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Abstract 
This paper mainly studies the pricing of credit default swap with the loan as the reference asset 
under the primary-secondary model. In the contract of credit default swap (CDS), we consider that 
the defaults of the counterparties are correlated with the stochastic interest rate following Vasi-
cek model or the default state of the reference firm. We assume that the company’s default is in-
dependent with the company’s prepayment and obtain the pricing formulas of the loan and loan 
CDS. 
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1. Introduction 
Since the end of the twentieth century, the derivatives market has developed rapidly and become one of the most 
important financial innovations in the internationally financial market. It has also become a new tool of managing 
credit risk after the loan transaction and the asset securitization. Credit default swap (CDS) is one of the most 
important derivatives to manage credit risk in the financial market. 

Because it is easy to implement standardization, the credit default swap market has the rapid expansion. 
However, some concealed contradictions exposed gradually, such as the United States subprime crisis and the 
European sovereign debt crisis. They make people realize that credit derivatives bring the convenience and 
contain huge risk at the same time, especially contagious risk. Therefore, the pricing problem of credit default 
swap became a hot research topic in recent years. 
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Until now, there have been mainly two basic approaches to study credit risk: the structural approach and the 
reduced approach. The corresponding models are called the structural model and the reduced-form model. The 
structural approach introduced the firm’s default governed by the value of its assets and debts such as [1] [2]. 
However, for the problem of the valuation of credit products with jump-diffusion risk, it is still difficult to get 
explicit results, even using the above approaches in the event of defaulting before the maturity date. Nevertheless, 
the reduced-form approach is comparatively flexible and tractable to solve this problem. For the reduced-form 
approach, exogenous mechanism of firm’s default was introduced. This model considers the default as a random 
event which was controlled by an exogenous intensity process (see [3]-[5]). With the more aggregate credit risk 
in the modern financial markets, we have recognized that the defaults of many firms have direct linkage. 
Thereby the valuation of credit securities with contagious risk has aroused a lot of authors’ interests. The model 
of credit contagion was firstly proposed to account for the concentration risk in large portfolios of defaultable 
securities (DL Model) in [6]. Later, DL Model was generalized and the concept of counterparty risk which was 
from the default of firm’s counterparties was firstly introduced in [7]. Because it is impossible to assume that the 
impact of one firm’s default to another firm’s default keeps constant all the time, some authors introduced a 
hyperbolic function to reflect the attenuation effect in [8]. Recently, the cases that the interest rate satisfied the 
jump-diffusion process and the fractional Brownian motion were also discussed in [9]-[11]. The above conclu- 
sions on CDS were mostly obtained when the reference assets were the bonds. 

With the rapid development of the financial securities and financial derivatives, the proportion of the financial 
assets in the total assets of the society is increasing. Therefore, the ability and the level of managing the risk for 
the financial institutions have become the decisive factors to improve their competitiveness and profitability. As 
a special enterprise, bank has a special role in the economical development. Its main business is to deposit and 
provide the loans. The credit risk of the bank is mainly derived from the loans. In China, credit risk is 
excessively concentrated. The existing methods and tools managing credit risk are ineffective. Thus, making use 
of domestic and foreign research on credit derivatives, the exploration and the development of credit derivatives 
to transfer credit risk in China’s market become very necessary. However, most conclusions on credit derivatives 
based on the loan were qualitative and there are few deeply quantitative research. [12] studied the pricing of 
mortgage CDS under structured model. [13] considered the characteristics in various types of loans. They 
proposed a new idea of using CDS to transfer their risks and gave the pricing model of CDS. The research on 
credit default swap based on the loan in foreign countries mostly used the reduced method such as [14] [15]. The 
above studies did not consider the contagious risk among the counterparties. [16] discussed the pricing problem 
of loan CDS with contagious risk. But the loan was particular in [16] and it had a cash deposit. In this paper, we 
will make use of the contagious model with attenuation effect to study the pricing of CDS based on fully 
amortizing fixed-rate mortgage (FRM). This kind of the loan is very common. Therefore, the conclusions in this 
paper will provide the theoretical preparation and the suggestions for the credit products development and the 
research in China. 

