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Abstract 
Liberalization of electricity markets has increasingly created the need for un-
derstanding the volatility and correlation structure between electricity, finan-
cial and energy commodity markets. This work reveals the existence of struc-
tural changes in correlation patterns among these markets and links the 
changes to both fundamentals and regulatory conditions prevailing in the 
markets, as well as the current European financial crisis. We apply a Dynamic 
Conditional Correlation (DCC) GARCH model to a set of market’s funda-
mental variables, related commodity markets and Greece’s financial market 
and microeconomic indexes to study their interaction. Emphasis is given on 
the period of severe financial crisis of the Country to understand “contagion” 
and volatility spillover between these markets. This approach enables us to 
capture the changing co-movement of assets within and between markets (fi-
nancial, commodity, electricity) as market conditions change. The main re-
sults are that there is strong evidence of volatility spillover (or co-volatility) 
between financial and commodity market, while the Greek electricity market 
seems to be almost “isolated” from these two markets. 
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1. Introduction 

In the financial and Commodity markets, conditional volatility models have 
found an extensive application. However the studies focusing on modeling the 
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spillover of price conditional volatility between financial, energy (commodity) 
and wholesale electricity markets in Europe are very few. We provide first a brief 
literature review. 

The transmission of price volatilities between two natural gas markets, the 
British and Belgium ones, is investigated by Bermejo-Apricio et al., (2008) [1]. 
They applied GARCH (1,1) and EGARCH (1,1) for the univariate case and a 
DCC and BEKK (named after Baba, Engle, Kraft and Kroner, Engle, R. F. et al. 
1995 [2]) for the bivariate case, on deseasonalized daily prices of National Ba-
lancing Point (NBP) and Zeebrugge Hubs. They took also into consideration the 
Interconnector gas pipeline’s used capacity as an exogenous variable for the 
conditional variance. Their study has shown the existence of an inverse leverage 
effect for the Zeebrugge and NBP prices i.e. large price increases (positive shock) 
increase the conditional volatility more than large price drops (negative shock). 
The main conclusion in their paper is that the Interconnector gas pipeline im-
pacts strongly the conditional variance of NBP and Zeebrugge, resulting in an 
increase of the volatility linkage between the two markets when 50% or more of 
the pipeline’s total capacity is used. 

The interaction between gas spot prices at Zeebrugge, one month-ahead Brent 
Oil Prices and temperature, for period 2000-2005, is examined in the work of 
Regnard and Zokoian (2011) [3]. They used a Vector Error Correction Model 
(VECM) to investigate the joint dynamics of the three variables and found (us-
ing Johansen’s approach) evidence of a cointegrating linkage between the three 
variables. Also, using an asymmetric Constant Conditional Correlation (A-CCC) 
model and multivariate GARCH have shown that volatilities of the three series 
are dependent on their own lagged volatilities. They found significant cross-effects 
in the conditional correlation matrix. They also examine the influence of 3 dif-
ferent temperature regimes on the conditional variance (low temperature regime 
positive shocks increase the conditional variance, while the Zeebrugge price’s 
volatility is increased due to negative shocks originating from high temperature 
regime).  

The interaction between Brent Oil and NBP spot price returns is estimated by 
Asche et al. (2009) [4], conducting a multivariate GARCH and a BEEK model. 
They show that prior to 2003 (a year corresponding to a breakdown), there is 
not any impact of shocks occurred in the oil (gas) market on the conditional va-
riance of gas (oil). They argue that a possible explanation of the impacts of oil 
price shocks on the volatility of gas prices is the small or limited available capac-
ity of the European gas market infrastructure as well as the enhanced levels of 
maturity and liquidity of the European NG spot market. 

The volatility spillovers between the CO2, Brent Oil and gas markets in Eu-
rope, is the main theme of the paper by Chevallier (2012) [5] and Mansa-
net-Bataller and Soriano (2009) [6]. In both studies, data of CO2 price series dai-
ly futures for the December 2008 contract are used. Daily NYMEX Crude Oil 
futures and Zeebrugge next month contract prices are used in Chevallier (2012) 
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[5] paper, while front month prices for Brent Oil and Natural Gas (NG) are used 
in the Mansanet-Bataller-Soriano’s (2009) [6] paper. Trivariate multivariate 
GARCH models, namely the CCC, DCC and the BEEK model were used to 
“capture” the volatility spillovers in Chevallier’s (2012) [5] work, while a BEEK 
model is used in the case of the other paper. The DCC model used in Cheval-
lier’s work shows that the conditional correlation between Oil and NG is from 
−0.3 to 0.3 and for NG and CO2 is from −0.2 to over 0.1.  

Commodity prices i.e. gas, oil, coal as well as electricity have a strong effect in 
the determination of Carbon prices, in Phase I of the EU ETS, as shown in the 
papers of Mansanet-Bataller et al. (2011) [7], Alberola et al. (2008) [8], and Hin-
termann (2010) [9]. Positive impact on EUA prices is shown to have gas and oil 
prices. However, the positive impact of Oil prices is ambiguous because this in-
fluence may be also attributed to fuel switching effect, to the correlation be-
tween oil price and overall macroeconomic conditions or to the Oil-gas price 
correlation (Rickels et al., 2010) [10]. These above interdependencies are shown 
in the following simple “causal map” (Figure 1). 

Yearly compliance events combined with Regulatory (institutional) and the 
macroeconomic uncertainties in EUA market have a strong influence on dy-
namic development of EUA price volatility (Chevallier, 2011a) [11]. In the same 
work, no evidence was found on the effect of the financial crisis in 2008 on the 
Carbon price volatility.   

Bredin and Muckley (2011) [12], using a cointegration approach, have found 
an equilibrium linkage (in a new price regime in Phase II) between Carbon fu-
tures prices and Energy prices. The main conclusion from this work is that in  
 

 
Figure 1. A simple “causal map” showing the main factors affecting Carbon 
price. 
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Phase II the Carbon-energy Co-movement is reinforced, in parallel with a 
structural increase in correlation patterns. 

Another group of literature is concentrated on the mutual interactions be-
tween Carbon and Energy market, considering the bi-directional influence. By 
using a cointegrated VAR method, Bunn and Fezzi (2009) [13] report that gas 
price affects the EUA price and both jointly affect the equilibrium price of elec-
tricity in the UK market. In opposite direction are the results of Nazifi and Mi-
lunovich (2010) [14]. They instead found just short-run linkages (s.r.l) between 
Carbon and Oil, Carbon and gas, and electricity and Carbon, and no long-run 
relationship between Carbon, energy and electricity prices (shown in Figure 2). 

Granger causality tests were performed by Keppler and Mansanet-Bataller 
(2010) [15], and found that during Phase II, electricity prices Granger cause 
Carbon prices. 

Volatility spillover between Carbon and Energy was examined by Mansa-
net-Bataller and Soriano (2009) [6] using a BEKK-GARCH model. They found 
that Carbon volatility is directly and indirectly (via covariance) affected by the 
Oil and natural gas volatility. Carbon volatility is also affected by shocks com-
ing from Carbon and Oil markets. 

Moreover, Koch, N. (2014) [16] has studied the dynamic linkages among 
Carbon (European Union Allowances, EUA), Commodity (Energy) and finan-
cial markets using the Smooth Transition Conditional Correlation (STCC) ap-
proach, an extension of DCC model. He calls Oil, gas, coal, electricity, stocks and 
bonds as accepted fundamentals. He used time as transition variable to allow 
for structural breaks related to institutional changes in the European Union 
Emissions Trading System (EU ETS). His main conclusion is that correlation 
depends on market uncertain conditions, reflecting the connection between 
Carbon and Financial markets due to common macroeconomic shocks hap-
pened over the 2008/09 financial crisis. 

The linkage between EUA and Financial markets as described in Koch’s [16] 
work serves as a firm basis on which we build our work. The component 
“EUA-financial and electricity markets linkage” or more precisely the volatility 
spillover between eua-financial markets, is depicted in the following triplet 
“causal map” (Figure 3).  

 

 
Figure 2. Short run linkages (s.r.l.) between carbon price and natural gas, elec-
tricity and oil price. 
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Figure 3. Interdependence between the financial, energy and electricity 
markets. 

 
We share Koch’s [16] argument on the existence of correlation asymmetries 

due to time-varying market uncertain conditions and examine in our work here 
the influences of these conditions on the dynamic conditional correlations dur-
ing periods of calmness and turmoil in financial markets. This is of particular 
value in the case of Greece, a State hit heavily by two crisis, the financial one 
2008-2009 and the Greek Debt (Sovereignty) crisis started in late 2010.  

We must note that in this study, we refer as “financial crisis” to the Subprime 
mortgage crisis, which spans from 2008 to late 2009 in our sample, and as 
“Greek debt crisis” to the European sovereign debt crisis of late 2009.  

The rest of the paper is organized as follows. In Section 2 we describe the ma-
croeconomic risk factors and stretch the significance of volatility spillover or 
co-movement, between 3 different markets: financial, energy commodity and 
Power (electricity) markets. The used data sets and a short description of the 
Greek electricity market and financial market are given in Section 3. Section 4 
provides all necessary information on the methodology (DCC, CCC etc) used in 
this work and finally the empirical findings are presented in Section 5 followed 
by Conclusions in Section 6. 

2. Macroeconomic Risk Factors and the Significance of  
Volatility Spillover or Co-Movement 

The importance of macroeconomic risk factors in shaping the expectations of 
the equity, bond and commodity markets, has been “stressed” by Fama and 
French (1989) [17] and Sadorsky (2002) [18]. These factors are assumed in this 
work to influence Carbon, Energy and Electricity markets (Chevalier, 2009) [19]. 
Thus, we expect the EUA price to fall if there is a prospective economic 
slow-down, indicated by the macroeconomic indicators. This is a rational ex-
pectation since adverse business conditions lower aggregated demand and thus 
reduce the demand for electricity (load), the generation output, the demand for 
coal and as a consequence the demand for EUA. The two stock indices Athens 
Stock Exchange (ASE), Euro stoxx 50 and vstoxx (for volatility) are considered, 
as well as the 10-year Greek Government Bonds as measures for macroeconomic 
and financial risks in Greece and Europe respectively (please refer to section 3 
for a more detailed description). The stock indices measure the development of 
the financial markets and are used to predict the fluctuations of the general eco-
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nomic “climate”. 

2.1. The Importance of Input Fuel Prices Volatilities and  
Their Co-Movement with EUA 

The operational behavior that links fuel and EUA is the generator’s fuel-switching. 
This is so because a higher gas (coal) price ends up to a higher (lower) eua: 

ngasUK then eua
      coal then eua

↑ ↑

↑ ↑
 

This observation is a good theoretical basis for explaining the co-movement or 
the Dynamic Conditional Correlation between input fuel prices and eua. A pro-
ducer of electric power uses hydrocarbon fuels and eua as production inputs, so 
he depends on these “assets”. This situation is not the same as in a financial 
market in which a portfolio manager can diversify his assets portfolio by altering 
the (percentage) share of the assets, in order to protect the value of the portfolio 
from price changes (hedging). The power producer is exposed to changes in 
prices in electricity, energy (commodity) and EUA markets. Therefore, the 
risk-averse Power Plant Owner (producer) has to operate in forward (futures) 
markets for hedging his profits against the risk of unpredictable and unfavorable 
price volatility. In other words he tries to lock in a given profit based on a given 
(assumed) marginal generation cost.   

