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Abstract 
Taking the power-law behavior of human activities into consideration, we conduct 
an empirical study on the distribution of jump intervals after using BNS nonparame-
tric method to detect jumps in 5 min closing data of HIS. Our result shows that there 
is a “power law” in jump intervals, and Fokker-Planck distribution is the more suita-
ble distribution to describe jump intervals than the traditional Poisson process. So 
the jump diffusion model of power law can depict the movement of stock price more 
accurately. 
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1. Introduction 

The price of underlying assets is not only the foundation for financial derivatives pric-
ing, but also plays an important role in the investment decision-making of the inves-
tors. Many classical theories assume that asset prices have continuous-time paths, e.g. 
Black & Scholes’ option pricing formula (hereafter BS formula) [1]. But financial mar-
kets sometimes generate significant discontinuities, so-called jumps. Merton [2] put 
forward the jump diffusion model by combining the continuous sample path and the 
stochastic jump process together. He used a “Poisson driven” process to describe the 
“abnormal” vibrations. Because of its concise form and clear logic, Merton’s model has 
become the standard model in analyzing the discontinuous change of the underlying 
asset price since it was presented. Under this framework, the follow-up studies general-
ly focus on distribution of jump sizes while accepting that the jump component is a 
“Poisson driven” process, which means the probability of having jump is the same at 
any time. Kou’s asymmetric double exponential jump diffusion model [3] has the 

How to cite this paper: Cao, H.D., Li, Y., 
He, H.P. and He, Z. (2016) Jump Intervals 
of Stock Price Have Power-Law Distribu-
tion: An Empirical Study. Journal of Ma-
thematical Finance, 6, 770-777. 
http://dx.doi.org/10.4236/jmf.2016.65053  
 
Received: August 24, 2016 
Accepted: November 14, 2016 
Published: November 17, 2016 
 
Copyright © 2016 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/ 

   
Open Access

http://www.scirp.org/journal/jmf
http://dx.doi.org/10.4236/jmf.2016.65053
http://www.scirp.org
http://dx.doi.org/10.4236/jmf.2016.65053
http://creativecommons.org/licenses/by/4.0/


H. D. Cao et al. 
 

771 

greatest effect. But in fact, the volatility of financial market will cluster together, that is, 
the high volatility will be relatively concentrated in certain periods of time, while the 
concentrated low volatility will present in other periods of time. Obviously, the Poisson 
process can’t describe such phenomenon. 

Lots of studies have showed that human activities are quite uneven: high-frequency 
outbreaks in short time separate a long time of silence, whose distribution of human 
activity’s interval presents a deviation from the Poisson process, and is characterized by 
the power-law distribution with a fat tail. Barabási [4] puts forward that the burst and 
fat tail in human dynamics are originated in some queuing process-based decision-mak- 
ing. Human dynamics researches the generation mechanism of non-Poisson behavior, 
while the models pay attention to the feature of human behavior such as the model 
based on the model of the human interest or memory [5], as well as based on social in-
teraction model [6]. 

The movement of asset price is the result of many individual investors’ or institutes’ 
decision-making activities. So there is sufficient reason to believe that the characteris-
tics of the asset price volatility should be consistent with the general statistical law of 
human activities.  

Cao Hong-duo et al. [7] have empirically learned the stochastic features of the jump 
intervals of the Shanghai composite index. They put forward the jump diffusion model 
of power law by considering the human dynamics, and this model can depict the sharp 
kurtosis, fat tail, volatility clustering fairly well.  

The distribution of HSI’s jump intervals is empirically researched in this paper in 
order to further verify the universality of the power law to jump interval. 

The rest of the article is organized as follows. Section 2 introduces the candidate 
models. Section 3 empirically examines the distribution of jump intervals. Finally, we 
conclude in Section 4. 

2. Candidate Models 

Merton’s model [2] fails to support the skewness of the return distribution because it 
assumes that the jump sizes follow the independent identical distribution. Kou’s asym-
metric double exponential jump diffusion model [3] overcomes this shortcoming. 
Kou’s model is as followed, 

( )
( ) ( ) ( )

( )

1
1

N t

i
i

dS t
dt dW t d V

S t
µ σ

=

 
= + + −  

 
∑ , 

where ( )S t  is the asset price, ( )W t  is the standard Brownian motion, ( )N t  is the 
Poisson process with rate λ , and { }iV  is a sequence of independent identically dis-
tributed non-negative random variables. 

