIA 0.000204 33.6 (3.3, 196.0) 42.4 (4.3, 118.2) 7.5 (2.7, 177.6) 

TRP 0.037544 19.3 (4.0, 155.3) 20.3 (4.2, 187.7) 11.9 (2.9, 38.7) 

PAGG 0.266817 34.4 (4.5, 271.2) 31.3 (5.4, 331.1) 8.0 (5.8, 17.1) 

VBF 0.1343201 13.5 (3.1, 94.4) 42.1 (4.7, 500699.3) 13.2 (2.6, 627.2) 

PNW 0.022735 20.5 (3.3, 166.1) 20.2 (3.8, 200.8) 13.3 (2.7, 48.2) 

HBCP 0.157830 19.4 (4.0, 144.0) 28.8 (5.2, 991.1) 19.1 (2.9, 270.8) 

 
in fat-tailed distributions, and is the motivation for this paper. 

Finally in all 6 cases, the HS model performs better than the standard model at 
predicting future stock prices. The most surprising result here is that for VBF 
the HS model ( avg 13.2%M = ) outperforms the standard model ( avg 13.5%M = ) 
by only a slight margin. This is unexpected since VBF returns are fit much better 
by a fat ( 1.69ν = ) Student’s T distribution. A clue may lie in the exceptionally 
high maximum M score for VBF (~600%) indicating that large price fluctuations 
are still present. This, however, is not nearly as large as the maximum M score of 
~500,000% for a Student’s T distribution in the standard model without satura-
tion. This may signal a limitation of the HS model in that although the addition 
of the saturation parameter, λ , reduces the effects of large price swings for 
fat-tailed distributions, it does not eliminate them altogether. This limitation is 
most pronounced for exceptionally fat-tailed distributions where the probability 
of large returns is likely. 

Figure 4 shows the distribution of 100,000 M values for each stock, with a bin 
width of 1%M =  for the standard and HS models. In all cases except HBCP, 
the HS model distribution is thinner and further left than the standard model. 
This implies that the HS model is more likely to match the observed stock price. 
VBF and HBCP have nearly overlapping distributions which is affirmed by their 
similar avgM  scores between the standard and HS models. Figure 5 shows ex-
ample price series for each stock taken from those that make up the peak bin of 
the distribution in Figure 4. This gives an indication of how well each model 
may be expected to perform. 

 

 

1 ( )avg, 0STM λ  does not yield a minimum value for the VBF data. This is because the low ν  para-
meter for VBF ensures that extreme price swings are realized even when the saturation parameter is 
large (see text). Essentially λ = ∞ , a straight line, gives the lowest average. The minimum M was 
used in the optimization to find 0λ  for this case only. 
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Figure 4. Distribution of MAPE scores using both the standard and HS model for six dif-
ferent assets. In all cases, except HBCP, the HS model has a narrower distribution with a 
lower peak MAPE score. 
 

 
Figure 5. Examples of price series using both the standard and HS model. The price se-
ries for each model was chosen randomly from those that make up the peak bin (MAPE 
score given in parentheses) of their respective distributions shown in Figure 4. The ob-
served price series for each asset is shown in black. 

4. Conclusions 

The standard model, Equation (1), is the most popular model for stock price 
behaviour. It has wide reaching influence, most notably in the development of 
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the Black-Scholes formula for option pricing ([1], e.g.). A primary assumption of 
the standard model is that daily stock returns follow a normal distribution; an 
assumption unfounded in the actual market. Fat-tailed distributions fit the re-
turns much better, but when the support for the fat-tailed distributions is as-
sumed to be [ ],−∞ +∞  and these fat-tailed distributions are used in the stan-
dard model, the standard model allows for extreme (infinite) price swings that 
are not observed. In this paper we have developed a model for stock price beha-
viour that adequately allows for fat-tailed distributions with support of 
[ ],−∞ +∞ . Using data from the DJIA and five random stocks from the NYSE and 
NASDAQ exchanges, we have shown/reaffirmed: 

• Daily stock returns are indeed better fitted by a fat-tailed distribution (Stu-
dent’s T in this case) than by a normal (Gaussian) distribution. 

• The standard model, in most cases, performs poorly when predicting future 
stock prices. 