However, the key variables in a futures market are the price volatility of an 
“asset” (input fuel, eua etc.) and its co-movement with other relevant asset’s 
price. This co-movement is measured by its conditional covariance or correla-
tion price volatility is usually expressed as conditional variance. 

Following Koening, P. (2011) [20], in order to realize how a Power Producer 
is exposed to eua and fuel price co-movements, we recall the marginal genera-
tion Cost MCi, in €/GJe of generating a given unit of power, by using as input 
fuel i: 

i i
i

i i

FC EFMC EC
n n

= +                        (1) 

where iFC  is the fuel cost in €/GJ, in  is the power plant net thermal efficiency 
in GJe/GJ (GJe is the power output in gigajoule of electricity, GJ the power input 
in gigajoule of fuel), iEF  the Green House Gas (GHG) emission factor in kg 
CO2/GJ and EC is the GHG emission cost in €/kg CO2. Equation (1) is actually a 
simplification and iMC  is primarily estimated by the variable costs of fuel 
and CO2.  

The variance of iMC  is given by (Koening, P., 2011) [20] 
2

2 2 2
,2 2

1 12
i i i i

i i
MC FC EC FC EC FC EC

i ii i

EF EF
n nn n

σ σ σ ρ σ σ= + +           (2) 

where ,iFC ECρ  is the correlation of input fuels and eua and 2
iσ  are variances. 

Equation (2) is a risk measure, related to iMC . In this paper will show that the 
pairwise correlations between electricity, fuel and eua are time-varying and also 
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will examine how the volatility in Energy commodity markets in combination 
with volatility in financial markets affect the above conditional correlations. 

2.2. The Correlation of Carbon Emission Allowances (Eua) with  
Other Commodity Prices (NgasUK, Brent, Coal or Lignite)  

The optimal merit order of power generation is affected by changes in the rela-
tive price of input fuels. These changes ultimately result in a fuel-switch, by the 
power generator which tries to maximize its profit. Fuel-switching is not an ob-
servable operational variable and has to be inferred from changes occurred in 
the relative marginal costs. 

From the above we conclude that the unobserved fuel-switching behavior by 
generators is the main factor of “producing” the correlation between input fuels 
(brent, ngasUK) and carbon emission allowances (eua). The empirical Carbon 
price moves between two extreme values, the upper bound theoretical switch 
price SPu defined as the price of CO2 above which natural gas is the preferred 
input fuel (technology), no matter what the thermal characteristics of the gener-
ation mix (or plant portfolio) (Koening, P., 2011) [20]. uSP  is given by  

E I
coal gas gas coal

u I E E I
gas coal coal gas

n FC n FC
SP

n EF n EF
−

=
−

                     (3) 

where E
coaln  and E

coalEF  are the thermal efficiency and emission factor of the 
most efficient coal fired power plant in a Country’s generation mix (plant 
portfolio). The thermal efficiency and emission factor of the most inefficient 
gas fired power plant are I

gasn , I
gasEF  respectively. Therefore, if the price of 

carbon increases then it will motivate generators to switch input fuels from 
Coal (Lignite) to gas. As soon as CO2 price has attained SPu, even generators 
that have a choice between the most inefficient gas and most efficient Coal 
plant, will have, at the end, to “move” to natural gas generation. So, there is no 
other technology feasible generation mix which prefers coal over gas genera-
tion. An electricity producer, a profit maximizing “rational” market player, will 
switch generation from using Coal (lignite) to using natural gas, just in the case 
of the empirical emission price exceeds the SPu. 

The lower bound theoretical switch price, SPl, is the price of Carbon below 
which Coal is the preferred input fuel, irrespective of the thermal characteristics 
of the generation mix (Koening, P., 2011) [20]. 

I E
coal gas gas coal

l E I I E
gas coal coal gas

n FC n FC
SP

n EF n EF
−

=
−

                     (4) 

where ,I I
coal coaln EF  the thermal efficiency and emission factor, respectively, of 

the most inefficient coal fired plant in a Country’s generation mix. E
gasn  and 

E
gasEF  are the thermal efficiency and emission factor, respectively, of the most 

efficient natural gas fired plant in the Country’s generation mix. 
Thus, if the Carbon price decreases it will give the motivation to generator to 

switch input fuels from natural gas to Coal power generation. When carbon 
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price reaches SPl, all generation “players” will have to switch to Coal, even 
though they have the choice between the most inefficient Coal and the most ef-
ficient natural gas plant. 

From the above, the main conclusion is that a higher share of Coal production 
(Lignite in the case of Greece), rationally, will increase the demand for Carbon 
emission allowances (eua) and its price will go upwards again. 

Combining all the above the empirically observed EUA (eua time series) is 
expected to move between the two time-varying extreme values, SPl and SPu. 
From the definitions given by (3) and (4), two correlation regimes are possible 
between eua and other commodities (ngasUK, Brent, Coal, Lignite). The first is 
when eua (empirical carbon price) either exceeds SPu or falls below SPl, a situa-
tion referred as Static merit order. In this case either natural gas or Coal is 
clearly the preferred input fuels and small changes in their prices do not change 
the merit order. In this case there is no financial motivation to switch input fu-
els, which results in an unchanged demand for eua and eua therefore fuel prices 
are decoupled. The second correlation regime is when eua is between SPl and 
SPu. 

Here we have a mixed merit order in which there is no clear ranking of the 
input fuels in the merit order and the crucial now factor in choosing one of the 
two fuels is their thermal efficiencies. This is a situation where small fuel price 
changes have a strong influence in the merit order, which in turn result in 
changes of demand for eua. This fuel and eua prices are coupled (or co-move). 
The coupling and decoupling of eua and fuel prices have been studied in depth 
by Koening P. (Koening, P., 2011 [20]). A very important conclusion from his 
work is that if in a period t the relative forward (futures) fuel and eua prices are 
in such levels that make a constant merit order, then these prices are decoupled, 
exhibiting a low correlation. The above situation calls for an alternative hedging 
strategy for securing a profit one month ahead, in comparison with a situation 
with coupled prices and strong correlation. 

In theory, the equilibrium allowance price is equal to the marginal abatement 
costs incurred to reduce one ton of pollutant (Springer, 2003) [21]. The papers 
by Rubin (1996) [22] and Tietenber (2006) [23] describe the theoretical basis of 
deterministic equilibrium models and the solution, in a cap-and-trade frame-
work, of the firm’s pollution cost optimization problem. Thus, the participants 
of the market take only these measures whose costs are less than or equal to the 
EUA price. The theoretical justification of linking Carbon and Commodity 
(Energy) markets lies in the difficulty to find proxies for the emission abatement 
costs of a firm and their availability. 

A rational abatement method is the fuel switching (Delarue, E. et al., 2008) 
[24]. This method allows the power producers to abate emissions without re-
ducing the output or making new Power plants and also take advantage of the 
fact that within EU ETS market the dominant player are the Power firms 
(representing almost 70% of the total allowances, Trotignon and Delbose, 2008 
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[25]. Therefore, it is expected that input fuel prices and Carbon prices must be 
correlated, according to the requirement of an efficient market. 

2.3. The Interaction of Financial and EUA Markets 

Koch, N. (2014) [16] has found that EUA and financial markets are not isolated. 
Rather, financial market conditions impact strongly the correlations and the 
vstoxx index serves as an informative state variable reflecting the risk of “genet-
ic” financial turmoils related to extreme events in the stock markets. According 
to Koch, N. (2014) [16], the correlation between EUA Stock and Bonds (eua, ase, 
gbonds in our case) is expected to be strongly affected by an expected high vola-
tility. The correlation fluctuates upwards (downwards) with peaks reverting 
around the collapse of Lehman Brother. He also found an impressive commo-
nality in the EUA-Brent and EUA-Stock time-varying linkages, indicating that 
the positive impact of Brent Oil is possibly due to the interaction of Brent Oil 
prices and the overall macroeconomic situation and not due to the fuel switch-
ing (see below) or Oil-Natural gas correlation. 

It is well known that macroeconomic conditions (economic growth) affect 
heavily both EUA and financial markets. An increased demand and raised in-
dustrial production is the result of high economic activity, which in turn in-
creases Carbon emissions therefore increases EUA (Ellerman and Buchner, 
2008) [26]. Alberola et al. (2009) [27] provide evidence of a moderate effect of 
Industrial production on EUA prices. Considering the Stock index as a “physi-
cal” economic indicator, Hintermann (2010) [9] has found no significant influ-
ence of Stock Index on EUA prices in Phase I of the EU ETS, while Bonacina et 
al. (2009) [28] confirm that there is a correlation between EUA prices and Euro 
Stoxx 50 (stoxx) in the first trading year of Phase II. Chevallier (2009) [10] 
document that some particular economic factors like default spread, dividend 
yield or short-term interest rate are weakly correlated with EUA price, although 
these factors have a good forecasting power in Stock, Bond and commodity 
markets. Such common influences on the EUA market are not evident as Bes-
sembinder and Chan (1992) [29] have also observed. Furthermore, Daskalakis et 
al. (2009) [30] provides strong evidence on significant negative unconditional 
correlations between EUA and Stock markets during 2005-2007. On the oppo-
site, Gronwald et al. (2011) [31] provide a strong positive Carbon-Stock markets 
dependence, which is higher for Brent Oil and Natural gas, by using Copula 
analysis. The impact of financial market turmoil on EUA market correlation 
with Stock price indices is assessed in the paper by Kanamura (2010) [32]. A 
multivariate correlation model was applied and provided evidence of an in-
creased correlation in times of stock market plunge, called also contagion. The 
paper also suggests a reduction in correlation during the oversupply event, oc-
curred in April 2006. 

Carbon and Financial Markets  
The Carbon market, therefore, can be characterized as a peculiar market, not in-
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fluenced heavily be macroeconomic variables, and that the supply and demand 
of allowances is the main mechanism setting the equilibrium prices. 

On the other hand, Borak et al. (2006) [33], Benz and Truck (2006) [34] con-
sider Carbon as a “new” input production variable that increases the cost of 
generation therefore exerting pressure and uncertainties on the profits thus on 
the Stock market as well. They argue that EUA and Stock exhibit an indirect 
correlation. 

The Stock market effect of the EU ETS is examined also by Veith et al. (2009) 
[35] and surprisingly they identified a positive correlation between EUA prices 
and Stock price returns of “big” European Utilities. 

The way with which the inclusion of EUAs in an assets portfolio improves the 
investment opportunity is examined by Mansanet-Bataller (2011) [7] in which 
he finds that the opportunity set does not vary with the inclusion of Phase II 
EUAs, a result opposed to the one found by Chevallier, J. (2009b) [36]. It is 
shown, furthermore, in the above two latter papers that EUA returns are slightly 
negative and statistically non-significantly correlated with fixed-income securi-
ties (like Government Bonds). This result in combination with Koch, N. (2014) 
[16] results is our motivation to include the Greek Government Bonds in this 
study, using a DCC model as opposed to the CCC models used in Mansa-
net-Bataller and Chevallier papers. 

