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Abstract 
This paper extends the method of regressing production and sales variables on 
a set of seasonal dummy variables and a linear trend for empirical tests on the 
production smoothing hypothesis of inventory investment. Unit root testing 
procedures form the basis for constructing the bootstrap confidence intervals 
for the ratio of the variance of production to the variance of sales. Models 
used to test for a unit root when there are structural breaks in the linear time 
trend are converted to equations comprising deterministic and stochastic 
components. A limiting distribution of the test statistic is derived. Bootstrap 
resampling is conducted over deterministic parts of the converted equations 
to construct confidence intervals for the relative variance ratio for G7 coun-
tries. Primary findings for these countries are production-counter smoothing 
phenomena. 
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1. Introduction 

This paper uses macroeconomic data from G7 countries related to production, 
sales, and inventory investment to test the production smoothing hypothesis of 
inventory investment of an earlier study [1]. The hypothesis holds that the stock 
of inventories serves as a buffer in response to demand shifts that have not been 
forecast. The analytical framework used for the present study is an extension of 
models reported in the relevant literature [2] [3], which include the tenets that 
industrial data from the United States (US) and Taiwan can be converted to a 
stationary series in the way that the industrial production and sales series are re-
gressed on the seasonal dummy variables and the linear time trend. Those mod-
els estimate the production and sales variances as the sum of the variances of the 

How to cite this paper: Ginama, I. and 
Odaki, M. (2017) Production Smoothing in 
Developed Countries. Journal of Mathe-
matical Finance, 7, 333-350. 
https://doi.org/10.4236/jmf.2017.72018  
 
Received: March 24, 2017 
Accepted: May 15, 2017 
Published: May 19, 2017 
 
Copyright © 2017 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

   
Open Access

http://www.scirp.org/journal/jmf
https://doi.org/10.4236/jmf.2017.72018
http://www.scirp.org
https://doi.org/10.4236/jmf.2017.72018
http://creativecommons.org/licenses/by/4.0/


I. Ginama, M. Odaki    
 

334 

seasonal dummy variables and the variance of the residuals. Wang [3] applied the 
bootstrap method to construct confidence intervals (BCa) of the ratio of the va-
riances of production and sales. Wang’s method is adopted here. However, the 
stationarity of the residuals was not tested formally in studies reported in the li-
terature [2] [3]. In applying their methodological framework to macroeconomic 
data (such as gross domestic product (GDP), inventory investment, and aggre-
gate sales), it is crucially important to test whether these variables are trend-  
stationary. Explicit unit root tests of these variables are expected to involve trend 
terms with or without structural breaks. In this paper, the unit root tests consider 
the possibility of endogenous structural break(s). The specified unit root test eq-
uations are converted to appropriate formulas on which bootstrap methodologies 
are applied to derive confidence intervals for the relative variances of production 
and sales. In so doing, the problem of whether inventory investment is stabilizing 
or destabilizing in business cycle phases is expected to be analyzed empirically 
on a better statistical basis. 

Here and in the literature, G7 countries were chosen as the group of economi-
cally developed countries (Canada, France, Germany, the United Kingdom (UK), 
Italy, Japan, and the US), which were characterized by production counter- 
smoothing [4] [5] [6] [7]. 

The paper is organized as follows. Section 2 presents descriptions of the ana-
lyzed data. Section 3 presents the unit root test models used for this study. Sec-
tion 4 explains the econometric method used to construct the BCa bootstrap 
confidence intervals of the ratio of the variance of production to the variance of 
sales. Section 5 presents sketches of the proof that the presence of the determi-
nistic seasonal dummy variables does not affect the limiting distribution for the 
test statistic in the equations to test for a unit root. The unit root test results for 
the production and sales of the G7 countries are presented. Section 6 presents 
and interprets the estimated BCa confidence intervals. Concluding remarks fol-
low that section. 

2. Data 

Data used for this study were extracted primarily from the Datastream database 
(Thomson Inc.)1. Real quarterly time series for GDP and inventory investment, 
based on chain-linked price indices, were obtained for the US, the UK, and 
Canada. The US inventory investment, which is seasonally adjusted, is related 
only to the private sector. The Canadian GDP and inventory investment are also 
seasonally adjusted. The French and Italian price indices are expressed in terms 
of the fixed base method. France’s inventory investment is seasonally adjusted. 

 

 

1The database software Data stream is a global data platform that is used widely by universities and 
libraries such as Universiteit van Amsterdam, European University Institute, and Harvard Business 
School Baker Library. “It has historical, global coverage of equities, stock markets, commodities, and 
economic data. Information is updated daily.” (Baker Library Home page). Data stream provides 
post-1980 macroeconomic data for Japan; these data are constructed on the System of National Ac-
counts 1993 (1993 SNA) basis. However, the Reuters Ecowin database provides Japanese data over a 
longer period, using the 1968 SNA basis. The Japanese data in this paper are kept on a 1968 SNAba-
sis. 
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The GDP deflator for Italy, which is not seasonally adjusted, is unavailable. 
Therefore, its producer price index, which is not seasonally adjusted, was used to 
deflate the Italian variables. The German nominal GDP and inventory invest-
ment, which are not seasonally adjusted, were deflated by the chain-linked GDP 
deflator, which is also not seasonally adjusted. 