Although Kou’s model can explain the skewness of asset returns, it fails to give a de-
scription of the volatility clustering. The key to the problem is the assumption to the 
counting process ( )N t . So next, we will compare the actual effect when ( )N t  is 
Poisson process and renewal process with power-law nature respectively. Candidate 



H. D. Cao et al. 
 

772 

models that are considered in this paper are setting as follows. 
If we use the Poisson process to describe the jump intervals, then the probability 

density of intervals between two adjacent jumps obey exponential distribution, 

( ) ( )~ e 0xf x λλ λ− > , 

where and hereinafter x is the interval between two adjacent jumps, ( )f x  is the 
probability that jump happens after x. When using the exponential distribution to fit 
the samples, we choose its common form, 

( ) ebxf x a .                            (1) 

For the renewal process with power-law nature, we focus on the Fokker-Planck dis-
tribution and power law with exponential cutoff. Fokker-Planck distribution is used to 
describe the time evolution of the probability density function of the velocity of a par-
ticle, and its probability density function is 

( ) ( )e 0, 0, 0xf x Ax A
β

α α β
−−= > > > .                 (2) 

The power law with exponential cutoff is one of the mixture distributions, and its 
probability density function is 

( ) ( )e 0, 0, 0xf x Ax Aα β α β− −= > > > .                (3) 

3. Empirical Study on the Distribution of Jump Intervals 
3.1. Jump Detecting Methods 

ARCH class of models and SV class of models are two classical parametric methods in 
depicting the volatility of asset price. However, non-parametric method, which is based 
on facts and all sample data and doesn’t have complicated parameter estimations, has 
an unparalleled advantage over parametric method. For the outcomes of parametric 
method are just approximations of the historical data. The non-parametric methods 
that are often used in previous studies to describe the volatility of asset price are qua-
dratic variation and bi power variation (hereafter BPV). And it has been proved that 
the realized BPV can be used to consistently estimate the integrated volatility, even 
there are jumps in return processes [8]. 

The BPV which is put forward by Barndorff-Nielsen and Shephard [8] [9], is one of 
the recent breakthroughs in non-parametric methods to detect jumps that has great 
implication. The basic intuition behind this detection technique is that estimating the 
quadratic variation of the log-price and its continuous part for a certain unit of time 
respectively, and if they are equal, then there is no jump in this unit of time, otherwise, 
jump exists. Accordingly, we use the ratio jump statistic constructed by Barndorff- 
Nielsen and Shephard [9] (hereafter BNS) to detect jumps. 

The jump detecting method is as follows: 
Dividing a day-trading-time into M intervals, M + 1 datum will be observed as
( ) ( )1 , , 1 1i ip t p t M− − + . tp  is the Log-price of a single asset, p is assumed to be 
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Brownian semi-martingale plus jump. The jth payoff in a trading day is noted as  

, ,
11 1i t j

j jr p t p t
M M

−   = − + − − +   
   

. Realized volatility is defined by 
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The bipower variation is defined as 2
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3.2. Data Acquisition and Processing 

We use 5 min closing data of HIS (Hang Seng Index in Hong Kong stock) as our re-
search object. Because of the constraint of data availability, the time span of our data is 
13 weeks or 64 trading days (Hong Kong stock market closed for one day on 2 July 
2012 (Monday) because of the 15th Hong Kong Special Administrative Region Estab-
lishment Day), from 09:35 on 28 May 2012 to 16:00 on 24 August 2012. The total sam-
ple size is 4224 and they are all collected from tdx.com.cn Corporation. 

Although BNS suggests 72cn ≥ , where n is the number of observations per unit of 
time, under the constraint of the availability of sample frequencies and sample sizes in 
reality, we have to shorten the length of per unit of time when the sample frequency is 
determined i.e. reduce the number of observations per unit of time, in order to make 
sure that there is a certain amount of units of time can be used for jump detection. Be-
sides, the daily trading sessions of Hong Kong stock market have been adjusted to 9:30 
- 12:00 and 13:00 - 16:00 since 5 March 2012, and that is 5.5 hours (or 330 minutes). 
Taking all the above factors, we set 55 minutes as a unit of time, so there are 11 obser-
vations per unit of time. Then the total samples can be divided into 384 units, and we 
number them from 1 to 384 in chronological order. Additionally, we should add the 
opening prices to each unit of time, for BNS use them to calculate the jump statistics 
but our initial data acquisition doesn’t include them. So we collect 384 opening prices 
and make the total sample size increase to 4608, and the others remain unchanged. 

3.3. Results of Jump Detection and Frequency Statistics of Jump 
Intervals 

According to BNS, if the ratio jump statistic is smaller than its corresponding 95% crit-
ical value, then we reject the hypothesis of no jump in this unit of time. We detect 86 
jumps altogether, as shown in Figure 1. 

Make a subtraction between two adjacent jumps’ numbers, we can get a jump inter-
val. There are 85 jump intervals in this study, and the smallest one is 1 unit of time, 
while the largest one is 16 units, see Table 1. Figure 2 is a more vivid form of Table 1 
by using a histogram. 
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Figure 1. The ratio jump statistics of HSI’s returns. 

 
Table 1. Frequency statistics of HSI’s jump intervals (Unit of time: 55 min). 