2.4. The Interaction between CO2 and Electricity Prices 

Low electricity prices encourage higher electricity consumption, resulting in 
higher CO2 emissions. Therefore the demand for allowances may increase in 
case electricity utilities are not in compliance with their initial allocation, a fact 
that in turn exerts strong pressure of the EUA markets. A further consequence is 
that the increase in CO2 prices and generation costs may increase electricity 
prices creating the need for a demand adjustment, which of course implies some 
level of price elasticity. 

Observed power and CO2 prices are influenced also by fuel prices. If the prices 
of natural gas are increased then there is a strong incentive for generating 
base-load electricity by using more Coal—or Lignite fired-Plants, driving up, in 
turn, the demand for CO2 allowances. It is worth to mention here that Coal-fired 
generating units emit almost twice as much CO2 as natural gas generating units. 
If the situation just described is sustained and the supply of allowances is not 
adequate, CO2 prices may increase at a level that result in a fuel switch i.e. natu-
ral gas, a cleaner fuel. This “cause and effect” relationship has predicted a lot of 
the early CO2 price volatility due to the switching from Coal (Lignite) to gas. 
Using the cointegration approach, Bunn and Fezzi (2007) [13] have analyzed 
the impact of EU ETS on electricity and gas prices. 

3. The Data Sets 

In this paper we consider daily data covering the period for April, 2008 to March 
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2014, a total of 2160 observations. The analysis period is divided into 2 periods: 
a) the Subprime Crisis period (from April 2008 until the end of 2009) and b) 
the Greek Government Debt Crisis (early 2010 until April 4, 2011). The two 
periods correspond to the two shaded areas in the DCC plots (Section 5.2). The 
chosen sampling frequency produce sufficient number of data required to 
measure the dynamics of correlations which may vary due to periods of financial 
turmoil of differing durations. The price data are denominated in the local cur-
rency of each market. To enhance our choice of data frequency, we point out 
that from an EU ETS participant point of view, caring for his risk management, 
high frequency (here daily) correlations are more useful that long-term correla-
tions. The data sets are obtained from various resources, Athens Stock Exchange 
(ASE), Independent Power Transmission Operator (IPTO), Intercontinental 
Exchange (ICE) Futures Europe, Energy Information Administration (EIA) and 
Bloomberg. 

3.1. The Carbon Market and the EUA Data 

The three phases of the EU ETS, corresponding to the three compliance periods 
are Phase I: 2005-2007, Phase II: 2008-2012 and Phase III: 2013-2020. The pilot 
period of the EU ETS is the well-known to market participants Phase I. The Na-
tional Allocation Plans (NAPs) determine the overall emission cap for Phase I 
and Phase II. Each member state determines its NAP, defining actually the total 
permits and the allocation mode. NAPs are approved by European Commission 
(EC), which settles the overall cap. Because neither borrowing nor banking of 
EUA (EU Allowances) were allowed between Phase I and Phase II, the price for 
EUAs (series eua in this paper) issued for Phase I collapsed. The first informa-
tion regarding the actual EUAs released in April 2006, however the market par-
ticipants considered that the total emission cap for Phase I was not restrictive. 
Phases II and III are linked by banking, where the transactions of spare EUAs 
enlarges the time period considered by the agents when they shape their expec-
tations about the overall shortage of EUAs. The Banking involvement reduces, 
therefore, the risk of an extreme collapse of the EUA price. But, if shocks happen 
they still can generate strong price and volatility fluctuations. Highly efficient 
EUA spot and derivative markets have evolved since 2005 and the most liquid 
derivative market is the European Climate Exchange (ICE/ECX, London), where 
90% of the futures contracts are traded. 

Description of the Data 
Daily settlement prices of EUA futures contracts (€/ton) traded on the ICE ECX 
are used to form a continuous price time series that combines a number of con-
tracts expiring in Phase II and III (2008-2012 and 2013-2020), following the ap-
proach of Koch, N. (2014) [16]. We mention here that trading of EUA futures 
contracts started not until April 22, 2005. The price of the 2008 contract consti-
tutes the continuous carbon price time series during Phase I. This series changes 
to the December 2009 contract in Phase II, up to the last trading day, on which 
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day the series changes again into the next yearly contract. According to Koch 
(2014) [16] this method of constructing the continuous EUA series is unlikely to 
introduce a bias because the used futures contracts are not redeemable in Phase 
I. This choice in forming the EUA series is further enhanced by the fact that 
EUA are required only once a year, for the reason of compliance, so holding spot 
EUAs does not offer any advantage in comparison with holding a corresponding 
futures position (Daskalakis et al., 2009) [29]. Also, Koch (2014) [16] concludes 
that the EUA futures prices for Phase II can be considered as the reliable “real” 
price signal for investors. We have used EUA data, Phase II, obtained from ICE 
ECX market because this is the leading exchange (Mizrach and Otsubo, 2011) 
[37]. 

3.2. The Commodity (Energy) Data. Natural Gas Prices at NBP  
Hubs and the Greek Natural Gas “Market” 

We use daily spot price of Brent Oil traded in Euro/barrel. For natural gas his-
torical 1 month ahead futures prices, traded at the National Balancing Point 
NBP Hub UK, expressed in €/MWh, are considered, obtained from ICE. Since 
the late 1990s, UK NBP Hub gas market is Europe’s longest established whole-
sale (spot-traded) market in operation (Figure 4). This wholesale gas market is 
the most liquid one in Europe nowadays, alongside a number of newly estab-
lished Continental Europe hubs (e.g. Zeebrugge in Belgium and TTF in Nether-
lands) NBP is the acronym for National Balancing Point and gas anywhere in 
UK within the NGNTS (Natural Gas National Transmission System) counts as 
NBP gas. This Hub brings together buyers and sellers so the trading is greatly 
simplified. There is a variety of products: within-day (for same day delivery), 
day-ahead (for next day delivery), months, quarters, summers (April to September)  
 

 
Figure 4. EUA, Natural gas and brent oil, price time series. 
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and winters (October to March), as well as annual contracts.  
Normally, contracts at NBP Hub are in pence sterling per therm. In this paper 

we convert the prices of all the time series to Euro per megawatt-hour (€/MWh), 
the standard in Europe, allowing us for a better understanding of co-variations  
of prices. The appropriate conversion is 1 therm per 0.0293 MWh ICIS1, and the 
conversion of pence sterling to Euro is according to the daily exchange rate pub-
lished by the ECB (European Central Bank)2. 

There is no indigenous gas production in Greece and also there are no storage 
facilities (the LNG storage tanks are used exclusively for temporary LNG storage, 
the three entry points of natural gas to the National Natural Gas System 
(NNGS) of Greece are located at Sidirocastro, Greek Bulgarian pipeline, for the 
Russian gas, at Kipi, Greek-Turkish pipeline (BOTAS gas) and at the Revithous-
sa LNG terminal station. In Greece, the gas market is still organized on the basis 
of bilateral contracts between suppliers and eligible customers, so there is not 
any wholesale market yet. The Regulator (Regulatory Agency for Energy, RAE) 
of Greece published for the first time in 2011, the Weighted-Average Import 
Price (WAIP) of natural gas, on a monthly basis. This data on WAIP, consi-
dered together with the publication of data on daily prices of balancing gas, 
Daily Price of Balancing Gas (DPBG) or HTAE in Greek, on the Natural Gas 
TSO’s (DESFA) internet site, has greatly facilitate current and potential market 
participants in understanding the prevailing gas price dynamics. The Figure 5  
 

 
Figure 5. The monthly weighted average import prices of natural gas, the daily prices of 
balancing gas (HTAE) and SMP in the GEM. 

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
0

20

40

60

80

100

120

Time : Months

E
ur

o/
M

w
h

DESFA : Average monthly WAIP, DPBG and SMP Sep. 2008- Dec 2016

 

 
WAIP
SMP
HTAE

 

 

1https://s3-eu-west-1.amazonaws.com/cjp-rbi-icis-compliance/wp-content/uploads/2013/12/ESGM-
Methodology-23-September-2013.pdf 
2http://www.ecb.europa.eu/stats/exchange/eurofxref/html/eurofxref-graph-gbp.en.html. 
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shows the monthly average System Marginal Price (SMP) of Greek Electricity 
Market (GEM), WAIP against the daily HTAE price for the same month (the 
daily HTAE price is kept constant over the entire month considered). Data  
are published on RAE’s website3 and updated on a regular basis. 

However we emphasize that our modeling is based on National’s Balancing 
Point Spot prices as we have mentioned before, since (Figure 6) the average 
monthly dynamics of NGAS UK resembles DESFA’s dynamics for the period of 
interest (2008-2014). 

3.3. The Greek Wholesale or System Marginal Price 

Greece’s liberalized electricity market was established according to the European 
Directive 96/92/EC and consists of two separate markets: 1) the Wholesale 
Energy and Ancillary Services Market and 2) the Capacity Assurance Market. 
The Greek wholesale electricity market (GEM) is currently in a transitional pe-
riod, during which the market structure evolves towards its final design, namely 
the European Target Model. The wholesale electricity market is a day ahead 
mandatory pool which is subject to inter-zonal transmission constraints, unit 
technical constraints, reserve requirements, the interconnection Net Transfer 
Capacities (NTCs) and in general all system constraints. More specifically, based 
on forecasted demand, generators’ offers, suppliers’ bids, power stations’ availa-
bilities, unpriced or must-run production (e.g., hydro power mandatory genera-
tion, cogeneration and RES outputs), schedules for interconnection as well as a  
 

 
Figure 6. The average monthly DESFA and national balancing point price. 

 

 

3http://www.rae.gr/site/en_US/categories_new/gas/market/wholesale_gr.csp 
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number of transmission system’s and power station’s technical constraints, an 
optimization process is followed in order to dispatch the power plant with the 
lower cost, both for energy and ancillary services.  

LAGIE (the independent market operator) (http://www.lagie.gr/) is responsi-
ble for the solution of the so-called Day Ahead (optimization) problem. This 
problem is formulated as a security constrained unit commitment problem, and 
its solution is considered to be the optimum state of the system at which the so-
cial welfare is maximized for all 24 h of the next day simultaneously. This is 
possible through matching the energy to be absorbed with the energy injected 
into the system, i.e., matching supply and demand (according to each unit’s sep-
arate offers). The DA solution, therefore, determines the way of operation of 
each unit for each hour (dispatch period) of the dispatch day as well as the 
clearing price of the DA market’s components (energy and reserves). 