Seasonal variations are noteworthy when analyzing inventory fluctuations [2] 
[3] [8]. Data from Japan2, the UK, Italy, and Germany are not seasonally adjusted. 
Seasonal variations are incorporated into the variation of production and sales 
for these countries. Data for Canada, France, and the US are seasonally adjusted 
for analyses in this paper because of the constraint on the availability of data that 
are not seasonally adjusted. Sales are defined as the GDP minus the inventory 
investment, as in the literature. GDP and sales are transformed to logarithmic 
terms before testing for a unit root. 

One report of the relevant literature [9] defines some trend concepts for ap-
plying to time series data. It defines local trends as trends “…only for some finite 
time interval…” (Definition 9). This definition applies to the deterministic 
trends in the current paper. 

The sample time periods differ slightly among related countries. The time pe-
riods analyzed in this study depend on whether significant results were obtaina-
ble for testing the variables for stationarity around the deterministic trend, with 
and without structural breaks. 

For Germany, the first differences of production and sales were tested for a 
unit root in augmented Dickey-Fuller (ADF) equations [10] [11] [12] with sea-
sonal dummy variables after attempting to analyze the possibility of trend statio-
nary results for various sample periods on the levels of German data. German 
data proved to be trend-stationary, having no structural break in this specifica-
tion. When referring to Germany in relation to production counter-smoothing, 
the descriptions are of West Germany. We extracted annual West German data 
from the International Monetary Fund’s International Financial Statistics during 
1957-19913. 

Canadian data were partitioned into two non-consecutive sample time periods. 
The 13-year time interval between the two observation periods was not included 
in our analyses because the unit root test outcomes showed no significant results 
for the sample periods that included this interval. 

3. Method 

We use three models to test the production and sales time series for a unit root. 
Particular forms of the models presented in earlier reports [13] [14] are used for 
demonstration purposes. 

(i) The ADF test with the linear time trend, that is 

 

 

2The data deflator for Japan used here was constructed using the fixed base method. 
3Attempts to construct consistent data for West Germany on a quarterly basis were unsuccessful be-
cause the inventory investment figures represented on different volumes of the dataset were incom-
patible. 



I. Ginama, M. Odaki    
 

336 

1 1 1
ˆ ˆˆˆ k

t t i t i tiy t y y eµ β α β− −=
∆ = + + + ∆ +∑                 (1) 

where 1
ˆ ˆˆ , ,µ β α  and ˆ

iβ ′  are the parameters and where te  is the residual. The 
value of k is determined using the Akaike information criterion. Therein, Δ is 
the first difference operator. 

(ii) The test of the model presented earlier [13] with a single endogenous 
structural break for the break type C specification is 

1 1
ˆ ˆ ˆˆ ˆˆ k

t t t t i t i tiy DU t DT y y eµ θ β γ α β− −=
= + + + + + ∆ +∑           (2) 

where θ̂  and γ̂  are parameters, and where the value of k is determined as ex-
plained in earlier reports of the literature [13] [14] [15]4. Variables tDU  and 

tDT  are defined as described in the next paragraph. 
Let the break point be denoted as BT , then 1tDU =  for 1Bt T≥ + , and 

0tDU =  otherwise. tDT  is defined such that t BDT t T= −  for 1Bt T≥ + , and 
0tDT =  otherwise. 

(iii) The test of another model presented earlier [14] with two endogenous 
structural breaks for break type BB is 

1 1
ˆ ˆ ˆˆ ˆˆ 1 2 k

t t t t i t i tiy DT t DT y y eµ θ β γ α β− −=
= + + + + + ∆ +∑          (3) 

tDTj  is defined such that 1t BjDTj t T += −  for 1Bjt T≥ + , and 0tDTj =  
otherwise, where j = 1, 2. 

4. Bootstrapping 

Following a procedure described in an earlier report [3], BCa bootstrap confi-
dence intervals of the variance ratio, i.e., the ratio of the variance of production 
to the variance of sales, are constructed by bootstrapping the deterministic parts 
of Equations (1), (2), and (3). That study [3] relied upon the assumption that the 
production and sales time series are expressible as the sum of the deterministic 
terms comprising seasonal dummy variables and the linear time trend, and the 
stationary random residuals. However, another report of the literature [16] [17] 
presents conversion of Equations (1) - (3) for the unit root tests to the form spe-
cified in two earlier studies [2] [3]. 

(i) Converting Equation (1) 
Letting 1ˆ ˆ1α α= + , then Equation (1) can be written as 

1 1
ˆ ˆˆ ,ˆ k

t t i t i tiy t y y eµ β α β− −=
= + + + ∆ +∑                  (1)' 

which can be abbreviated further to 

ˆˆ ,t ty t OTµ β′ ′ ′= + +                         (1)" 

where 
( )2

ˆ1 1ˆ ˆ ˆ ˆˆ,
ˆ ˆ1 1 ˆ1

µβ β µ βα
α α α

  ′  = = −   − −  − 
, and 

 

 

4The truncation value for the t-statistic on ˆ
iβ  is 1.6 in absolute value. When the variables that are 

not seasonally adjusted are used in the ADF equations, this criterion is applied for the value of k. 
The maximum lag was eight, as reported by Zivot and Andrews [13], where annual data were used. 
Where quarterly data are used in this paper, the maximum value of k is set as 12. 
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( )5

1

1 ˆ
ˆ1

k
i t i titOT y e

L
β

α −=
′= ∆ +

− ∑ . Using Equation (1)" for the GDP and the sales 

simultaneously, bootstrap resamplings on ty  and t  are made to run a series 
of ordinary least squares (OLS) regressions with the bootstrap samples on equa-
tion (1)". The variance of the tOT ′  term gives the variance of production for the 
GDP equation, and gives the variance of sales for the sales equation. Based on 
replications of the ratio of those variances, the BCa bootstrap confidence inter-
vals can be constructed as explained in several reports of the relevant literature 
[18] [19] [20] [21]. 