2. The Structure of the Default and the Prepayment  

Suppose { }( )*

0
, , ,T

t t
Q

=
Ω    be the filtered probability space satisfying the usual conditions. *
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T= < ∞    
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Suppose that ( ),i
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The joint distributions of i
dτ  and i

pτ  are given by  
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3. The Pricing of the Loan  
The reference asset of credit default swap is a loan which takes the installments. After the signing of the loan 
contract, the borrower of the loan promises to repay equal amount of the principal and the interest to the lender 
in each repayment date which is called Fully Amortizing Fixed-rate Mortgage (FRM). Until the maturity date, 
the borrowers should repay all the principal and the interest. In addition, the lender generally requires the 
borrower to issue a corresponding collateral before the contract in order to improve the borrower’s credit rating 
and the credit limits. The collateral can be a basket of the financial assets or some physical assets. In this paper, 
we assume that the repayment of the loan satisfies two conditions: 1) The time of the payment is continuous; 2) 
Allow the borrower to repay the loan in advance, but need repay all the loans once time. 

The borrower may choose to repay the loan in advance, default or hold a loan. We assume that L is the 
repayment amount of the borrower in the unit time. ( )M t  is the remaining loan at time t. T is the maturity date 
of the loan. dτ  and pτ  are respectively the default time of company i and the time of the repayment in 
advance. ( )R t  is the recovery rate of the loan when the borrower defaults. L, ( )M t  and ( )R t  are not 
stochastic. ( )min ,d pτ τ τ=  denotes the stop time of repayment for the loan. If pτ τ= , the remained loan is 

( )pM τ . If dτ τ= , the remained loan is ( )dM τ  and the bank can recover ( ) ( )d dM Rτ τ . Thus, the cash flow 
is the continuous repayment Y if the borrower dose not default or repay the loan in advance before the maturity 
date. In a no-arbitrage market, the value of FRM is the discount of the expectation of the future cash flow on the 
risk-neutral measure. 

Therefore, the price of the loan is  
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Simplifying it, we have  
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where [ ] [ ]| .Q Q
t tE E⋅ = ⋅   Now, we give a lemma about the distributions of i

dτ  and i
pτ .  
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Proof. The process in details can be found in Appendix.  
In order to calculate the price of the loan, we give another form of the pricing formula (8).  
Theorem 1. The pricing formula of the loan ( )iV t  has the following form  
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                  (10) 

Proof. The process in details can be found in Appendix.  
In the following, we give the primary-secondary model with the attenuation effect which the intensities of the 

default and the prepayment of firm A and firm B satisfy. We apply the contagious model into the loan and loan 
CDS based on the above loan. 

Suppose that the default intensity and the intensity of repaying the loan in advance of the primary firm A 
satisfy the following equations:  

( ) ( ) ( )0 1 0, ;A A A A At a a r t t bλ ξ= + =                            (11) 

the default intensity and the intensity of repaying the loan in advance of the secondary firm B satisfy the 
following equations:  
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where 0 1 0 1 3 0 0, , , , , , 0A A B B B A Ba a a a a b b > , 2
Ba  are real and 0 1 0A Aa a+ > , 0 1 2 0.B B Ba a a+ + >  

Now, we assume that the interest rate satisfies Vasicek model,  

( ) ( )( ) ( )d d d ,r rr t a b r t t Z tσ= − +                           (13) 

where ( )rZ t  is the standard Brownian motion which describes the market risk, rσ  is the standard deviation 
which represents the stochastic volatility, parameter b is the long-term average of interest rate, a represents the 
speed of recovery that tr  returns to b from the deviation value of the long-term average. The interest rate has 
the following explicit solution:  
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3.1. The Price of the Loan Issued by the Primary Firm A 
In fact, we need to substitute (11) into the pricing formula in Theorem 1. 

Firstly, we calculate ( ) ( ) ( )( )de d .
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For any normal random variables X and Y,  
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Secondly, we calculate ( ) ( ) ( ) ( ) ( )( )de d .
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then, we substitute (18) into (21) and get the value of ( ) ( ) ( ) ( ) ( )( )de d .
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Substituting (18), (24) and (25) into (22), we deduce the price of the loan issued by the primary firm A. 

3.2. The Price of the Loan Issued by the Secondary Firm B 
The pricing process is similar to the pricing of the primary firm A. We need three steps. 