More specifically in this pool, market “agents” participating in the Energy 
component of the day-ahead (DA) market submit offers (bids) on a daily basis. 
Producers and importers submit energy offers with the limitation that the 
weighted average of the offer should be above the unit Minimum Average Vari-
able Cost. On the contrary exporters and load representatives submit load dec-
larations. The bids are in the form of a 10-step stepwise monotonically increas-
ing (decreasing) function of pairs of prices (€/MWh) and quantities (MWh) for 
each of the 24 h period of the next day. A single price and quantity pair for each 
category of reserve energy (primary, secondary and tertiary) is also submitted by 
generators. Deadline for offer submission is at 12.00 pm (“gate” closure time). 

So, the DAS solution produces a 24 hour unit schedule and a unique price 
which is called the System’s Marginal Price (SMP). The Dispatch Scheduling 
(DS) is used to define the time period between Day Ahead Schedule (DAS) and 
Real Time Dispatch (RTD) where the producers have the chance to change their 
declarations whenever has been a problem regarding the availability of their 
units. In the RTD the units are re-dispatched in real time in order to meet the 
actual demand. Finally in the IS stage an Ex Post Imbalance Pricing (EXPIP) is 
produced after the dispatch day which is based on the actual demand and unit 
availability. The capacity assurance market is a procedure where each load rep-
resentative is assigned a capacity adequacy obligation and each producer issues 
capacity availability tickets for its net capacity. Actually this mechanism is facing 
any adequacies in capacity and is in place for the partial recovery of capital costs. 
The most expensive unit dispatched determines the uniform pricing in the 
day-ahead market. In case of congestion problems and as a motive for driving 
new capacity investment, zonal pricing is a solution, but at the moment this ap-
proach has not been activated. Physical delivery transactions are bounded within 
the pool although market agents may be entering into bilateral financial con-
tracts that are not currently in existence. The offers of the generators are capped 
by an upper price level of 150 €/MWh. Physical Transmission Rights (PTR) are 
explicitly allocated via auctions.  
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Not only the fundamentals but also the various Regulatory Market Reforms 
(RMRs), “imposed” by the Greek Regulatory for Energy (RAE), have a signifi-
cant impact on the volatilities of energy and electric prices (RAE, 2009 to 2014 
[38]), Kalantzis et al., 2012 [39]). The reforms took place on specific 
dates—milestones or Reference Days. The term Reference Day refers to the day 
that these reforms became active in the GEM. We describe here only the reforms 
made within the period of our analysis in this paper: 

4th Reference Day (1.5.2008) (RMR5). Cost Recovery Mechanism, CRM, 
was considered by the Regulator a necessary step until the Imbalance Settle-
ment Mechanism, ISM (scheduled for the 5th Reference Day). CRM states that 
if the SMP is lower than the marginal cost of generating Unit (plus 10%), then 
the Unit will receive the difference as a compensation. The Regulator expected 
that this Reform would have no effect on SMP. CRM was aiming to ensure that 
generators will be compensated at least their marginal cost, in case they were 
ordered to operate. The Cost Recovery Mechanism was abolished on 30th June 
2014. 

RMR6. Regulatory Market Reform, RMR6 (RAE’s Decision 1.1.2009), fo-
cused on the change of the ex-post SMP calculation methodology according to 
the unit commitment algorithm that considers all technical constraints of the 
units and the reserve requirements of the IPTO (ADMIE) expecting to lead to 
lower SMPs.   

5th Reference Day (30.9.2010) (RMR7). Regulatory Market Reform, 
RMR7, initiated the mandatory day-ahead market model and introduced the 
Imbalances Settlement Mechanism retaining at the same time the SMP metho-
dology allowing only the submission of demand declarations. RMR7 is referred 
to the adoption of an enhanced Unit commitment algorithm which co-optimizes 
energy as well as ancillary services. In this new mandatory, Day-Ahead market  
model incorporating, at the same time, an Imbalance settlement mechanism4, 
market clearance is now based on the non-priced demand declarations. Taking 
into account that the methodology for estimating SMP retained the same and the 
fact that usually the declared demands were underestimated, the effect of this 
reform expected to reduce SMP slightly. 

RMR8. Regulatory Market Reform, RMR8 (Ministry of Finance Decision 
1.9.2011), regards the decision of the Ministry of Finance (1.9.2011) to impose a 
new tax levy on natural gas, equal to 1.50 €/GJ (applied also to electricity genera-
tion). As SMP was set, for the majority of trading periods, by Natural Gas fired 
Units, the resulted increased generation cost was expected to increase SMP (see 
Section 6.1 for comments).  

RMR9. Regulatory Market Reform, RMR9 (1.7.2013), Abolition of the “Plus 
10% Rule”. This rule was embedded in Cost Recovery Mechanism (CRM) and 

 

 

4All imbalances—referring to the differences between the DAS (Day-Ahead-Schedule) and the real 
production or withdrawal of electricity—are settled through the Imbalance Settlement Mechanism. 
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allowed for a 10% increase of the boundary for generators to be compensated for 
generating costs. 

RMR10. Regulatory Market Reform, RMR10 (31.12.2013), Abolition of the 
“30% Rule”. The “30% Rule” allows generators to offer 30% of their plant’s ca-
pacity at a price below its minimum variable cost, as long as the total weighted 
average of their bids is still at or above their minimum variable cost. This caused 
the extended dispatch of gas plants, pushing the expenses on cost-recovery sig-
nificantly high. The regulator expected no changes on the SMP through this 
reform, it was imposed merely to improve the performance of the initial market 
design. 

Figure 7 depicts GEM’s spot price (SMP) as well as the demand for the period 
of interest between 2007 and 2014. 

3.4. The Financial Data 

We have used the Athens Stock Exchange General Index (ase), denominated 
in Euro. In order to “capture” the independence-interaction of the Greek Stock 
market with the European financial market, especially during the financial crisis 
period (focusing on the European sovereign debt crisis in 2010), we have consi-
dered also the EURO STOXX 50 price index, in Euro, which covers 50 blue-chip 
stock from 12 European countries (Austria, Belgium, Finland, France, Germany, 
Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal and Spain). We 
choose this particular index, following Koch (2014) [16], because it is the basis 
for the EURO STOXX 50 Volatility Index (vstoxx), reflecting the market expec-
tations of volatility. It measures the square root of implied variance over all  
 

 
Figure 7. The wholesale (day-ahead, system marginal price, smp) and the system-wide 
load (demand) in the Greek electricity market (GEM) 10-Sep-2007 to 07-Mar-2014. 
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EURO STOXX 50 options, for the next 30 days. Measuring the so-call investor’s 
fear in case that it is larger than 30 indicates a large amount of volatility, reflect-
ing the investor’s uncertainty or fear. 

For bond, we use the 10-year Greek Government bond index (gbonds) (a 
long-term index), instead of a short-term index, because monetary policy (espe-
cially during the Greek debt Crisis) is more likely to have a confounding impact 
on the later index. 

We include also in the financial data set the stock price of the dominant player 
in GEM, the incubator Public Power Corporation (PPC). We consider that by 
analyzing the dynamic evolution of this stock we “capture” the various effects of 
regulatory policy and fundamental changes, exerted by monetary (macroeco-
nomic) policies to fix the Greek Public Debt problem as well as European Energy 
Policies. Figure 8 shows the dynamics of the abovementioned indexes. 

Table 1 summarizes and groups financial data set and energy commodities 
data set.  

We have to mention here that for the purposes of this paper, we have included 
EUA into the group of Energy commodity assets, although there are arguments 
about this like the work of Kanamura (2010) [32] who argue that EUA is not a 
real commodity asset as those considered in the financial theory.  

4. Financial and Econometric Methodology 
4.1. Using a VAR Modelling the Conditional Mean 

The equation or model of the Conditional mean or first moment is to detect 
and eliminate any serial correlation in the returns of price data. For a sequence  
 

 
Figure 8. The financial data set’s “assets”, price (levels) time series for the period 
8-Apr-2008 to 07-Mar-2014. 
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Table 1. The data sets containing the variables employed in the DDC analysis 
(10-Sep-2007 to 07-Mar-2014). 

 Name Description 

Financial Data Set 

1 ase: Athens Stock Exchange General Index 

2 stoxx: European Stock 50 Index (Euro stoxx 50) 

3 vstoxx: European Stock 50 Volatility Index (vstoxx) 

4 ppc: Public Power Corporation (PPC) Stock price 

5 gbonds: Greek Government 10 year Bond yield 

Energy Commodities Data Set 

1 eua: 
European Union Allowance  

(EU Emissions Trading Scheme): €/tCO2 (Phase II) 

2 ngas: Natural gas price, NBP, UK €/MWh 

3 brent: Brent Oil price, €/bbl 

4 Lignite price: 
Lignite Fuel Cost of a “typical” Lignite-fired  

Power plant (€/MWh) 

Power (Electricity) Data Set 

1 smp: 
Greek Electricity Market wholesale or System  

Marginal Price (ex-ante) (€/MWh) 

2 load: Electricity load (Mw) (ex-post) 

 
of random variables { }tX  the conditional mean (or conditional expectation), 
given its past values is defined as: 1 2, , ,t t t jE X X X X− − −  

. As we will see in 
Section 5.1, by applying the Ljung-Box test statistics, there is strong evidence of 
significant serial correlation in the returns. Vector Autoregression (VAR) of lag 
order p is used in this paper to estimate the first moment. 

Let tr  symbolizes a 1k ×  vector of returns at time t, { },t i tr=r , where ,i tr  is 
the daily log returns, for 1, ,i k=  . The VAR(p) model is written as 
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where 0Φ  is a 1k ×  vector of constants, jΦ  k k×  matrix of coefficients and 

tε  a 1k ×  vector of residuals. The “optimum” lag length p of the VAR(p) can 
be found by minimizing the Akaike Information Criterion (AIC). The specifi-
cation then of the “best” model, based on AIC, is accepted if the residual “pass” 
successfully a number of diagnostic tests (e.g. checking for remaining serial cor-
relation). 

As an example, let 3k = , a trivariate model ( ), ,ase stoxx vstoxx ′=r  and let 
2p = , lags, then (A) becomes  
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Serially uncorrelated residuals are generated by a well-specified model for the 
first moment of the returns. However, heteroskedasticity (the time-varying va-
riance of the residuals) will remain in the returns, as it is frequently the case in 
Energy and financial markets. This feature and the excess kurtosis in the returns 
call for the GARCH-type estimation approach (Engle, 1982 [40], Bollerslev, 1986 
[41]). The GARCH model incorporates the heteroskedasticity characteristic of 
the data. The works of Chevallier et al. (2009) [10], Benz and Truck (2009) [42], 
Mansanet-Bataller and Soriano (2009) [6] refer to the application of this type of 
model in Carbon (EUA) and energy market time series.  

Let that the mean of a return time series follows an autoregressive of order p, 
AR(p), specification 

, , ,
1

p

i t o j i t j i t
j

r a a r ε−
=

= + +∑                       (6) 

where ,i tr  is the daily log returns of K time series for 1, ,i K=  , ,i tε  is the 
residual of series i  and oa  the drift term. 