(ii) Converting Equation (2) 

In rewriting Equation (2), terms 1
ˆ1 tDU
Lα

 
 − 

 and 1
ˆ1 tDT
Lα

 
 − 

 must be de- 

fined. Let 1
ˆ1t tDUC DU
Lα

 
 − 

=  and 1
ˆ1t tDTC DT
Lα

 
 − 

= . Then it is straight- 

forward to demonstrate that ˆ1
ˆ1

i

tDUC α
α

 −
=  − 

 for ( )Bt T i= + , 1, 2, , BTi N= − , 

and 0tDUC =  for Bt T< , and that ( ) ( ) ( )1
1

ˆ1
B

i j
iT i jDTC DT j α −

+ =
− −  = ∑  for 

1, 2, , BTi N= − , and 0tDTC =  for Bt T≤ . Here, N stands for the number of 
observations. Using these terms, Equation (2) can be rewritten as 

ˆ ˆ ˆˆt t t ty DUC t DTC OTµ θ β γ′ ′ ′′= + + + +               (2)' 

In (2)', 
( )2

ˆ 1ˆ ˆˆ
ˆ1 ˆ1

µµ βα
α α

 
′  = −

 − − 
, 1ˆ ˆ

ˆ1
β β

α
 ′ =  − 

, and  

( )1

1 ˆ
ˆ1

k
t i t i tiOT y e

L
β

α −=

 ′′= ∆ + − 
∑ . Bootstrap resamplings are made with yt,  

DUCt, t, and DTCt to apply a series of OLS regressions with these variables on 
Equation (2)' for the GDP and sales series to calculate the variances of tOT ′′ . 
These give the variances of production and sales from which the BCa confidence 
intervals on the variance ratio are constructed. 

(iii) Converting Equation (3) 
Equation (3) can be written as 

ˆ ˆ ˆˆ 1 2 .t t t ty DTC t DTC OTµ θ β γ′ ′ ′′= + + + +              (3)' 

Therein, ( ) ( ) ( )1
1

ˆ1
Bj

i h
ihT i

DTCj DTj h α −
=+

− −  = ∑  for 1, 2, , BTi N= − , and 

0tDTCj =  for Bjt T≤ , where N stands for the number of observations, and 
where j = 1, 2. 

(i) Seasonal dummy variables 
Equation (3) with the seasonal dummy variables is written as 

1 2 3 1 1
ˆ ˆ ˆˆ ˆˆ 1 2 3 1 2 .k

t t t t i t i tiy d d d DT t DT y y eµ ϕ ϕ ϕ θ β γ α β− −=
= + + + + + + + + ∆ +∑  (4) 

That equation can be converted to 

1 1 2 2 3 3
ˆ ˆ ˆˆ 1 2 .t t t ty dc dc dc DTC t DTC OTµ ϕ ϕ ϕ θ β γ′ ′ ′′= + + + + + + +      (4)' 

Table 1 presents definitions of , 1, 2,3idc i = . The variance of ty  ( )( )tV y  

 

 

5L represents the lag operator. 



I. Ginama, M. Odaki    
 

338 

Table 1. Conversions of the seasonal dummy variables. 

 1tdc  2tdc  3tdc  

1st quarter 4

1
ˆ1 α−

 
3

4

ˆ
ˆ1

α
α−

 
2

4

ˆ
ˆ1

α
α−

 

2nd quarter 4

ˆ
ˆ1

α
α−

 
4

1
ˆ1 α−

 
3

4

ˆ
ˆ1

α
α−

 

3rd quarter 
2

4

ˆ
ˆ1

α
α−

 
4

ˆ
ˆ1

α
α−

 
4

1
ˆ1 α−

 

4th quarter 
3

4

ˆ
ˆ1

α
α−

 
2

4

ˆ
ˆ1

α
α−

 
4

ˆ
ˆ1

α
α−

 

Notes: The equation to test for a unit root of variable ty  is 1 2 3 1
ˆ ˆ ˆ ˆ ˆˆ 1 2 3t t t t t ty d d d t y eµ β β β γ α −= + + + + + + , 

where dit are the seasonal dummy variables that take a value of one in the ith quarter (i = 1, 2, and 3), and t, 

te  respectively denote the linear time trend and the residual. 1 2 3
ˆ ˆ ˆ ˆˆ , , , ,µ β β β γ , and α̂  are the parameters 

in the equation. The table presents values that the term 
ˆ1
t

t

di dci
Lα
=

−
 (I = 1, 2, 3) takes in each quarter (i = 

1, 2, and 3) during observations. 