Unit of 
times 

Number 
of units 

Frequency 
Cumulative 
frequency 

Unit of 
times 

Number 
of units 

Frequency 
Cumulative 
frequency 

1 17 0.2000 0.2000 9 1 0.0118 0.8941 

2 14 0.1647 0.3647 10 1 0.0118 0.9059 

3 9 0.1059 0.4706 11 1 0.0118 0.9176 

4 12 0.1412 0.6118 12 1 0.0118 0.9294 

5 13 0.1529 0.7647 13 2 0.0235 0.9529 

6 3 0.0353 0.8000 14 1 0.0118 0.9647 

7 4 0.0471 0.8471 15 2 0.0235 0.9882 

8 3 0.0353 0.8824 16 1 0.0118 1.0000 

3.4. Fitting the Distribution of Jump Intervals 

According to the data in Table 1, we use models (1), (2) and (3) to fit the distribution 
of jump intervals, and get their goodness of fit, see Table 2. When judging the models’ 
goodness of fit, we usually compare the Adjusted R Square first. The closer to 1, the 
better. Then we will compare the Sum of Squared Errors (hereafter SSE) and Root 
Mean Square Error (RMSE). For them, the closer to 0, the better. So seeing from Table 
2, it is obvious that the goodness of fit from high to low is the Fokker-Planck distribu-
tion, the power law with exponential cutoff and the exponential distribution respec-
tively. Table 3 shows the coefficients and 95% confidence interval of each fit function. 



H. D. Cao et al. 
 

775 

 
Figure 2. Frequency histogram of HSI’s jump intervals. 
 
Table 2. The fit distributions’ goodness of fit (Unit of time: 55 min). 

Fit distribution 
R 

Square 
Adjusted 
R square 

SSE 
Degrees 

of freedom 
RMSE #Coefficient 

Fokker-Planck distribution 0.8155 0.7871 3.3794 13 0.2600 3 

Power law with 
exponential cutoff 

0.7870 0.7542 3.9012 13 0.3001 3 

Exponential distribution 0.7513 0.7336 4.5536 14 0.3253 2 

 
Table 3. Coefficients’ values of the fit distributions (Unit of time: 55 min). 

Fit distribution Coefficient Value 95% Confidence interval 

Fokker-Planck distribution 

A 2.3763 (0.2191, 25.7711) 

α  1.9210 (0.9992, 2.8429) 

β  2.4609 (−0.5597, 5.4815) 

Power law with exponential cutoff 

A 0.3091 (0.1246, 0.7668) 

α  0.7601 (−0.3536, 1.8737) 

β  0.0830 (−0.1016, 0.2676) 

Exponential distribution 
a 0.1965 (0.1035, 0.3732) 

b −0.2012 (−0.2675, −0.1348) 
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According to Table 3, we can get the Fokker-Planck distribution: 

( )
2.4609

1.92102.3763 e xf x x
−−= . Noticing that 

2.4609
1.9210

0
2.3763 e d 1.0910xx x

−∞ − =∫ , we amend 

the original one to ( )
2.4609

1.92102.1781 e xf x x
−−= , in order to ensure the definite in- 

tegral result is 1 so that it satisfies the nature of probability density function. Similarly, 
we get the power law with exponential cutoff: ( ) 0.7601 0.08300.3091 e xf x x− −= . Noticing 

that 0.7601 0.0830
0

0.3091 e d 2.1268xx x
∞ − − =∫ , we amend it to ( ) 0.7601 0.08300.1453 e xf x x− −= .  

We also get the exponential distribution: ( ) 0.20120.1965e xf x −= . Noticing that 
0.2012

0
0.1965e d 0.9766x x

∞ − =∫ , again, we amend it to ( ) 0.20120.2012e xf x −= . 

Figure 3 shows the heads and tails of three amended fit distributions. Again, it is ob-
vious that the Fokker-Planck distribution has the best fitting effect. Compared with the 
exponential distribution, both the Fokker-Planck distribution and the power law with 
exponential cutoff have the features of the sharp kurtosis and fat tail, which are 
matched with human behavior dynamics. What’s more, the Fokker-Planck distribution 
give a higher probability to the tail than the power law with exponential cutoff, and it is 
also much higher than the exponential distribution. 

4. Conclusion 

This paper focuses on the counting process N(t) of Kou’s asymmetric double exponen-
tial jump-diffusion model [3]. We use the exponential distribution, the Fokker-Planck 
distribution and the power law with exponential cutoff to fit the distribution of jump 
intervals after using BNS [9] nonparametric method to detect jumps in 5 min closing 
data of HIS. It shows that the Fokker-Planck distribution is more suitable in describing 
the distribution of stock jump intervals, rather than the traditional exponential distri-
bution. So by amending the counting process N(t) into the Fokker-Planck distribution, 
i.e. amending the asymmetric double exponential jump-diffusion model into the jump 

 

  
Figure 3. The heads (left hand side) and tails (right hand side) of three amended fit distributions. 
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diffusion model of power law, it can portray the phenomenon of stock price movement 
more precisely that has intensive occurrence of jumps, and meanwhile allow the disap-
pearance of jumps over an extended period. This amendment comes into line with the 
general statistical law of human activities. As the result of this paper, on the one hand, 
the new “anomaly phenomena” is given out for the already study; on the other hand, 
human dynamics is introduced into financial mathematical modeling. 
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