Suppose that 1tF −  is the set of all available information about the process, up 
to the time 1t − , then the conditional variance of the residual ,i tε  is 2

,i tσ , so 

( )2
, 1 ,~ 0,i t t i tF Nε σ−  or , ,i t i t tnε σ=  where ( )~ 0,1tn NID . 
This ,i tε  residual is fitted in the GARCH-type models, described below, to 

capture the dynamics of the conditional variance. 
Let the evolution of the conditional variance in the generic univariate 

process for each asset, is written as 

[ ]2

1 1 1

QP O

p t p o t o t o q t q
p o q

I o
δ δ δ

δσ ω α ε γ ε ε β σ− − − −
= = =

= + + < +∑ ∑ ∑        (7) 

where δ  is either 1 for threshold ARCH also known as AVGARCH, ZARCH 
(Taylor, 1986 [43], Zakoian, 1994 [44]) or 2 for ARCH, GARCH or GJR-GARCH 
models (Glosten et al., 1993 [45]). In this paper we consider the case of 2δ =  
and particularly the case GJR-GARCH(P,O,Q). In fact, we fit our data in a 
GJR-GARCH(1,1,1) model, the dynamics of which is written as 

[ ]1

2 2 2 2
1 1 1 1 1 10tt t t tI εσ ω α ε γ ε β σ

−− − −<= + + +                 (8) 

where [ ]1 0t
I ε − <  is an indicator function that takes the value 1 if 1 0tε − <  and 0 

otherwise. This function takes care of the asymmetries of the impact on volatil-
ity the returns may have due to “good” or “bad” news. The parameters must be 
such that 0ω > , 1 0α ≥ , 1 0α γ+ ≥  and 1 0β ≥ , and for the covariance to be  
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stationary, 1 1 1
1 1
2

α γ β+ + <  (mean reverting model). In case 1 1 1α β+ =  we  

have an integrated model.  
In estimating ith  from univariate volatility models, the BIC Schwartz Infor-

mation Criterion is use to select suitable candidate models that capture the sty-
lized facts of the asset return. 

4.2. Constant Conditional Correlation (CCC) and Dynamic  
Conditional Correlation, DCC, Models 

A multivariate GARCH(P,O,Q) is a natural extension of the univariate model, 
and allows for the time-varying correlations between two series, in addition to 
their conditional variances. To generate a vector of residuals (hopefully serially 
uncorrelated) we could use a Vector Autoregression model, VAR(p), to model 
the mean of a 11 × 1 vector consisting of the members of the financial, energy 
and power group of data set, given in Table 1. The model produces the follow-
ing vector of residuals 

( ), , , , , , , , , , ,,, , , , , , , , , , ,t ase t stoxx t vstoxx t ppc t gbonds t eua t ngas t brent t smp t lignite t load tε ε ε ε ε ε ε ε ε ε ε ′=ε  

We also suppose that the underlying distribution of returns follows a condi-
tional multivariate normal process, therefore we can write ( )1 ~ ,t t tF N H−ε 0 , 
where 1tF −  is a filtration i.e. an information set about the time series up to the 
time step 1t − . Thus, the tε  is conditionally heteroskedastic, which means that 

t t tH= ⋅nε , where ( )~ ,t N In 0  an iid error process. 
For modelling tH  a number of specifications has been suggested, the most 

commonly mentioned is the generic VECH-model, developed by Bollerslev et al. 
(1986) [41], the CCC-model (Constant Conditional Correlation) also by Bol-
lerslev (1990) [46] and the BEKK-model by Engle and Kroner (1995) [2]. A de-
tailed survey on multivariate GARCH models is provided by Silvennoinen and 
Tersvirta (2007) [47]. 

In this paper will apply the parsimonious Dynamic Conditional Correlation 
(DCC) approach, developed by Engle (2002) [48] and Engle and Sheppard 
(2001) [49]. This model is actually a natural extension of the CCC-model, giving 
the opportunity for a two-stage estimation of the dynamic evolution of condi-
tional correlations between, for example, two commodities. In the first stage of 
the procedure, standardized residuals are generated by univariate GARCH mod-
els fitted on the data of the individual time series. In the second stage the corre-
lation process is estimated. 

According to the work of Engle and Sheppard (2001) [49], the conditional 
covariance matrix tH  is written as follows 

t t t tH D R D=                             (9) 

where tD  a k k×  diagonal matrix with elements 2
,i tσ  on the ith diagonal 

representing the time-varying standard deviations which are generated by the 
GARCH models fitted on each residual series, as the ones given in Equation (7). 
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tR  is the time-varying conditional correlation matrix. In the case of 
CCC-model we have: 

Model 1: t t tH D RD=                                           (10) 

( )ijR ρ=  

where R = Constant Conditional Correlation. The assumption that conditional 
correlations are constant is unrealistic in particular applications, although the 
estimation of CCC parameters is simpler. We use CCC hare as a benchmark for 
testing the consistency of correlations (see Table 6 below). 

The log-likelihood is our case, for the vector θ  of parameters is given by 

( ) ( ) ( ) ( )( )1

1

1 log 2π 2log log
2

T

t t t t
t

tL m D R Rθ −

=

′= − + + +∑ ξ ξ       (11) 

where ( )~ ,t tN Rξ 0  the standardized residuals, t
t

tD
=
ε

ξ . 

In case that the conditional distribution of tε  is not normal, Equation (9) is 
the Quasi-likelihood function. The dynamic correlation specification suggested 
by Engle and Sheppard (2001) [49] is: 

( )
1 1 1 1

1
Q QP P

t j j j t j t j j t j
j j j j

Q Q Qα β α β− − −
= = = =

 
′= − − + + 

 
∑ ∑ ∑ ∑ξ ξ         (12) 

where Q  is the k k×  unconditional covariance matrix of the standardized 
residuals, generated from the first stage of the process. The extent to which tξ  
affect the dynamics of the correlation is captured by the jα , while jβ  is a pa-
rameter measuring the decay in dynamics. If we plug 0j jα β= =  into (11), the 
CCC model of Bollerslev (1990) [46] is obtained. The lag-lengths of residuals 
and decay are expressed by P and Q (not to be confused with those in Equa-
tion (6)). Finally, the dynamic conditional correlation is written  

* 1 * 1
t t t tR Q Q Q− −=                          (13) 

where *
tQ  is a diagonal matrix ( k k× ) consisting of the square root of the di-

agonal elements of tQ . Furthermore, the conditional covariance matrix tR  of 
the residuals generated by VAR(p), is obtained by standardizing these residuals 
by the conditional variances, so a typical element of tR  is 

, ,
, ,

, , , ,

i j t
i j t

i i t j j t

q

q q
ρ =                        (14) 

In the framework of this paper estimation, the indices range as 

, , , , , , , , , ,i j ase stoxx vstoxx ppc eua ngas brent smp load lignite=  

By letting 1P Q= =  in Equation (11) we obtained our DCC model 2 speci-
fication: 

Model 2: ( ) ( )1 1 11t t t tQ Q Qα β α β− − −′= − − + +ξ ξ                      (15) 

The matrix tQ  is a symmetric positive matrix, 1α β+ < , and α  is the 
news coefficient and β  is the decay coefficient. According to Aielli (2011) 
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[50], typical values of the dynamic parameters ,α α β+  are 0.80α β+ >  and 
0.04α ≤  while in financial application, in particular, 0.96α β+ ≥  and 
0.04α ≤ . [ ]t tQ E ξ ′= ξ  is the unconditional correlation (the unconditional va-

riance matrix of the standardize residuals. A typical element of the correlation 
matrix tR , regarding the interaction, for example, between ase index and ppc 
stock price is 

, ,
, ,

, , , ,

ase ppc t
ase ppc t

ase ppc t ase ppc t

q

q q
ρ =                    (16) 

Therefore, by using model 2 above, we have 

( ) ( ), , , , 1 , 1 , , 11ase ppc t ase ppc ase t ppc t ase ppc tq q qα β α β− − −′= − − + +ξ ξ       (17) 

( ) ( )2
, , 1 , 11ase t ase ase t ase tq q qα β α β− −= − − + +ξ             (18) 

( ) ( )2
, , 1 , 11ppc t ppc ppc t ppc tq q qα β α β− −= − − + +ξ            (19) 

Model 1 will be our basic reference model. This scalar DCC specification is the 
most parsimonious one because of the assumption that all commodities correla-
tions “obey” the same ARMA(P,Q) type specification, which means that they are 
all governed by the same coefficients α  and β . The above assumption might 
be a valid one, in the case of similar commodities (or “assets” in general), be-
longing in same asset category or class. However, in our case, our “assets” belong 
to different categories, namely financial, energy and power; therefore it is a rea-
sonable assumption that these markets exhibit “asset” specific correlation sensi-
tivities. To face this dissimilarity in asset’s class, a generalization of the DCC 
model has been suggested, incorporating also the impact of any asymmetries on 
the correlation dynamics. It is known that in a Markov Switching Model (MSM) 
or in a Threshold Autoregressive Model (TARM), the conditional correlations 
are allowed to have different evolutionary dynamics. Instead this is not the case 
for DCC model in which the correlations follow the same dynamics. This is a li-
mitation of the DCC. For example, if the data exhibit structural breaks, DCC 
model can give misleading conclusions. Another limitation of DCC is that it 
does not work reliably for large number of assets. Cappielo et al. (2006) [51] 
have developed a number of various asymmetric multivariate GARCH models to 
capture the asymmetries. For an in depth description of the “mathematical” 
properties, its limitation and inconsistencies in DCC model, Aielli (2011) [50] 
provides an excellent work. 

4.3. The Asymmetric Generalized DCC Model 

Engle (2002) [48] propose a Generalized Dynamic Conditional Correlation 
(G-DCC) in order to tackle the correlation across asset categories, a flexible 
model allowing for asset specific correlation parameters. The model is written as 

Model 3: ( ) 1 1 1t t t tQ Q A QA B QB A A B Q B− − −′ ′ ′ ′ ′= − − + +ξ ξ               (20) 

where A and B are k k×  diagonal matrices of the parameters, { }iiA α= , 
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{ }iiB β= . 
The positive definiteness requirement is satisfied by 1ii iiα β+ <  and 
, 0, ,ii ii i jα β ≥ ∀ . The above specification tackles the dissimilarity of asset prob-

lem by allowing for a high degree of dissimilarity in correlations.  
The advantage of G-DCC over the simple scalar DCC is that it can generate a 

variety of correlation patterns. The coefficients iiα  can be considered for mea-
suring the sensitivity of the correlation of asset i  with other assets to correla-
tion residuals (Hafner and Frances, 2003) [52]. High values for iiα  in combi-
nation with low values for iiβ  result in almost horizontal, very flat correlations 
of asset i  with any other asset in the specification. Instead, low values for iiα  
combined with high values for iiβ  produce very fluctuating correlations.     

Cappielo et al. (2006) [51] proposes a further generalization, the AG-DCC 
(Asymmetric Generalized DCC) model 4 that actually nests model 4, written as  

Model 4: ( ) 1 1 1 1 1t t t t t tQ A A B B G NG A A B Q B G GQ Q Q − − − − −′ ′ ′ ′ ′ ′ ′ ′= − − − + + + n nξ ξ  

(21)" 

where G  is a k k×  diagonal matrix of parameters, { } { },,ii t i tG g n= =n  a 
1k ×  vector with ( ), min ,0i t tn ξ= , N  is a k k×  matrix of constants, 

1
1 t

T
ttTN −

=
′= ∑ n n . 