 

in this equation is given as ( ) ( ) ( )23
0

1
4t i tiV y V OTϕ ϕ

=
′′= − +∑  as described in 

earlier reports [2] [3], where 3
0 0

1ˆ ,
4 iiϕ µ ϕ ϕ

=
′= = ∑ , and ( )tV OT ′′  stands for  

the variance of tOT ′′ . 
Equations (1)', (2)', (3)', and (4)', or an appropriate combination of these equ-

ations, were applied to the production and the sales series. Bootstrap resam-
plings were conducted over the deterministic parts of the converted equations 
simultaneously, to construct the BCa confidence intervals for the relative va-
riance ratio of production and sales. 

5. Unit Root Tests 
5.1. Limiting Distribution 

One report of the relevant literature [22] derived a proposition by which limiting 
distribution for the test statistic in Equations (1) and (1)' is unaffected by the 
presence of the deterministic seasonal dummy variables for the ADF test. We 
present a sketch of the proof of a similar proposition: that the inclusion of the 
deterministic seasonal dummy variables in the testing equation with a single en-
dogenous break does not affect the limiting distribution of the test statistic. We 
surmise that the same proposition holds for other break types within the single 
break model. Furthermore, it holds for the nine break types within the two en-
dogenous break models. See the Appendix for the proof. 

5.2. Estimation 

Table 2, Table 3(a), and Table 3(b) present the unit root test results on the 
production and the sales for G7 countries. In these tables, all the data are in real 
and logarithmic terms. The notation used for the break types follows that re-
ported for other studies in the literature [13] [14] [15]. 
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Table 2. Summary of the unit root tests. 

 Japan US France UK 

 GDP Sales GDP Sales GDP Sales GDP Sales 

Obs. (1955.1-1999.1) (1967.1-2008.1) (1978.1-008.1) (1983.1-2008.1) 

   Period I     

   (1967.1-1984.4)     

No. of Breaks 2 2 2 2 0 1 1 1 

   Period II     

   (1985.1-2008.1)     

No.of Breaks   2 2     

   Period I     

Break Type BB BB AA AA N/A C A A 

   Period II     

   BB BB     

   Period I     

TB1 1972.3 1972.3 1978.1 1978.1  1995.2 1990.1 1990.4 

TB2 1992.3 1992.3 1981.3 1981.3     

   Period II     

TB1   1995.2 1995.2     

TB2   2000.2 2000.2     

   Period I     

Level of 
Significance(τ) 

** ** ** * * * ** ** 

   Period II     

   * ***     

Data type NSA NSA SA SA SA SA NSA NSA 

Notes: Obs. and No. respectively stand for the sample period and number. τ  denotes the t ratio of α̂ . *, 
**, and *** respectively denote 10%, 5%, and 1% levels of significance. NSA and SA respectively stand for 
not seasonally adjusted and seasonally adjusted series for quarterly data. TBi stands for the ith break point 
(i = 1, 2). 

 
We divided the US sample period into two, and applied these periods to the 
models to test for a unit root. In each time period, the US data were trend sta-
tionary with two structural breaks. The confidence intervals for the variance ra-
tio were therefore constructed in each time period for the US. The results for 
Germany in Table 3(a) are those for the period after the reunification of West 
and East Germany in 1990. The GDP and the sales for this period were trend- 
stationary in the first differences. Table 3(b) presents results for West Germany 
using annual data in first differences. Both the GDP and the sales are identified 
as trend stationary series in the ADF tests. Table 3(b) presents the Canadian re-
sults for two observation periods. The BCa bootstrap confidence intervals for 
these results are presented hereinafter. 
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Table 3. (a) Summary of the unit root tests. (b) Summary of unit root tests. 

(a) 

 Italy Germany Canada 

 GDP Sales ΔGDP ΔSales GDP Sales 

Obs. (1981.1-2007.1) (1991.1-2008.1) (1990.2-2008.1) 

No. of Breaks 2 2 0 0 2 2 

Break type BC BB N/A N/A AB CB 

TB1 1991.3 1991.3   1998.2 1995.4 

TB2 2003.1 2003.3   2007.3 2002.1 

Level of Significance (τ) ** ** *** *** *** *** 

Data type NSA NSA NSA NSA SA SA 

(b) 

 Germany Canada Canada 

 ΔGDP ΔSales GDP Sales GDP Sales 

Obs. (1957-1991) (1965.1-1978.4) (1992.1-2008.1) 

No. of Breaks 0 0 0 0 1 1 

Break type N/A N/A N/A N/A B B 

TB1     2003.4 2004.2 

TB2       

Level of Significance (τ) *** *** * * ** ** 

Data type Annual Annual SA SA SA SA 

Notes: Obs. and No. respectively stand for the sample period and number. τ  denotes the t ratio of α̂ . *, 
**, and *** respectively denote 10%, 5%, and 1% levels of significance. NSA and SA respectively stand for 
not seasonally adjusted and seasonally adjusted series for quarterly data. TBi stands for the i th break point 
(i = 1, 2). 

6. BCa Bootstrap Confidence Intervals 

Tables 4-12 present the BCa bootstrap confidence intervals of the 90%, 95%, 
and 99% confidence levels for G7 countries. In these tables, V(y)/V(s), 0ẑ  and 
â  respectively represent the ratio of the variance of production to the variance 
of sales, the bias correction constant, and the acceleration constant. θ̂  is the 
point estimate of the sample variance ratio. The number of bootstrap resample- 
ings is 3,000. 