• Fat-tailed distributions, when substituted directly into the standard model 
( 0λ = ), perform poorly when predicting future stock prices. 

• A non-zero saturation parameter, λ , when added to the standard model is 
able to effectively suppress large price swings inherent in fat-tailed distributions 
for daily returns. λ  represents the fraction of money removed from the reser-
voir due to the purchase of the stock. In the standard model 0λ =  which im-
plies an infinite amount of money available for the purchase of the stock. 

• The HS model ( 0λ ≠ ) developed in this paper is able to incorporate 
fat-tailed distributed returns, and consistently outperforms the standard model 
when predicting future stock prices. 

We have shown that a model for stock price behaviour using fat-tailed distri-
butions with support as large as [ ],−∞ +∞  for daily returns is attainable. This 
model is realistic in that it allows for a finite supply of money to be saturated by 
the net rate of transactions and does not require truncation or capping [8] [9] 
[13] [14], or modification of the distribution of returns [10] [11] [12] to avoid 
very large and unobserved stock prices. This homogeneously saturated model, 
which borrows from laser physics [15], will have widely spread repercussions, 
most importantly for the Black-Scholes formula for option pricing, which will be 
investigated in future work. The homogeneously saturated (HS) model requires 
that a value for the saturation parameter λ , which is defined in Equation (9), 
must be estimated from historical data or assumed. The HS model ascribes fluc-
tuations in the price of a stock to fluctuations in the amount of money available 
to invest in the stock. 
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Appendix A: Student’s T Distribution 

A Student’s T distribution is a fat-tailed distribution with a probability density 
function 

( ) ( )
1

2 2

2

1
1 2 1
π

2

t
f t

νν
µ

ν νββ ν

+
−

+ Γ   −   = +
    Γ 

 

           (A.1) 

where Γ  is the gamma function, µ  is the mean, β  is the scale parameter, 
and ν  is the shape parameter. Figure A1 shows the effect of varying ν  (left 
panel) and β  (right panel). The standard deviation of Equation (A.1) is  

2
ν

σ β
ν

=
−

 for 2ν > . 

Appendix B: Additivity of Solutions 

We wish to show that solutions ( )S ⋅  to the differential Equation (9) have the 
property ( ) ( ) ( )11 1tS t S t S ++ = + . 

Add a second argument to ( )S t  and ( )w t  to indicate the time origin: 

( ) ( ), d
b

a
w a b η ξ ξ= ∫                     (B.1) 

and 

( ) ( ) ( )

( ) ( )( )( )
,, e

, .
exp , ,

w a bS a a
S a b

S a b S a aλ
=

−
            (B.2) 

( ),S a a  equals ( )S a  and is the value of S at a. ( ),S a b  is the value of 

( ) t b
S t

=
 given the initial value at t a=  was ( ) aS a S= . 

 

 
Figure A1. Effect of varying ν  (left panel, 1β = , 0µ = ) and β  (right panel, 1ν = , 

0µ = ) on the Student’s T distribution (Equation (A.1)). ν = ∞  corresponds to the 
normal distribution. 
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Start with ( ) ( ), ,S a b S b c+  and use Equation (B.2) to simplify:  

( ) ( ), ,S a b S b c+                      (B.3) 
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But ( ),bS S a b= , by definition, since bS  is the value of ( )S t  at time t b= , 
a b c< < , given that the initial value for the time series is aS . Then, 

( ) ( ), ,S a b S b c+                      (B.9) 
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or 
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          (B.11) 

( ),S b c  is the value of ( ) t c
S t

=
 given a value of bS  at time t b= . The  

interim value b does not appear in Equation (B.11). If one replaces ( ),S b c  in 
Equation (B.11) with ( ), cS a c S= , since the initial value for the time series is 

aS , then one has 

( ) ( ) ( )
( )

( )( )
,e

, , , .
exp

w a c
a

c
c a

SS a b S b c S a c S
S Sλ

+ = = =
−
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This completes the demonstration and illustrates a useful property of the ho-
mogeneously saturated solution. It is possible to simulate a time series by adding 
increments to the series or by solving for the value over the full time interval. If 
one chooses to add increments, then one must be careful to use the appropriate 
initial condition for the increment. This appropriate initial condition is the value 
just before the increment starts. 
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