Similarly as in model 3, the positive definiteness requirement is satisfied by 
1ii ii in kα β+ + <  and , , 0ii ii inα β ≥ , for 1, ,i k=   where k  is the maximum 

eigenvalue of QN Q  (Cappielo et al., 2006) [51]. 
Model 4 is further extended to include control (“exogenous”) variables Vargas 

(2008) [53] proposed the AG-DCC-X model and it is this model used by Koen-
ing (2011) [20] to test the hypothesis of the effect of static merit order regimes 
on correlation between input fuels, carbon emission and electricity prices. We 
do not consider the model in this paper but we have included for the complete-
ness of our review. 

By using that 2 2,A A A B B B′ ′∗ = ∗ =  etc., little algebra transforms model 3 
into the following form 

( ) ( )2 2 2 2 2
1 1 1 1 11t t t t t tQ A B Q A B Q G N− − − − −′ ′= − − + + + −n nξ ξ        (22) 

5. Empirical Findings 
5.1 Data Tests and Applied Methodology 

In this subsection we present the empirical findings, while in Section 5.2 we 
comment on these findings in details. Table 2 provides the summary statistics of 
price levels and of the electricity load (demand). The correlation matrix of all 
variables (raw data) is shown in Table 3. While Table 4 provides summary sta-
tistics of log returns of the variables considered.  

The correlation matrix between levels of variables yields mostly “rational” results 
as expected. Financial assets in particular have moderately strong positive (between 
indexes and stocks) and negative (between bonds and stocks) correlations, and 
mostly low degree of correlations with energy commodities and electricity. 
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Table 2. Summary statistics of price (levels) (8-Apr-2008 to 07-Mar-2014). 

Price (level) 
Series 

ase stoxx vstoxx ppc gbonds eua ngas brent lignite smp load 

Observations 2160 2160 2160 2160 2160 2160 2160 2160 2160 2160 2160 

Mean 1561.76 2703.01 27.40 8.81 12.19 12.16 21.71 95.24 33.69 56.05 5998.79 

Median 1437.66 2710.37 24.40 9.55 10.15 12.90 23.50 105.78 35.10 52.49 5907.71 

Maximum 4303.77 3882.28 85.44 21.92 37.10 31.71 36.91 143.95 48.53 123.77 8555.83 

Minimum 476.36 1809.98 13.82 1.15 4.42 2.70 7.08 34.45 21.98 10.24 3684.54 

Std. Dev. 837.03 359.95 10.42 3.81 8.09 6.24 6.26 23.59 5.77 19.27 801.24 

Skewness 1.35 0.60 1.86 0.44 1.33 0.79 −0.61 −0.68 −0.20 0.74 0.63 

Kurtosis 3.98 3.89 7.50 4.01 3.95 3.40 2.36 2.54 2.76 3.04 3.48 

JB 

h 1 1 1 1 1 1 1 1 1 1 1 

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Stat. 669.95 198.92 3069.40 163.04 714.96 240.4 170.20 183.73 19.27 198.71 162.19 

ADF 

h 1 0 1 0 1 0 0 0 1 0 0 

p-value 0.00 0.34 0.14 0.05 0.38 0.03 0.46 0.55 0.84 0.00 0.34 

Stat. −3.30 −1.45 −1.97 −0.74 −2.10 −0.53 −0.28 0.59 −3.31 −0.86 0.59 

PP 

h 1 0 1 0 1 0 0 0 1 0 0.00 

p-value 0.00 0.34 0.14 0.05 0.38 0.03 0.46 0.55 0.84 0.00 0.34 

Stat. −3.30 −0.85 −1.45 −1.97 −0.74 −2.10 −0.53 −0.28 0.59 −3.31 −0.86 

Interpretation of the Boolean variable h: h = 1 the null hypothesis of the test is rejected, h = 0 fail to reject the null hypothesis of the test. JB test the null 
hypothesis of normality, ADF and PP test the null hypothesis of unit root. 
 
Table 3. Correlation matrix between levels of variables considered in this study. 

 “ase” “stoxx” “vstoxx” “ppc” “gbonds” “eua” “ngUK” “brent” “lignite” “smp” “load” 

“ase” 1 0.6504 0.0851 0.8790 −0.6797 0.8527 −0.2440 −0.2276 −0.7683 0.2562 0.3134 

“stoxx” - 1 −0.5302 0.7323 −0.4838 0.4718 0.2077 0.3467 −0.1803 0.1619 0.0633 

“vstoxx” - - 1 −0.0913 −0.0307 0.2897 −0.1447 −0.5587 −0.4267 0.3028 0.1319 

“ppc” - - - 1 −0.7478 0.7086 −0.2340 −0.1821 −0.4764 0.1143 0.2468 

“gbonds” - - - - 1 −0.4271 0.2796 0.4740 0.3777 0.1455 −0.0716 

“eua” - - - - - 1 −0.1364 −0.1550 −0.8159 0.4379 0.4122 

“ngUK” - - - - - - 1 0.6567 0.2481 0.3734 −0.1327 

“brent” - - - - - - - 1 0.3749 0.1706 −0.0773 

“lignite” - - - - - - - - 1 −0.3414 −0.3944 

“smp” - - - - - - - - - 1 0.4675 

“loadep” - - - - - - - - - - 1 
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Table 4. Daily log returns summary statistics (08-Apr-2007 to 07-Mar-2014). 

Log Return Series ase stoxx vstoxx ppc gbonds eua ngas brent lignite smp load 

Panel A: Descriptive statistics 

Observations 2159 2159 2159 2159 2159 2159 2159 2159 2159 2159 2159 

Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0 0 0 0 0 0 0 0 0 0 0 

Maximum 0.13 0.10 0.33 0.22 0.14 0.24 0.36 0.18 0.29 1.02 0.20 

Minimum −0.10 −0.08 −0.27 −0.25 −0.68 −0.43 −0.11 −0.17 −0.25 −0.87 −0.25 

Std. Dev. 0.02 0.01 0.05 0.03 0.02 0.03 0.02 0.02 0.02 0.16 0.04 

Skewness 0.06 0.12 0.86 −0.18 −12.55 −1.21 3.29 0.02 4.21 0.03 −0.63 

Kurtosis 7.31 11.32 8.09 10.70 327.73 34.44 46.55 16.49 103.69 8.82 10.22 

JB 
(p-value) 

h 1 1 1 1 1 1 1 1 1 1 1.00 

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Stat. 1670 6231.9 2591.4 5342.8 9543009.1 89462.8 174476.26 16361.3 918408.54 3051.87 4831.9 

Panel B: Stationarity 

ADF 

h1 1 1 1 1 1 1 1 1 1 1 1 

p-value 0.000 0.000 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Stat. −43.78 −45.64 −46.43 −42.92 −42.06 −44.7 −47.17 −58.80 −62.95 −52.21 −58.80 

PP 

h 1 1 1 1 1 1 1 1 1 1 0.00 

p-value 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Stat. −43.78 −45.64 −46.43 −42.92 −42.06 −44.7 −46.43 −47.17 −58.80 −62.95 −52.21 

Panel C: Serial Correlation. ARCH tests  

Q (20) 

h 0 1 1 1 1 1 1 1 1 1 1 

p-value 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Stat. 30.7 56.53 52.55 52.41 58.22 67.50 53.44 41.76 187.97 243.84 162.24 

Q2 (20) 

h 1 1 1 1 0 1 0 1 1 1 1 

p-value 0. 0.00 0.00 0.00 0.99 0.00 0.94 0.00 0.00 0.00 0.00 

Stat. 250.8 888.27 166.38 280.2 1.18 154.9 11.06 386.1 286.8 376.23 125.35 

ARCH-L
M (20) 

h 1 1 1 1 0 1 0 1 1 1 1 

p-value 0.000 0.00 0.00 0.00 0.99 0.00 0.98 0.00 0.00 0.00 0.00 

Stat. 155.45 408.07 119.35 182.30 1.13 120 9.42 206.8 247.3 240.01 120.82 

Q (20) and Q2 (20) are Ljung-Box or Q statistics for testing the null hypothesis of no autocorrelation in the residuals. The 5% critical values of X2 (20) dis-
tributions is 31.41. For ADF and PP test, the 1% critical value is −3.44. 

 
An interesting result is the correlation between smp and lignite. While a signifi-
cant positive correlation has been found between electricity prices and coal pric-
es in European Union (ECOFYS, 2016) [54] the price of the domestically pro-
duced lignite is not positively correlated with the smp, a result also emphasized 
in the study of IEA (IEA, 2014) [55]. This will be further examined upon, when 
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we present the results of the dynamic conditional correlation. Also, the uncondi-
tional correlation between electricity market (smp) and EUA market (eua) was 
found as expected, positive (0.4376) indicating that there is connection between 
the price of CO2 quotas and SMP. However the DCC between them is much 
smaller, as it will be described later on. 

By observing Table 4 we conclude that financial, energy and electricity “asset” 
returns are likely to be non-Gaussian. In all returns the skewness is non-zero, an 
evidence of a non-symmetric distribution. Furthermore, the kurtosis is signifi-
cantly in excess (>3) which indicates fat tails of the distribution, containing more 
probability than a normal distribution. In combination, the log returns of “as-
sets” are leptokurtic. Also, we test the return for normality by applying the Jar-
que-Bera (JB) test statistic. According to this test the joint null hypothesis is 
that both skewness and excess kurtosis are zero. As we observe in Table 4, the 
p-value for the JB statistics is zero in all returns, therefore the null hypothesis 
can safely be rejected, so the returns follow a non-normal distribution.  

We have also applied the Augmented-Dickey-Fuller (ADF) and Phil-
lips-Perron (PP) unit root tests. As we observe, both tests give values larger 
than the critical value for the 1% level of significance. Therefore, we can reject 
the null-hypothesis of a unit root for all returns, so they are taken to be statio-
nary. 

To detect autocorrelations in the returns we have used the Ljung-Box or Q 
statistic. From Table 4 also, we see that all returns show signs of statistically 
significant autocorrelation (gbonds’ and ngas’ statistics are less than 31.41, but 
with p-values of 0.99 and 0.94 respectively). The strongest autocorrelation is in 
smp, lignite and load returns (with Q(20) statistics 243.84, 187.97 and 162.24 
respectively). 

All log returns have a mean zero. GEM wholesale price (smp) returns are 
most volatile (std. Dev   0.16) followed by vstoxx and load returns, while 
stoxx returns are the less volatile. 

All returns show evidence of volatility clustering (ARCH effects) as the visual 
inspection of the log return (see Figures 9-11) and the ARCH-Lagrangean 
Multiplier (ARCH-LM) test in Table 4 show, as the test statistic is significantly 
higher than its critical value for the 5% significance. The gbonds and ngas re-
turns’ test stat is below the critical value, however the corresponding p-values 
are extremely high (0.99 and 0.98 respectively), so we cannot refuse the existence 
of ARCH effects. 