Japan, the US, France, and Italy show the production counter-smoothing 
property of inventory investment: The widest 99% confidence intervals 
represented are located in the region toward the right (greater) side of the value 
of one. Where the 90% confidence interval is applied, the UK is included in the 
group of countries for which production is more volatile than sales. Reports of 
the literature [4] [5] [6] [7] describing Germany as having production counter- 
smoothing properties refer to West Germany during the period before German 
reunification. Table 3(b) presents West German unit root test results. The BCa 
confidence intervals calculated based on this model are presented in Table 10. 
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Table 4. BCa confidence intervals for Japan (variance ratio). 

V(y)/V(s) 

Confidence Interval BCa 

99% (1.01335, 1.02716) 

95% (1.01473, 1.02552) 

90% (1.01555, 1.02448) 

Notes: 0ˆ 0.00334z = − , ˆ 0.04991a = , and ˆ 1.01993θ = . The sample period for the unit root test is 
1955.1-1999.1 (no. observations = 177). The observation periods used to construct BCa confidence intervals 
were set as 1958.2-1999.1 (no. observations = 164). 

 
Table 5. BCa confidence intervals for the United States (variance ratio). 

V(y)/V(s) 

Confidence Interval BCa 

Period I II 

99% (1.18870, 1.68141) (1.1120, 1.5940) 

95% (1.25243, 1.60796) (1.16848, 1.52188) 

90% (1.28194, 1.57434) (1.19710, 1.48385) 

Notes: 0ˆ 0.008356z = − , ˆ 0.002183a = − , and 1.4 76ˆ 207θ =  for period I, and 0ˆ 0.29324z = − , 

ˆ 0.008192a = − , and 1. 42ˆ 35θ =  for period II. Periods I and II for the unit root tests were1967.1-1984.4 
(no. observations = 72) and 1985.1-2008.1 (no. observations = 93). Observation periods used to construct 
BCa confidence intervals for periods I and II were set respectively as1970.2-1984.4 and 1988.2-2008.1 (no. 
observations = 59 and 80). 

 
Table 6. BCa confidence intervals for France (variance ratio). 

V(y)/V(s) 

Confidence Interval BCa 

99% (1.084788, 1.694079) 

95% (1.144478, 1.597168) 

90% (1.180879, 1.552616) 

Notes: 0ˆ 0.1916709z = − , ˆ 0.012346076a = , and 1.36426ˆ 5449θ = . The sample period for the unit root 
test was 1978.1-2008.1 (no. observations = 121). The observation period used to construct BCa confidence 
intervals was set as 1981.1-2008.1 (no. observations = 109). 

 
Table 7. BCa confidence intervals for United Kingdom (variance ratio). 

V(y)/V(s) 

Confidence Interval BCa 

99% (0.99879, 1.00923) 

95% (0.99968, 1.00733) 

90% (1.00011, 1.00647) 

Notes: 0ˆ 0.06522z = , ˆ 0.04700a = , and 1.0 61ˆ 02θ = . The sample period for the unit root test was 
1983.1-2008.1 (no. observations = 101). The observation period used to construct BCa confidence intervals 
was set as 1986.2-2008.1 (no. observations = 88). 
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Table 8. BCa confidence intervals for Italy (variance ratio). 

V(y)/V(s) 

Confidence Interval BCa 

99% (1.00023, 1.00395) 

95% (1.00073, 1.00361) 

90% (1.00097, 1.00344) 

Notes: 0ˆ 0.05517z = , ˆ 0.00131a = − , and 1.0 27ˆ 02θ = . The sample period for the unit root test was 
1981.1-2007.1 (no. observations = 105). The observation period used to construct BCa confidence intervals 
was set as 1984.2-2007.1 (no. observations = 92). 

 
Table 9. BCa confidence intervals for Germany (variance ratio). 

V(y)/V(s) 

Confidence Interval BCa 

99% (0.179115, 0.289420) 

95% (0.189857, 0.271006) 

90% (0.195748, 0.262982) 

Notes: 0ˆ 0.021726z = , ˆ 0.018947a = , and 0.2 48ˆ 269θ = . The sample period for the unit root test was 
1991.1-2008.1 (no. observations = 69). The observation period used to construct BCa confidence intervals 
was set as 1991.4-2008.1 (no. observations = 66). 

 
Table 10. BCa confidence intervals for West Germany (variance ratio). 

V(y)/V(s) 

Confidence Interval BCa 

99% (1.006113, 1.001788) 

95% (1.148905, 1.852629) 

90% (1.233023, 1.766839) 

Notes: 0ˆ 0.090361z = − , ˆ 0.065289a = − , and 1.5 56ˆ 220θ = . The sample period for the unit root tests 
was 1957-1991 (no. observations = 35). The observation period used to construct BCa confidence intervals 
was set as 1960-1991 (no. observations = 32). 

 
Table 11. BCa confidence intervals for Canada (variance ratio). 

V(y)/V(s) 

Confidence Interval BCa 

99% (0.823454, 1.843992) 

95% (0.910669, 1.681195) 

90% (0.963495, 1.592324) 

Notes: 0ˆ 0.010027z = − , ˆ 0.041922a = − , and 1.2 36ˆ 330θ = . The sample period for the unit root test was 
1965.1-1978.4 (no. observations = 56). The observation period used to construct BCa confidence intervals 
was identical to the sample period. 
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Table 12. BCa confidence intervals for Canada (variance ratio). 