Firstly, we calculate ( ) ( ) ( )( )de d .
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In the above equation, applying the integration by parts, 
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P s C s t

C P u u P s

C s t C P u

τ τ

τ

τ τ

τ

τ τ

τ

∞
 − + − > ∨ − > ∨ 

 = − + − > ∨ 

+ − > ∨ + > ∨

= − > ∨ + −

− > ∨ + > ∨

= − + − >

∫ ∫

∫

∫

∫

   

 

   

 

   

( )* d .r
t T

u∨ 

               (28) 

We assume that no defaults occur up to time t for firm A. Then  

( ) ( )( ) ( ) ( )( )* 0 1| exp d exp d .
u uA r A A A

d t T t t
P u v v a u t a r v vτ λ> ∨ = − = − − −∫ ∫               (29) 

Substituting (29) into (28), we obtain  

( ) ( )
( ) ( ) ( )( )

*

0 1

1 | d

1 exp d d .

sA A A r
d t Tt

s uA A A A
t t

C s t C P u u

C s t C a u t a r v v u

τ− + − > ∨

= − + − − − −

∫

∫ ∫

 
                     (30) 

By (26),  
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( ) ( )( ) { } ( )

( ) ( )( ) ( ) ( ) ( )( )( )
( )( )

2

30 0 1
*

0 0 1

0 0

d
1d

d
0 1

e e | d

e 1 exp d d d

e e

B
s

Ats B AuB B B d dt

s B B B
t

sB B
t

a
I u

a uT r u b a a r u uQ r
t t Tt

T s ur u b a a r u uQ A A A A
tt t t

T b a s tQ
tt

L E E s

L E C s t C a u t a r v v u s

L E

τ τ<

 
 −  

− + − + + +  

− + + +

+ − −

∫
∫

∫

∫

  
  
  ∨
  

    
 = − + − − − −  

=

∫

∫ ∫ ∫

∫

 

( ) ( ) ( ) ( ) ( )( )( )
( )( ) ( ) ( ) ( )( )

( )( ) ( ) ( ) ( ) ( )( )( )
( )( ) ( )( )

1

0 0 1

0 0 1

0 0

1 d
0 1

1 d

1 d
0 1

1 exp d d d

e e 1 d

e e exp d d d

1 e e

B

sB B B
t

sB B B
t

sB B
t

s ua r u u A A A A
t t

T b a s t a r u uQ A
tt

T s ub a s t a r u uA Q A A
tt t t

T b a s tA Q
tt

C s t C a u t a r v v u s

L E C s t s

L C E a u t a r v v u s

L C s t E

+

+ − − +

+ − − +

+ − −

∫

∫

 − + − − − −  
 = − +  

 − − − −  

= − +

∫ ∫

∫

∫ ∫ ∫

∫
( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( )( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

1 0 0 1 0 1

0 0 1 0 0 1 10

1 d 1 d

1 d 1 d d

d e e e d d

1 e e d e e e e d d .

sB B B B uA A
t t

s sB B B B B B uAA
t t t

T sa r u u b a s t a r u a u t a r v vA Q
tt t

T T sb a s t a r u u b a s t a r u u a r v va u tA Q A Q
t tt t t

s L C E u s

L C s t E s L C E u s

+ + − − + − − −

+ − − + + − − + −− −

∫ ∫ ∫

∫ ∫ ∫

   −      
   = − + −      

∫ ∫

∫ ∫ ∫

  

(31) 

Then, applying the conclusion that ( ) ( )2 2 2 21e exp 2
2

AX BY
X Y X XY YE A B A AB Bµ µ σ σ σ+  = + + + +  

 for any  

normal random variables X and Y, we have (31). 

Secondly, we calculate ( ) ( ) ( ) ( ) ( )( )de d .
s B B
tT r u u u uQ B

t t
E M s s s

ξ λ
ξ

− + +∫ 
  ∫  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )d d
0e d e d .

s sB B B B
t tT Tr u u u u r u u u uQ B B Q

t tt t
E M s s s M s b E s

ξ λ ξ λ
ξ

− + + − + +∫ ∫   =      ∫ ∫             (32) 

Because ( ) ( ) ( )( )de
s B B
t r u u u uQ

tE
ξ λ− + +∫ 

  
 is calculated in the first step, (32) can be easily obtained. 