Figures 9-11 depict the dynamic evolution of the returns of the time series 
used. All returns are characterized by the well-known phenomena of volatility 
clusters. Furthermore, as the figures show, during the aftermath of the Lehman 
Brothers bankruptcy, September 2008, and during the European Sovereign Debt 
Crisis, mid 2010, all returns exhibit high level of volatility and the associated 
clustering. The sample autocorrelation function of the squared returns (not 
shown here due to space limitation) is slowly decaying, a typical feature for daily  
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Figure 9. Log-returns of the financial set’s time series for the period 10-Sep-2007 to 
07-Mar-2014. 
 

 
Figure 10. Log-returns of the energy (commodity) data set’s time series for the period 
10-Sep-2007 to 07-Mar-2014. 
 
returns exhibiting volatility clustering. The ARCH-LM test results, mentioned 
before, confirm the existence of this stylized fact. 

Since all the return series are stationary we proceed by fitting a VAR(1) model 
for the mean equation (results in Table A1 in appendix). We selected lag order 1 
in our model since it is the most parsimonious and no significant difference be-
tween the Log Likelihood of higher order models was found. The parameters of  
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Figure 11. Log-returns of the electricity data set’s time series for the period 10-Sep-2007 
to 07-Mar-2014. 
 
the fitted GARCH(1,1) model on each individual asset are given in Table 5. Af-
ter we obtain the residuals from the mean equation we proceed by estimating the 
DCC between the assets. Table 6 shows the estimation for the DCC-GARCH 
(1,1) model. The coefficients α and β for all pairs of “assets” are positive as re-
quired to ensure positive unconditional variances. Also, in all cases, α + β < 1, 
which supports the existence of dynamic correlations. We have mentioned al-
ready that if α + β ~ 1 then the DCC are highly persistence. Respectively the 
smallest α + β, the most anti-persistence the DCC. The pairs with the lowest per-
sistence are lignite_ppc and loadep_eua, with α + β equal to 0.33 and 0.76 re-
spectively. 

Table 6 shows also, the CCC-model’s parameter ρ, with positive and negative 
values. The strongest positive constant conditional correlation is for ase_ppc 
pair, reflecting a strong linkage between the fluctuations in Athens Stock Ex-
change (ASE) general Index and the Public Power Corporation’s, PPC, Stock 
price (ppc). Strong and positive (0.47) between ase and stoxx is estimated, while 
vstoxx is negatively correlated with both ase and stoxx, confirming the theory 
that equity indexes are positively correlated between each other, and negatively 
correlated with their corresponding volatility indexes (NIBA, 2016) [56]. In all 
pairs the value of the parameter ρ is close to the mean value of the DCC over the 
sample period. In the next section we analyze in depth our findings. 

5.2. Results 

We estimated the dynamic conditional correlations between all of the assets and  
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Table 5. Estimated parameters in the GARCH(1,1) specification. 

GARCH (1.1) Parameters 

Residuals ω α1 β1 α1 + β1 LL 

ase_res 0.0000 0.0421 0.9264 0.9685 5621 

stoxx_res 0.0000 0.0540 0.9351 0.9891 6480 

ppc_res 0.0001 0.0438 0.9099 0.9536 3431 

vstoxx_res 0.0000 0.0463 0.9436 0.9899 4684 

gbonds_res 0.0000 0.0688 0.8964 0.9652 5074 

eua_res 0.0000 0.0900 0.9098 0.9998 5085 

ngasUK_res 0.0000 0.0691 0.9307 0.9998 5403 

brent_res 0.0000 0.0331 0.9652 0.9983 5989 

smp_res 0.0000 0.0305 0.8475 0.8780 5838 

loadep_res 0.0000 0.0260 0.9729 0.9989 1209 

lignitep_res 0.0011 0.1326 0.0000 0.1326 4131 

 
the most interesting results are presented in Table 6. The conditional correla-
tions between assets from the same market (financial or energy commodity) 
yield expected results. 

Specifically the correlation dynamics between indexes (stoxx and ase) and 
gbonds firmly confirm the classical macroeconomic approach that in times of 
rising (falling) stock markets bonds are decreasing (increasing) (Durre A. et al. 
2005) [57]. Connoly R, et al. (2002) [58] found that stock and bond returns tend 
to move together in times of lower stock market uncertainty. However, during 
periods of high stock market uncertainty (shown e.g. by vstoxx) stock and bond 
returns tend to exhibit little or even negative relation. We confirm this finding 
since the conditional correlations between gbonds and the two indexes are 
strongly negative after 2010, with peak negative values in the midst of the Greek 
Debt Crisis. Regarding the correlation between ase and stoxx indexes, as shown 
in Figure 12, it evolved significantly over the period of our sample, with a peak 
value at the time around the Lehman Brother’s collapse and a gradually decrease 
in the afterwards. Another peak was found in 2010 in the midst of the Greek So-
vereign Debt crisis, and in recent years the correlations fluctuate at a lower level. 
These findings clearly show the effect of the 2 periods of crisis in our sample, 
since correlations present an upward “jump” in both periods, suggesting that the 
links between financial assets become stronger in times of stress, confirming the 
works of others (Kenourgios D., et al. 2011) [59]. 

Regarding the linkages between the energy commodities (brent, eua and 
ngasUK) strong positive correlations were found throughout the sample, with 
higher volatility and peak values in the period of Financial Crisis. Specifically 
Brent-Eua are highly correlated in periods of financial stress (Koch (2014) [16] 
also finds a significant rise in their correlation in the same period) and in the  
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Table 6. CCC and DCC GARCH(1,1) estimation results. 

Pair of “Assets” residuals 

Estimated Parameters 

CCC DCC(1,1) 

Model 1 Model 2 equation (10) 

ρ α β α + β LL 

ase_res stoxx_res 0.4565 0.0041 0.9954 0.9996 12394 

ase_res vstoxx_res −0.3124 0.0000 0.9998 0.9998 9180 

ase_res ppc_res 0.6276 0.0066 0.9927 0.9993 10894 

ase_res gbonds_res −0.2025 0.0388 0.9552 0.9940 10806 

ase_res ngasUK_res 0.0316 0.0171 0.9179 0.9351 11031 

ase_res brent_res 0.1822 0.0129 0.9797 0.9926 11667 

ase_res eua_res 0.0924 0.0077 0.9815 0.9892 10726 

ase_res lignite_res 0.0357 0.0068 0.9505 0.9572 11462 

gbonds_res vstoxx_res 0.1189 0.0156 0.9813 0.9968 8543 

eua_res ngasUK_res 0.1306 0.0085 0.9664 0.9748 10511 

eua_res brent_res 0.2222 0.0135 0.9759 0.9893 11147 

eua_res ppc_res 0.0355 0.0118 0.9326 0.9444 9774 

eua_res vstoxx_res −0.1499 0.0159 0.9580 0.9739 8550 

eua_res smp_res 0.0076 0.0387 0.3117 0.3504 6298 

eua_res loadep_res 0.0340 0.0074 0.0003 0.0076 9217 

smp_res ngasUK_res −0.0029 0.0070 0.9629 0.9699 6616 

smp_res loadep_res 0.2783 0.0132 0.9344 0.9476 5434 

loadep_res ase_res −0.0706 0.0297 0.2594 0.2892 9759 

smp_res ase_res −0.0204 0.0070 0.9230 0.9301 6832 

lignitep_res smp_res −0.0567 0.0194 0.9286 0.9480 7055 

lignitep_res eua_res −0.0119 0.0025 0.9922 0.9947 10924 

lignitep_res ngasUK_res −0.0109 0.0000 0.9874 0.9874 11242 

lignitep_res ppc_res 0.0195 0.0000 0.0033 0.0033 10524 

gbonds_res brent_res −0.0416 0.0086 0.9880 0.9966 11074 

gbonds_res ngasUK_res 0.0433 0.0069 0.9728 0.9797 10481 

gbonds_res eua_res 0.0258 0.0428 0.0016 0.0444 10161 

stoxx_res brent_res 0.3607 0.0186 0.9728 0.9914 12691 

stoxx_res eua_res 0.1723 0.0133 0.9783 0.9916 11624 

stoxx_res ngasUK_res 0.0060 0.0194 0.9354 0.9547 11891 

smp_res brent_res −0.0207 0.0033 0.3918 0.3951 7199 

ppc_res brent_res 0.0791 0.0002 0.9861 0.9862 10685 

ppc_res ngasUK_res 0.0216 0.0000 0.9017 0.9017 10089 

loadep_res lignitep_res −0.0708 0.0109 0.9637 0.9746 9977 

ppc_res gbonds_res −0.1325 0.0376 0.9553 0.9929 9798 
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Figure 12. DCC between ase and stoxx residuals. 

 
latter part of our sample converge to their pre-crisis dynamics. In the case of lig-
nite (coal), our findings suggest the uncoupling with the other energy commodi-
ties, which was expected since lignite is produced locally and it is not interna-
tionally traded. 

As our main target is to provide empirical evidence of the coupling or de-
coupling between the assets of three different markets: the Greek Electricity 
market, Financial markets, the three most influential commodities markets, 
Brent Oil, Natural Gas and Carbon allowances (via their corresponding Futures 
Contracts prices) and for lignite (coal) fuel price, our comments will focus on 
these pairs and most correlations between assets of the same class will not be 
further analyzed. Additionally as our sample begins on March 2008 the well do-
cumented effect of the 2007 subprime financial crisis in the USA, will be omitted 
by our analysis, and our work will be focused on the 2010 Greek debt crisis and 
thereafter. We wish to analyze the coupling and decoupling periods between the 
markets under consideration, as well as demonstrate the Greek debt crisis effects 
in the Greek electricity market versus the other two markets, as well as the con-
vergence of the markets’ dynamics to pre-crisis levels, thereafter. In general we 
expect correlations between assets from different sectors to be lower than the 
ones of assets from the same sector, as can be shown in the work of Ensor, et al. 
(2014) [60]. 

5.3. DCC between Financial Market and Energy Commodities 

The financial crisis, which begun in 2007, had a significant effect on the correla-
tions between financial markets and energy commodities. The stock market col-
lapse significantly decreased the correlations between stock markets and ener-
gy markets returns, as documented Creti (2013) [61], possibly due to the 
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“flight-to-quality” effect, but only on the short run, followed by a sharp increase 
in correlations which remained for the following years, resulting in high correla-
tion in the volatility and the “financialization” of the energy markets. Figure 13 
compares the results correlations between ASE and stoxx with the 3 most liquid 
energy commodities of Europe. 

Our sample begins in April of 2008, in the midst of the Financial crisis period 
and all correlations between ase and energy commodities present a peak negative 
value. Specifically correlation between Brent oil, which is the energy commodity 
most related with the stock market due to the “speculation effect” (increasing 
crude prices in times of rising stock markets) and the Greek stock market has a 
significant evolution in the period of our study, with a positive peak 0.45 in the 
mid of the Greek debt crisis. Comparing the correlations between ase and stoxx 
with brent oil, as seen in Figure 13, we observe a similar evolution in time, with 
the stoxx-brent being significantly higher and more volatile, during the years of 
the Greek debt crisis and afterwards.  