V(y)/V(s) 

Confidence Interval BCa 

99% (0.578803, 1.333072) 

95% (0.666948, 1.267492) 

90% (0.716487, 1.204174) 

Notes: 0ˆ 0.274110z = , ˆ 0.002397a = , and 0.9 56ˆ 162θ = . The sample period for the unit root test was set 
as 1992.1-2008.1 (no. observations = 65). The observation period used to construct BCa confidence inter-
vals was set as1995.2-2008.1 (no. observations = 52). 
 

From Table 10, production can be interpreted as being more volatile than sales, 
as described in the literature. However, the results for Germany presented in 
Table 9 show that production is smoother than sales. It might be the case that 
the reunification of West Germany and East Germany gave rise to a change in 
the relative volatilities of production and sales. 

The probability that the calculation of the BCa bootstrap confidence intervals 
stops in the middle of the prescribed number of repetitions is not negligible 
when a break point of the time trend is located near the end of the sample period 
because the resampling process might then involve picking up only zeros for the 
dummy variable that represents a structural break. The second break point of the 
Canadian production series was found to be in the third period from the end of 
the sample period (Table 3(a)). The BCa bootstrap confidence intervals for 
Canada using this model are not reported because a series of OLS routines was 
suspended within the small number of repetitions. Because of this difficulty, the 
Canadian data were analyzed for two other observation periods. Results obtained 
for these cases are presented in Table 3(b). Using data from these time periods, 
Table 11 and Table 12 show that the estimated BCa bootstrap confidence inter-
vals for Canada are located on both sides of the value of one, indicating that the 
test of the production-smoothing theory is indeterminate. The point estimate of 
the relative variance in Table 11 is greater than one. The relative variance of 
Canada documented in the literature [4] [5] [7] corresponds to this case. Interval 
estimates on the relative variance, however, are interpreted as inconclusive. The 
point estimate of the relative variance for the more recent sample period used in 
Table 12 took a value of less than 1. Results obtained from Canadian data differ 
from the implications of numerical estimates on the relative variances of pro-
duction and sales in the literature. 

7. Concluding Remarks 

Point estimates of the relative variances of production and sales were used as the 
bases of the analyses in earlier reports of the relevant literature [4] [5] [7]. Me-
thodologies represented in this paper extended one of hypothesis testing proce-
dures used in earlier studies [2] [3] in the area of empirical examination of the 
production smoothing hypothesis of inventory investment. The unit root testing 
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equations form the basis for constructing the BCa confidence intervals. Models 
used to test for a unit root, both with and without structural break(s) in a linear 
time trend, were converted to equations that comprise deterministic and sto-
chastic components. 

The confidence interval of the variance ratio enables interpretation of the test 
results of the production smoothing hypothesis of inventory investment, in 
terms of the relative volatility of production and sales in light of statistical varia-
tions of the sample data. A stylized fact [23] [24] [25] [26] supporting the hypo-
thesis that production is more volatile than sales explains the inventory fluctua-
tions of economically developed countries better than those of economically de-
veloping countries, according to an earlier paper [5]. Based on the interval esti-
mation method presented in this paper, Japan, the US, France, the UK, and Italy 
apparently have production that is more volatile than sales. 

Unlike results from the literature, results for Canada are indeterminate 
throughout the two time periods analyzed here. West German data show the 
production counter-smoothing property described in the literature. Germany 
since reunification, however, has less volatile production than sales. 

It must be investigated whether the alleged international duality in the 
smoothing property of inventory investment remains as a remarkable feature in 
terms of the confidence interval estimations. Therefore, the analytical method 
presented in this paper should be implemented for other countries, particularly a 
group of economically developing countries. 

When the sample period of a time series is sufficiently long to the degree that 
the number of break points exceeds two, then the number of combinations for 
the possible break types can render the computation burden implausible. The 
way to apply the methodologies represented in this paper in such occasions is to 
divide the sample period, so that each period constitutes a tractable dataset. This 
procedure, however, points to the shortcomings of the methods described in this 
paper in achieving consistent statistical analyses of the entire sample period of 
the data with a long time horizon. Another implicit disadvantage for the me-
thods used for this study arises when a break point is located near the end of a 
sample period. Such was the case for the Canadian production time series in Ta-
ble 3(a). 
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Appendix 

Simply incorporating the ordinary dummy variables into Model (A) of [15] or 
fundamentally (A) of an earlier study [13], we obtain 

( ) 3
1 2 1 11 , 1,t t i it t tiy DU t d y tµ µ µ θ γ α −=

= + − + + + + ∀ ≥∑        (5-1) 

where tDU  follows the definition presented in an earlier report [13], as 
1tDU =  if 1Bt T≥ + , 0 otherwise, 1itd =  for any t expressed as 4t s i= +  

with a nonnegative integer s, 0 otherwise, where i = 1, 2, 3, ( )0 1py O=  or 
( )1O , and { }t  is a sequence of unobservable random variables that are iid 

with 2 20, 0t tE E σ= = >   and finite fourth-order and eighth-order cumulants. 
We also use the following regression equation 

( ) ( )3
1 2 1 11

ˆ ˆ ˆˆ ˆ ˆ ˆ1 , 2, , ,t t i it t tiy DU t d y e t Tµ µ µ θ γ α −=
∆ = + − + + + − + =∑ 