At last, we calculate ( ) ( ) ( ) ( ) ( ) ( )( )de d .
s B B
tT r u u u uQ B

t t
E R s M s s s

ξ λ
λ

− + +∫ 
  ∫  

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

d

d

d

d d

d

e d

e d

e d

d e e d

e e

s B B
t

s B B
t

s B B
t

s sB B B B
t t

s sB B
t t

T r u u u uB
t

T r u u u uB B
t

T r u u u uB
t

T Tr u u u u r u u u uB
t t

T
Tr u u u u r

t
t

R s M s s s

R s M s r s s s s

R s M s r s s s

R s M s R s M s r s s s

R s M s

ξ λ

ξ λ

ξ λ

ξ λ ξ λ

ξ λ

λ

ξ λ

ξ

ξ

− + +

− + +

− + +

− + + − + +

− + + −

∫

∫

∫

∫ ∫

∫ ∫

= + +

− +

 = − − + 
 

= − +

∫

∫

∫

∫ ∫

∫
( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

d

d

d d

d

d

e d

e e d

e d .

B B

s B B
t

T TB B B B
t t

s B B
t

u u u u

T r u u u uB
t

Tr u u u u r u u u u

t

T r u u u uB
t

R s M s

R s M s r s s s

R T M T R t M t R s M s s

R s M s r s s s

ξ λ

ξ λ

ξ λ ξ λ

ξ λ

ξ

ξ

+ +

− + +

− + + − + +

− + +

∫

∫ ∫

∫

− +

 ′= − − − 
 

− +

∫

∫

∫

     (33) 
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So  

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )

d

d

d

d

e d

e d

e d

e d .

s B B
t

T B B
t

s B B
t

s B B
t

T r u u u uQ B
t t

T r u u u uQ
tt

T r u u u uQ
tt

T r u u u uQ B
tt

E R s M s s s

R t M t R s M s E s

R s M s E r s s

R s M s E s s

ξ λ

ξ λ

ξ λ

ξ λ

λ

ξ

− + +

− + +

− + +

− + +

∫

∫

∫

∫

 
  

 ′= +   
 −   
 −   

∫

∫

∫

∫

                   (34) 

From above equation, we only need calculate ( ) ( ) ( ) ( ) ( ) ( )( )de d
s B B
tT r u u u uQ

tt
R s M s E r s s

ξ λ− + +∫ 
  ∫  in (33).  

( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) { } ( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

30 0 1
*

1 1 10

d

d
1d

1 d 1 d

e

e e |

1 e e e e

s B B
t

B
s

Ats B AB B B ud dt

s sB B uAA
t t t

r u u u uQ
t

aI u
a ur u b a a r u uQ r

t t T

sa r u u a r u u aa u tA Q A Q
t tt

E r s

E r s E

C s t E r s C E r s

τ

ξ λ

τ<

− + +

 
 −  

− + − + + +  

− + − + −− −

∫

∫
∫

∫ ∫ ∫

 
  
  
  
  = ∨
  

    
 = − + −   ∫

 

( )d d .r v v u 
  

        (35) 

The first part in (35) is similarly obtained by the same method and process to the former, so we omit it. Now,  

we calculate the second part. Let ( ) ( ) ( ) ( )1 11 d d , ,
s uB A

t t
X a r u u a r v v Y r s= − + − =∫ ∫  then  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1 1

1 1

1 d d

1 d d

2 2

0

e e

e
1exp ,
2

sB uA
t t

s uB A
t t

a r u u a r v vQ
t

a r u u Br s a r v vQ
t

X X Y XY

B

E r s

E
A A A

B
µ σ µ σ

− + −

− + + −

=

∫ ∫

∫ ∫

 
  

 ∂     = = + + ∂  

              (36) 

where Xµ  and Yµ  are easily obtained by the conclusions about the interest rate ( )r t . For ,XYσ  we have  

( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1

1 1

1 1

1 1

, 1 d d

1 , d , d

1 , d , d , d , d

1 , , d , , d .

s uB A
XY t t t

s uB A
t tt t

s s s uB Q A Q
t r r t r rt t t t

s uB A
t t

Cov r s a r u u a r v v

a Cov r s r u u a Cov r s r v v

a E v s Z v b v s Z v a E v s Z v b v u Z v

a v s b v s v a v s b v u v

σ

ρ ρ

ρ ρ

= − + −

= − + −

   = − + × − ×      

= − + −

∫ ∫

∫ ∫

∫ ∫ ∫ ∫

∫ ∫

   (37) 