Similarly correlations between EUA returns and the indexes both peaked 
around the Lehman Brothers collapse, when it became apparent that the finan-
cial crisis, which up until then was contained within the financial sector, would 
affect the real economy and slow down economic growth, thus confirming the 
“contagion” effect. In the following years correlations, especially with stoxx re-
mained mostly positive and highly volatile. EUA as a commodity reflects the 
economic growth as expressed by industrial production, and the decreased pro-
duction in Greece, with consideration of the structure of the Greek electricity 
market (lignite, a CO2-intense fuel, is a “cheap” domestically produced resource 
in the GEM), results in the decoupling of the two markets. 

Finally correlation between Natural gas and the Greek stock market increased 
in the beginning of our sample and remain fairly stable in the whole period, with 
a slightly increased volatility during the period of Greek Debt Crisis. This beha-
vior is consistent with the evolution of the stoxx-gas conditional correlation, 
suggesting that natural gas has the weakest link to equity markets. Regarding the 
Greek market, a more concrete and robust analysis should be undertaken, using 
Natural Gas prices provided from the Greek Natural Gas System Operator 
(DESFA), in order to check any dependencies with not publicly traded (ex-
change) markets, but on a bilateral trading rationale between Greece and other 
countries, e.g. Russia, Algeria. 

Turning to the relations between 10-year Greek bonds and energy commodi-
ties, our results in Figure 14 depict that the Greek debt crisis of 2010 had a sig-
nificant effect on the evolution of conditional correlation, with peak values and 
increased volatilities, which persisted in the following years. In particular corre-
lation between brent and gbonds intensified from around 0 to around -0.26, 
while correlation between gbonds and natural gas peaked to a positive 0.18. 
These peaks correspond with significant highs for ase-brent and lows for ase-ngas, 
confirming the notion that times with stronger (weaker) stock-commodities  
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Figure 13. DCC of ase and stoxx with the 3 energy commodities (brent, 
eua and natural gas). 
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Figure 14. DCC between gbonds and energy commodities. 

 
co-movements correspond to times with weaker (stronger) bonds-commodities 
co-movements. Finally eua-gbonds present a highly anti-persistent conditional 
volatility which oscillates close to zero, which suggests no significant link be-
tween the assets. 

Examining the linkages between PPC, the main player of GEM, and energy 
commodities, the conditional correlations are presented in Figure 15. Natural 
gas presents non significant result, as expected, since PPC’s energy production 
portfolio consists of mainly lignite, hydro and to a lesser degree gas fired pro-
duction units. Brent oil and ppc correlations converge to an almost constant and 
very low correlation close to 0.1 and present no evolution during the period of 
our study. EUA has a persistent and volatile correlation with ppc, with maxi-
mum value of 0.24 and minimum of −0.13, with more negatives values exhibited 
during the years following the Greek debt crisis. The correlation between ppc 
and lignite present substantial evidence of the uncoupled market behavior be-
tween the financial market in Greece and the primary materials (fuels) used for 
energy generation in Greece. This behavior is consistent with the fact that Lig-
nite is in abundance in Greece, and is used in a great portion by PPC for power 
production, i.e. PPC is allocating a great portion of its internal production strat-
egy on lignite for power generation. As seen in Figure 15 PPC is highly corre-
lated with ase, as PPC is a major representative of the Greek stock market (Blue 
chip).  

Overall our results depict a strong linkage between financial and energy 
commodity markets in periods of financial turmoil, with Brent and EUA being 
the most “finacialized commodities”, with correlations that remained highly vo-
latile throughout the Greek debt crisis and move towards decoupling in the years 
after. 
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Figure 15. DCC between pcc and energy commodities (a) and ppc and ase re-
spectively (b). 

5.4. DCC between Greek Electricity Market and Energy  
Commodities 

Our findings suggest that GEM’s spot electricity price (SMP) presents significant 
correlation with the load forecast, which was expected since supply and demand 
must be in a constant equilibrium in order for the network to operate properly.  

The Greek electricity market operates under the merit order principle, mean-
ing that the order of the existing power plants to be dispatched follows the as-

https://doi.org/10.4236/jmf.2017.74055


P. G. Papaioannou et al. 
 

 

DOI: 10.4236/jmf.2017.74055 1026 Journal of Mathematical Finance 
 

cending order of the respective fuel variable costs, with renewable energy 
sources being dispatched first, followed by lignite power plants. Natural gas has 
the higher variable cost and oil is used only for extreme peaks in demand. The 
last power plant to enter production in order to cover the demand, also sets the 
uniform market price (IEA, 2014) [55]. 

Correlations between smp and brent oil are insignificant since it’s rarely used, 
thus almost never sets the price. Regarding natural gas, correlations are mostly 
positive with smp and tend to increase in the latter years. Again, a more concrete 
and robust analysis should be undertaken, using Natural Gas prices DESFA, in 
order to truly capture the dynamics with the electricity prices. Correlations with 
EUA are highly anti-persistent, as suggested by the results in Table 6, but no 
significant link is evidenced, although lignite comprise a great portion of the in-
cumbent’s (PPC) fuels portfolio allocation for power production. This can be at-
tributed to the flexibility to shift between alternative production units (mainly 
hydroelectric) and the non competitive nature of the lignite “market” (actually 
there is no market), thus no need to hedge with EUA is present. These results are 
shown in Figure 16. 

Finally turning to the pair smp-lignite, the conditional correlation is volatile 
and mostly negative. Lignite is in abundance in Greece and while its price in-
creases over time, it remains lower most of the time than the fuel variable cost of 
a gas power plant, meaning that when the price is set by lignite fired plants it’s 
decreasing (IEA, 2014) [55], thus the mostly negative correlation.  

5.5. DCC between Greek Electricity Market and Financial Markets 

Turning to the correlations between electricity and financial markets, we present 
in Figure 17 substantial evidence that the two markets are uncoupled. The elec-
tricity spot market is heavily driven by a few crucial variables already mentioned 
above, and is fundamentally based on non-financial factors, such as non-storability 
of electricity, inelasticity of supply etc. These findings are similar to the works of 
others regarding dynamic correlations between financial and electricity markets 
(Creti, et al. (2013) [61]). Load is experiencing a cyclical behavior, which is con-
sistent with the consumers’ needs for electricity during the several seasons (win-
ter vs summer etc), while the financial market has not such dependency on 
“seasonalities”.  

6. Conclusions 

In this paper we have investigated the pairwise dynamics of return conditional 
correlation between assets “belonging” to three markets, namely electricity, 
energy commodity and financial. By using Dynamic Condition Correlation 
model, a model with proven computational advantages, also chosen due to the 
data stylized facts (e.g. fat tails, volatility clustering etc. of the assets in each 
market, suggesting a GARCH-type estimation framework), we have examined 
the co-movement of co-volatility between pairs of assets of these 3 markets.  
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Figure 16. DCC between smp and load (up) and between smp and energy 
(down) respectively. 

 
Emphasis was given in the effects of the 2008 financial as well as the 2010 Greek 
Sovereign debt crisis on the pairwise DCC of the markets. 

We present evidence of significant co-movements between financial market 
and energy commodities, namely Brent oil and carbon allowances, in periods of 
financial turmoil, with strong positive and highly volatile correlations. These 
findings confirm the volatility spillover between these two markets and prove 
the “financialization” of these energy commodities. Overall the correlations be-
tween financial and energy commodities were the most significant between the  
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Figure 17. DCC between smp and financial commodities. 

 
different classes of assets. 

Regarding the linkages of the Greek Electricity Market, lower conditional cor-
relations were found with the financial and energy market respectively and the 
periods of financial crisis of 2008 and the Greek Sovereign Debt crisis do not 
seem to have had a significant effect in the evolution of the dynamic linkages 
between GEM and other two markets. Finally mostly negative correlations were 
found between the indigenous lignite price and the System Marginal Price, sug-
gesting that while lignite’s price rises over the years, coal-fired plants are de-
creasing the price when they set the price via the merit order principle. 

We conclude that there is limited liquidity in the GEM which causes spot 
market’s dynamics to be dependent not only on load forecast but also on the 
strategic position of the dominant player of this market. Since the Greek Elec-
tricity Market is in a transitional phase with the upcoming market coupling with 
Italy as well as with the upcoming introduction of new markets (intra-day mar-
ket, balancing market) we expect higher linkage with the other two markets in 
the next years. 
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Appendix 

Table A1. (a) Estimated constants of the VAR(1) model. (b) Estimated Autoregression coefficients of the VAR(1) model. 

(a) 

 constant 

ase −0.0005 

stoxx −0.0001 

ppc −0.0002 

vstoxx −0.0002 

gbonds 0.0001 

eua −0.0005 

ngasUK 0.0000 

brent 0.0000 

smp 0.0004 

loadep 0.0000 

lignitep 0.0001 

(b) 

Coefficients “ase” “stoxx” “vstoxx” “ppc” “gbonds” “eua” “ngUK” “brent” “smp” “load” “lignite” 

“ase(−1)” −0.0295 0.1717 0.0101 0.0301 −0.0145 −0.0107 −0.0283 0.0042 0.0101 −0.0041 0.0049 

“stoxx(−1)” 0.0208 0.0222 0.0089 0.0077 −0.0038 0.0010 −0.0273 −0.0009 −0.0022 −0.0007 −0.0112 

“vstoxx(−1)” −0.2317 −0.2081 −0.0738 0.0066 0.0336 −0.0103 0.1524 −0.0568 0.0392 −0.0038 0.0383 

“ppc(−1)” 0.0005 0.1182 −0.0049 0.0651 0.0085 −0.0079 −0.0320 −0.0485 −0.0127 −0.0109 0.0202 

“gbonds(−1)” −0.0511 −0.1269 −0.0146 −0.0193 0.0763 −0.0111 0.0319 0.0468 −0.0178 0.0050 0.0075 

“eua(−1)” 0.0602 −0.0016 0.0248 −0.0106 0.0091 0.0552 −0.0178 −0.0769 −0.0256 0.0057 −0.0317 

“ngUK(−1)” −0.0447 0.0016 −0.0140 −0.0042 −0.0186 0.0174 0.0023 −0.0497 0.0246 0.0013 −0.0014 

“brent(−1)” −0.0127 0.0411 0.0151 0.0270 −0.0154 0.0207 0.0412 −0.0300 −0.0071 −0.0023 −0.0008 

“smp(−1)” −0.0021 0.0286 −0.0120 0.0046 0.0030 −0.0044 0.0244 −0.0357 −0.2271 0.0020 0.0429 

“load(−1)” 0.3564 −0.4768 −0.0046 0.0863 0.1917 −0.0644 0.1848 0.1352 −0.1476 −0.3191 0.4495 

“lignite(−1)” −0.0492 0.0956 0.0600 0.0427 −0.0283 −0.0276 −0.0196 0.0236 −0.2920 0.0042 −0.1234 
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