 (5-2) 

to obtain the test statistic, and in connection with Equation (5-2), let , ,
BT T Tl l τ  

and ;i Tl , i = 1, 2, 3 be the (T-1)-dimensional vectors composed respectively of 1,
,tDU t  and itd , as 

( ) ( ) ( )1, ,1 , 2,3, , , 0, , 0,1, ,1
BT T Tl T lτ′ ′= = ′ =     

provided that the ( )1 thBT +  component is the first being 1, 

( )1; 1, 0,0,0,1,0,0,0,Tl ′=  , 

( )2; 0,1,0,0,0,1, , 0,0,0,Tl ′=  , 

( )3; 0, 0,1,0,0,0,1,0,0,0,Tl ′=  , 

with breakpoint BT  defined in the described above articles. Furthermore, let 
limT BT Tλ →∞=  and further define 

( ) ( ) ( )2 1 1 1 2, , , , , , , , ,T T TY y y Y y y E− −
′= ′ ′= =     

2 3 2 1

1 1
1 1 1 1 1

, , , , , , , ,
T T

h h h h h
h h h h h

S S
−

−
= = = = =

′ ′
=

   
=    
   
∑ ∑ ∑ ∑ ∑        

[ ] [ ] [ ]
1 2 1; 2; 3;

1 2 1 1 1 1

, , , , , ,

, , , , , ,
BT T T T T TX l l X l l l

X X X Z Y X Z Y X

τ

− −

   = =   
= = =

 

( ) ( ) 11
1 1 1, , 1, 2,
T iT T T T T X i i iT iM I l l l l M I X X X X i−−

− −′ ′ ′ ′= − = − =  

( ) 1
1 ,X TM I X X X X−
− ′ ′= −  

( ) ( )
1

1 1
1 1 1 11 , ,Z T Z TM I Z Z Z Z M I Z Z Z Z− −
− −′ ′ ′ ′= − = −  

{ }1 2 1 2 3 2 1 2 1 2 1 2
; ;

;

0
diag , , , , , ,

0T X T Z
T X

T
D T T T T T T D

D
 

= =  
 

. 

Letting 4T  be the largest integer that is either equal to or less than ( )1 4T −  
and noting that 
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( ){ } ( ) ( )

( ) ( )

4 4 1

4 4 4 4
1 1

2 2
4

4 1 4 2 1 2

2 8 , 1, 2,3,

T T

t t
i t iT t iT T T

T O T T O T i

−

= =

+ − = + = + − −

= + = + =

∑ ∑  

then it is not difficult to confirm that 

( )1 1 1
; ;

1 1 1 11 1
2 4 4 4

1 1 1 11 1
2 4 4 4

1 1 1 1 1 1
2 2 3 8 8 8
1 1 1 1 0 0
4 4 8 4
1 1 1 10 0
4 4 8 4
1 1 1 10 0
4 4 8 4

T X T XD X XD O T

λ

λ λ λ λλ λ

λ

λ

λ

λ

− − −

 − 
 

− − − − − − 
 − 
 ′ = + −
 
 
 −
 
 

− 
  

 (5-3) 

The test statistic tα  (i.e., the t-statistic of the regression coefficient ( ˆ 1α − ) in 
(5-2)) based on (5-2) is now expressed as 

( ) ( ) ( ) ( ){ }
1 1

1 2 21 1 1 1Z X Xt T Y M Y Y M Y Y M Y Yα λ
− −−

− − − −′ ′ ′= − . 

Furthermore, let ( ),AW rλ  denote a stochastic process on [0, 1], which is the 
projection residuals in [ ]2 0,1L  of a Brownian motion projected onto the sub-
space generated by 1, du (λ, r), r with du (λ, r) such that du (λ, r) = 1 if r λ≥  
and 0 otherwise, as done by Equations (9) and (10) in the literature [13]. Con-
sequently, we have the following. 

Lemma 1: Presume that ty  is generated by (5-1). If the null is formulated as 

1 2µ µ= , 1 2 3 0θ γ γ γ= = = =  and 1α = , and (5-2) is the regression for the 
unit root test, then the limiting distribution of ( )tα λ  under the null is ex-
pressed as 

( )( ) ( ) ( )( )1 21 12

0 0
, d , ,A A AW r r W r dW rλ λ λ

−

∫ ∫ . 

Proof: First, for any integers i, j such that 4 0j i> > >  and 41, ,s T=  , 

( )4 11
j

s nn i − += +∑   is the sum of ( j i− ) pieces of ( )4 1s n− +  and that ( )4 11
j

s nn i − += +∑   
and ( )4 11

j
s nn i ′− += +∑   are independent as s s′≠ . It is then shown by these mat-

ters that for i, j given above 

( ) ( )

( )( ) ( )

4 4

4

3
4 1 4 13 2 2

1 1

3 2 1
4 11 1

1 1

,

T s j T s i
h hs s

T j
Ps

h h

ns n i

T T

T O T

−− + − +−
= =

− −
− +=

=

= +

=
−

= =

∑ ∑ ∑ ∑
∑ ∑ 

 
 

which implies that 

( ) ( )4 1
1

4 13 2 3 2 1
1 2 1

1 , 1, 2,3,
4

T s i
h h P

T
s h

t
thT T O T i− +− − −−

= ===

 = + = 
 

∑ ∑ ∑ ∑    (A.1) 

noting that 
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( )41 3 4 13 2 3 2
2 1 111 .T t T s i

h ht i hshT T− − +− −
= == ==

=∑ ∑ ∑ ∑∑   

Next, note that the ( 1T − ) observations of Equation (5-1) under the null are 
written as 