For 2 , ,X u sσ <  we have  

( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

2
1 1

2 2

1 1 1 1

2 2

1 1 1 1

2 2

1 1

1 d d

1 d d 2 1 d , d

1 d d 2 1 , d , d

1 d

s uB A
X t t t

s u s uB A A B
t t tt t t t

s u s uB A A B Q
t t t r rt t t t

s uB A
t tt t

Var a r u u a r v v

a Var r u u a Var r v v a a Cov r u u r v v

a Var r u u a Var r v v a a E b v s Z v b v u Z v

a Var r u u a Var

σ = − + −

= + + + +

 = + + + + ×  

= + +

∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ( )( ) ( ) ( ) ( )1 1d 2 1 , , d .
uA B
t

r v v a a v s b v u vρ+ +∫ ∫

   (38) 
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Thus, combining (34)-(38), we deduce the pricing formula of the loan issued by secondary firm B.  

4. The Pricing of Loan CDS  
This paper assumes that the contract will terminate when the borrower defaults or prepays the loan in advance. 
We consider a simple situation that pτ  and dτ  are independent. Therefore,  

( ) ( ) ( )d d, e ,
x y
t tu u u uQ

t d p tP x y E λ ξτ τ − −∫ ∫ > > =   
                           (39) 

( ) ( )( ) ( ) ( )( )dd ( ) e ,
d

s
t u u uQt

t
P s s s E

s
λ ξτ

λ ξ − +∫>  = − +   
                        (40) 

( ) ( ) ( ) ( ) ( )d d,
e ,

x y
t tt d p u u u uQ

t

P x y
E x y

x y
λ ξτ τ

λ ξ − −∫ ∫∂ > >  =   ∂ ∂
                      (41) 

where .d pτ τ τ= ∧  
Firm C has a loan from firm J with the maturity date 1T . The loan satisfies the above conditions. To seek 

protection against the possible loss, firm C buys a credit default swap with the maturity date ( )2 2 1T T T<  from 
firm K on condition that firm C gives the payments to seller K at a fixed swap rate c in time while seller K 
promises to compensate buyer C for the loss caused by the default of firm J at a certain rate R (R is the recovery 
rate of the loan). Each party has the obligation to make payments until its own default. The source of credit risk 
may be from three parties: the borrower of the loan, the buyer of CDS and the seller of CDS. In the following, 
we discuss a simple situation which only contains the default risk from reference firm J and the CDS’s seller K. 

The default intensity and the intensity of repaying the loan in advance of firm J satisfy the following 
equations  

( ) ( ) ( )0 1 0, .J J J Jt a a r t t bλ ξ= + =                                (42) 

The default intensity and the intensity of repaying the loan in advance of firm K satisfy the following 
equations  

( ) ( ) { } ( ) ( )2
0 1 0

3

, .
1J

d

K
K K K K K

K Jt
d

at a a r t I t b
a tτ

λ ξ
τ<

= + + =
− +

                      (43) 

Firstly, the time-0 market value of buyer C’s payments to seller K is  

( ) ( )
{ }

( ) ( ) ( )( )2 2 dde d e d .
s J Js
tt

J

T T r u u u ur u uQ Q
t tst t

PV t cE I s cE s
λ ξ

τ

− + +−

>

∫∫   = =   
   ∫ ∫                  (44) 

Secondly, the time-0 market value of seller K’s promised payoff in case of firm J’s default is  

( ) ( )( ) ( ) { } { }

( ) ( )( ) ( ) { } { }

( ) ( )( ) ( ) { }
( )

( ) ( )( ) ( ) { }

( )

0

2 2

0

2 2

2
0 0

2

2
0 10

0

2

d

d
0

d d

d

e 1

e 1 |

e 1 e

e 1 e

J
d

J K
dd

J
d

J K
dd

J
T Kd

J
d

T K K
J
d d

J
d

r u uQ J J
loss d d T T

r u uQ J J Q K
d d T T

r u u u uQ J J
d d T

a a r u I
r u uQ J J

d d T

PV E R M I I

E R M I E I

E R M I

E R M I

τ

τ

τ

τ τ

τ τ

τ τ

λ

τ

τ

τ τ

τ τ

τ τ

τ τ

< >

< >

−

<

− + +

<

∫

∫

∫ ∫

∫
∫

 
= − 

 

  = −  
  

 
= − 

 

= −



{ } ( )
2

3
d

1
.