( )1 1 1 1, ,TY Y E l Y Xb E Z b Eµ− −
′′= + + = + + = +  

where b is the coefficient vector defined suitably. This expression engenders 

( ) ( ) ( ) ( )
11 21 2 12

1 1 1 ,Z X Xt T E M E T Y M Y T Y M Eα λ
− −− − −

− − −′ ′ ′=       (A.2) 

noting that 

( )
1

1 1 1

2 2
1 1 1 1

3 3112 2
1 2 2 22 1 ,

X X

X X X

T Y M Y T Y M Y

T Y M X T X M X T X M Y

− −
− − − −

− −−−
− −

′ ′=

   
′ ′ ′−      

   

      (A.3) 

( )1 1 1 1

3 1
11 1 12 2

1 1 1 2 2 2 2 .X X X X XT Y M E T Y M E T Y M X T X M X T X M E
− −−− − −

− − −

   
′ ′ ′ ′ ′= −       

   
 

In view of Equation (5-3) and 

( )1
1 1 01 ,1t

t hhy t yµ−
− =
= + − +∑   

because of Equation (5-1) under the null and noting that 

( )1

1

1 1 1 1 ,
T T T TXM M M M Mτ τ τ τ

−
′ ′= −  

it is trivial to see that 

( ) ( )
12

11
2 1 ,XT X M X O

−− =′                    (A.4) 

and that 

( )

( ) ( ){ }

( ) ( )

( ) ( ) ( ){ }

1 1

3 3 3
2 2 2

1 2 2 1 1 2 32

3
12

1 1 2 32 2

5
13 22

1 1 1 2 32

12
1 2 32

1

1

2

, ,

1 , ,

, ,

1 , , ,

T T

T

T T

X X t t t tt

t t t tt t

T T t t tt

t t tt

T
T

T T
t

S sT Y M X T M X T d d d

T s T d d d

T M T M T t d d d

T T d d

S

dt

τ τ τ

− − −

− −=

− −
−= =

− −− −
=

−−
=

−

−

=

′ = =

 
− −  
 
 

′

′ ′−    
− − 

∑

∑ ∑

∑

∑ ∑

      (A.5) 

where 1
1 1 .t

t ths −
− =
= ∑   Because ( )14 1

4
T O T
T

−= +  and 1itd =  for any t expressed  

as t = 4s + i with a nonnegative integer s, 0 otherwise, by definition, we obtain 

( )
( ) ( ) ( )( ) ( )4

3 2
1 1 2 32

4 1 1
1

4 1 2 4 1 33
1 1

/2 1
1

, ,

, , ,

T
t t t tt

T s s s
h h hh h h Ps

T s d d d

T O T
= =

−
−=

− + − + − +− −
= =

= +∑ ∑ ∑ ∑
∑

  
 

( ) ( ) ( ){ }
( ) ( )

13 2
1 1 2 32

3 2

1

1
1
1

2

1 , ,

1 1 1, , ,
4 4 4

T
t t t tt

h Pt h

T
t

T t

T T d ds d

T O T

−

=

−

−
− =

− −
= =

−

 = + 
 

∑ ∑

∑∑


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( ) ( )2 1
1 2 32

1 1 1, , , ,
8 8 8

T
t t ttT t d d d O T− −

=

 = + 
 

∑  

( ) ( ){ } ( )2 1 1
1 2 32 2

1 1 1( 1) , , , , .
8 8 8

T T
t t tt tT t T d d d O T− − −

= =

 − = + 
 

∑ ∑    (A.6) 

Using Equation (A.6) as well as Equation (A.1), (A.5) is converted into 

( )1

3 2 1
1 2 .X PT Y M X O T− −
−′ =                   (A.7) 

It is then derived from (A.3), (A.4), and (A.7) that 

( )1

2 2 2
1 1 1 1 ,X X PT Y M Y T Y M Y O T− − −
− − − −′ ′= +  

( )1

1 1 1
1 1 .X X PT Y M E T Y M E O T− − −
− −′ ′= +               (A.8) 

It also follows from the well-known asymptotic results on the I(0) and I(1) se-
ries that 

( )
1

1 1 1 2 2 ,Z P PT E M E T E E O T O Tσ
−− − −  

′ ′= + = +   
 

 

( )1

1
1 1 1 2 2 .Z P PT E M E T E E O T O Tσ

−− − −  
′ ′= + = +   

 
        (A.9) 

Putting Equations (A.2), (A.8), and (A.9) together shows that the limiting dis-
tribution of ( )tα λ  is equal to that of 

( ) ( ) ( )1 1 1

1 1
1 2 12 2

1 1 1 .Z X XT E M E T Y M Y T Y M E
− −− − −

− − −′ ′ ′  

One readily finds that this quantity is the same as that derived from the test 
statistic for Model (A) of earlier papers [13] [15], noting that the seasonal dum-
mies are excluded from the list of the regressors in construction. Consequently, 
it is established by results or arguments in the articles described above that the 
limiting distribution of the quantity above is that claimed by the lemma. 
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