K

J K Ju
d

a
u

a u τ<

 
 
 

− + 
 

 
 
 
 
  

             (45) 

Let 2 3 0K K Aa a C− = = > , then  
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( ) ( )( ) ( ) { }

( ) { } ( )

( ) ( ) ( ) { }

( ) { } ( )

( ) ( )

22
0 10

30

2

2
0 10

0

2

2
12 0 0 0

d
1d

d
1d

d

e 1 e

[e (1 e ]

e e

K
T K K

J J K Jud d d
J
d

A
T K K

J J A Jud d d
J
d

J
TK dK

aa a r u I u
a ur u uQ J J

d d T

Ca a r u I u
C ur u uQ J J

d d T

a r u u r uT a Q

E R M I

E R M I

E

τ τ

τ τ

τ

τ

τ

τ

τ

τ τ

τ τ

<

<

 
 − + + 

− + −  
<

 
− − + + 
− + −  

<

− −−

∫
∫

∫
∫

∫ ∫

 
 

− 
 
  

= −

= ( )( ) ( ) { }
{ } ( )

( ) ( ) ( )( ) ( ) { } ( )( )
( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )

2
0

2

2
12 0 0 0

2

22 012 0 0

2 0

d
1d

d d 2

dd
20

0

1 e

e [e 1 1]

e e 1 e 1 d

e

A
T

J A Jud d
J
d

J
TK dK

J
d

J
J JT dKK

K

CI u
C uu J J

d d T

a r u u r u uT a Q J J A J
d d dT

T r u u u ua r u uT a Q J A

TT a

R M I

E R M I C T

E R s M s s C T s s

τ

τ

τ

τ

τ

τ

λ ξ

τ τ

τ τ τ

λ

<

−
−

− +

<

− −−

<

− + +−−

−

∫

∫ ∫

∫∫

 
 − 
  

= − − +

 
= − − + 

  

=

∫

( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )22 01 0
dd

21 1 e e d .
s J JTK r u u u ua r u uA Q JR s M s C T s E s s

λ ξ
λ

− + +− ∫∫ − − +   ∫

        (46) 

Now, we calculate  

( ) ( ) ( ) ( ) ( )( )

( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 01 0

2 0 0 101 0

20 0 1 01 0

20 0 1 01 0

dd

dd
0 1

1 dd
0 1

1 dd
0

e e

e e

e e e

e e e

s J JTK

s J J JTK

sJ J JTK

sJ J JTK

r u u u ua r u uQ J

b a a r u r u ua r u uQ J J

s b a a r u ua r u uQ J J

s b a a r u ua r u uJ Q

E s

E a a r s

E a a r s

a E

λ ξ
λ

− + +−

− + + +−

− + − +−

− + − +−

∫∫

∫∫

∫∫

∫∫

 
  
 = +  

 = +  
 =   

+ ( ) ( ) ( ) ( ) ( )20 0 1 01 0
1 dd

1 e e e .
sJ J JTKs b a a r u ua r u uJ Qa E r s

− + − +− ∫∫ 
  

                       (47) 

Let ( ) ( )2

0 0
d , d

T s
X r u u Y r u u= =∫ ∫ . For any normal random variables X and Y,  

( ) ( )2 2 2 21e exp 2 .
2

AX BY
X Y X XY YE A B A AB Bµ µ σ σ σ+  = + + + +  

 So we have  

( )( ) ( ) ( )

( )( ) ( ) ( )

2 2 2
2

0 0 0

2

0 0 0

0,
d 0, d d ,

2
0,

d 0, d d .
2

T T T
X

s s s
Y

b u
r u u f u u u

b u
r u u f u u u

µ µ

µ µ

= = +

= = +

∫ ∫ ∫

∫ ∫ ∫
                      (48) 

( )( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 22
2 2 20 0 0 0

d , d , d , d .
T T T TQ

X r rVar r u u E b u T Z u b u T Z u b u T uσ  = = × =  ∫ ∫ ∫ ∫          (49) 

( )( ) ( ) ( ) ( ) ( ) ( )2 22
0 0 0 0

d , d , d , d .
s s s TQ

Y r rVar r u u E b u s Z u b u s Z u b u s uσ  = = × =  ∫ ∫ ∫ ∫            (50) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2

2

0 0 0 0

2 20 0 0

d d d d

, d , d , , d .

T s T sQ Q Q
XY

T s sQ
r r

E r u u r u u E r u u E r u u

E b u T Z u b u s Z u b u T b u s u

σ      = −          
 = × =  

∫ ∫ ∫ ∫

∫ ∫ ∫
              (51) 
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( ) ( ) ( ) ( )2 1 01 0
1 dd 2 2 2 21e e exp 2 .

2

sJTK a r u ua r u uQ
X Y X XY YE A B A AB Bµ µ σ σ σ

− +− ∫∫   = + + + +      
            (52) 

Then, we substitute (48)-(51) into (52) and get ( ) ( ) ( )2 1 01 0
1 dde e

sJTK a r u ua r u uQE
− +− ∫∫ 

  
 Let 

( ) ( ) ( ) ( )2
1 10 0

1, d 1 d ; 0,
T sK JA X a r u u a r u u B Y r s= = − − + = =∫ ∫ . We have  

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )

2

2 2

1 10 0

2 2

1 10 0 0 0

2

d 1 d

0, 0,
0, d d 1 0, d d

2 2

0,
0, .

2

T sK J
X

T T s sK J

Y

a r u u a r u u

b u b u
a f u u u a f u u u

b u
r s f s

µ µ

µ µ

= − − +

 
 = − + − + +
 
 

= = +

∫ ∫

∫ ∫ ∫ ∫             (53) 

( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( )
( )( ) ( )

2

2

2

2
1 10 0

2 2

1 10 0

1 1 0 0

22
0

d 1 d

d 1 d

2 1 d , d

, d .

T sK J
X

T sK J

T sK J

s
Y

Var a r u u a r u u

a Var r u u a Var r u u

a a Cov r u u r u u

Var r s v s v

σ

σ ρ

= − − +

= + +

+ +

= =

∫ ∫

∫ ∫

∫ ∫

∫

                      (54) 

( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

2

2

2 2

2

1 10 0

1 10 0

1 0 0

1 0 0

1 20 0

, d 1 d

, d 1 , d

d d

1 d d

, d , d

T sK J
XY

T sK J

T TK Q Q Q

s sJ Q Q Q

s TK Q
r r

Cov r s a r u u a r u u

a Cov r s r u u a Cov r s r u u

a E r s r u u E r s E r u u

a E r s r u u E r s E r u u

a E v s Z v b v T Z v

σ

ρ

= − − +

= − − +

   = − −         
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For any normal random variables X and Y,  
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Therefore,  
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We substitute (53)-(55) into(57) and get the above expectation. 
Thus, in accordance with the arbitrage-free principle, we obtain the swap rate of loan CDS  

( )

( ) ( )( ) ( ) { } { }
( ) ( ) ( )( )

0

2 2

2

d

d

0

e 1
.

0 e d

J
d

J K
d d

s J J
t

r u uQ J J
d d T T

loss

T r u u u uQ

E R M I I
PVc

PV E s

τ

τ τ

λ ξ

τ τ
< >

− + +

∫

∫

 
− 

 = =
 
 
 ∫

                    (58) 

5. Conclusion  
CDS is one of the credit derivatives with large trading volume in the global financial market. In fact, there is a 
certain relationship among most of the companies in real market, such as the problem of holding each other’s 
bonds and so on. If a company defaults, it will affect the default possibility of another company. Default 
contagion is a common phenomenon in financial markets. This paper studies the pricing of CDS with the loan as 
the reference asset when contagious risk has the attenuation effect. We consider that the default intensity is 
correlated with the counterparty’s default and the interest rate following Vasicek model. The conclusions in this 
paper can provide the theoretical preparation and suggestions for the credit products development and the 
research in China. In fact, we only discussed the simple situation. The default of a firm and the prepayment of 
the loan issued by the firm are independent. Moreover, we price the loan and CDS under the primary-secondary 
framework. We can also consider other more complex cases, such as the correlation of the default intensity and 
the prepayment intensity, the looping default effect and so on. 
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Appendix 
1. Proof of Lemma 1  
Proof. Firstly, from Section 2, we have  
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Similarly, we have  
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2. Proof of Theorem 1  

Proof. Firstly, ( ) ( )
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Secondly, 
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At last,  
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Therefore, the theorem is deduced. 
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